INDICE GENERAL

INDICE DE FIGURAS

INDICE DE TABLAS

NOTACION Y ABREVIATURAS

CAPITULO 1. INTRODUCCIÓN Y OBJETIVOS

- 1.1. Introducción
- 1.2. Objetivos
- 1.3. Contenido

CAPITULO 2. ANTECEDENTES Y ESTADO DEL ARTE

- 2.1. Introducción
- 2.2. Técnicas de refuerzo más empleadas
 - 2.2.1. Refuerzo con FRP
 - 2.2.2. Refuerzo con recrecidos de hormigón
 - 2.2.3. Refuerzo con encamisados metálicos
- 2.3. Una aproximación a la investigación y uso de las diferentes técnicas de refuerzo de soportes de HA
 - 2.3.1. Uso de las diferentes técnicas de refuerzo en España
 - 2.3.2. Investigaciones relacionadas con el refuerzo de soportes de HA
- 2.4. Estado del arte sobre los SHARAPM
 - 2.4.1. Investigaciones llevadas a cabo
 - 2.4.1.1. Ramírez y Bárcena (1975), Ramírez et al. (1977) y Ramírez (1996)
 - 2.4.1.2. Cirtek (2001a; 2001b)
 - 2.4.1.3. Otras investigaciones relacionadas
 - 2.4.2. Propuestas de diseño y cálculo
 - 2.4.2.1. Fernández (1994)
 - 2.4.2.2. Regalado (1999)

- 2.4.2.3. Cirtek (2001a; 2001b)
- 2.4.2.4. Giménez (2007)
- 2.5. Mecanismos que intervienen en el incremento de la carga última
 - 2.5.1. Transmisión por tensiones rasantes
 - 2.5.1.1. Adhesión
 - 2.5.1.2. Fricción
 - 2.5.2. Transmisión directa
 - 2.5.3. Confinamiento impuesto por el refuerzo
 - 2.5.3.1. Origen del confinamiento
 - 2.5.3.2. Comportamiento del hormigón sometido a un estado de compresión triaxial
 - 2.5.3.3. Modelos de comportamiento del hormigón confinado
 - 2.5.4. Particularidades en un SHARAPM
 - 2.5.4.1. Transmisión por tensiones rasantes
 - 2.5.4.2. Determinación del valor de la presión de confinamiento lateral
 - 2.5.4.3. Determinación de k_1
 - 2.5.4.4. Modos de mejorar el confinamiento
- 2.6. Conclusiones relativas al estado del arte de los SHARAPM

CAPITULO 3. ESTUDIO EXPERIMENTAL Y NUMÉRICO DE SHARAPM SOMETIDOS A COMPRESIÓN CENTRADA. VERIFICACIÓN DE LOS MODELOS DE EF

- 3.1. Introducción
- 3.2. Estudio experimental
 - 3.2.1. Características de las probetas
 - 3.2.2. Propiedades de los materiales
 - 3.2.3. Instrumentación
 - 3.2.4. Procedimiento de ensayo
 - 3.2.5. Resultados obtenidos del estudio experimental
- 3.3. Planteamiento del estudio numérico
 - 3.3.1. Generalidades
 - 3.3.2. Tipos de elementos finitos y mallado empleado
 - 3.3.3. Condiciones de contorno y aplicación de carga
 - 3.3.4. Modelización del hormigón confinado

- 3.3.4.1. Modelos constitutivos en ANSYS 10.0 (2005)
- 3.3.4.2. Modelo constitutivo empleado
- 3.3.4.3. Parámetros mecánicos
- 3.3.5. Modelización del acero
- 3.3.6. Modelización del contacto entre superficies
- 3.3.7. Modelización del hormigón de las cabezas, mortero y prensa
- 3.3.8. Aspectos relativos a la carga/descarga de los soportes
- 3.4. Descripción de los modelos analizados
- 3.5 Verificación de los modelos
 - 3.5.1. Carga de rotura
 - 3.5.2. Curva carga-acortamiento
 - 3.5.3. Pautas de comportamiento
 - 3.5.3.1. Probetas ADb y AC
 - 3.5.3.2. Probetas BD y BC
 - 3.5.3.3. Probetas PAD y PAC
 - 3.5.3.4. Probetas PBD y PBC
 - 3.5.4. Conclusiones relativas a la verificación de los modelos

CAPITULO 4. ESTUDIO PARAMÉTRICO SOBRE SHARAPM SOMETIDOS A COMPRESIÓN CENTRADA

- 4.1. Introducción
- 4.2. Parámetros estudiados
 - 4.2.1. Grupo Ref (probetas de referencia)
 - 4.2.2. Grupo sP
 - 4.2.3. Grupo L
 - 4.2.4. Grupo fy
 - 4.2.5. Grupo fc
 - 4.2.6. Grupo P100
 - 4.2.7. Grupo PA
 - 4.2.8. Grupo mu
 - 4.2.9. Grupo sep
 - 4.2.10. Grupo S
 - 4.2.11. Grupo sC

