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Abstract

The aim of this project is to programme an academic flight simulator that will
allow the study of the performance of conventional configuration aircraft. To achieve
this purpose, the methodology and literature of the Flight Mechanics course has been
followed. Using MATLAB numerical solver ode/), it has been possible to integrate
the differential equations that describe the movement of a rigid body, known as Bryan
Equations. Subsequently, a study of the flight dynamics of the McDonnell Douglas
F-18 Hornet was carried out during the execution of a series of manoeuvres using
the simulator in question. The vertical equilibrium has also been studied in cruise
conditions with the aim of verifying the proper functioning of the simulator. Finally, an
exhaustive analysis is made of the results obtained in each case study. Once completed,
the simulator may be used by the students to carry out their own analyses and to check
the results obtained.

Keywords: flight simulator, flight mechanics, Bryan Equations, numerical solver.

Resumen

El objetivo de este proyecto es programar un simulador de vuelo académico que
permita el estudio de las actuaciones de aeronaves de configuracion convencional. Para
lograr este proposito se ha seguido la metodologia docente de la asignatura Mecénica
del Vuelo. Haciendo uso del solver numérico ode45 de MATLAB, se ha podido integrar
las ecuaciones diferenciales que describen el movimiento de un cuerpo rigido, conocidas
como Fcuaciones de Bryan. Posteriormente, se ha realizado un estudio de la dindmica
de vuelo del McDonnell Douglas F-18 Hornet en la ejecucion de una serie de maniobras
empleando el simulador programado. Se ha estudiado ademaés el equilibrado en condi-
ciones de crucero con el objetivo de comprobar el correcto funcionamiento. Finalmente
se hard un analisis exaustivo de los resultados obtenidos en cada caso de estudio. Una
vez finalizado, el simulador en cuestién podra ser utilizado por los estudiantes en la
realizacion de sus propios andlisis y para comprobar los resultados obtenidos.

Palabras clave: simulador de vuelo, mecanica del vuelo, Ecuaciones de Bryan, solver
numérico.



Resum

L’objectiu d’aquest projecte és programar un simulador de vol académic que per-
meta 'estudi de les actuacions d’aeronaus de configuracié convencional. Per a acon-
seguir aquest proposit s’ha seguit la metodologia docent de 'assignatura Mecanica del
Vol. Fent s del solver numeric ode/5 de MATLAB, s’ha pogut integrar les equacions
diferencials que descriuen el moviment d’un cos rigid, conegudes com a FEquacions de
Bryan. Posteriorment, s’ha realitzat un estudi de la dinamica de vol del McDonnell
Douglas F-18 Hornet en ’execucié d'una serie de maniobres emprant el simulador pro-
gramat. S’ha estudiat a més l'equilibrat en condicions de creuer amb 'objectiu de
comprovar el correcte funcionament. Finalment es fara una analisi *exaustivo dels re-
sultats obtinguts en cada cas d’estudi. Una vegada finalitzat, el simulador en qiiestio
podra ser utilitzat pels estudiants en la realitzacié de les seues propies analisis i per a
comprovar els resultats obtinguts.

Paraules clau: simulador de vol, mecanica del vol, Equacions de Bryan, solver
numeric.
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Chapter 1

Introduction

With the passing of time and the development of technology, flight simulators have
experienced a significant increase in popularity. They were first created to meet the
need to train pilots in a safe environment, and nowadays their use has spread to a
variety of fields. They can be found in a wide range of applications, from video games
to even pilot qualifications.

Flight simulators have the capability to represent flight situations by means of com-
puter software. They sometimes are additionally equipped with mechanical resources
to reproduce the instruments and cockpit of the aircraft. Some simulators can also
recreate a variety of weather conditions and even the movement of the aircraft to make
the experience as realistic as possible.

They have also proved to be very useful in the field of engineering. They can be
used in system testing by means of real-time simulations, or to carry out different
analyses in aircraft design or accident investigation.

Despite the great diversity of existing simulators, however, none of them is intended
for the academic environment, even though they are a common tool in the study of
aircraft performance. This is why the need arises to develop a flight simulator based
on the methodology used in the courses of Mecanica del Vuelo and Ampliacion de
Mecanica del Vuelo.

The aim is to create a flight simulator by implementing the equations that govern
the dynamics, the Bryan Equations. In order to maximise its completeness, they will
be presented in the two reference systems most commonly used in the course, body-
fixed axes and wind axes, so that the user can choose as appropriate. The aerodynamic
model of the aircraft will also have to be introduced, as well as the different propulsive
models available, the choice of which will be left to the user. It will serve as a tool
from which students will be able to analyse the performance of the aircraft and deepen
their understanding of the concepts taught. It will also be designed to be intuitive and
easy to use, so that the user can understand its operation.

Once completed, it will be used to analyse the performance of an aircraft, this being
the McDonnell Douglas F-18 Hornet. Firstly, the aircraft will be equilibrated in cruise
conditions and, afterwards, a succession of manoeuvres will be carried out during which
the behaviour of the aircraft will be studied. Finally, data of the Airbus A320-200 will
be used in order to verify the correct functioning of the simulator regardless the aircraft
under study.



1.1 Objectives

The primary objectives pursued during the development of the project are as fol-

lows:

To develop an academic flight simulator following the teaching methodology of
the course Mecanica del Vuelo.

To apply this simulator in the analysis of the flight dynamics of a conventional
configuration aircraft during a variety of manoeuvres.

To provide students with a tool to analyse aircraft performance and to verify the
results of their analysis.

Additionally, a succession of secondary objectives are also envisaged:

To implement the Bryan Fquations in the different coordinate systems studied,
as well as the aerodynamic and propulsive model.

To create a user-friendly and intuitive tool where the user can follow and under-
stand the process.

To verify the correct operation of the simulator based on the equilibrium of the
aircraft under cruise conditions.

To ensure the proper performance of the simulator independently of the aircraft.

To deepen and broaden the knowledge acquired in the courses Mecdnica del Vuelo
and Ampliacion de Mecdnica del Vuelo.



Chapter 2

Theoretical background

2.1 Aviation and simulators origin

To reach the skies has always been one of the most longed for accomplishments
for mankind. Throughout history many people have tried to develop a machine that
would allow them to fly, but most of them failed to.

The origins of aviation date back to China with the creation of the first kite around
2000 years ago, but it was not until centuries later, with the arrival of Marco Polo, that
this idea spread along Europe. Years before, many tried to imitate the flight of birds
by attaching wings to their arms and flapping them rapidly, but all these attempts
failed miserably.

In XV century Leonardo da Vinci looked at the flight of birds, considering that flying
machines should have flapping wings in order to fly. However, his studies remained as
designs, such as the famous Ornithopter, but none were ever built.

All of these attempts were mainly based on empirical methods. It was not until
the XIX century with George Cayley and his design of a glider that stability and
aerodynamic forces were considered. He thus laid the foundations of aerodynamics
and proved the importance of stability in an aircraft. Another notable figure was Otto
Lilienthal, who made more than two thousand gliding flights until his death. Based on
Lilienthal’s work, the Wright brothers performed the first controlled powered flight in
1903, on board the Flyer. It is considered one of the most important breakthroughs
that revolutionised the world of aviation.

Over time, aviation continued to evolve. However, pilots lacked experience, so
the need arose to train them without facing the dangers of real flight. The first flight
simulators were developed to meet these demands, giving the sensation of flying without
the risks involved.

One of the first simulators, known as Le tonneau Antoinette consisted of stacked
barrels mounted on a frame (Figure 2.1.1). Another example of a simulator is the
Sander Teacher, which was a replica of an aeroplane mounted on an articulated joint,
allowing roll, pitch and yaw movements.
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Figure 2.1.1: Le Tonneau Antoinette [13]

In 1929 Ed Link built the Link Trainer (Figure 2.1.2), which simulated mechanical
movements from the pedals and levers provided. Later, control instruments were added
and it was further refined.

Figure 2.1.2: Link Trainer [4]

The arrival of analogue computers (1940s), used to solve the equations of motion,
allowed the development of electronic simulators. In 1948 Curtis-Wright developed a
simulator for the airline Pan American. He replicated the cockpit of the Stratocruiser,
without any motion, but with fully operative instruments. It was at this point that
motion was introduced into flight simulators, reaching 6 degrees of movement.

With the advances in technology, the mechanisms used could be refined, and even
visual effects were added to achieve the greatest possible realism. Nowadays it is a field
that is still in constant development, seeking to keep up with the latest technologies.

2.2 Coordinate system

In order to study the motion of an aircraft, the first step is to determine a coordinate
system from which the position as well as the velocity and acceleration will be defined.
Although there are several reference frames, only three will be relevant to the matter
of study: body-fixed axes, wind axes and Earth-fixed axes.

Body-fixed axes are characterized for being fixed to the body, meaning that they
move with the aircraft. The origin is located at the centre of mass, with the longitudinal
axis pointing forward, that is, the nose of the aircraft, and the Y-axis perpendicular

4



to the symmetry plane towards the right wing. It should be taken into account that
even though not every aircraft has a symmetry plane, it will be assumed in order to
symplify the calculations. The Z-axis will be perpendicular to the XY plane, pointing
downwards, as shown in Figure 2.2.1.

Figure 2.2.1: Body-fixed reference frame [18]

There exist different body-fixed systems, such as stability axes or principal axes
of inertia, but with the purpose of simplification, principal axes of inertia will be
considered.

Regard wind axes, they are related to the aerodynamic velocity, with the origin
located at the centre of mass of the aircraft. The X-axis will be pointing forward,
aligned with the aerodynamic velocity vector, as seen in Figure 2.2.2. The Z-axis
will be located at the vertical symmetry plane, pointing downwards, with the Y-axis
forming a trihedron, heading towards the right side of the aircraft.

X
£ w
Felative wind not in
the plane of symmetr,

Figure 2.2.2: Wind reference frame [18]

It is possible to change from one system to another by applying a series of rotations
as a function of the aerodynamic angles, as shown in Figure 2.2.3.
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Figure 2.2.3: Aerodynamic Angles [17]

Thus, if a transformation from wind axes to body axes is to be performed, the
procedure consists of a rotation of angle § about the Z-axis followed by a rotation of
angle o around the Y-axis, as shown in Equation 2.1.

[cosa 0 —sina| [cosB —sinfp 0
Rop = R Rz = 0 1 0 sinff cosf 0
sina 0 cosa 0 0 1
- . . (2.1)
cosacos3 —cosasinfS —sina
= sin 3 cos 3 0
| cos fsina —sinasinf  cosa

Conversely, if the opposite transformation is desired, the procedure is to use the
inverse of the previous transformation matrix. Given the matrix is orthogonal, said
inverse will be the transpose. The resulting matrix can be seen in the Equation 2.2:

cosacos  sinfl  cosfsina
Rg, = R(IB = |—cosasinf cosf —sinasinf (2.2)
—sina 0 Cos (v

Finally, the Earth-fixed system will be considered, which will be necessary for var-
ious developments. It is characterised by being fixed on the surface of the earth, with
the X-axis pointing north, the Y-axis pointing east and the Z-axis pointing towards
the centre of the Earth.

On the other hand, similarly to the relation between wind and body systems, the
same can be done with the body and Earth-fixed systems [14]. For this purpose, three
consecutive rotations will be performed, first around Z-axis of angle 1, then around
Y-axis with angle #, and finally, a rotation of angle ¢ about X-axis, as shown in
Equation 2.3.
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RyRgRy, = |0 cos¢ sing 0 1 0 —siny cosy 0
0 —sing cos¢| [sinf 0 cos6 0 0 1] (2.3)
cos 1) cos 6 cos 0 sin v —sing |

= | —sinycos ¢ + cosyPsinfsiny  cosypcosy +sinysinfsing  sin ¢ cosd
sinysin ¢ + cosysinfcosg  —cosysing +sinsinfcosp cospcosb |

2.3 Bryan equations

The first study of flight dynamics was in 1891 by Zhukowsky, with an analysis of the
aerodynamic forces, and the variation in position of the centre of gravity. Later studies
-Bryan (1904), Lanchester (1908), Painlevé (1909), Bozethat (1911) - contributed to
reach a proper definition of aircraft stability, but still not rigorous enough. Finally
in 1911 the complete equations as they are known nowadays were published by G. H.
Bryan with the book Stability in Aviation [7].

The Bryan Fquations allow describing the dynamics of a rigid body of 6 degrees
of freedom: 3 corresponding to linear motion (Equation 2.4, Equation 2.9) and 3
corresponding to angular motion (Equation 2.5). There are two additional systems
taken into account: relations between angular velocity and Euler angles (Equation 2.6,
Equation 2.10) and the kinematic equations (Equation 2.7, Equation 2.11).

The equations are obtained by applying Newton’s second Law. A number of as-
sumptions have been accepted in order to simplify the calculations:

1. The aircraft is considered as a rigid-body.

2. The origin of the equations is the center of mass and therefore, the gravitational
forces do not generate moments.

3. The influence of the Earth’s rotation is neglected.

4. The movement of the atmosphere relative to the Earth is not considered.
5. The atmosphere is considered to be free of turbulence.

6. Plane of symmetry is assumed, implying I,, = I,.. = 0.

7. Rotating inertia effects of engines or propellers are not taken into account.

8. The mass is constant.

Taking into account these hypothesis, the Bryan Fquations in Cartesian coordinates
are [10]:
m(t+ quw —rv) =T, + Xap — mgsind
m(0 +ru—pw) =T, + Ya, + mg cosfsin ¢ (2.4)
m(w + pv — qu) =T, + Z 4, + mg cosf cos ¢



(Ix:rIzz - Igz)p = [zzL + [mzN + (LEZ(Ix:r - [yy + [zz>)pq + ([zz(Iyy - [zz> - [§z>rq
Lyqg=M+ (Lo — Lpa)pr + Ixz(rg - p2)
(2.5)

p:gz'ﬁ—l/‘;siHQ
g = 6 cos ¢ + 1 cos fsin ¢ (2.6)
r=1)cosfcos¢— Osind

T = wcostcosf + v(cospsin O sin ¢ — cos psiny) + w(sin 6 cos ¢ cos Y + sin P sin 1))
Y = ucos @ sin ) + v(cos ¢ cos 1 + sin O sin ¢psinid) + w(— cos P sin ¢ + cos ¢ sin O sin 1)
2= —usinf + v cosfsin ¢ + w cos 6 cos ¢

(2.7)

An additional set of equations is to be taken into account in order to be able to
define the aerodynamic angles in Cartesian coordinates:

w
o = arctan —
U

v (2.8)
v u2 + V2 + w2
Whereas in wind axes, by performing the necessary transformations, the system

of equations is as follows [11]. It is worth highlighting that index w implies that the
variable is expressed in wind axes.

[ = arcsin

mV = Tyw + Xaw— mgsin-y
mVry =Ty + Ya, +mgcosysin p (2.9)
—mVqy =T, 4 + Za, +mgcosycos

Pw = [t — X SIn7y
Gw = 7Y COS [L + X cosysin i (2.10)

T = X COS 7Y COS [t — 7y sin j

x =V cosycosy
y = V cos~ysin (2.11)
z=—Vsinvy

It should be noted that due to the complexity that the system corresponding to
the rotation acquires when transforming to wind axes, this transformation will not be
taken into account, so the Equation 2.5 will be used for both reference systems.