- 4.3. Aspectos relativos a la modelización numérica
 - 4.3.1. Generalidades
 - 4.3.2. Descripción de los modelos de EF
- 4.4. Resultados obtenidos
 - 4.4.1. Probetas de referencia (Grupo Ref)
 - 4.4.1.1. Pautas de comportamiento
 - 4.4.1.2. Mecanismos que intervienen en el incremento de la carga última
 - 4.4.2. Grupo sP
 - 4.4.2.1. Pautas de comportamiento
 - 4.4.2.2. Mecanismos que intervienen en el incremento de la carga última
 - 4.4.2.3. Conclusiones relativas al comportamiento de la probeta B-sP
 - 4.4.3. Grupo L
 - 4.4.3.1. Pautas de comportamiento
 - 4.4.3.2. Mecanismos que intervienen en el incremento de la carga última
 - 4.4.3.3. Conclusiones relativas al comportamiento de las probetas del "Grupo L"
 - 4.4.4. Grupo fy
 - 4.4.4.1. Pautas de comportamiento
 - 4.4.4.2. Mecanismos que intervienen en el incremento de la carga última
 - 4.4.4.3. Conclusiones relativas al comportamiento de las probetas del "Grupo fy"
 - 4.4.5. Grupo fc
 - 4.4.5.1. Pautas de comportamiento
 - 4.4.5.2. Mecanismos que intervienen en el incremento de la carga última
 - 4.4.5.3. Conclusiones relativas al comportamiento de las probetas del "Grupo fe"
 - 4.4.6. Grupo P100
 - 4.4.6.1. Pautas de comportamiento
 - 4.4.6.2. Mecanismos que intervienen en el incremento de la carga última
 - 4.4.6.3. Conclusiones relativas al comportamiento de las probetas del "Grupo P100"
 - 4.4.7. Grupo PA
 - 4.4.7.1. Pautas de comportamiento
 - 4.4.7.2. Mecanismos que intervienen en el incremento de la carga última

- 4.4.7.3. Conclusiones relativas al comportamiento de las probetas del "Grupo P100"
- 4.4.8. Grupo mu
 - 4.4.8.1. Pautas de comportamiento
 - 4.4.8.2. Mecanismos que intervienen en el incremento de la carga última
 - 4.4.8.3. Conclusiones relativas al comportamiento de las probetas del "Grupo mu"
- 4.4.9. Grupo sep
- 4.4.10. Grupo S
- 4.4.11. Grupo sC
- 4.5. Comparación entre la carga última obtenida a partir de los modelos de EF, con la establecida por diferentes propuestas de diseño
 - 4.5.1. Eurocode No. 4 (1992)
 - 4.5.2. Regalado (1999)
 - 4.5.3. Cirtek (2001b)
 - 4.5.4. Giménez (2007)
 - 4.5.5. Conclusiones relativas a las diversas propuestas de diseño

CAPITULO 5. ESTUDIO DEL COMPORTAMIENTO DEL NUDO VIGA-SOPORTE EN SHARAPM SOMETIDOS A COMPRESIÓN CENTRADA

- 5.1. Introducción
- 5.2. Estudio experimental
 - 5.2.1. Características de las probetas
 - 5.2.1.1. Bases seguidas en el diseño de las probetas
 - 5.2.1.2. Geometría
 - 5.2.1.3. Armaduras
 - 5.2.1.4. Tipo y número de probetas ensayadas
 - 5.2.2. Propiedades de los materiales
 - 5.2.3. Instrumentación
 - 5.2.3.1. T1
 - 5.2.3.2. AxL.C
 - 5.2.3.3. AxL.T
 - 5.2.4. Procedimiento de ensayo
- 5.3. Resultados de los ensayos

- 5.3.1. Comportamiento general y modo de rotura de las probetas
- 5.3.2. Comportamiento del contacto entre el mortero y el acero del refuerzo
- 5.3.3. Reparto de carga entre el refuerzo y el hormigón de los tramos de soporte
- 5.3.4. Confinamiento impuesto por el refuerzo
- 5.3.5. Transmisión directa de carga
- 5.3.6. Conclusiones parciales
- 5.4. Aspectos relativos a la modelización numérica
 - 5.4.1. Generalidades
 - 5.4.2. Tipos de elementos finitos y mallado empleado
 - 5.4.3. Condiciones de contorno y aplicación de carga
 - 5.4.4. Modelización del hormigón confinado
 - 5.4.5. Modelización del acero
 - 5.4.6. Modelización del mortero de cemento y de la prensa
 - 5.4.7. Modelización del contacto entre superficies
- 5.5. Verificación de los modelos numéricos
 - 5.5.1. Descripción de los modelos
 - 5.5.2. Carga de rotura
 - 5.5.3. Curva carga acortamiento
 - 5.5.4. Medidas en galgas extensométricas
 - 5.5.5. Pautas de comportamiento
 - 5.5.5.1. Probeta AxL.C
 - 5.5.5.2. Probeta AxL.T
 - 5.5.6. Conclusiones relativas a la verificación de los modelos
- 5.6. Estudio paramétrico
 - 5.6.1. Parámetros estudiados
 - 5.6.1.1. Grupo C
 - 5.6.1.2. Grupo T
 - 5.6.1.3. Grupo A
 - 5.6.2. Modelos de EF
 - 5.6.3. Resultados obtenidos a partir de los modelos numéricos
 - 5.6.3.1. Grupo C
 - 5.6.3.2. Grupo T
 - 5.6.3.3. Grupo A

5.7. Conclusiones relativas al comportamiento del nudo viga-soporte en SHARAPM

CAPITULO 6. PROPUESTA DE UN MÉTODO DE CÁLCULO. RECOMENDACIONES DE DISEÑO V EJECUCIÓN

- 6.1. Introducción
- 6.2. Carga última de un SHARAPM. Tramo de soporte
 - 6.2.1. SHARAPM con capiteles
 - 6.2.2. SHARAPM sin capiteles
 - 6.2.2.1. Cálculo de $P_{\rm L}$
 - 6.2.2.2. Cálculo de $P_{\rm P}$
 - 6.2.2.3. Cálculo de $P_{\rm M}$
 - 6.2.2.4. Aplicación
- 6.3. Carga última de un SHARAPM. Nudo viga-soporte
 - 6.3.1. Con capiteles en el nudo
 - 6.3.2. Con tubos pasantes en el nudo
 - 6.3.3. Sin elementos auxiliares en el nudo
- 6.4. Recomendaciones de diseño y ejecución

CAPITULO 7. CONCLUSIONES Y PROPUESTA DE NUEVAS INVESTIGACIONES

- 7.1. Conclusiones
- 7.2. Aportación original de la Tesis Doctoral
- 7.3. Propuesta de nuevas investigaciones