It can be seen that there are twelve equations and fifteen unknowns, since the
angular velocities in both reference frames are considered. It is then easy to deduce
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that an additional set of equations is needed. Thus, a relation between the angular
velocities in body axes and in wind axes is introduced by means of Equation 2.12.

Pw = cos B(pcosa + rsina) + sin 5(q — &)
qw = —sin f(pcosa + rsina) + cos 5(q — &) (2.12)

Tw =TCOSQ — psina + 3

With the Bryan Equations already described, one has the basis for describing any
motion of a rigid body.

2.4 Euler-Rodrigues Quaternions

Together with the coordinate system, it is important to determine an orientation
method, existing four different possibilities: Euler angles, direction-cosine formulation,
Euler parameters and Euler axis. While Euler angles will be the chosen method, it can
lead to a singularity known as gimbal lock, so it will be necessary to propose a solution
free of singularities.

From Equation 2.6 the inverse relation (Equation 2.13) is obtained. It can be easily
deduced that if the aircraft is positioned completely vertical (§ = +7/2), both ¢ and
¢ become indeterminate, since cos(r/2) = 0 and therefore 1) — o0, ¢ — oo.

. sin ¢ sin cos @sin f
p=p+q ¢ e
‘ cos 0 cos
0 =qcos¢p—rsing (2.13)
- gsing+rcose
w:
cos

In order to avoid the aforementioned singularity, Euler parameters will be used, also
known as Euler-Rodrigues parameters or quaternions. It is worth mentioning that there
is not conformity with the notation for the quaternions. Given that the purpose of the
flight simulator at issue is to be used by students, the notation will be in accordance to
the course Ampliacion de Mecdnica del Vuelo. That way, index 0 corresponds to the
scalar component and indices 1 to 3 correspond to the vector components.

Euler (1758) stated that differential movement could be described based on a trans-
lation and a rotation around an axis, the Euler Axis. These four parameters -vector
{£, ¢, x} and rotation angle 7- are related to the quaternions through Equation 2.14
[11], in such a way that rigid-body orientation is described by these new parameters.
The scalar component, gy, represents the angle of rotation, while vector components,
q1, q2, g3, define the axis of rotation.

qo cos 3§

| ) ¢&sind

o= ) Coint (2.14)
q3 X sin 7

The necessary equations for the correct development of the study will be shown
below. The calculation process can be consulted in Appendix A.



In the first place, the relation between quaternions and Euler angles is computed:

qo = cos—cosgcosé +sin%singsin?
2 2 2 2 2 2
q = cos—cosgsin? —sin%singcos?
g2 = cos—singcos? —i—sin%cosgsm?
2 2 2 2 2 2
q3 = sin—cos—cos? — cos—sin—sin?
2 2 2 2 2 2
The inverse of Equation 2.15 is simply:
¢ arctan (—%‘ﬁ’gg;ﬂ;g?)
0 » = < arcsin(2(qog2 — ¢193)) ¢ - (2.16)
(8 arctan <—2f(f)535+f§§§)>

Furthermore, it is possible to obtain the temporal evolution of the quaternions as
a function of the angular rates:

qo —q1 —G2 —G3 D
3 1 B
Q'l — QO Q3 QQ q ) (2 ) 1 7)
q2 2195 Q@ —¢1 ,
g3 —@ @

As previously mentioned, the quaternion notation is free of singularities. However,
the interpretation of the results can be complex. This is why they will only be used
in manoeuvres in which the gimbal lock can occur, thus using the Euler angles in the
remaining manoeuvres, as their interpretation is more intuitive.

2.5 Aerodynamic model

With the Bryan FEquations already presented in Section 2.3, it is left to analyse
the acting forces and moments, and thereby be able to solve said equations. This
section will focus on aerodynamic expressions, and thrust forces will be studied in the
upcoming section.

The first step is to define the aerodynamic derivatives, which are essential to de-
termine the dynamic behaviour of the aircraft. By applying small disturbances, it is
possible to linearise the forces and moments equations by means of Taylor series and
simplifying in such a way that an expression like follows is obtained.

f(xl,l’g, ) = f(xl’o,l‘g,o, ) + a—f A$1 + ﬁ

A 2.1
8x1 0 81'2 T2t ( 8>

0

Lastly, the notation is simplified taking into account Expression 2.19.

—=f, , Arx 2.19
axl fl T T ( )
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That way and applying drag polar of constant coefficients, the longitudinal deriva-
tives are the following:

Cp = Cpo + KC1?
Cr =Cro+ Craa+ Crspd E + Crq4 2Vq + CLaQV (2.20)

Cu = Curo+ Cryacr + Cryispd B + OMqu + CMQ2V

As for the lateral-directional dynamics:

by bw by
Cy = CypB + CysadA+ CyspdR + CYPQVp + Cy, 2V7” + CYﬂ QVﬁ
by by by
2.21
= CipfB + Ci540A + Cisp0R + Cyy, 2VP + Cl, 2VT +C QVB (2.21)
by by by
Cn = OngB + CnsadA + CnsrdR + Chy 2Vp + CONroer T Cng 2V6

It is important to remark that the notation for both lift and roll moment is L, so
in order to differentiate both coefficients, [ will be used for the roll coefficient and its
aerodynamic derivatives.

The resulting aerodynamic forces and moments are:

1 1

D= 5p(z)SwWOD Y =1p(2)S,V?Cy L= 5p(z)swv%g (2.22)
1 1

L= §p(z)wawVQC’l M = 1p(2)S,c,V2Cy N = §p(z)wawV2C'N (2.23)

As it has already been stated, both wind and body-fixed axes will be applied, so
the forces have to be obtained for each coordinate system. Even though Equation 2.22
is expressed in wind axes, since they are related to the aerodynamic velocity, slip angle
has to be taken into account. To do so, a rotation around the Z-axis will be performed
(Equation 2.24).

Cow cosff —sinf 0 —Chp
Cyw = |sing cosf 0| ¢ —Cy
C,w 0 0 1 -C
’ , (2.24)
—Cpcos B+ Cysin
=< —Cpsinf — Cy cos 3
—C;

Regarding the body-fixed system, the transformation matrix from Equation 2.1 is
applied, as seen in Equation 2.25.

Cap cosacos 3 —cosasinfS —sina —Cp
Cyp p = sin 8 cos 8 0 —Cy
C.p cosfsina —sinasinff  cosa -,

. . (2.25)
—Cpcosacosf+ Cpsina + Cy cosasin 8

= —Cpsin B+ Cy cos 3

—Crcosa— Cpsinacos f 4 Cy sinasin 3

Once the aerodynamic model has been established, it is possible to know the dy-
namic behaviour of the aircraft, as well as to study the stability. It is only left to define
the thrust and a proper propulsion model.
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2.6 Propulsion models

Analogously to the aerodynamic forces, a transformation is to be made in order
to obtain the thrust in both coordinate systems. It should be noted that this force
is already expressed in body axes, however, it is necessary to take into account the
existence of torsion in the engine with respect to the velocity. That is to say, there
may be cases in which the engine is not completely horizontal, but inclined, so the
thrust vector will be broken down into vertical and horizontal coordinates. On the
other hand, the thrust on the Y-axis shall be considered to be zero, so that the thrust
on body axes will be as follows:

T, ="Tcose
T,=0 (2.26)
T,=Tsine

Additionally, there is the possibility that the engines are inclined towards the lon-
gitudinal axis of the aircraft, in which case, the angle of inclination would have to be
taken into account.

In terms of wind axes, the procedure will consist of using the matrix from Equa-
tion 2.2. Once again, the torsion of the engine is to be taken into account, so substi-
tuting Equation 2.26 it is obtained:

. ) T
Ty cosacosS —cosasinfS —sina T,
Tyw ¢ = sin 8 cos 8 0 T,
T w cosfsina  —sinasinfS  cos« T,

(2.27)
T cosecosacos 3+ T sine cos fsin o

=< =T cosecosasinf — T sinesin asin
—T cosesina + T'sin € cos «

The value for the thrust has not been yet defined. For this purpose, a number
of propulsion models [8] will be available, from which the user will choose the one
that best suits the engine of the aircraft of study. It must be kept in mind that
the proposed models are for academic purposes and therefore have their limitations.
Another important remark is that the existence of afterburner is not being considered
in order to simplify the models.

1. J-C Wanner Model
T = kpo(2)VMép (2.28)

Used for turboprops, simple flux jet engines and ramjets. k; is a constant pro-
vided by the manufacturer, while Ay is a constant that varies according the type
of engine:

As = —1 for turboprops

Ar = 0 for simple flux jet engines

A = 1 for simple flux engines with postcombustion

As = 2 for ramjets.

12



2. Aérospatiale Model

T="T, (1 — M+ MTQ> o(2)0p (2.29)

It is applied with engines whose bypass ratio ranges between 5 and 8.

3. J. Mattingly Model

T = Tp[0.5687 + 0.25(1.2 — M)*]o(2)"%6p (2.30)

It is used when the bypass ratio of the engine varies between 5 and 8 and, in
addition, the Mach number is lower than 0.9.

4. D. Hull Model
T = Tolo(2)]*0p (2.31)

Applicable when the bypass ratio is low, for turbojets or turbofan engines. a is
a constant that depends on the layer of the atmosphere at which the aircraft is
flying, and the type of engine, as seen in Table 2.6.1.

Turbojet a
Troposphere (z<11km) 1.2
Stratosphere (z>11km) 1.0
Turbofan a
Troposphere (z<11km) 1.0
Stratosphere (z>11km) 1.0

Table 2.6.1: Value of a according to altitude and type of engine

5. Howe Model

T="Ty|1+04M(M —2) (1 + Bl—];RH o(2)"5p (2.32)

Used for turbofan engines with wide range of bypass ratio.

6. Thrust Model for turbofan engines

T = Ton(z, BPR)o(2)[k1 + ke BPR + M (ks + ks BPR)|6p (2.33)

Applied with turbofan engines, being n a value dependent on bypass ratio and
altitude, and kq, ko, k3, k4 being constants according to bypass ratio and Mach
number. Its values can be consulted in the work of Luis Fajardo and Ruxandra
Mihaela Botez [16].
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Chapter 3

Methodology

The procedure for the development of the flight simulator will be explained below.
The aircraft selected for the study is to be presented first, and the data involved
will be introduced. Afterwards, the steps followed in the design of the simulator will
be detailed, including a brief explanation of the several functions created in order to
achieve the objective.

Given the fact that this is a project that will be used by the students, the software
selected has been MATLARB, as it is an “easy-to-use” and well-known program.

3.1 Aircraft of study

First of all, an aircraft is going to be selected with which to test the correct per-
formance of the simulator. Later, its behaviour will be analysed by performing a
simulation of several manoeuvres.

The chosen aircraft is the F/A-18 Hornet (Figure 3.1.1), a twin-engine supersonic
fighter developed in the 1970s by the McDonnell Douglas company.

Figure 3.1.1: McDonnell Douglas F/A-18 [5]

It is of conventional configuration, meaning that the main wing is forward of the
horizontal stabiliser, and features two vertical stabilisers.
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Geometrical data

The geometric data of the aircraft required for the study are shown in Table 3.1.1.

m 13273 |kg] | I, 30673.6 [kg-m?]
bo 1143 [m] | I,, 115752 [kg-m’]
S, 3716 [m? | L. 431240 [kg-m?]
cw 3.02  [m] | L. 0 (kg - m?]
L 1707 [m]

Table 3.1.1: Geometrical data of the F-18

It is important to highlight, that while the aircraft dimensions have been obtained
from a manual [6], the reference mass has been calculated from the empty weight taking
into account 50% of the fuel.

On the other hand, the moments of inertia have been computed from Equation 3.1.

b\ 2
Le.=m|—=) R
n(3) #
N2
I, =m <§) R’ (3.1)
I\ 2
I.=m (bwL) Ri
2
where R, R, and R, are the radii of gyration. Its value is assumed to depend on

the type of aircraft. It can be consulted in document [8]. For the chosen aircraft, the
values are as follows.

R, = 0.266
R, = 0.346
R. = 0.400

Lastly, the product of inertia will be considered null, as it is being assumed principal
axes of inertia.

Thrust model

The F/A-18 is powered by two General Electric F-404-GE-402 turbofan engines
with low bypass ratio, so the selected propulsion model will be the D. Hull model.

Consequently, and following Table 2.6.1, the parameters used in Equation 2.26 and
Equation 2.27, as well as in Equation 2.31 will be, considering a single engine:

To 48900 [N] | C. 23-107° [kg/N - 5]
3 0 [rad] | a 1 [—]

Table 3.1.2: Data for the thrust model of the F-18

Provided that there are two engines, the total thrust model will be such that:
T = 978000(z)dp (3.2)
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Aerodynamic model

The aerodynamic derivatives used to define the aerodynamic model of the aircraft
are shown below. Firstly, the longitudinal stability derivatives, calculated using the
procedures of the Mecdnica del Vuelo course [9], are shown in Table 3.1.3.

Cpo 0.0100593 | Cr,  4.24237 Crq 0.94699
K 0.10567 | Crs 048787 | Chyq -0.543272

Cro 0 Cro  -0.420158 | Crsp 0.82536

Cumo 0 Cra -0.279883 | Cyse -0.473495

Table 3.1.3: Value of the longitudinal stability derivatives of the F-18

The derivatives of the lateral-directional dynamics, calculated according to the
methods of Marcello R. Napolitano [12], are displayed as follows. They have been
classified into stability derivatives in Table 3.1.4 and control derivatives in Table 3.1.5.

Cp  -021195 | Cy 0| Cp 0.122386 | Cy, -0.258664
Cng 0.0037412 | Cyy 0| Cny -0.119257 | Cyp,  -0.0364167
Cyg -0.575519 | Cyp 0] Oy, 0.27852 | Cy, -0.150519

Table 3.1.4: Value of the aerodynamic derivatives of the F-18

Cnsr
Cnsa

-0.147535
-0.001285

Cisr 0.0443965
Cisa 0.183164

Cysr 0.352187
Cysa 0

Table 3.1.5: Value of the control derivatives of the F-18

It should be kept in mind that, as the values of the aerodynamic model are specific
for each aircraft, changing the aircraft of study would imply changing the values of the
aerodynamic derivatives.

Atmospheric model

The characteristics of the atmosphere vary according to various factors, so it is
necessary to define an atmospheric model. Consequently, the International Standard
Atmosphere model, will be selected, allowing the estimation of average atmospheric
properties. In addition, the atmospheric conditions at sea level, z = 0, will be defined
[18]:

T, = 288.15 K
Py =101325 Pa
po = 1.225 kg/m?
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3.2 Development of the flight simulator

The aim is to create an academic flight simulator from the equations that describe
the dynamics of a rigid body. This will be done by means of the numerical integration of
the Bryan FEquations in order to obtain the behaviour of the aircraft. The MATLAB
solver ode45 will be used, being its expression described in Equation 3.3. It is a
numerical solver that allows integration of differential equations using explicit Runge-
Kutta methods of orders 4 and 5. The integration process can be found in the book
[3].

[t F] = oded5(ode fun, tspan, Fy, options) (3.3)

There are four inputs and two outputs. The first input represents the function
containing the differential equations, i.e. the Bryan Fquations for the corresponding
case. The next input is the integration time, which will vary according to the case
study. The third input, Fj, is the vector of initial conditions, whose value will depend
on each manoeuvre. There will be three different vectors, one for each reference system:

Fo.body = [Uo, V0, Wo, Do, 90, o, Po, 0o, Yo, o, Yo, 20, o]
Fo,wina = [Vo, Bo, @0, Po, o 70, 10, Yo, X0, T, Yo, 20, 1)

FQquaternions = [U(), Vo, Wo, Po, 40, 705 90,0, 41,05 42,0, 43,0, L0, Yo, 20, mo]

Finally, the input options, although it is not necessary, will be used to specify the
error tolerance. That will allow to indicate the total permissible error, the required ac-
curacy. Thus, trying to make the solution as accurate as possible, the chosen tolerance
is 10719, as can be seen in Equation 3.4.

options = odeset('RelTol', 1e — 10, AbsTol’, 1e — 10) (3.4)

On the other hand, the outputs will be ¢, which is a vector with each of the inte-
gration instants, and ﬁ, which will be the state vector obtained for each instant.

To assist in understanding the process, the step-by-step process is shown in the
following flowchart:

Aircraft
Parameters

Initial

Flight Simulator Conditions

Body-axes
Quaternions

Wind-axes Body-axes <4——— Controls

BRYAN EQUATIONS

1

Aerodynamic
Model

Figure 3.2.1: Flight simulator development

User-defined

Aircraft-specific

Fixed

Atmosphere
Model

The first stage is to define the atmospheric model based on the ISA model, which will
be given by the MATLAB function atmosisa. Its expression can be seen in Equation 3.5,
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where the input will be the study altitude and the outputs will be the temperature,
sound speed, pressure and density at the given altitude.

[T(z),a(z), P(z), p(z)] = atmosisa(z) (3.5)

The thrust model will be given by the function thrustmodel.m. In it, the different
propulsion models discussed in Section 2.6 have been introduced, in such a way that the
user can select the preferred model. The generic expression can be seen in Equation 3.6:

T, 7,, Ty, T,, Ty, Ty, Teo] = thrustmodel(6p, z,V, M, a, ) (3.6)

The six inputs refer to the conditions needed to calculate the thrust for each model
and reference system. The outputs are, on the one hand, the thrust modulus, 7', and,
on the other hand, the thrust in body-fixed axes, T}, T, 1%, and in wind axes, T} ,,
Tyw, T.w, given by Equations 2.26 and 2.27, respectively.

Lastly, the aerodynamic model is provided by the function coefficients.m, whose
expression can be seen in Equation 3.7.

[Cr, Cp, Cy, Cy, Car, O] = coef ficients(V, o, &,p,q, 7, B, 3,01, 04, 0r) (3.7)

Therefore, the function developed allows the aerodynamic coefficients to be obtained
from Equations 2.20 and 2.21.

Having defined the three necessary models, it proceeds to the implementation of
the Bryan Equations, following the diagram in Figure 3.2.1. As a result, three func-
tions will be created for each reference system: BRYANBODY.m, BRYANWIND.m,
BRYANBODYQUATERNIONS.m.

For the case study of the body-fixed reference system, Equations 2.4, 2.5, 2.6 and 2.7
will be used. It is important to emphasise that they must be introduced in its explicit
form. Equation 2.8 will also be included.

The same approach is adopted for the function relative to the coordinate system
on wind axes. In this case, Equations 2.5, 2.9, 2.10 and 2.11 will be needed.

An additional equation has been taken into account when developing the functions
related to the equations. It is not only intended to find the time evolution of the state
variables, but also to calculate the fuel consumption during the manoeuvres. This will
be performed from Equation 3.8.

my = —C.T (3.8)

Whereas the process applied to obtain the functions relative to the body-fixed axes
and wind axes coordinate systems is straightforward, a complication arises in the case
related to quaternions.

First and foremost, Equations 2.4, 2.5, 2.7 and 2.17 are introduced. As discussed
in Section2.4, the substitution of the Euler angles for the quaternions has to be done,
so the Equation 2.16 is also included. Nonetheless, a problem is encountered in the
code, for there will be an instant when § = 4+ /2, while both azimuth and bank angle
will undergo a sudden change of 180 degrees. In order to avoid said drawback, the
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following algorithm is developed [14]:

if (g2 — q1q3 = 0.5)

4 . )
b 2arcsm<cos?71r/4)> +
0y = /2 (
v | 0 )
elseif  (gog2 — q1g3 = —0.5)
. 3
2arcsin<q—1> -
z B cos(m/4) 1/} (39)
= —7/2
v | 0 )
else
¢ ( arctan(%) \
0 » = < arcsin(2(qoq2 — ¢193))
2(qog3+q192)
(G \ arctan(% )

The last step to complete the simulator consists of establishing the value of the
controls. Two scenarios might be considered. Firstly, one can start from equilib-
rium, with the possibility of modifying the controls later. To do so, the aircraft has
to be trimmed, considering cruise flight, i.e. rectilinear trajectory in the horizontal
plane, with constant initial conditions. The alternative approach is to start from non-
equilibrium conditions. In other words, the initial conditions specific to the manoeuvre
to be studied would be introduced.

In this way, the system constituted by Equations 2.4 and 2.5 will be solved. In the
event of studying manoeuvres in wind axes, the system to be solved will be the one
formed by Equations 2.5 and 2.9.

There also exists the possibility of modifying the controls during the manoeuvres.
In order to achieve that, Equation 3.10 shall be applied.

unitstep = t > unitsteptime (3.10)

As a result, a unitary step will be introduced at the instant t = wunitsteptime,
previously defined by the user. Eventually the controls will be given by Equation 3.11.

dp = Opinitial + unitstep * (8p, finat — OPinitial)
0 = Opinitial + unitstep * (0, finat — OB, initial)
04 = S anitiar + unitstep * (04, final — OAinitial)
Or = OR,nitiat + unitstep * (Og, final — ORinitial)

(3.11)

If no modification in the controls is desired, it is sufficient to set the same final and
initial values. It is important to stress that the only modifications allowed are to the
controls, as they simulate the modifications made by the pilot should it be a real case.

The design of the simulator has been a process of trial and error, which has been
gradually refined by adding the equations one at a time and carefully testing their
correct operation. Moreover, it has been planned to be interactive, allowing the user
to choose the coordinate system as well as the thrust model desired to be used. The
final code developed in the current section can be found in Appendix C.
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Chapter 4

Presentation of results

The present chapter provides an analysis of the performance of the McDonnell Dou-
glas F-18 Hornet during the execution of different manoeuvres using the flight simulator
previously developed. To begin with, the initial conditions introduced in the simulator
for each case of study will be presented, as well as the reference frame established. It
should be stressed that, despite presenting the results in a single reference system, the
study has been carried out both in wind axes and in body-fixed axes, as well as with
the Euler-Rodrigues quaternions.

Subsequently, the time evolution of the variables and the trajectory followed by the
aircraft will be displayed. Finally, the fuel consumed during each manoeuvre will be
estimated.

The initial flight conditions selected for the study of all scenarios are as follows:

e 2y =3000 m
o Vp=175m/s.

Once the flight dynamics study of the McDonnell Douglas F-18 has been carried
out, it will be proceeded to test the simulator operation for a commercial aircraft. For
this purpose, data of the Airbus A320-200 will be applied and the vertical equilibrium
and gliding flight manoeuvres will be simulated. As a result, it will be ensured that
the simulator can be used independently of the aircraft under study.

4.1 Vertical plane equilibrium

The first manoeuvre will be the equilibrium in the vertical plane, studied in body-
fixed axes. The manoeuvre is of interest since it allows to verify whether the equations
are correct, as the attitude of the aircraft would be predictable. On this basis, the
proper operation of the flight simulator will be ensured.

Vertical equilibrium is achieved in such a way that, starting from the controls
applied, the aircraft will stabilise without the intervention of the pilot, while simulta-
neously maintaining the lateral-directional dynamic parameters null.

First of all, the initial conditions are summarised in Table 4.1.1, followed by the
value of the aerodynamic angles and controls applied in Table 4.1.2.
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uy 17455 [m/s] | po 0 [rad/s| | ¢o 0 rad] | zp 0  [m]
Vo 0 m/s] | g0 0 [rad/s|| 6y 0.0713 [rad] |yo 0  [m]
wo 1248 [m/s] | ro 0 [rad/s| | v 0 rad] | zo 3000 [m]

Table 4.1.1: Value of the initial conditions for the vertical equilibrium

ap 0.0713 [rad] | g -0.0633 [rad]
Bo 0 [rad] | 04 0 [rad]
dop 0.1192  [-] | dr 0 [rad]

Table 4.1.2: Value of the controls and the aerodynamic angles for the vertical
equilibrium

The integration time is defined for ¢ty = 300 s. The results obtained are depicted as
follows.

Time evolution of linear velocities
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Figure 4.1.1: Plot of the time evolution of the linear velocities for vertical equilibrium
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Figure 4.1.2: Plot of the time evolution of the angular velocities for vertical
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Time evolution of the Euler angles
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Figure 4.1.4: Plot of the time evolution of the Euler angles for vertical equilibrium

It is noticeable that the variables are constant with time, while the parameters that
may perturb the vertical trajectory remain null in time. In other words, on the one
hand, the lateral velocity v(t) is null (Figure 4.1.1), indicating that the plane does not
move laterally. The null angular velocities p(¢) and ¢(¢) (Figure 4.1.2) imply that there
is no motion around the X, Z axes, respectively. This statement is supported by Figure
4.1.4, where the bank angle, ¢(¢) and azimuth angle, ¥ (t) are null. Thus it is confirmed
that the aircraft follows a rectilinear trajectory in the vertical plane.

Nevertheless, it is clear from Figure 4.1.2 that one of the variables, the angular
velocity ¢q(t), is oscillating. This is mainly a consequence of numerical error, either
due to the solution or to lack of precision in the conditions introduced. However, the
order of magnitude of said oscillation is 107 rad/s, so it therefore may be considered
invariant. A further distinction is made between short period and phugoid, both of
which are characteristic modes of longitudinal dynamics. On the other hand, the
reduction of the amplitude indicates that, after a certain period of time, the aircraft
will stabilise in an equilibrium position, which would be clear if the integration time
were increased by several minutes.

To conclude, Figure 4.1.5 illustrates the two-dimensional trajectory of the aircraft,
confirming what was previously stated.
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Two-dimensional trajectory
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Figure 4.1.5: Plot of the two-dimensional trajectory of the vertical equilibrium

Fuel consumption during the manoeuvre is my = 59.71 kg.

4.2 Vertical turn

The following manoeuvre to be analysed is the vertical turn, also referred to as a
loop. This consists of a 360-degree turn in the vertical plane. In this sort of exercise,
the gimbal lock phenomenon occurs, hence, as mentioned in the Section 2.4, it will be
studied in body-fixed axes through the application of the Euler-Rodrigues quaternions.

To perform the manoeuvre, the aircraft will start from steady flight in the vertical
plane and afterwards, the loop will be executed. The initial controls will be those seen
in Table 4.1.2, and then modified to reach the values in Table 4.2.1. The values for the
controls were computed assuming maximum throttle in order to be able to complete the
turn. Once the loop is initiated, constant controls will be assumed for the entire turn,
although this is not standard for this type of manoeuvre, as the pilot will normally
vary the controls to suit the conditions of the turn. It will be done in this configuration
in order to simplify the calculations.

dp -0.2968 [rad] | 04 O [rad]
5}3 1 H (53 0 [I‘&d]

Table 4.2.1: Value of the controls for the vertical loop manoeuvre

As the starting point is a vertical equilibrium, the initial conditions shall be those
provided in Table 4.1.1. The initial values of the quaternions according to Table 4.2.2
shall also be taken into account.
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qo,0 0.9994 q2,0 0.0357
q1,0 0 43,0 0

Table 4.2.2: Initial value of the quaternions for the loop manoeuvre

The integration time for the manoecuvre will be ¢ty = 40 s, whist the turn will
commence at the instant ¢ = 10 s. The results obtained are presented as follows.

Time evolution of the airspeed
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Figure 4.2.1: Plot of the time evolution of the airspeed for the loop
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Time evolution of the angular velocities
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Figure 4.2.2: Plot of the time evolution of the angular velocities for the loop

Time evolution of the Euler angle
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Figure 4.2.3: Plot of the time evolution of the Euler angles for the loop
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Time evolution of altitude
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Figure 4.2.4: Plot of the time evolution of the altitude for the loop

Within the first ten seconds, the proper behaviour of the aircraft in the steady
flight in the vertical plane is observed, as explained in the previous section. As soon
as the controls are modified, a significant change in the variables becomes apparent.
However, in Figure 4.2.2 the angular velocities p(t) and r(f) confirm yet again that
this is a manoeuvre contained in the vertical plane. On the other hand, the angular
velocity ¢(t) oscillates around a positive value until it finally stabilises, indicating that
the aircraft is moving around the Y-axis in upward direction. This is consistent with
the type of manoeuvre that is being carried out by the F-18.

Figure 4.2.3 illustrates the time evolution of the Euler angles, which has a complex
interpretation. Analysing the evolution of the elevation angle, 6(¢), it can be seen
that it does not exceed certain values. This is because it is confined to the interval
[—7/2,7/2] rad. Once the maximum value is reached, a roll of ¢ = 7 rad and a yaw of
1) = —m rad are produced, thus turning the aircraft inverted, mathematically speaking.
By doing so, the manoeuvre can be completed without going out of range, while at the
same time avoiding the gimbal lock as discussed in Section 2.4.

Now comparing Figures 4.2.1 and 4.2.4, related to velocity and altitude, corre-
spondingly, a clear relationship can be observed. As the aircraft ascends the velocity
decreases, reaching its maximum and minimum value respectively at t = 25 s, while
as the aircraft descends, the velocity increases. This is due to the fact that during the
ascent, the force of gravity acts contrary to the movement, so that, even though there
is enough thrust to carry out the manoeuvre, speed is still reduced. The opposite oc-
curs when descending, considering also that potential energy is being lost and therefore
kinetic energy is gained.

Lastly, the trajectory followed by the aircraft is shown in Figure 4.2.5. It is in-
teresting to highlight that although it is a turn, it is not describing a circle. This is
mainly because the radius of the turn will depend on the speed, which, as previously
seen, will vary throughout the manoeuvre.
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Three-dimensional trajectory
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Figure 4.2.5: Plot of the three-dimensional trajectory of the loop

The fuel consumed during the operation is my = 48.79 kg.

4.3 Gliding flight

Despite the fact that there exist aircraft specifically designed for this purpose,
gliding flight can be performed by any fixed-wing aircraft. It occurs when there is a
lack of thrust, either caused by a sudden failure of all engines or fuel exhaustion. In
order to perform the manoeuvre it will be assumed that the aircraft suddenly suffers
an irreversible engine failure, departing from the conditions presented in Table 4.3.1.
On the other hand, the controls entered by the pilot are shown in Table 4.3.2. The
study will be performed in wind axes.