REFERENCIAS

APÉNDICES

- Apéndice I. Modelos numéricos con 2 y 3 planos de simetría
- Apéndice II. Verificación de los modelos numéricos planteados en el capítulo 3
- Apéndice III. Figuras relativas al estudio paramétrico (capítulo 4)
- Apéndice IV. Justificación del cálculo de: P_{EC4} , P_{Reg} , P_{Cir} , P_{Gim}
- Apéndice V. Aspectos relativos al estudio experimental del nudo viga-soporte
- Apéndice VI. Gráficos de resultados. Estudio experimental del nudo viga-soporte
- Apéndice VII. Geometría del modelo de bielas y tirantes presentado en el Capítulo 6
- Apéndice VIII. P_{SHARAPM} de las probetas estudiadas en el Capítulo 5

INDICE DE FIGURAS

- Fig. 2.1. Ejecución de un refuerzo mediante FRP
- Fig. 2.2. Ferrallado dispuesto para el encofrado y hormigonado de un recrecido de hormigón
- Fig. 2.3. Ejemplo de un SHARAPM
- Fig. 2.4. Comunidades Autónomas estudiadas y número de entrevistas realizadas en cada una de ellas
- Fig. 2.5. Uso de las diferentes técnicas de refuerzo de soportes de HA en el territorio español
- Fig. 2.6. Porcentaje de las publicaciones científicas entre los años 1990 y 2006 sobre cada una de las técnicas de refuerzo. (a) Según datos de Elsevier; (b) Según datos de ASCE
- Fig. 2.7. Gráfico comparativo entre el porcentaje relativo que representa el uso de diferentes sistemas de refuerzo y las investigaciones desarrolladas sobre cada uno de ellos
- Fig. 2.8. Soporte original previo al refuerzo
- Fig. 2.9. SHARAPM ensayados (cotas en mm)
- Fig. 2.10. SHARAPM ensayados. (a) Angulares continuos; (b) Angulares discontinuos
- Fig. 2.11. Transmisión de carga a los angulares del refuerzo a través de las presillas (Giménez 2007)
- Fig. 2.12. Equilibrio de fuerzas en una rebanada diferencial del SHARAPM (Giménez 2007)
- Fig. 2.13. Relación entre q_h , f_l y M_p . Formación de 3 rótulas plásticas en los angulares ubicados entre las 2 primeras presillas (Giménez 2007)
- Fig. 2.13. (a) Transmisión directa y por tensiones rasantes; (b) Confinamiento impuesto por el refuerzo
- Fig. 2.14. (a) Transmisión directa y por tensiones rasantes; (b) Confinamiento impuesto por el refuerzo
- Fig. 2.15. Interfaces en las que se produce transmisión de cargas por tensiones rasantes
- Fig. 2.16. Fuerzas actuantes en un contacto entre superficies
- Fig. 2.17. Vista del aparato de corte directo y de la probeta con algunas burbujas de aire
- Fig. 2.18. Estado tensional en el nudo viga-soporte
- Fig. 2.19. Conexión entre tramos de soporte de diferente planta. Viga de menor anchura

- que el soporte (*b*<*a*)
- Fig. 2.20. Conexión entre tramos de soporte de diferente planta. Viga de mayor anchura que el soporte (b>a)
- Fig. 2.21. (a) Estado de compresión uniaxial; (b) Estado de compresión triaxial
- Fig. 2.22. Comportamiento del hormigón sometido a compresión triaxial
- Fig. 2.23. Superficie de plastificación del hormigón en el plano de Mohr
- Fig.2.24. Confinamiento en el caso de un soporte de sección circular. Equilibrio de fuerzas
- Fig. 2.25. Confinamiento impuesto por: (a) Armaduras transversales; (b) Refuerzo con chapa continua; (c) Presillas metálicas (SHARAPM)
- Fig. 3.1. Probeta sin reforzar y esquema de un refuerzo tipo (cotas en mm)
- Fig. 3.2. Sección transversal de una probeta reforzada (cotas en mm)
- Fig. 3.3. (a) Probeta ADa, AC, ADb, MAD y MAC; (b) Probeta BD y BC
- Fig. 3.4. Probeta MBD y MBC
- Fig. 3.5. (a) Probeta PAD y PAC; (b) Probeta PBD y PBC
- Fig. 3.6. Instrumentación (mínima) empleada
- Fig. 3.7. Marco metálico y probeta dispuesta para ser ensayada
- Fig. 3.8. Ejecución del refuerzo en el exterior (probetas ADa; BD; ADb; MAD; MBD; PAD; PBD) e interior (probetas AC; BC; MAC; MBC; PAC; PBC) del marco
- Fig. 3.9. Rotura de las cabezas de HA en las probetas en las cuales se disponen capiteles en los extremos del refuerzo
- Fig. 3.10. Elementos SOLID65 y LINK8 (ANSYS 10.0 2005)
- Fig. 3.11. Elementos SOLID95 y SOLID45 (ANSYS 10.0 2005)
- Fig. 3.12. Elementos TARGE170 y CONTA174 (ANSYS 10.0 2005)
- Fig. 3.13. Elementos finitos empleados para modelizar: prensa, cabezas de HA, tramo de soporte, mortero y refuerzo metálico
- Fig. 3.14. Elementos finitos empleados para modelizar: a) contacto refuerzomortero/hormigón; b) contacto fijo mortero/hormigón
- Fig. 3.15. Probeta tipo con la simplificación por simetría (1/8 de la probeta)
- Fig. 3.16. Superficie de plastificación de Drucker-Prager (ANSYS 10.0 2005)
- Fig. 3.17. Superficie de plastificación de Von Mises (ANSYS 10.0 2005)
- Fig. 3.18. Carga, descarga, ejecución del refuerzo y carga hasta rotura. (a) Comportamiento real; (b) Comportamiento simplificado (probetas ADa; BD; ADb; MAD; MBD; PAD; PBD)