Vo 175 [m/s]|po 0 [rad/s] | uo 0 rad] | ¢ 0  [m]
Bo 0 rad] | g0 0 [rad/s] | vo -0.0665 [rad] |y 0  [m]
ap 0.0715 [rad] | 7o 0 [rad/s| | xo 0 rad] | zo 3000 [m]

Table 4.3.1: Value of the initial conditions for the gliding flight manoeuvre

op 0 ] | da 0 [rad]
dp -0.0635 |[rad] | 0g 0 [rad]

Table 4.3.2: Value of the controls for the gliding flight

The integration time will be ¢y = 316 s, the time it takes to impact. The response
obtained during the manoeuvre can be seen below.
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Figure 4.3.1: Plot of the time evolution of the airspeed for the gliding flight
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Time evolution of the Euler angles in wind axes
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Figure 4.3.3: Plot of the time evolution of the Euler angles for the gliding flight

Time evolution of altitude
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Figure 4.3.4: Plot of the time evolution of the altitude for the gliding flight

In gliding flight the airspeed is established by the deflection of the elevator. In other
words, the pilot adjusts the elevator so that the aircraft tends to fly at an specific angle
of attack which will determine the airspeed. However, in the scenario under study, the
deflection is constant, so the angle of attack will remain invariant over time, as shown
in Figure 4.3.2. According to this reasoning, it could be concluded that the velocity
would also remain constant, but in Figure 4.3.1 it is noticed that the velocity diminishes.
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That is due to the fact that since thrust is null, drag is the only force acting on the
longitudinal axis, thus slowing down the aircraft. If both elevator deflection and angle
of attack remain constant, and the speed decreases, the lift generated by the aircraft
will be reduced, so it will not be able to compensate for the weight. Consequently the
altitude will decrease as shown in Figure 4.3.4, until subsequent impact.

Lastly, Figure 4.3.3 represents the time evolution of the Euler angles in wind axes.
It is of particular interest the angle of the slope, v(t), which keeps oscillating around a
negative value, indicating that the aircraft is descending. On the other hand, the bank
angle p(t) and the heading angle x(¢) confirm that the manoeuvre has been performed
in the vertical plane.

The trajectory followed by the aircraft is represented in Figure 4.3.5, where a surface
has also been plotted in reference to the ground in order to show the impact more
effectively. The distance travelled before hitting the ground is 50 km.

Three-dimensional trajectory
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Figure 4.3.5: Plot of the three-dimensional trajectory of the gliding flight

Being the thrust non-existent, no fuel has been consumed during the glide flight,
so my = 0 kg.

4.4 Dive recovery

The following manoeuvre consists of a dive recovery, meaning that the aircraft will
initially fly in vertical position with the nose pointing downwards, known as nosedive,
so the pilot has to reach null slope. In order to achieve so, it will be assumed that
the pilot applies maximum thrust and the proper controls to obtain the maximum lift
coefficient, and therefore analysing how long it takes to recover and the altitude at
which it occurs. The study will be carried out in the wind axes coordinate system.
The initial conditions can be seen in Table 4.4.1, while the controls entered shall be
those shown in Table 4.4.2.
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VW 175
Bo 0
Qp 0.001

m/s]
[rad]
[rad]

Po

qo0
To

0 [rad/s] | uo 0
0 [rad/s] | vo -1.5708
0 [rad/s] | xo 0

[rad]
[rad]
[rad]

i) 0 [m]
Yy 0 [m]
zp 3000 [m]

Table 4.4.1: Value of the initial conditions for the dive recovery manoeuvre

5
5p

-0.2968 [rad]
1 8

Table 4.4.2: Value of the controls for the dive recovery manoeuvre

An integration time ¢y = 10 s will be established. The response obtained is displayed

hereunder.
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Figure 4.4.1: Plot of the time evolution of the airspeed for the dive recovery

manoeuvre
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Time evolution of angular velocity
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Figure 4.4.2: Plot of the time evolution of the angular velocity ¢ for the dive recovery
manoeuvre
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Figure 4.4.3: Plot of the aerodynamic angles for the dive recovery manoeuvre
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Time evolution of the climb angle
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Figure 4.4.4: Plot of the time evolution of the climb angle for the dive recovery
manoeuvre

Time evolution of altitude
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Figure 4.4.5: Plot of the time evolution of the altitude for the dive recovery
manoeuvre

The performance of the aircraft in the current manoeuvre under study is similar to
that obtained during the vertical turn. Comparing Figures 4.4.1 and 4.4.5 it can be
appreciated that as the aircraft loses altitude, the airspeed increases. This is due to
the fact that not only is maximum thrust being applied, but as the altitude diminishes,
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the thrust will increase, and therefore the speed will be higher. Consequently, the lift
will increase, so the nose of the aircraft will progressively rise. This movement will be
reflected in the evolution of the slope (Figure 4.4.4), as it gradually increases from an
initial value v = —90° until it reaches zero slope at t = 6 s. It is from this moment that
the aircraft begins to climb. Thus, as it gains altitude, the speed is reduced because,
even with maximum thrust, the force of gravity acts contrary to the movement, so the
aircraft will decelerate.

On the other hand, Figure 4.4.3 shows the evolution of the aerodynamic angles.
It can be noticed how the angle of attack augments at the commencement of the
manoeuvre, primarily due to the controls that have been introduced. That is to say, as
the necessary controls are applied to obtain the maximum lift coefficient, the angle of
attack will adopt the corresponding value. Furthermore, Figure 4.4.2 confirms that the
pitch-up movement performed by the aircraft, as a positive value indicates a positive
movement about the Y-axis.

Figure 4.4.5 additionally illustrates the loss of altitude suffered by the aircraft,
eventually reaching z = 2300 m.

The trajectory followed by the aircraft during recovery is shown in Figure 4.4.6.

Three-dimensional trajectory
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Figure 4.4.6: Plot of the three-dimensional trajectory of the dive recovery manoeuvre

Lastly, fuel consumption during dive recovery has been m; = 17.58 kg.

4.5 Horizontal turn

The performance of the F-18 Hornet during a turn in the horizontal plane will now
be analysed. The standard procedure when performing a turn would be to bank the
aircraft, as this is the most efficient approach. However, for the case study, null roll
will be imposed. The manoeuvre will be studied in wind axes. The initial conditions
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considered are presented in Table 4.5.1. Table 4.5.2 contains the value of the controls.
The angular velocity of the turn shall be further defined as: Q2 = 0.0343 rad/s.

Vo 175  [m/s] | po -0.0024 [rad/s] | o O [rad] |z 0  [m]
Bo 0.3637 [rad] | qo 0 rad/s] | v O [rad]|yo O  [m]
ap 0.0698 [rad] | 7o 0.0342 [rad/s|] | xo O [rad]| zy 3000 [m]

Table 4.5.1: Value of the initial conditions for the horizontal turn

5z -0.0620 [rad] | 64 0.4189 [rad]
§p 06811 -] |6z 0.0047 [rad]

Table 4.5.2: Value of the controls for the horizontal turn

The integration time is defined as ¢ = 100 s, resulting in the response displayed as
follows.

Time evolution of the airspeed
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Figure 4.5.1: Plot of the time evolution of the airspeed for the horizontal turn
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Time evolution of angular velocities
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Figure 4.5.2: Plot of the time evolution of the angular velocities for the horizontal
turn
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Figure 4.5.3: Plot of the time evolution of the aerodynamic angles for the horizontal
turn
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104 Time evolution of the bank angle and climb angle
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Figure 4.5.4: Plot of the time evolution of the bank angle and the climb angle for the
horizontal turn

Time evolution of the heading
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Figure 4.5.5: Plot of the time evolution of the heading angle for the horizontal turn

In the first place, it can be observed that most of the parameters remain invariant
over time. However, in Figure 4.5.4 there exists a variation of the bank and slope
angles. Nevertheless, such variation is of the order of 10~ rad, mostly due to numerical
error, so they shall be considered to be negligible. In this way, it is confirmed that
a manoeuvre without roll is being performed in the horizontal plane. On the other
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hand, Figure 4.5.5 shows how the heading angle has a linear variation with time, so it
can be deduced that the rate of turn is constant. Consequently, this implies that the
airspeed is constant, as demonstrated in Figure 4.5.1. Furthermore, since the heading
is positive, the turn executed by the aircraft would be rightwards.

Now examining Figure 4.5.2 several conclusions can be drawn. To begin with, the
angular velocity r(t) confirms that a clockwise movement around the Z-axis is taking
place, in other words, a right-hand turn. The angular velocity ¢(t) remains zero, so
there is no movement about the Y-axis, whereas p(t) indicates that there is a slight
movement about the X-axis, which does not imply roll, but will be given by the angle
of attack (Figure 4.5.3).

It is interesting in this case to analyse the controls introduced regarding lateral-
directional dynamics. Firstly, a positive aileron deflection, d4, considering that the
right aileron moves upwards and the left aileron moves downwards, implies a negative
yaw, due to lift asymmetry. On the other hand, a positive rudder deflection, dg,
generates also a negative yaw moment. This phenomenon is known as adverse yaw, and
occurs when the nose of the aircraft is facing away from the trajectory it is following.
This is in turn confirmed by the positive slip angle, 3(t), which indicates that the nose
is pointing to the left, while the turn is performed in a clockwise direction.

Lastly, Figure 4.5.6 illustrates the trajectory followed by the aircraft. It is important
to highlight that although a left turn is being portrayed, it has to be taken into account
that the trihedron described in Section 2.2 implies that the Y-axis is positive towards
the right, while MATLAB considers it to be positive towards the left. Keeping this in
mind, it is therefore safe to conclude that there is a rotation in the horizontal plane
described in a clockwise direction.

Three-dimensional trajectory
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Figure 4.5.6: Plot of the three-dimensional trajectory of the horizontal turn

The fuel consumed by the aircraft in the execution of the turn is m; = 113.71 kg.
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4.6 Helical turn

The last manoeuvre of study shall consist of an upward helical turn. The study is
to be performed on body axes, starting from the initial conditions shown in Table 4.6.1.
Additionally, Table 4.6.2 shows the controls applied in the manoeuvre. The angular
velocity considered will be © = 0.0262 rad/s.

up 173.90 [m/s| | po -0.0045 [rad/s] | ¢9 0.2618 [rad] |y 0  [m]
vo -14.47 [m/s] | o 0.0067 [rad/s] | 6y 0.1745 [rad] |y O  [m]
wo 1324 [m/s] | o 0.0249 [rad/s| | Yo 0 rad] | zo 3000 [m]

Table 4.6.1: Value of the initial conditions for the helical turn

a 0.0760 [rad] | 0g -0.0675 [rad]
g -0.0828 [rad] | d4 -0.0961 [rad]
5p 04015 [ |6 -0.0019 [rad]

Table 4.6.2: Value of the controls for the helical turn

The duration of the manoeuvre is defined for ¢t; = 300 s. The results obtained are
shown below.

Time evolution of the airspeed
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Figure 4.6.1: Plot of the time evolution of the airspeed for the helical turn
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Time evolution of angular velocities
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Figure 4.6.2: Plot of the time evolution of the angular velocities for the helical turn
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Figure 4.6.3: Plot of the time evolution of the bank angle and the elevation angle for
the helical turn

41



Time evolution of the tum rate
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Figure 4.6.4: Plot of the time evolution of the turn rate for the helical turn

Before carrying out the analysis, it must be taken into account that, when rolling an
aircraft, the lift vector is inclined, so it will be broken down into a vertical component,
L cos ¢, and a horizontal component, L sin ¢. During an climbing turn, as the altitude
increases, both the density and the relative density decrease. This implies that, on the
one hand, the thrust is reduced, so that the speed would have to be increased in order
to have enough thrust to make the ascent. Additionally, if the density decreases, the
vertical component of lift will also decrease, which would imply an increase in speed
to cope with the weight and avoid a loss of altitude. Thus, said increase in velocity is
depicted in Figure 4.6.1.

On the other hand, one of the consequences of a change of direction is the appear-
ance of centrifugal force. In this way, the higher the speed, the greater the centrifugal
force, so the turning radius would increase, thereby decreasing the turn rate. However,
if the roll increases (Figure 4.6.3), the horizontal component of lift would increase, so
the turn radius would decrease, resulting in an increase in the turn rate.

Figure 4.6.4 shows the time evolution of the turn rate. A slight increase can be seen,
implying that the horizontal component of lift is slightly larger than the centrifugal
force. However, this is a minimal variation compared to the elapsed time, so a constant
turn rate can be considered.

Now analysing Figure 4.6.2, it can be concluded that a rightward turn is performed,
as a positive angular velocity r(t) indicates a positive motion about the Z axis. Fur-
thermore, the angular velocities p(t) and ¢(t) reflect the decrease of the pitch angle
(Figure 4.6.3), as indicated by Equation 2.6.

Finally, Figure 4.6.5 shows the trajectory followed by the aircraft. Analogous to
the case of the horizontal turn, it should be noted that MATLAB considers the Y-axis
positive to the right, whereas throughout the current project it has been considered
positive to the left. As a result, it can be seen that a clockwise upward turn is indeed
described.
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Three-dimensional trajectory
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Figure 4.6.5: Plot of the three-dimensional trajectory of the helical turn

The fuel consumed by the aircraft during the manoeuvre is m; = 163.81 kg.
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4.7 Verification with the Airbus A320-200

In the current section the verification of the simulator with the Airbus A320-200
will be presented. It is important to highlight that as this is a checking, the results will
not be analysed as extensively as previously done with the F-18 Hornet. The initial
conditions chosen to perform the manoeuvres are as follows:

e 2z, = 5000 m
e Vo =175m/s

4.7.1 Equilibrium in the vertical plane

In the first place, the initial conditions are presented in Table 4.7.1. Additionally,
the controls introduced for the execution of the manoeuvre can be consulted in Table
4.7.2. The chosen reference frame is body-fixed axes.

up 174.28 [m/s] | po 0 [rad/s] | ¢o 0 rad] | zp 0  [m]
Vo 0 m/s] | go 0 [rad/s] | o 0.0907 [rad] | yo 0  [m]
we 15.8586 [m/s|] | 7o 0 [rad/s] | ¢ 0 [rad] | zp 5000 [m]

Table 4.7.1: Value of the initial conditions for the vertical equilibrium of the A320

ap 0.0907 [rad] | 9p -0.0577 [rad]
Bo 0 [rad] | 04 0 [rad]
dp 0.6653 [-] | dg 0 [rad]

Table 4.7.2: Value of the controls and the aerodynamic angles for the vertical
equilibrium of the A320

The integration time shall be defined as t; = 1000 s. The obtained results are
presented hereunder.
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Time evolution of linear velocities
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Figure 4.7.1: Plot of the time evolution of the linear velocities for the vertical
equilibrium of the A320
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Figure 4.7.2: Plot of the time evolution of the angular velocities for the vertical
equilibrium of the A320
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Time evolution of the aerodynamic angles
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Figure 4.7.3: Plot of the time evolution of the aerodynamic angles for the vertical
equilibrium of the A320
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Figure 4.7.4: Plot of the time evolution of the Euler angles for the vertical
equilibrium of the A320
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Two-dimensional trajectory
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Figure 4.7.5: Plot of the two-dimensional trajectory of the aerodynamic angles for the
vertical equilibrium of the A320

As it can be seen, the variables are stabilised after a period of time, with the
parameters related to the lateral-directional dynamics remaining null. It is interesting
to have a look at Figure 4.7.5, which shows the two-dimensional trajectory followed by
the aircraft. It can be seen that the altitude increases with time. However, it can be
seen that the curve tends to stabilise, so it is confirmed that the results obtained are
correct.

4.7.2 Gliding flight

The initial conditions considered in the execution of the manoeuvre are given in
Table 4.7.3, whereas Table 4.7.4 lists the controls introduced. The simulation has been
tested using the wind axis coordinate system.

Vo 175 [m/s]|po O [rad/s] | uo 0 rad] | ¢ 0  [m]
Bo 0 rad] | qo O [rad/s| | 7o -0.0481 [rad]|yo O  [m]
ap 0.0910 [rad] | 7o 0 [rad/s| | xo 0 rad] | zo 5000 [m]

Table 4.7.3: Value of the initial conditions for the gliding flight manoeuvre for the
A320

dp 0 ] | da 0 [rad]
dg -0.0579 [rad] | 0g O [rad]

Table 4.7.4: Value of the controls for the gliding flight for the A320
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The integration time is be defined as ¢y = 761 s, the time it takes to hit the ground.
The time evolution obtained is displayed below.

Time evolution of the airspeed
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Figure 4.7.6: Plot of the time evolution of the airspeed for the gliding flight for the
A320
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Figure 4.7.7: Plot of the time evolution of the aerodynamic angles for the gliding
flight for the A320
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Time evolution of the Euler angles in wind axes
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Figure 4.7.9: Plot of the three-dimensional trajectory of the gliding flight for the A320

As it can be seen, the performance of the aircraft is similar to the one obtained
in Section 4.3, as expected. Thereby, it can be confirmed that the simulator can be
operated regardless of the aircraft under study.
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Chapter 5

Conclusions

After completing the study of the flight dynamics of the F-18 Hornet during a variety
of manoeuvres, it can be stated that the proposed objectives have been achieved.

One of the main objectives was to develop an academic flight simulator that could
be used to analyse the performance of conventional configuration aircraft. For this
purpose, use was made of the Bryan Fquations, expressed in both body-fixed axes
and wind axes. Problems such as the gimbal lock have also been solved through the
application of quaternions, so it can be stated that not only has the knowledge acquired
during the courses of Mecdnica del Vuelo and Ampliacion de Mecdnica del Vuelo been
applied, but it has also been extended through the exhaustive study of the Euler-
Rodrigues quaternions.

Additionally, the aerodynamic model, obtained from the aerodynamic derivatives
of the aircraft, was implemented, as well as the thrust model, to which the different
propulsive models that have been studied were introduced. It was ensured that the
user could choose the desired model for greater convenience.

It was also intended to use the simulator developed to analyse the performance of
an aircraft, the McDonnell Douglas F-18 Hornet, during a series of operations. By
applying the simulator to a specific aircraft, it has not only been possible to draw
satisfactory conclusions from the performance of the aircraft, but also to check the
correct functioning and ensure the validity of the simulator in question. Furthermore,
it has been possible to ensure its proper operation independently of the aircraft.

To conclude, and taking into account the limitations of the models and the assump-
tions made, it can be confirmed that the numerical methods satisfactorily resolve the
flight dynamics. It is worth highlight that all of the objectives have been successfully
fulfilled, thus providing future students with an analytical tool to facilitate their un-
derstanding of the concepts they have learned and from which they can complete their
own case studies.

5.1 Future work

Having completed the project, different ideas are proposed in order to continue the
development of the simulator in a more complete and accurate way. Some of these
improvements imply the total modification of the equations used in the programming,
so they could only be implemented if more time was available.

Firstly, one of the hypotheses applied in obtaining the Bryan Equations adapted
to the literature of the Ampliacion de Mecdnica del Vuelo course consists of assuming
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constant mass. This hypothesis may be feasible in manoeuvres of short duration;
however, in manoeuvres in which fuel consumption is high, regardless of the flight time,
it may lead to inaccurate results. It is therefore proposed to discard this hypothesis, so
that the dependence on aircraft mass should be added in several terms of the equations
and in certain data.

It is also proposed to extend the study of the actions to include the possibility of
engine failure. In the performance of a manoeuvre with engine failure, the moments
generated must be taken into account, as well as the decrease in thrust. This would
imply the modification of the Bryan FEquations, having to include an extra term refer-
ring to the moments. The propulsion models would also have to be modified, including
the thrust reduction, also taking into account the number of engines in the aircraft.

Finally, as far as the format is concerned, a dynamic interface can be developed in
order to obtain the temporal evolution in real time. This will make it easier for the
user to understand the results, allowing them to observe the evolution at every moment
and facilitating the comparison between mutually influencing parameters.
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Chapter 6

Relation of the project to the
Sustainable Development Goals of
the Agenda 2030

The Sustainable Development Goals are a set of 17 goals established by the United
Nations in 2015. They are part of the 2030 Agenda with the aim of achieving sustain-
able development, seeking to improve the quality of life, reduce inequalities and fight
climate change, among others.
Table 6.0.1 below summarises the 17 objectives, indicating their degree of relation-
ship with the current project.

Sustainable Development Goals

High

Medium

Low

Not applicable

No poverty

Zero hunger

Good health and well-being

X
X
X

Quality education

Gender Equality

Clean water and sanitation

Affordable and clean energy

| N | G ] L o) =

Decent work and economic growth

sikslisiks

w

Industry, innovation and infrastructure

—_
=}

. Reduced inequalities

—_
—_

. Sustainable cities and communities

—_
N}

. Responsible consumption and production

—_
w

. Climate action

—_
W

. Life below water

—
(@3

. Life on land

—
D

. Peace, justice and strong institutions

—_
EN |

. Partnership for the goals

AL P <] AL AL | s

Table 6.0.1: Degree of relationship with the Sustainable Development Goals

It can be noted that two of the objectives (Figure 6.0.1) are fairly related to the
developed project.
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QUALITY INDUSTRY, INNOVATION
EDUCATION AND INFRASTRUCTURE

(a) Goal 4 (b) Goal 9

Figure 6.0.1: SDGs with higher degree of relationship

Firstly, SDG 4 (Figure 6.0.1a) aims to achieve quality education. As it has been
already discussed, the present project is focused on the academic field, being one of the
principal objectives to provide students with a tool to complete their analysis carried
out in the Ampliacion de Mecdnica del Vuelo course. By doing so, it will allow them
to deepen the knowledge they have acquired and facilitate their understanding of it,
thus constituting an upgrade in the received education.

On the other hand, SDG 9 (Figure 6.0.1b) focuses on industry, innovation and
infrastructure. The present project has involved the introduction of improvements in
the field of simulation due to the lack of simulators dedicated to the academic field and
hence the necessity to develop one. The innovations introduced could be applied not
only for educational purposes, but also for experimental purposes.
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Chapter 7

Scope Statement

The purpose of the current section is to explain the correct fulfilment of the require-
ments and criteria concerning health and safety during the development of the End of
Degree Project.

7.1 Standard regulations

The legislation governing the minimum health and safety provisions to be adopted
for adequate worker protection is set out below. They are established by the Real
Decreto 488/1997, de 14 de abril [2].

Articulo 1. Objeto.

1. El presente Real Decreto establece las disposiciones minimas de sequridad y de
salud para la utilizacion por los trabajadores de equipos que incluyan pantallas de
visualizacion.

2. Las disposiciones de la Ley 31/1995, de 8 de noviembre, de Prevencién de Ries-
gos Laborales, se aplicardn plenamente al conjunto del ambito contemplado en el
apartado anterior

3. Quedan excluidos del ambito de aplicacion de este Real Decreto:

(a) Los puestos de conduccion de vehiculos o mdaquinas.
(b) Los sistemas informdticos embarcados en un medio de transporte.

(c) Los sistemas informdticos destinados prioritariamente a ser utilizados por
el publico.

(d) Los sistemas llamados portdtiles, siempre y cuando no se utilicen de modo
continuado en un puesto de trabajo.

(e) Las calculadoras, cajas registradoras y todos aquellos equipos que tengan un
pequeno dispositivo de visualizacion de datos o medidas necesario para la
utilizacion directa de dichos equipos.

(f) Las calculadoras, cajas registradoras y todos aquellos equipos que tengan un
pequeno dispositivo de visualizacion de datos o medidas necesario para la
utilizacion directa de dichos equipos.

(g) Las mdquinas de escribir de diseno cldsico, conocidas como mdquinas de
ventanilla.
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Articulo 2. Definiciones.
1. A efectos de este Real Decreto se entenderd por:

(a) Pantalla de visualizacion: una pantalla alfanumérica o grdfica, independi-
entemente del método de representacion visual utilizado.

(b) Puesto de trabajo: el constituido por un equipo con pantalla de visual-
1zacion provisto, en su caso, de un teclado o dispositivo de adquisicion de
datos, de un programa para la interconexion persona/mdquina, de acceso-
rios oftmdticos y de un asiento y mesa o superficie de trabajo, asi como el
entorno laboral inmediato.

(¢) Trabajador: cualquier trabajador que habitualmente y durante una parte
relevante de su trabajo normal utilice un equipo con pantalla de visualizacion.

Articulo 3. Obligaciones generales del empresario.

1. El empresario adoptard las medidas necesarias para que la utilizacion por los
trabajadores de equipos con pantallas de visualizacion no suponga riesqos para su
sequridad o salud o, si ello no fuera posible, para que tales riesqos se reduzcan al
minimo.

En cualquier caso, los puestos de trabajo a que se refiere el presente Real Decreto
deberdan cumplir las disposiciones minimas establecidas en el anexo del mismo.

2. A efectos de lo dispuesto en el primer pdrrafo del apartado anterior, el empresario
deberd evaluar los riesqos para la sequridad y salud de los trabajadores, teniendo
en cuenta en particular los posibles riesgos para la vista y los problemas fisicos y
de carga mental, asi como el posible efecto anadido o combinado de los mismos
La evaluacion se realizard tomando en consideracion las caracteristicas propias
del puesto de trabajo y las exigencias de la tarea y entre éstas, especialmente, las
stquientes:

(a) El tiempo promedio de utilizacion diaria del equipo.

(b) El tiempo mdzximo de atencion continua a la pantalla requerido por la tarea
habitual.

(¢) El grado de atencion que exija dicha tarea.

3. Si la evaluacion pone de manifiesto que la utilizacion por los trabajadores de
equipos con pantallas de visualizacion supone o puede suponer un riesgo para su
sequridad o salud, el empresario adoptard las medidas técnicas u organizativas
necesarias para eliminar o reducir el riesgo al minimo posible. En particular, de-
berd reducir la duracion mdzima del trabajo continuado en pantalla, organizando
la actividad diaria de forma que esta tarea se alterne con otras o estableciendo
las pausas necesarias cuando la alternancia de tareas no sea posible o no baste
para disminuir el riesgo suficientemente.

4. En los convenios colectivos podrd acordarse la periodicidad, duracion y condi-
ciones de organizacion de los cambios de actividad y pausas a que se refiere el
apartado anterior.
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Articulo 4. Vigilancia de la salud.

1.

El empresario garantizard el derecho de los trabajadores a una wvigilancia ade-
cuada de su salud, teniendo en cuenta en particular los riesgos para la vista y
los problemas fisicos y de carga mental, el posible efecto anadido o combinado de
los mismos, y la eventual patologia acompanante. Tal vigilancia serd realizada
por personal sanitario competente y segun determinen las autoridades sanitarias
en las pautas y protocolos que se elaboren, de conformidad con lo dispuesto en el
apartado 8 del articulo 37 del Real Decreto 39/1997, de 17 de enero, por el que
se aprueba el Reglamento de los servicios de prevencion. Dicha vigilancia deberd
ofrecerse a los trabajadores en las siguientes ocasiones:

(a) Antes de comenzar a trabajar con una pantalla de visualizacion.

(b) Posteriormente, con una periodicidad ajustada al nivel de riesgo a juicio
del médico responsable.

(¢) Cuando aparezcan trastornos que pudieran deberse a este tipo de trabajo.

Cuando los resultados de la vigilancia de la salud a que se refiere el apartado 1
lo hiciese mecesario, los trabajadores tendrdn derecho a un reconocimiento oftal-
mologico.

El empresario proporcionard gratuitamente a los trabajadores dispositivos correc-
tores especiales para la proteccion de la vista adecuados al trabajo con el equipo
de que se trate, si los resultados de la vigilancia de la salud a que se refieren los
apartados anteriores demuestran su necesidad y no pueden utilizarse dispositivos
correctores normales.

Articulo 5. Obligaciones en materia de informacion y formacion.

1.

De conformidad con los articulos 18 y 19 de la Ley de Prevencion de Riesgos
Laborales, el empresario deberd garantizar que los trabajadores y los represen-
tantes de los trabajadores reciban una formacion e informacion adecuadas sobre
los riesgos deriwados de la utilizacion de los equipos que incluyan pantallas de
visualizacion, asi como sobre las medidas de prevencion y proteccion que hayan
de adoptarse en aplicacion del presente Real Decreto.

El empresario deberd informar a los trabajadores sobre todos los aspectos rela-
cionados con la sequridad y la salud en su puesto de trabajo y sobre las medidas
llevadas a cabo de conformidad con lo dispuesto en los articulos 3 y 4 de este
Real Decreto.

El empresario deberd garantizar que cada trabajador reciba una formacion ade-
cuada sobre las modalidades de uso de los equipos con pantallas de visualizacion,
antes de comenzar este tipo de trabajo y cada vez que la organizacion del puesto
de trabajo se modifique de manera apreciable.

Articulo 6. Consulta y participacion de los trabajadores.

La consulta y participacion de los trabajadores o sus representantes sobre las
cuestiones a que se refiere este Real Decreto se realizardn de conformidad con lo
dispuesto en el apartado 2 del articulo 18 de la Ley de Prevencion de Riesgos
Laborales.
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Anexos.

1. Equipo.

(a)

(b)

Observacion general.
La utilizacion en st misma del equipo no debe ser una fuente de riesgo para
los trabajadores.

Pantalla.

Los caracteres de la pantalla deberdn estar bien definidos y configurados de
forma clara, y tener una dimension suficiente, disponiendo de un espacio
adecuado entre los caracteres y los renglones.

La tmagen de la pantalla deberd ser estable, sin fenomenos de destellos, cen-
telleos u otras formas de inestabilidad.

El usuario de terminales con pantalla deberd poder ajustar facilmente la lu-
minosidad y el contraste entre los caracteres y el fondo de la pantalla, 1y
adaptarlos facilmente a las condiciones del entorno.

La pantalla deberd ser orientable e inclinable a voluntad, con facilidad para
adaptarse a las necesidades del usuario.

Podra utilizarse un pedestal independiente o una mesa requlable para la pan-
talla.

La pantalla no deberd tener reflejos ni reverberaciones que puedan molestar
al usuario.

Teclado.

El teclado debera ser inclinable e independiente de la pantalla para permitir
que el trabajador adopte una postura comoda que no provoque cansancio en
los brazos o las manos.

Tendrd que haber espacio suficiente delante del teclado para que el usuario
pueda apoyar los brazos y las manos.

La superficie del teclado deberd ser mate para evitar los refiejos.

La disposicion del teclado y las caracteristicas de las teclas deberdn tender
a facilitar su utilizacion.

Los simbolos de las teclas deberan resaltar suficientemente y ser legibles
desde la posicion normal de trabajo.

Mesa o superficie de trabajo.

La mesa o superficie de trabajo deberdn ser poco reflectantes, temer di-
mensiones suficientes y permitir una colocacion flexible de la pantalla, del
teclado, de los documentos y del material accesorio.

El soporte de los documentos deberd ser estable y requlable y estard colocado
de tal modo que se reduzcan al minimo los movimientos incomodos de la
cabeza y los o0jos.