- Fig. 3.19. Carga, ejecución del refuerzo y carga hasta rotura. (a) Comportamiento real; (b) Comportamiento simplificado (probetas AC; BC; MAC; MBC; PAC; PBC)
- Fig. 3.20. Vista de la probeta Test1. Representación de la armadura distribuida
- Fig. 3.21. Probetas ADb y AC. Vista tridimensional del modelo de EF
- Fig. 3.22. Probetas ADb y AC. Alzado, planta y perfil
- Fig. 3.23. Probetas BD y BC. Vista tridimensional del modelo de EF
- Fig. 3.24. Probetas BD y BC. Alzado, planta y perfil
- Fig. 3.25. Probetas PAD y PAC. Vista tridimensional del modelo de EF
- Fig. 3.26. Probetas PAD y PAC. Alzado, planta y perfil
- Fig. 3.27. Probetas PBD y PBC. Vista tridimensional del modelo de EF
- Fig. 3.28. Probetas PBD y PBC. Alzado, planta y perfil
- Fig. 3.29. Curva carga acortamiento. Probeta Test1
- Figs. 3.30 y 3.31. Curva carga acortamiento. Probetas ADb y AC
- Figs. 3.32 y 3.33. Curva carga acortamiento. Probetas BD y BC
- Figs. 3.34 y 3.35. Curva carga acortamiento. Probetas PAD y PAC
- Figs. 3.36 y 3.37. Curva carga acortamiento. Probetas PBD y PBC
- Fig. 3.38. Instante de la rotura de las probetas ADb y AC. (a), (b) Rotura del hormigón situado entre las 2 primeras presillas; (c) Rotura del hormigón situado entre las 2 primeras presillas y plastificación de los angulares del refuerzo; (d) Deslizamiento relativo entre los elementos del refuerzo y el mortero de la interfaz
- Fig. 3.39. Instante de la rotura de las probetas ADb y AC (modelo de EF). (a) Plastificación del hormigón situado entre las 2 primeras presillas ("Stress state ratio"); (b) Plastificación de los angulares situados entre las 2 primeras presillas (tensión de Von Mises); (c) Deslizamiento relativo entre los elementos del refuerzo y el mortero de la interfaz (en mm); (d) Deformada de los angulares situados entre las 2 primeras presillas (en mm)
- Fig. 3.40. Instante de la rotura de las probetas BD y BC. (a) Rotura del hormigón situado entre las 2 primeras presillas; (b) Plastificación y deformada de los angulares situados en los extremos de las probetas
- Fig. 3.41. Instante de la rotura de las probetas BD y BC (modelo de EF). (a) Plastificación del hormigón situado entre las 2 primeras presillas ("Stress state ratio"); (b) Plastificación de los angulares situados entre las 2 primeras presillas (tensión de Von Mises); (c) Deslizamiento relativo entre los elementos del refuerzo y el mortero de la interfaz (en mm); (d) Deformada de los capiteles (en mm)

- Fig. 3.42. Instante de la rotura de las probetas PAD y PAC. (a), (b), (c) Rotura del hormigón situado en los extremos de la probeta; (d) Deformación de la primera presilla en la dirección perpendicular a la misma
- Fig. 3.43. Instante de la rotura de las probetas PAD y PAC (modelo de EF). (a) Plastificación del hormigón situado en los extremos de la probeta ("Stress state ratio"); (b) Plastificación de la segunda presilla (tensión de Von Mises); (c) Deslizamiento relativo entre los elementos del refuerzo y el mortero de la interfaz (en mm); (d) Deformada en dirección vertical (en mm)
- Fig. 3.44. Instante de la rotura de las probetas PBD y PBC. (a) Rotura del hormigón situado en la zona central de la probeta, y plastificación de los angulares; (b) Deformación experimentada por los capiteles
- Fig. 3.45. Instante de la rotura de las probetas PBD y PBC (modelo de EF). (a) Plastificación del hormigón situado entre las presillas tercera y cuarta ("Stress state ratio"); (b) Plastificación de los angulares situados entre las presillas tercera y cuarta (tensión de Von Mises); (c) Deformación de los capiteles (en mm); (d) Deformada de los angulares (en mm)
- Fig. 4.1. Probetas A0 y B0
- Fig. 4.2. Probeta Ref
- Fig. 4.3. Vista de un SHARAPM, en el que no se dispone ninguna presilla en la zona de los extremos
- Fig. 4.4. Probeta B-sP
- Fig. 4.5. Probetas A-L50 y B-L50
- Fig. 4.6. Probetas A-L120 y B-L120
- Fig. 4.7. Probetas A-P100 y B-P100
- Fig. 4.8. SHARAPM con presillas con un ancho del orden de 80-100 mm
- Fig. 4.9. Probetas A-PA y B-PA
- Fig. 4.10. Separación entre el capitel y la base de la viga debido al enfriamiento del primero después de la soldadura
- Fig. 4.11. Probetas A-S25x36 y B-S25x36
- Fig. 4.12. Probetas A-S22.5x40 y B-S22.5x40
- Fig. 4.13. Probetas del "Grupo Ref" (similares a las de: "Grupo fy", "Grupo fc", "Grupo mu" y "Grupo sC")
- Fig. 4.14. Probeta B-SP del "Grupo SP"
- Fig. 4.15. Probetas del "Grupo P100"
- Fig. 4.16. Probetas del "Grupo L"

- Fig. 4.17. Probetas del "Grupo PA"
- Fig. 4.18. Probetas del "Grupo sep"
- Fig. 4.19. Probetas del "Grupo S"
- Fig. 4.20. Curva tensión-deformación para el hormigón de las probetas del "Grupo sC"
- Fig. 4.21. Curvas carga-acortamiento. "Grupo Ref"
- Fig. 4.22. Grado de plastificación del hormigón ("stress state ratio"), para diferentes niveles de carga. Probeta A0
- Fig. 4.23. Grado de plastificación de los elementos del refuerzo (tensión de Von Mises en MPa), para diferentes niveles de carga. Probeta A0
- Fig. 4.24. Grado de plastificación del hormigón ("stress state ratio"), para diferentes niveles de carga. Probeta B0
- Fig. 4.25. Grado de plastificación de los elementos del refuerzo (tensión de Von Mises en MPa), para diferentes niveles de carga. Probeta B0
- Fig. 4.26. Reparto de cargas entre el refuerzo y el hormigón. Probeta A0
- Fig. 4.27. Reparto de cargas entre el refuerzo y el hormigón. Probeta B0
- Fig. 4.28. Deslizamiento entre el mortero/hormigón y los elementos del refuerzo (mm). Desplazamiento impuesto en cabeza *d*=12 mm. Probetas A0 y B0
- Fig. 4.29. Nomenclatura de cada una de las presillas, y punto en el que se evalúa la tensión originada por la expansión lateral del hormigón
- Fig. 4.30. Tensión normal, perpendicular a la directriz del soporte, en las presillas P1, P2 y P3
- Fig. 4.31. Tensión de compresión a la cual se encuentra sometido el hormigón, cuando la carga total aplicada es PMEF
- Fig. 4.32. Curvas carga-acortamiento. Probetas B0 y B-sP
- Fig. 4.33. Grado de plastificación del hormigón ("stress state ratio"), para diferentes niveles de carga. Probeta B-sP
- Fig. 4.34. Grado de plastificación de los elementos del refuerzo (tensión de Von Mises en MPa), para diferentes niveles de carga. Probeta B-sP
- Fig. 4.35. Reparto de cargas entre el refuerzo y el hormigón. Probetas B0 y B-sP
- Fig. 4.36. Tensión normal, perpendicular a la directriz del soporte, en las presillas P1, P2 y P3. Probeta B-sP
- Fig. 4.37. Tensión de compresión a la cual se encuentra sometido el hormigón, cuando la carga total aplicada es PMEF. Probetas B0 y B-sP
- Fig. 4.38. Modelo simplificado que pretende explicar la pérdida de rigidez del ala del angular de la probeta B-sP

- Fig. 4.39. Curvas carga-acortamiento. "Grupo L"
- Fig. 4.40. Grado de plastificación de los elementos del refuerzo (tensión de Von Mises en MPa), para diferentes niveles de carga. Probeta A-L120
- Fig. 4.41. Grado de plastificación de los elementos del refuerzo (tensión de Von Mises en MPa), para diferentes niveles de carga. Probeta B-L120
- Fig. 4.42. Reparto de cargas entre el refuerzo y el hormigón. Probetas A-L50 y A-L120
- Fig. 4.43. Reparto de cargas entre el refuerzo y el hormigón. Probetas B-L50 y B-L120
- Fig. 4.44. Tensión normal, perpendicular a la directriz del soporte, en las presillas P1, P2 y P3 (probetas A-L50 y A-L120)
- Fig. 4.45. Tensión normal, perpendicular a la directriz del soporte, en las presillas P1, P2 y P3 (probetas B-L50 y B-L120)
- Fig. 4.46. Tensión de compresión a la cual se encuentra sometido el hormigón, cuando la carga total aplicada es P_{MEF} . Probetas A-L50 y A-L120
- Fig. 4.47. Tensión de compresión a la cual se encuentra sometido el hormigón, cuando la carga total aplicada es P_{MEF} . Probetas B-L50 y B-L120
- Fig. 4.48. Relación entre la carga última del SHARAPM y el área de los angulares del refuerzo
- Fig. 4.49. Relación entre la eficacia del refuerzo y el área de los angulares
- Fig. 4.50. Curva carga-acortamiento. "Grupo fy"
- Fig. 4.51. Reparto de cargas entre el refuerzo y el hormigón. Probetas A-fy235 y A-fy355
- Fig. 4.52. Reparto de cargas entre el refuerzo y el hormigón. Probetas B-fy235 y B-fy355
- Fig. 4.53. Tensión normal, perpendicular a la directriz del soporte, en las presillas P1, P2 y P3 (probetas A-fy235 y A-fy355)
- Fig. 4.54. Tensión normal, perpendicular a la directriz del soporte, en las presillas P1, P2 y P3 (probetas B-fy235 y B-fy355)
- Fig. 4.55. Tensión de compresión a la cual se encuentra sometido el hormigón, cuando la carga total aplicada es P_{MEF} . Probetas A-fy235 y A-fy355
- Fig. 4.56. Tensión de compresión a la cual se encuentra sometido el hormigón, cuando la carga total aplicada es P_{MEF} . Probetas B-fy235 y B-fy355
- Fig. 4.57. Relación entre la carga última del SHARAPM y el límite elástico del acero del refuerzo
- Fig. 4.58. Relación entre la eficacia del refuerzo y el límite elástico del acero
- Fig. 4.59. Curvas carga-acortamiento. "Grupo fc"
- Fig. 4.60. Reparto de cargas entre el refuerzo y el hormigón. Probetas A-fc4 y A-fc25
- Fig. 4.61. Reparto de cargas entre el refuerzo y el hormigón. Probetas B-fc4 y B-fc25