El espacio deberd ser suficiente para permitir a los trabajadores una posicion
comoda.

Asiento de trabajo.

El asiento de trabajo deberd ser estable, proporcionando al usuario libertad
de movimiento y procurdndole una postura confortable.

La altura del mismo deberd ser requlable.

El respaldo deberd ser reclinable y su altura ajustable.
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Se pondrd un reposapiés a disposicion de quienes lo deseen.

2. Entorno.

(a)

(2)

Espacio.

El puesto de trabajo deberd tener una dimension suficiente y estar acondi-
cionado de tal manera que haya espacio suficiente para permitir los cambios
de postura y movimientos de trabajo.

Tluminacion.

La iluminacion general y la iluminacion especial (lamparas de trabajo), cuando
sea necesaria, deberdn garantizar unos niveles adecuados de iluminacion y
unas relaciones adecuadas de luminancias entre la pantalla y su entorno,
habida cuenta del cardcter del trabajo, de las necesidades visuales del usuario
y del tipo de pantalla utilizado.

El acondicionamiento del lugar de trabajo y del puesto de trabajo, asi como
la situacion y las caracteristicas técnicas de las fuentes de luz artificial, de-
beran coordinarse de tal manera que se eviten los deslumbramientos y los
reflejos molestos en la pantalla u otras partes del equipo.

Reflejos y deslumbramientos.

Los puestos de trabajo deberdan instalarse de tal forma que las fuentes de
luz, tales como wventanas y otras aberturas, los tabiques transparentes o
translicidos y los equipos o tabiques de color claro no provoquen deslum-
bramiento directo ni produzcan reflejos molestos en la pantalla.

Las ventanas deberdn ir equipadas con un dispositivo de cobertura adecuado
y requlable para atenuar la luz del dia que ilumine el puesto de trabajo.

Ruido.

El ruido producido por los equipos instalados en el puesto de trabajo deberd
tenerse en cuenta al disenar el mismo, en especial para que no se perturbe
la atencion ni la palabra.

Calor.
Los equipos instalados en el puesto de trabajo no deberan producir un calor
adicional que pueda ocasionar molestias a los trabajadores.

Emisiones.

Toda radiacion, excepcion hecha de la parte visible del espectro electro-
magnético, deberd reducirse a niveles insignificantes desde el punto de vista
de la proteccion de la sequridad y de la salud de los trabajadores.

Humedad.
Debera crearse y mantenerse una humedad aceptable.

3. Interconexion ordenador/persona.

Para la elaboracion, la eleccion, la compra y la modificacion de programas, asi
como para la definicion de las tareas que requieran pantallas de visualizacion, el
empresario tendrd en cuenta los siguientes factores:

(a)

El programa habrd de estar adaptado a la tarea que deba realizarse.
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(b) El programa habrd de ser ficil de utilizar y deberd, en su caso, poder adap-
tarse al nwel de conocimientos y de experiencia del usuarto; no deberd uti-
lizarse ningun dispositivo cuantitativo o cualitativo de control sin que los
trabajadores hayan sido informados y previa consulta con sus representantes.

(¢) Los sistemas deberdn proporcionar a los trabajadores indicaciones sobre su
desarrollo.

(d) Los sistemas deberdn mostrar la informacién en un formato y a un ritmo
adaptados a los operadores.

(e) Los principios de ergonomia deberdn aplicarse en particular al tratamiento
de la informacion por parte de la persona.

7.2 Specific regulations

The current project has been carried out in a suitable environment, which follows
the stipulations set out above. It has also required trained personnel, equipment, an
office, stationery, prior knowledge, computer skills and access to bibliographic material.

7.2.1 Resource specifications

e Personnel
The project will be carried out by a person in charge of the work, as well as
by additional personnel with the necessary knowledge. In this case, they will be
the tutor and co-tutor and will have the function of guiding and supervising the
development of the project.

e Hardware The development of the project does not require particularly complex
equipment, so a laptop was chosen. In addition, a tablet was used to consult
the teaching material used and to make diagrams, and a mouse to work more
comfortably.

e Software The software employed in the Final Degree Project has been provided by
the Universitat Politéecnica de Valéncia. It comprises the following programmes:
— MATLAB R2022b
— Wolfram Mathematica 12.0
— Microsoft Office 365
— Overleaf
e Office The environment was suitable, quiet, illuminated and free of distractions.
All that was required was a desk with the appropriate space and an ergonomic

armchair for greater comfort. Moreover, electricity, water and internet supplies
were indispensable for the realisation of the project.

e Stationery Stationery should be available in case it is necessary to take notes,
make diagrams, structure the different sections or plan the implemented code.
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e Prior knowledge As this is such a specialised subject, it is necessary to have
the appropriate knowledge. These are mainly those acquired in the courses of
Mecanica del Vuelo and Ampliacion de Mecdnica del Vuelo. In addition, knowl-
edge of programming and mathematics is required, as a numerical computer
programme is used.

e Additional material Access to material related to the subject matter has been
needed.

7.2.2 Quality requirements

The quality of the final product must be guaranteed. It shall be taken into account
that the company is in possession of the ISO-9001 quality certificate.

Tests will be carried out during the development of the project in order to mitigate
errors. The correct functionality of the product will also be checked.

The entire process shall be properly documented and a record shall be kept of all
tests carried out with their description, date, results and possible assessments.

7.2.3 Warranty and maintenance requirements

The company contracted for the development of the project guarantees the product
for a period of two years, starting at the time of purchase. In the event of a problem
with the product, the company is committed to solving it and will also provide a user
support service. The guarantee will cease to be valid in the event of improper use of
the product.

Regarding the maintenance of the product, none is required. Improper use of the
product can permanently alter its functionality.

7.2.4 Legal and contractual requirements

If the contracting party wishes to extend the contract to other deliveries, a new
quotation will be drawn up for these. In the event of a suspension of supplies or a
delay in delivery, an extension is possible before the expiry of the term of the contract.

7.2.5 Revision of costs

No modifications will be made to the prices submitted.

7.2.6 Deposit

In order to ensure the fulfilment of the obligations stipulated in the contract, the
contractor undertakes to provide a guarantee in favour of the purchaser, as a deposit,
amounting to 10 % of the total contract amount. It will be maintained from the
beginning of the project until the end of the guarantee period, at which time it will be
returned.
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Chapter 8

Budget of the project

The costs of carrying out the Final Degree Project will be shown below. The
resources used will be divided by their nature according to personnel, equipment -
software and hardware-, installations and office material. The unit price of each of
these will be determined in order to finally obtain the final budget.

Before the cost breakdown, the amortisation cost and hourly rate as well as the
annual hours worked shall be defined.

1. Amortization cost:

AV — RV
¢@=—- (8.1)
n
where:
a: amortisation, in € /year
AV: acquisition value, in €
RV: residual value, in €
n: amortisation period, in years.
2. Hourly rate:
a
h, = — 8.2
; (2)
where:
h,: hourly rate, in euros/h
h: annual hours worked, in h/year.
3. Annual hours worked:
b= (week’ B weekhohday> hours worked. (3.3)
year year week
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8.1 Cost calculation

Personnel

The cost of the personnel involved in the development of the project is now esti-
mated.

e University professor

Gross annual salary = 32000 € /year
32000 (8.4)

Hourly rate = —— = 18.18 €/h
ourly rate = 8.18 €/

e Junior aerospace engineer

Gross annual salary = 21000 € /year
21000 (8.5)

Hourly rate = ——— = 11.93 €/h
ourly rate = ——-7 93 €/

Equipment
e Hardware

— Personal computer: HP Laptop 15-bslxx
With an acquisition value of 690 €, it is assumed a depreciation period of
6 years and a residual value of 20%.

690 — 138
a=———=092€/year
6 o (8.6)
th = —— =0.052€/h
h= T7go ~ 002 €/
— Mouse
Acquisition value = 11.90 € (8.7)

— Tablet: Lenovo Tab P11 With an acquisition price of 279 €, it has been
assumed a depreciation period of 5 years and a residual value of 20%.

279 — 55.
a= 219558 _ 44.64 € /year
’ 44.64 (8.8)
=——=0.02 h
th 1760 0.025 €/
e Software
— Overleaf licence. The free plan has been used.
— MATLAB R2022b licence.
The price for a standard annual licence is 860 €.
860
tp, = —— =0489 €/h .
h=Treo 0.489 €/ (8.9)
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— Wolfram Mathematica 12.0 licence.
The cost of an annual academic licence is 1523.55 €.

1523.55

= = 0.866 €/h 1
b= g = 0866 €/ (8.10)

— Microsoft Office 365 licence.
The value of an annual personal licence amounts to 69 €.

69
th = —— = 0.039 €/h 8.11
"= 760 / (8.11)

Office

The location of development of the project has been the residence of the student.
The costs of utilities, including electricity, water and internet, were obtained from an
invoice.

The total price of supplies amounts to 30.53 €.

Stationery
e Notebook: 1.50 €.

e Pens: 3 €.

8.2 Overall budget

Finally, both the breakdown of costs and the total budget are presented.
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Specification Unit Cost per unit  Total cost

Personnel
Supervisor 30 18.18 545.40
Graduate 360 11.93 4294.80
Total 4840.20 €
Hardware
Laptop 360 0.052 18.72
Mouse 1 11.90 11.90
Tablet 60 0.025 1.50
Total 32.12 €
Software
MATLAB licence 200 0.489 97.80
Wolfram Mathematica licence 50 0.866 43.30
Microsoft Office licence 70 0.039 2.73
Overleaf licence 100 0.00 0.00
Total 143.83 €
Stationery
Notebook 1 1.50 1.50
Pens 2 1.50 3
Total 4.50 €
Office
Supplies 1 30.53 30.53
Total 30.53 €

Raw total 5051.18 €

Table 8.2.1: Budget breakdown
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Raw total 5051.18 €

6% Industrial benefit 303.07
Raw total 5354.25 €

21% V.A.T 1124.39
Overall budget 6478.64 €

Table 8.2.2: Overall budget

The total cost of the project amounts to:

SIX THOUSAND, FOUR HUNDRED AND SEVENTY-EIGHT WITH
SIXTY-FOUR CENTS
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Appendix A

Orientation methods

A.1 FEuler Axis

One of the existing methods of orientation is the Euler axis. It states that the
orientation of a reference frame can be described by a rotation around an axis, known
as the Euler axis. This rotation will be given by the angle n, while the axis will
be characterised by the vector {&,(,x}. It is easy to realise that there are three
degrees of freedom, so to eliminate redundancy, the vector will be considered unitary
(Equation A.1):

E+C+*=1 (A1)

Any vector in body-fixed coordinates can be expressed from the same vector in
Earth-fixed axes, as seen in Section 2.2, giving the Equation A.2.

£2(1 —cosn) +cosn  &C(1 —cosn) + xsinn &x(1 —cosn) — sinny
R, = |&C(1 —cosn) — xsinn (*(1 —cosn) +cosn  Cx(1—cosn)+Esiny
Ex(1—cosn) + ¢sinn Cx(1 —cosn) —Esinng  x%(1 — cosn) + cosn
(A.2)
Another relationship to be taken into account is that between the angular velocities
and the rate of change of the Euler axis parameters [15]:

" 2 2 2x

R T L Bl NN
S — 5 s7/2 q .
g 2 Eéé +X Eé( + Z?n:;ﬂ Eé‘x o 5/2 r

X Eéx —¢ Eéx +¢ E;x + sinZ/2

where the following notation is considered for simplicity:

El, = R Ul (A.4)
Z sin (n/2)

The Euler axis formulation has a great drawback: a singularity occurs when 7
reaches zero or 180 degrees, which is when the aircraft is directed north or south.
As these positions are pretty common, the above singularity can cause a variety of
problems in flight simulators. Consequently, the above formulation will only be used
to relate the Euler angles to the quaternions.
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A.2 Quaternions Formulation

Quaternions are parameters that define the orientation of a rigid body from a
rotation around an axis. They are strongly related to the Euler axis, so once it has
been described, it is possible to develop the formulation of the quaternions. First, the
transformation matrix will be obtained. For this, it is necessary to apply the following
trigonometric identities, substituting them in the Equation A.2:

sinn = 2sin 2 cos 1
2 2

cosn = cos’ D 2! (A.5)
2 2

1 — cosn = 2sin? g

Thus, the matrix is such that:
Egg + 0082 g — SiIl2
R, = | B¢ — x2sin § cos
Eey + (2sin £ cos

2 FEeg +x2singcos?  Ee — (2sincos 5
T Eee+cos? 1 —sin®1  Ey¢+&2sinlcos 1 (A.6)
1 Ey—E&sinlcos? Ey +cos®?—sin®l

with E;; = E;FE;2sin®n/2 [15].

Equation 2.14 is then substituted into Equation A.6. The following relation is
applied, recalling Equation A.1:

sin® /2 = (€% + ¢* + x*) sin® /2 (A7)

Performing a series of simplifications, the transformation matrix as a function of
the quaternions is finally reached:

GHa—6-6 20wt qos)  2(0e — )
Ry=| 2(qge—q®) G+% -G~ 2(0e+q0q) (A.8)
2(q1q3 + qog2) 2(203 — @01) G+ — G — @

The relationship between the quaternions and the Euler angles must now be es-
tablished. For this purpose, a comparison will be made between the transformation
matrices expressed in terms of both parameters. Hence, taking into account Equa-
tion 2.3 and Equation A.8, the following system based on the diagonals of each matrix
is reached. As four degrees of freedom are needed, an extra relationship is to be estab-

lished.

qf —i—qg —q% —q§ = cos 1 cos

q§ —i—qg —qf —qg = c0s8 1 cos ¢ + sin 1 sin @ sin ¢
G+ dy— @ — @ = cospcosf
G+a+a+ag=1

(A.9)

Solving Equation A.9, the relation between quaternions and Euler angles is finally
obtained, as seen in Equation 2.15.