- Fig. 4.62. Tensión normal, perpendicular a la directriz del soporte, en las presillas P1, P2 y P3 (probetas A-fc4 y A-fc25)
- Fig. 4.63. Tensión normal, perpendicular a la directriz del soporte, en las presillas P1, P2 y P3 (probetas B-fc4 y B-fc25)
- Fig. 4.64. Tensión de compresión a la cual se encuentra sometido el hormigón, cuando la carga total aplicada es P_{MEF} . Probetas A-fc4 y A-fc25
- Fig. 4.65. Tensión de compresión a la cual se encuentra sometido el hormigón, cuando la carga total aplicada es P_{MEF} . Probetas B-fc4 y B-fc25
- Fig. 4.66. Relación entre la carga última del SHARAPM y la resistencia del hormigón del soporte
- Fig. 4.67. Relación entre la eficacia del refuerzo y la resistencia del hormigón
- Fig. 4.68. Curvas carga-acortamiento. "Grupo P100"
- Fig. 4.69. Reparto de cargas entre el refuerzo y el hormigón. Probeta A-P100
- Fig. 4.70. Reparto de cargas entre el refuerzo y el hormigón. Probeta B-P100
- Fig. 4.71. Deslizamiento entre el mortero/hormigón y los elementos del refuerzo (mm). Desplazamiento impuesto en cabeza *d*=12 mm. Probetas A-P100 y B-P100
- Fig. 4.72. Tensión normal, perpendicular a la directriz del soporte, en las presillas P1, P2 y P3 (probetas A-P100 y B-P100)
- Fig. 4.73. Tensión de compresión a la cual se encuentra sometido el hormigón, cuando la carga total aplicada es P_{MEF} . Probeta A-P100
- Fig. 4.74. Tensión de compresión a la cual se encuentra sometido el hormigón, cuando la carga total aplicada es P_{MEF} . Probeta B-P100
- Fig. 4.75. Curvas carga-acortamiento. "Grupo PA"
- Fig. 4.76. Grado de plastificación de los elementos del refuerzo (tensión de Von Mises en MPa), para diferentes niveles de carga. Probeta A-PA
- Fig. 4.77. Grado de plastificación del hormigón ("stress state ratio"), para diferentes niveles de carga. Probeta A-PA
- Fig. 4.78. Grado de plastificación de los elementos del refuerzo (tensión de Von Mises en MPa), para diferentes niveles de carga. Probeta B-PA
- Fig. 4.79. Grado de plastificación del hormigón ("stress state ratio"), para diferentes niveles de carga. Probeta B- PA
- Fig. 4.80. Reparto de cargas entre el refuerzo y el hormigón. Probeta A-PA
- Fig. 4.81. Reparto de cargas entre el refuerzo y el hormigón. Probeta B-PA
- Fig. 4.82. Deslizamiento entre el mortero/hormigón y los elementos del refuerzo (mm). Desplazamiento impuesto en cabeza d=12 mm. Probetas A-PA y B-PA

- Fig. 4.83. Nomenclatura de cada una de las presillas, y punto en el que se evalúa la tensión originada por la expansión lateral del hormigón (probetas A-PA y B-PA)
- Fig. 4.84. Tensión normal, perpendicular a la directriz del soporte, en las presillas P1, P2, P3 y P4 (probetas B-PA y B-PA)
- Fig. 4.85. Tensión de compresión a la cual se encuentra sometido el hormigón, cuando la carga total aplicada es P_{MEF} . Probeta A-PA
- Fig. 4.86. Tensión de compresión a la cual se encuentra sometido el hormigón, cuando la carga total aplicada es P_{MEF} . Probeta B-PA
- Fig. 4.87. Curvas carga-acortamiento. "Grupo mu"
- Fig. 4.88. Grado de plastificación de los elementos del refuerzo (tensión de Von Mises en MPa), para diferentes niveles de carga. Probeta A-mu0.00
- Fig. 4.89. Grado de plastificación del hormigón ("stress state ratio"), para diferentes niveles de carga. Probeta A-mu0.00
- Fig. 4.90. Grado de plastificación de los elementos del refuerzo (tensión de Von Mises en MPa), para diferentes niveles de carga. Probeta A-mu0.60
- Fig. 4.91. Grado de plastificación del hormigón ("stress state ratio"), para diferentes niveles de carga. Probeta A-mu0.60
- Fig. 4.92. Reparto de cargas entre el refuerzo y el hormigón. Probetas A-mu0.00 y A-mu0.60
- Fig. 4.93. Reparto de cargas entre el refuerzo y el hormigón. Probetas B-mu0.00 y B-mu0.60
- Fig. 4.94. Deslizamiento entre el mortero/hormigón y los elementos del refuerzo (mm). Desplazamiento impuesto en cabeza *d*=12 mm. Probetas A-mu0.00 y A-mu0.00
- Fig. 4.95. Tensión normal, perpendicular a la directriz del soporte, en las presillas P1, P2 y P3 (probetas A-mu0.00 y A-mu0.60)
- Fig. 4.96. Tensión normal, perpendicular a la directriz del soporte, en las presillas P1, P2 y P3 (probetas B-mu0.00 y B-mu0.60)
- Fig. 4.97. Tensión de compresión a la cual se encuentra sometido el hormigón, cuando la carga total aplicada es P_{MEF} . Probetas A-mu0.00 y A-mu0.60
- Fig. 4.98. Tensión de compresión a la cual se encuentra sometido el hormigón, cuando la carga total aplicada es P_{MEF} . Probetas B-mu0.00 y B-mu0.60
- Fig. 4.99. Relación entre la carga última del SHARAPM y el coeficiente de rozamiento entre el mortero (hormigón) y el acero del refuerzo
- Fig. 4.100. Relación entre la eficacia del refuerzo y el coeficiente de rozamiento