Comparing once again both transformation matrices (Equation 2.3 and Equa-
tion A.8), the upcoming system of equations is obtained, from which it is easy to
deduce Equation 2.16.
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—sinf = 2(q1g3 — goq2)
sin ¢ cos 0 = 2(q2g3 + qoq1)
cos g cosl = q32, + qS -4
siny cos 0 = 2(q1q2 + qoqs)
cos cosf = qf +q§ — q% - Q§

Finally, by deriving with respect to time Equation 2.14:

qO = —ﬂ sin Q
22
q1 :Ssinqu{gcosg
s cain ool
gz = XSIHQ +XQCOSQ
2 2 2
and replacing Equation A.3, it is reached:
do —§sing  —(sing —xsing »
a\ _ 1| cos? —xsing (sinf ‘
Go 2 | xsing cosyg  —&sing -
G3 —(singd  {sing cos 3§

(A.10)

(A.11)

(A.12)

Substituting the definition given by Equation 2.14, it is not difficult to obtain

Equation 2.17.
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Appendix B

Three-view of the aircraft

Figure B.0.1: Three-view of the McDonnell Douglas F-18 Hornet|[1]
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Appendix C
MATLAB code

C.1 Aircraft Parameters

%Aircraft: F-18
g = 9.8067;

%% Geometrical data

bw = 11.43; % COMPLETE
% Main wing span. Units: m

Sw = 37.16; %» COMPLETE
% Wing surface. Units: m~2

ARw = 3.51574; % COMPLETE
% Aspect ratio

m = 13273; % COMPLETE
% Reference mass. Units: kg

xCoG = 1.85; % COMPLETE
%» Center of gravity. Units: m

cw = 3.02228; % COMPLETE
% Mean aerodynamic chord. Units: m

e = 0; % COMPLETE

% Inclination of thrust with respect to the airspeed
vector. Units: rad

%% Thrust

ThrustSL = 97800; % COMPLETE
% Total thrust (all engines) at sea level. Units: N
Ce = 2.3e-05; % COMPLETE

% Specific Fuel Consumption. Units: kg/Nx*s

% Thrust Model. When having chosen the model, uncomment the
corresponding

%» data and complete.

model = 4; %» COMPLETE
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32 |% model = 1 -> J-C Wanner

33 % kf = ; % COMPLETE
34 % lambdaf = ; % COMPLETE
35

36 |% model = 2 -> Aeroespatiale

37

38 |% model = 3 -> J. Mattingly

39

40 |% model = 4 -> D. Hull

41 a = 1; % COMPLETE
12

13 |% model = 5 -> Howe

44 % BPR = ; % COMPLETE
45

46 |% model = 6 -> Thrust model for turbofan engines (FaRux)
17 %» nparameter = ; %» COMPLETE
18 % BPR = ; % COMPLETE
49 % k1 = ; % COMPLETE
50 h k2 = ; % COMPLETE
ol h k3 = ; % COMPLETE
52 h k4 = ; % COMPLETE
53

54

55 | %% Inertia

o0 | Ixx = 30673.6; % COMPLETE
57 | Iyy = 115752; % COMPLETE
08 |Izz = 431240; % COMPLETE
59 | Ixz = 0; % COMPLETE
60

61 |%% Aerodynamic coefficients

62

63 |% Longitudinal

611K = 0.10567; % COMPLETE
65 |CDO = 0.0100593; % COMPLETE
66

67 |CLO = 0; % COMPLETE
(8 |CLalpha = 4.24237; % COMPLETE
0Y |[CLdE = 0.82536; % COMPLETE
70 |CLalphaDot = 0.48787; % COMPLETE
7l ]CLg = 0.94699; % COMPLETE
72

73 |CMO = 0; % COMPLETE
71 |CMalpha = -0.420158; %» COMPLETE
75 |CMdE = -0.473495; % COMPLETE
70 |CMalphaDot = -0.279883; % COMPLETE
77 |CMg = -0.543272; % COMPLETE
78

79 1% Lateral
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CYbeta = -0.575519; % COMPLETE

CYbetaDot = O0; % COMPLETE
CYp = -0.150519; % COMPLETE
CYr = 0.27852; % COMPLETE
CYdA = 0; % COMPLETE
CYdR = 0.352187,; % COMPLETE
Clbeta = -0.21195; % COMPLETE
ClbetaDot = O0; % COMPLETE
Clp = -0.258664; % COMPLETE
Clr = 0.122386; % COMPLETE
CldA = 0.183164; % COMPLETE
CldR = 0.0443965; % COMPLETE
CNbeta = 0.0037412; % COMPLETE
CNbetaDot = 0; % COMPLETE
CNp = -0.0364167; % COMPLETE
CNr = -0.119257; % COMPLETE
CNdA = -0.001285; % COMPLETE
CNdR = -0.147535; % COMPLETE

C.2 Function for the thrust model

function [T,Tx,Ty,Tz,Txw,Tyw,Tzw] = THRUSTMODEL (dP,z,V,mach
,alpha,beta)
run('AircraftParameters.m')

% Atmosphere model

[¥,”, ,rhoat]=atmosisa(z) ;
rho0 = 1.225; % density at sea level
sigmaat=rhoat/rho0; s relative density

» Magnitude of thrust according to the selected model
if model == 1 7 JCWanner
T = kf*sigmaat*V~lambdaf*dP;

elseif model == 2 Y Aerospatiale
T = ThrustSL*(l1-mach+(mach”2)/2)*sigmaat*dP;

elseif model == 3 J JMattingly
T = ThrustSL*(0.568+0.25%(1.2-mach) "3) *sigmaat~0.6*dP;

elseif model == 4 % Hull
T = ThrustSL*sigmaat ~a*xdP;

elseif model == 5 Y Howe
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T = ThrustSL*(1+0.4*mach*(mach-2)*(1+BPR/10))*sigmaat

“0.9%dP;
elseif model == 6 J FaRux
T = ThrustSL*nparameter*sigmaat*(k1l+k2*BPR+mach*(k3+k4x
BPR) ) *dP;

end

%» Thrust in body-fixed axes

Tx = T*xcos(e);

Ty = 0;

Tz = Txsin(e);

% Thrust in wind axes

Txw = Txcos(e)*cos(alpha)*cos(beta)+T*sin(e)*cos(beta) *
sin(alpha);

Tyw = -Txcos(e)*cos(alpha)*sin(beta)-T*sin(e)*sin(alpha
Y*sin(beta) ;

Tzw = -Txcos(e)*sin(alpha)+T*sin(e)*cos(alpha);

end

C.3 Function for the aerodynamic model

function [CL,CD,CY,Cl1l,CM,CN] = coefficients(V,alpha,
alphaDot ,p,q,r,beta,betaDot ,dE,dA,dR)

%» Function to calculate the coefficients of the aerodynamic
model

run('AircraftParameters.m')

CL = CLO + CLalphax*alpha + CLdE*dE + CLg*cw/(2*xV)x*xq +
CLalphaDot*cw/(2*V)*alphaDot;

CDh = CDO + K*CL"2;

CM = CMO + CMalphax*alpha + CMdE*dE + CMg*cw/(2*V)*q +
CMalphaDot*cw/(2*V)*alphaDot;

CY = CYbetax*xbeta + CYbetaDot*bw/(2*xV)*betaDot + CYdA*dA
+ CYdR*dR + CYr*xbw/(2*V)x*r + CYpxbw/(2*V)*p;

Cl = Clbetax*xbeta + ClbetaDot*bw/(2*xV)*betaDot + CldA*dA
+ CldR*dR + Clr*bw/(2*V)*r + Clpxbw/(2*V)x*p;

CN = CNbeta*beta + CNbetaDot*bw/(2*V)x*betaDot + CNdAx*dA
+ CNdR*dR + CNr*xbw/(2*V)*r + CNpxbw/(2*V)*p;

end
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C.4 Function for the Bryan FEquations in body-
fixed axes

function dFdt= BRYANBODY(t,F)
global manoeuvre
run('InitialConditionsBody.m')

run('AircraftParameters.m')

% Atmosphere model

[Tat ,aat ,Pat,rhoat] = atmosisa(F(12)); % Function to
obtain the atmosphere model as a function of
altitude

rho0 = 1.225; % Density at z = 0

TO = 288.16; %» Temperature at z = 0

PO = 101325; % Pressure at z = 0

thetaat = Tat/TO; % Relative temperature

sigmaat = rhoat/rho0; %» Relative density

deltaat = Pat/PO; % Relative pressure

% Value of the controls
unitstep = t>=unitsteptime; J Variation of the controls
dP = dPinitial+unitstep*(dPfinal-dPinitial);
dEO = dEinitial+unitstep*(dEfinal-dEinitial);
dAO dAinitial+unitstep*(dAfinal-dAinitial);
dRO dRinitial+unitstep*(dRfinal -dRinitial);

%» Aerodynamic Angles
alpha = atan(F(3)/F(1));
beta = asin(F(2)/(sqrt(F(1) "2+F(2) "2+F(3)"2)));
alphaDot = 0;
betaDot = 0;

% Thrust
% THRUSTMODEL (dP,z,V,mach,alpha,beta)
[T,Tx,Ty,Tz,~,~,~] = THRUSTMODEL (dP,F (12),sqrt (F(1) “2+F
(2) "2+F (3) "2) ,sqrt (F(1) "2+F(2) "2+F(3) “2) /aat ,alpha,
beta) ;

/» Aerodynamic coefficients
% coefficients(V,alpha,alphaDot,p,q,r,beta,betaDot , dE,
dA,dR)
[CL,CD,CY,C1,CM,CN] = coefficients (sqrt(F(1) "2+F(2) "2+F
(3)"2) ,alpha,alphaDot ,F(4) ,F(5),F(6) ,beta,betaDot,
dEO,dAO,dRO) ;
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% uDot=(Tx+1/2*rhoat*Sw*x(u~2+v~"2+w~2) *(-CD*cos (alpha) *
cos (beta)+CL*sin(alpha)+CY*cos(alpha)*sin(beta))-m*g
xsin (theta))/m-q*w+r*v;

% vDot=(Ty+1/2*rhoat*Sw*x(u~2+v~2+w~2) *(-CD*sin(beta)+CY
xcos (beta))+m*xg*cos(theta)*sin(phi))/m-r*u+p*w;

% wDot=(Tz+1/2*rhoat*Sw*x(u~2+v~2+w~2) *(-CL*cos (alpha) -
CD*cos (beta)*sin(alpha)+CY*sin(alpha)*sin(beta))+m*g
xcos (theta)*cos (phi))/m-p*v+qg*u;

(4] [5] [6]

% pDot=Izz/(Ixx*Izz-Ixz"2)*L+Ixz/(Ixx*xIzz-Ixz"2)*N+((
Ixz*x(Ixx-Iyy+Izz))/(Ixx*xIzz-Ixz"2))*p*xq+((Izz*(Iyy-
Izz)-1Ixz"2)/(Ixx*xIzz-Ixz"2))*r*q;

% qDot=MA/Iyy+((Izz-Ixx)/Iyy)*p*r+Ixz/Iyy*x(r~2-p~2);

% rDot=Ixx/(Ixx*xIzz-Ixz"2)*N+Ixz/(Ixx*xIzz-Ixz"2)*L+((
Ixx*(Ixx-Iyy)+Ixz~2)/(Ixx*Izz-Ixz"2))*p*xq+((Ixz*x(Iyy
-Ixx-Izz))/(Ixx*Izz-1xz"2))*r*q;

[7bis] [8bis] [9bis]
%» phiDot=p+(q*sin(phi)+r*cos(phi))*tan(theta);
% thetaDot=qg*cos(phi)-r*sin(phi);
% psiDot=(g*sin(phi)+r*cos(phi))/cos(theta);

[10] [11] [12]

% xDot=u*cos(psi)*cos(theta)+v*(cos(psi)*sin(theta)*sin
(phi)-cos(phi)*sin(psi))+w*x(sin(theta)*cos (phi)=*cos(
psi)+sin(phi)*sin(psi));

% yDot=u*cos (theta)*sin(psi)+v*(cos(phi)*cos(psi)+sin(
theta)*sin(phi) *sin(psi))+w*(-cos(psi)*sin(phi)+cos(
phi)*sin(theta)*sin(psi));

% —-zDot=-u*sin(theta)+v*cos(theta)*sin(phi)+w*cos(theta
)*cos (phi);

Variables

% u = F(1) uDot = dFdt (1)

% v = F(2) vDot = dFdt (2)

% w = F(3) wDot = dFdt (3)

h p = F(4) pDot = dFdt (4)

h q = F(5) qDot = dFdt (5)

% r = F(6) rDot = dFdt (6)

% phi = F(7) phiDot = dFdt (7)
% theta = F(8) +thetaDot = dFdt (8)
% psi = F(9) psiDot = dFdt (9)
% x = F(10) xDot = dFdt (10)
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F(11) yDot
F(12) zDot

dFdt (11)
dFdt (12)

by
% z

%» Bryan Equations

%» Traslation Equations

h [11 [2] [3]

uDot = (Tx+1/2*xrhoat*Swx(F (1) "2+F(2) "2+F(3) "2) *(-CD*cos
(alpha)*cos(beta)+CL*sin(alpha)+CY*cos(alpha)*sin/(
beta)) -m*xg*sin(F(8)))/m - F(5)*F(3) + F(6)*F(2);

vDot = (Ty+1/2*rhoat*Sw*(F (1) "2+F(2) "2+F(3) "2) *(-CD*sin
(beta)+CY*xcos(beta))+m*xgxcos (F(8))*sin(F(7)))/m - F
(6)*F (1) + F(4)*F(3);

wDot = (Tz+1/2*xrhoat*Swx(F (1) "2+F(2) "2+F(3) "2) *(-CL*cos
(alpha)-CD*cos(beta)*sin(alpha)+CY*sin(alpha)*sin/(
beta))+m*xg*xcos (F(8))*cos(F(7)))/m - F(4)*F(2) + F(5)
*F (1) ;

%» Rotation Equations

% [4] [5] [6]

pDot = Izz/(Ixx*xIzz-Ixz"2)*(1/2*xrhoat*bw*x(F (1) "2+F(2)
"2+F(3) "2) *SwxCl) + Ixz/(Ixx*Izz-Ixz"2)*(1/2*rhoatx
bwx(F (1) "2+F(2) "2+F (3) "2) *Sw*CN) + ((Ixz*x(Ixx-Iyy+
Izz))/(Ixx*xIzz-Ixz"2))*F(4)*F(5) + ((Izzx(Iyy-Izz)-
Ixz"2)/(Ixx*xIzz-Ixz"2))*F(6)*xF(5) ;

gDot = (1/2*xrhoat*xcw*x(F (1) "2+F(2) "2+F(3) "2) *Sw*CM) /Iyy
+ ((Izz-Ixx)/Iyy)*F(4)*F(6) + Ixz/Iyy*(F(6) 2-F(4)
"2);

rDot = Ixx/(Ixx*Izz-Ixz"2)*(1/2*rhoat*bw*x(F(1) "2+F(2)
“2+4F(3) "2) *Sw*CN) + Ixz/(Ixx*xIzz-Ixz"2)*(1/2*xrhoatx*
bw*(F (1) "2+F(2) "2+F(3) "2) *Sw*xCl) + ((Ixx*x(Ixx-Iyy)+
Ixz"2) /(Ixx*xIzz-Ixz"2) )*F(4)*F(5) + ((Ixz*x(Iyy-Ixx-
Izz))/(Ixx*xIzz-Ixz"2))*F(6)*F(5);

% Euler

% [7bis] [8bis] [9bis]

phiDot = F(4) + (F(5)*sin(F(7))+F(6)*cos(F(7)))*tan(F
(8));

thetaDot = F(5)*cos(F(7)) - F(6)*sin(F(7));

psiDot = (F(5)*sin(F(7))+F(6)*cos(F(7)))/cos(F(8));

%» Kinematic Equations

% [10] [11]1 [12]

xDot = F(1)*cos(F(9))*cos(F(8)) + F(2)*(cos(F(9))*sin(F
(8))*sin(F(7))-cos(F(7))*sin(F(9))) + F(3)*(sin(F(8)
Y*¥cos (F(7))*cos(F(9))+sin(F(7))*sin(F(9)));

yDot = F(1)*cos(F(8))*sin(F(9)) + F(2)*(cos(F(7))*cos(F
(9))+sin(F(8))*sin(F(7))*sin(F(9))) + F(3)*(-cos(F
(9))*sin(F(7))+cos(F(7))*sin(F(8))*sin(F(9)));
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zDot = -(-F(1)*sin(F(8)) + F(2)*cos(F(8))*sin(F(7)) + F
(3)*cos (F(8))*cos(F(7)));