- Fig. 4.101. Curvas carga-acortamiento. "Grupo sep"
- Fig. 4.102. Curva carga-acortamiento. "Grupo sC"
- Figs. 4.103 y 4.104. P_{MEF} versus P_{EC4}/P_{Reg} . SHARAPM sin capitel (probetas tipo A)
- Fig. 4.105 y 4.106. P_{MEF} versus P_{Cir}/P_{Gim} . SHARAPM sin capitel (probetas tipo A)
- Fig. 4.107 y 4.108. P_{MEF} versus P_{EC4} / P_{Reg} . SHARAPM con capitel (probetas tipo B)
- Fig. 4.109. Ajuste lineal de los valores P_{MEF} - $P_{diseño}$ (P_{EC4} , P_{Reg} , P_{Cir} , P_{Gim}), y coeficiente de correlación de cada ajuste. SHARAPM sin capitel (probetas tipo A)
- Fig. 5.1. Vista 3D de las probetas
- Fig. 5.2. Geometría de las probetas (cotas en mm)
- Fig. 5.3. Zona de un entramado de edificación simulada mediante las probetas
- Fig. 5.4. Armado de las probetas
- Fig. 5.5. Unión de la armadura longitudinal de los tramos de soporte, con los elementos metálicos de los extremos
- Fig. 5.6. (a) Vista general del armado de las probetas; (b) Detalle de uno de los extremos de las probetas
- Fig. 5.7. Probeta AxL.C
- Fig. 5.8. Probeta AxL.C. (a) Vista general; (b) Detalle del nudo viga-soporte
- Fig. 5.9. Probeta AxL.T
- Fig. 5.10. Probeta AxL.T. (a) Vista general; (b) Detalle del nudo viga-soporte
- Fig. 5.11. Soldadura de los angulares del refuerzo a los elementos metálicos de los extremos de los tramos de soporte
- Fig. 5.12. Montaje de LVDTs
- Fig. 5.13. LVDTs empleados para medir el desplazamiento relativo entre el hormigón y el acero del refuerzo
- Fig. 5.14. Instrumentación de la probeta AxL.C
- Fig. 5.15. Galgas extensométricas sobre los tubos de conexión entre los dos tramos del refuerzo metálico
- Fig. 5.16. Instrumentación de la probeta AxL.T
- Fig. 5.17. Diferentes vistas del pórtico y de la probeta dispuesta para el ensayo
- Fig. 5.18. Modo de rotura de la probeta T1
- Fig. 5.19. Modo de rotura de la probeta AxL.C
- Fig. 5.20. Modo de rotura de la probeta AxL.T
- Fig. 5.21. Curva carga-acortamiento para las 3 probetas ensayadas
- Fig. 5.22. Desplazamiento relativo entre el hormigón del soporte y el acero del refuerzo

- Fig. 5.23. Nomenclatura empleada para definir las secciones y los grupos de presillas
- Fig. 5.24. Reparto de esfuerzos axiles entre el hormigón y el acero del refuerzo, para distintos niveles de la carga total aplicada por la prensa
- Fig. 5.25. Tensión en presillas en dirección perpendicular a la directriz de los tramos de soporte (valores negativos indican tensiones de tracción). Grupos de presillas 1 y 6
- Fig. 5.26. Tensión en presillas en dirección perpendicular a la directriz de los tramos de soporte (valores negativos indican tensiones de tracción). Grupos de presillas 2 y 5
- Fig. 5.27. Tensión en presillas en dirección perpendicular a la directriz de los tramos de soporte (valores negativos indican tensiones de tracción). Grupos de presillas 3 y 4
- Fig 5.28. Presión media transmitida por los capiteles en su superficie de apoyo sobre la viga central
- Fig. 5.29. Probeta tipo con la simplificación por simetría (1/8 de la probeta)
- Fig. 5.30. Modelo de la probeta T1
- Fig. 5.31. Armaduras modelizadas con elementos LINK8
- Fig. 5.32. Modelos planteados para las probetas AxL.C y AxL.T
- Fig. 5.33. Detalle del refuerzo de las probetas AxL.C y AxL.T
- Fig. 5.34. (a) Detalle de la unión de los angulares con los extremos de la probeta. (b) Vista de la capa de mortero de cemento entre el hormigón del tramo de soporte y las presillas
- Fig. 5.35. Curva tensión-deformación para el hormigón de la probeta T1
- Fig. 5.36. Curva carga acortamiento. Probeta T1
- Fig. 5.37. Curva carga-acortamiento. Probetas AxL.C y AxL.T
- Fig. 5.38. Medidas registradas en las galgas A01 y A11. Comparación entre resultados numérico-experimentales
- Fig. 5.39. Medidas registradas en las galgas P04 y P14. Comparación entre resultados numérico-experimentales
- Fig. 5.40. (a) Fisuración en la viga central, previa a la rotura de la probeta. (b) Deslizamiento entre el mortero de cemento y los elementos del refuerzo
- Fig. 5.41. Plastificación del hormigón en la viga central ("Stress state ratio")
- Fig. 5.42. (a) Deformada en las inmediaciones la viga central (mm). (b) Deslizamiento entre el mortero y los elementos del refuerzo (mm)
- Fig. 5.43. Estado de fisuración en el modelo AxL.C(WW), para una carga de 1202 kN.

- (a) Fisuras en los puntos de integración de los elementos SOLID65. (b) Elementos SOLID65 con alguna fisura en sus puntos de integración
- Fig. 5.44. (a) Plastificación del hormigón situado entre las 2 primeras presillas ("Stress state ratio"); (b) Plastificación de los angulares situados entre las 2 primeras presillas (tensión de Von Mises (MPa)); (c) Deformada de los angulares situados entre las 2 primeras presillas (en mm) (d) Deslizamiento entre los elementos del refuerzo y el mortero de la interfaz (en mm)
- Fig. 5.45. Detalle de los elementos que forman el refuerzo de la probeta AxL.C-L100 (modelos AxL.C-L100(DP) y AxL.C-L100(WW))
- Fig.5.46. Detalle de los elementos que forman el refuerzo de la probeta (y modelo) AxL.T-#40
- Fig. 5.47. Vista del modelo de EF de la probeta (y modelo) AxL.A
- Fig. 5.48. Curva carga-acortamiento. Probeta AxL.C-L100(DP)
- Fig. 5.49. Grado de plastificación del acero (tensión de Von Mises) y del hormigón ("stress state ratio") en rotura. Probeta AxL.C-L100
- Fig. 5.50. Superficie de apoyo del capitel sobre la viga (presión en el contacto capitelviga) y deformada de la probeta (desplazamientos en dirección longitudinal) cuando *d*=8mm. Probeta AxL.C
- Fig. 5.51. Superficie de apoyo del capitel sobre la viga (presión en el contacto capitelviga) y deformada de la probeta (desplazamientos en dirección longitudinal) cuando *d*=8mm. Probeta AxL.C-L100
- Fig. 5.52. Fisuración del hormigón cuando *d*=2mm. Probetas AxL.C y AxL.C-L100
- Fig. 5.53. Direcciones principales cuando *d*=8mm. Probeta AxL.C(DP)
- Fig. 5.54. Isovalores de las direcciones principales 1 y 3 cuando *d*=8mm. Probeta AxL.C(DP)
- Fig. 5.55. Direcciones principales cuando *d*=8mm. Probeta AxL.C-L100(DP)
- Fig. 5.56. Isovalores de las direcciones principales 1 y 3 cuando d=8mm. Probeta AxL.C-L100(DP)
- Fig. 5.57. Curva carga-acortamiento. Probeta AxL.T-#40
- Fig. 5.58. Plastificación del tubo de conexión, previo a la rotura del hormigón del nudo
- Fig. 5.59. Carga aplicada en el tubo de conexión
- Fig. 5.60. Curva carga-acortamiento. Probeta AxL.A
- Fig. 5.61. Grado de plastificación del acero (tensión de Von Mises) y del hormigón ("stress state ratio") en rotura. Probeta AxL.A
- Fig. 5.62. Dirección de las tensiones principales cuando *d*=8 mm. Probeta AxL.A

- Fig. 5.63. Tensiones principales 1 y 3 cuando d=8 mm. Probeta AxL.A
- Fig. 6.1. Transmisión de carga a los angulares del refuerzo a través de las presillas (Giménez 2007)
- Fig. 6.2. Relación entre q_h , f_l y M_p . Formación de 3 rótulas plásticas en los angulares ubicados entre las 2 primeras presillas (Giménez 2007)
- Fig. 6.3. Área tributaria considerada para evaluar f_l
- Fig. 6.4. Hoja de cálculo desarrollada para obtener $P_{soporte}$ (kN)
- Fig. 6.5. Diagrama N_P - M_P para un perfil L80.8 y f_{yR} =275 MPa. Obtenido con el software comercial CSI Section Builder 8.2 (2002)
- Fig. 6.6. Modelo de bielas y tirante del nudo sometido a compresión centrada, suponiendo que toda la carga se transmite a través del soporte
- Fig. 6.7. Carga aplicada en el tubo de conexión
- Fig. 6.8. Diagrama N_P - M_P para un tubo #40.3 y f_{yR} =275 MPa. Obtenido con el software comercial CSI Section Builder 8.2 (2002)

INDICE DE TABLAS

Tabla 2.1.	Aspectos más destacados de las probetas ensayadas. Ramírez y Bárcena (1975), Ramírez et al. (1977) y Ramírez (1996)
Tabla 2.2.	Resultados obtenidos de los ensayos. Ramírez y Bárcena (1975), Ramírez et al. (1977) y Ramírez (1996)
Tabla 2.3.	Aspectos más destacados de las probetas ensayadas. Cirtek (2001a; 2001b)
Tabla 2.4.	Resultados obtenidos. Cirtek (2001a; 2001b)
Tabla 2.5a.	Propuestas para el valor de k_1
Tabla 2.5b.	Propuestas para el valor de k_1
Tabla 3.1.	Características de cada una de las probetas
Tabla 3.2.	Dosificación del hormigón para cada tipo de probeta
Tabla 3.3.	Parámetros mecánicos del hormigón que forma las probetas analizadas mediante el MEF y precarga realizada para cada una de ellas
Tabla 3.4.	Número y tipo de EF empleados para cada modelo y en cada zona del mismo
Tabla 3.5.	Comparación entre las cargas últimas obtenidas a partir del estudio experimental y de los modelos de EF
Tabla 4.1.	Descripción de las probetas analizadas por el MEF
Tabla 4.2.	Parámetros mecánicos del hormigón, en función de fc
Tabla 4.3.	Resultados relativos a P_{MEF} ("Grupo Ref")
Tabla 4.4.	<i>P_{MEF}</i> de las probetas del "Grupo Ref" y "Grupo L"
Tabla 4.5.	P _{MEF} de las probetas del "Grupo Ref" y "Grupo fy"
Tabla 4.6.	<i>P_{MEF}</i> de las probetas del "Grupo Ref" y "Grupo fc"
Tabla 4.7.	P _{MEF} de las probetas del "Grupo Ref" y "Grupo P100"
Tabla 4.8.	<i>P_{MEF}</i> de las probetas del "Grupo Ref" y "Grupo PA"
Tabla 4.9.	<i>P_{MEF}</i> de las probetas del "Grupo Ref" y "Grupo mu"
Tabla 4.10.	P_{MEF} F de las probetas del "Grupo Ref" y "Grupo sC"
Tabla 4.11.	Comparación entre la carga última obtenida en los modelos de EF y la establecida por diferentes propuestas de diseño. SHARAPM sin capitel (tipo A)
Tabla 4.12.	Comparación entre la carga última obtenida en los modelos de EF y la establecida por diferentes criterios de diseño. SHARAPM con capitel (tipo B)

Dosificación del hormigón (Kg relativos a 1 m³ de hormigón)

Resistencia a compresión simple del hormigón, medida en probeta cilíndrica

Tabla 5.1.

Tabla 5.2.

Tabla 5.3.	P_{Exp} y efic para cada una de las probetas ensayadas
Tabla 5.4.	Tensión a la que se encuentra sometido el hormigón de las probetas para la carga $P_{\textit{Exp}}$ (Mpa)
Tabla 5.5.	Parámetros mecánicos del hormigón que forma las probetas analizadas mediante el MEF
Tabla 5.6.	Número y tipo de EF empleados para cada modelo y en cada zona del mismo
Tabla 5.7.	Comparación entre P_{Exp} y P_{MEF}
Tabla 5.8.	Descripción de las probetas analizadas por el MEF
Tabla 5.9.	P_{MEF} de las probetas analizadas en el estudio paramétrico