/» Fuel mass consumption
fuelDot = -CexT;
% Integration vector
dFdt = [uDot; vDot; wDot; pDot; qDot; rDot; phiDot;

thetaDot; psiDot; xDot; yDot; zDot; fuelDot];

end

C.5 Function for the Bryan Equations in wind axes

function dFdt = BRYANWIND(t,F)
global manoeuvre

run('InitialConditionsWind.m"')
run('AircraftParameters.m')

% Atmosphere model

[Tat ,aat ,Pat,rhoat] = atmosisa(F(12)); % Function to
obtain the atmosphere model as a function of
altitude

rho0 = 1.225; % Density at z = 0

TO = 288.16; % Temperature at z = 0

PO = 101325; % Pressure at z = 0

thetaat = Tat/TO0; %» Relative temperature

sigmaat = rhoat/rhoO; % Relative density

deltaat = Pat/PO; % Relative pressure

% Value of the controls
unitstep = t>=unitsteptime;
dP = dPinitial+unitstep*(dPfinal-dPinitial);

dE = dEinitial+unitstep*(dEfinal-dEinitial);
dA = dAinitial+unitstep*(dAfinal-dAinitial);
dR = dRinitial+unitstep*(dRfinal-dRinitial);
% Thrust
% THRUSTMODEL (dP,z,V,mach,alpha,beta)
(T,”,”,”,Txw,Tyw,Tzw] = THRUSTMODEL (dP,F(12) ,F(1),F(1)/

aat ,F(3),F(2));
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(11 [2] [3]
% VDot=(Txw+1/2*rhoat*Sw*V " 2+xCXw-m*g*sin (gamma)) /m
h Vkm*rw=(Tyw+1/2*xrhoat*Sw*xV " 2*xCYw+m*g*cos (gamma) *sin (
mu) )
h -Vxmxquw=(Tzw+1/2*rhoat*Sw*V " 2xCZw+m*g*cos (gamma) *cos (
mu) )

% rw=r+*cos(alpha)-p*sin(alpha)+betaDot
% quw=-sin(beta)*(p*cos(alpha)+r*sin(alpha))+cos(beta) *(
g-alphaDot)

% Substituting:

% Vxm*(r*xcos (alpha)-p*sin(alpha)+betaDot)=(-T*cos (alpha
)*sin(beta)+1/2*xrhoat*SwxV " 2xCYw+m*g*cos (gamma) *sin (
mu) )

% -Vkm*(-sin(beta) *(p*cos(alpha)+r*sin(alpha))+cos(beta
)*(g-alphaDot))=(-T*sin(alpha)+1/2*rhoat*Sw*V " 2*xCZw+
m*g*cos (gamma) *cos (mu) )

(4] [5] [6]

% pDot=Izz/(Ixx*xIzz-Ixz"2)*L+Ixz/(Ixx*xIzz-Ixz"2)*N+((
Ixz*x(Ixx-Iyy+Izz))/(Ixx*xIzz-Ixz"2))*p*xq+((Izz*x(Iyy-
Izz)-1Ixz"2)/(Ixx*xIzz-Ixz"2))*r*q;

% qDot=MA/Iyy+((Izz-Ixx)/Iyy)*p*r+Ixz/Iyy*x(r~2-p~2);

% rDot=Ixx/(Ixx*xIzz-Ixz"2)*N+Ixz/(Ixx*Izz-Ixz"2)*L+((
Ixx*(Ixx-Iyy)+Ixz~2)/(Ixx*Izz-Ixz"2))*pxq+((Ixz*x(Iyy
-Ixx-Izz))/(Ixx*xIzz-1Ixz"2))*r*q;

[7bis] [8bis] [9bis]
%» muDot=pw+(qw*sin(mu)+rwxcos (mu))*tan(gamma)
% gammaDot=qw*cos (mu)-rw*sin (mu) ;
% chiDot=(qw*sin(mu)+rwxcos(mu))/cos(gamma)

(10] [11] [12]
% xDot=V*xcos (gamma)*cos (chi) ;
% yDot=V*xcos (gamma)*sin(chi) ;
% —-zDot=-V+*sin (gamma) ;

Variables
%V = F(1) VDot = dFdt (1)
% beta = F(2) betaDot = dFdt (2)
% alpha = F(3) alphaDot = dFdt (3)
hp = F(4) pDot = dFdt (4)
h q F(5) qDot dFdt (5)
h T F(6) rDot dFdt (6)
% mu = F(7) muDot = dFdt (7)
% gamma = F(8) gammaDot = dFdt (8)
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b
b

chi = F(9) chiDot = dFdt (9)
x = F(10) xDot = dFdt (10)
y = F(11) yDot = dFdt (11)
z = F(12) zDot = dFdt (12)

% Bryan Equations

b
b

Traslation Equations

(1] [2] [3]

VDot = (1/(4*F (1) "2*m*(4*m + CLalphaDot*cw*rhoat*Sw*sec

(F(2)))~"2))*(-16xCDO*CLalphaDot*cw*F (1) "4*xm*rhoat ~2%
Sw™2 + 64%F (1) "2*m~2*Txw - 32*xCLO*CLalphaDot*cw*F (1)
"2xK*m*rhoat*SwxTzw - 32xCLalphaDot*CLdE*cw*dEx*F (1)
“2xK*m*rhoat*SwxTzw - 32xCLalpha*CLalphaDot*cw*F (1)
“2*%F (3) *K*m*rhoat*SwxTzw - 16+xCLalphaDot "2*xcw 2*F (1)
*F (5) *K*m*rhoat*SwxTzw - 16*xCLalphaDot*CLg*cw ~2*F (1)
*F (5) *K*m*rhoat*Sw*xTzw - 8%F (1) "2*%x(4*xCDO*F (1) "2 +
(2%CLO*F (1) + 2*xCLAdE*dE*F (1) + 2xCLalphaxF(1)*F(3) +
CLalphaDotx*cw*F(5) + CLg*cw*F(5)) "2*%K)*m~2*rhoat*Sw
xcos (F(2)) - 2*CDOxCLalphaDot~"2*cw”2*F (1) "4*rhoat ~3*
Sw"3*sec(F(2)) +
32*%CLalphaDot*cw*F (1) "2*m*rhoat*Sw*Txw*xsec (F(2)) -
8*CLalphaDot "2*cw " 2*K*rhoat*Sw*xTzw "2*xsec(F(2)) -
8*CLalphaDot "2*cw " 2*g " 2*xK*xm~2*xrhoat*Sw*xcos (F(7)
) "2xcos(F(8)) "2xsec(F(2)) + 4xCLalphaDot "2%cw 2%
F(1) "2xrhoat "2*Sw " 2*xTxw*sec (F(2)) "2 + 32xCYdAx*dA
*F (1) "4*m~2*xrhoat*Sw*sin(F(2)) + 32*%CYdR*xdRx*F (1)
“4*xm~2xrhoat*Swxsin (F(2)) + 32xCYbetax*F (1) "4x%F
(2)*m~2*xrhoat*Swxsin(F(2)) + 16xbwxCYp*F (1) "3*F
(4) *m~2xrhoat*Swxsin (F(2)) + 16xbwxCYr*F (1) "3*F
(6)*m~2xrhoat*Swxsin (F(2)) + 32+xCLO*CLalphaDotx*
cwxF (1) "3*%F (4) *K*m~2*rhoat*Swxcos (F(3))*sin (F(2)
) + 32*%CLalphaDot*CLdE*cw*dE*F (1) "3%F (4) *K*m~2%
rhoat*Swkxcos (F(3))*sin(F(2)) + 32*CLalphax
CLalphaDot*cw*F (1) "3%F (3) *F (4) *K*m~2*%rhoat*Sw*
cos(F(3))*xsin(F(2)) + 16xCLalphaDot " 2*xcw”2*F (1)
"2%F (4) *F (5) *K*m~2*xrhoat*Sw*xcos (F(3) ) *sin(F(2))
+ 16*CLalphaDot*CLg*cw ™ 2*F (1) "2%F (4) *F (5) *K*m~ 2%
rhoat*Swxcos (F(3))*sin(F(2)) + 32*CLO*CLalphaDot
xcw*F (1) "3xF (6) *K*m~2*rhoat*Swxsin (F(2))*sin (F
(3)) + 32xCLalphaDot*CLAE*cw*dE*F (1) "3%F (6) *K*m
“2*rhoat*Swxsin(F(2))*sin(F(3)) + 32*xCLalphax
CLalphaDot*cw*F (1) "3%F (3) *F (6) *K*m~2*rhoat*Sw*
sin(F(2))*sin(F(3)) + 16*CLalphaDot"2*xcw 2*F (1)
"2%F (5)*F (6) *K*m " 2*xrhoat*Sw*xsin (F(2))*sin(F(3))
+ 16+xCLalphaDot*CLg*cw ™ 2*F (1) "2%F (5) *F (6) *K*m~ 2%
rhoat*Sw*xsin(F(2))*sin(F(3)) - 64xF (1) "2xg*xm~3x%
sin(F(8)) - 32*%CLalphaDot*cw*F (1) "2xg*m~2*rhoat*
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Swxsec(F(2))*sin(F(8)) - 4*CLalphaDot ~"2%cw”2*F
(1) "2*g*m*rhoat "2*Sw " 2*sec (F(2)) "2*sin(F(8)) +
16*CLalphaDot*cw*CYdA*dA*F (1) "4*m*rhoat “2*Sw "~ 2%
tan(F(2)) + 16*CLalphaDot*xcw*CYdR*dR*F (1) "4*mx
rhoat "2*Sw”2*xtan(F(2)) + 16*CLalphaDot*cw*CYbeta
*F (1) "4*%F (2) *m*rhoat "2*Sw~2*xtan (F(2)) +
8*xbwxCLalphaDot*cw*CYp*F (1) "3*%F (4) *m*rhoat "2*Sw "~ 2%
tan(F(2)) + 8xbwxCLalphaDot*cw*CYr*F (1) "3*F(6) *m
xrhoat "2*Sw”2*tan(F(2)) + 16xCLalphaDot "2*%cw ~2%F
(1) *F (4) *K*m*rhoat*SwxTzw*xcos (F(3))*tan(F(2)) +
2*CLalphaDot "2*cw " 2*xCYdA*xdA*F (1) "4*xrhoat "3*Sw " 3%
sec(F(2))*tan(F(2)) + 2*xCLalphaDot "2*xcw ~2*CYdRx*
dR*F (1) "4*rhoat "3*Sw~3*sec(F(2))*xtan(F(2)) + 2%
CLalphaDot "2*cw”2*xCYbeta*F (1) "4*F(2)*rhoat ~3*Sw
“3*xsec(F(2))*tan(F(2)) + bwxCLalphaDot "2*cw 2%
CYp*F (1) "3*F(4) *rhoat "3*xSw~3*sec(F(2))*tan(F(2))
+ bw*CLalphaDot "2*xcw " 2*%CYr*F (1) "3*F (6) *xrhoat ~3*
Sw~3*sec(F(2))*tan(F(2)) - 8*CLalphaDot ~2*cw 2%F
(1) "2%F (4) "2*K*m~2*rhoat*Swxcos (F(3)) "2*xsin (F (2)
)*tan(F(2)) + 16*xCLalphaDot "2*%cw ™ 2*F (1) *F (6) *K*m
*rhoat*Sw*Tzw*sin (F(3))*tan(F(2)) - 8xCLalphaDot
"2%cw 2xF (1) "2xF (6) "2*xK*m~2*rhoat*Swxsin (F (2))*
sin(F(3)) "2xtan(F(2)) - 8*CLalphaDot"2*xcw 2*xF (1)
"2%F (4)*%F (6) *K*m " 2*xrhoat*Sw*xsin (F(2))*sin (2%F (3)
)*xtan(F(2)) - 16*xCLalphaDot*cw*xg*K*m*xrhoat*Swx*
cos(F(7))*cos(F(8))*(CLalphaDot*cwxTzw*sec (F(2))
+ F(1)*m*(2%xCLO*F (1) + 2%CLdE*dExF (1) + 2x
CLalpha*F(1)*F(3) + CLalphaDot*cw*F(5) + CLg*cwx*
F(5) - CLalphaDot*cw*F (4)*cos(F(3))*tan(F(2)) -
CLalphaDot*cw*F (6) *sin(F(3))*tan(F(2)))));

betaDot = -(1/(4xF (1) "3*m*(4*m + CLalphaDot*cw*rhoat*Sw

x*sec(F(2)))"2))*(16xCLalphaDot*cw*CYdA*xdA*F (1) “4*mx*
rhoat "2*Sw~2 + 16*CLalphaDot*cw*xCYdR*dR*F (1) "4*mx*
rhoat "2*Sw”2 + 16xCLalphaDot*cwxCYbeta*F (1) "4*F(2)*m
x*rhoat "2*Sw”2 + 8xbwkxCLalphaDot*cw*CYp*F (1) “3%F (4)*m
x*rhoat "2*Sw”2 + 8xbw*CLalphaDot*cw*CYr*F (1) "3*F(6) *m
xrhoat "2*Sw™2 - 64*F (1) "2*m~2*xTyw + 16%F (1) "3* (2%
CYdA*dAxF (1) + 2+*CYdR*dRx*F (1) + 2*CYbeta*F(1)*F(2) +
bwxCYp*F (4) + bwxCYrx*F(6))*m~2xrhoat*Sw*xcos (F(2)) +
2*CLalphaDot "2*cw " 2*CYdA*xdA*F (1) "4*xrhoat "3*Sw " 3*sec
(F(2)) + 2xCLalphaDot"2*xcw 2*xCYdR*dR*F (1) "4*rhoat ~3%
Sw~3*sec(F(2)) + 2*CLalphaDot "2*cw”2*CYbeta*F (1) "4%F
(2) *rhoat "3*Sw " 3*sec(F(2)) + bwxCLalphaDot "2%cw”2x%
CYp*F (1) "3*%F(4) *rhoat "3*Sw " 3*xsec(F(2)) +
bwxCLalphaDot "2*cw " 2*CYr*F (1) "3*F (6) *rhoat "3*%Sw "~ 3%
sec(F(2)) - 32xCLalphaDot*cw*F (1) "2*m*rhoat*Swx
Tywxsec (F(2)) - 4xCLalphaDot"2*xcw™2xF (1) "2*xrhoat
“2xSw " 2xTywxsec (F(2)) "2 + 32xCDO*F (1) "4*m~2x%
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rhoat*Swxsin(F(2)) + 32%xCLO"2%F (1) "4*xK*m~2*rhoat
*Swxsin(F(2)) + 64*CLO*xCLAE*dE*F (1) "4*K*m~™2x%
rhoat*Sw*xsin(F(2)) + 32xCLAE"2*xdE~2%F (1) "4*Kx*m
“2xrhoat*Sw*xsin(F(2)) + 64*xCLO*CLalphax*F (1) "4x*F
(3)*K*m~2*xrhoat*Sw*xsin(F(2)) + 64*xCLalpha*CLdEx
dE*F (1) "4%F (3) *K*m~2*rhoat*Sw*xsin(F(2)) + 32x
CLalpha~2xF (1) "4*F (3) "2*K*m~2*rhoat*Sw*sin (F(2))
+ 32*%CLO*CLalphaDot*cw*F (1) "3%F (5) *K*m~2*rhoat*
Swxsin(F(2)) + 32xCLO*CLg*cw*F (1) "3xF (5) *K*m~2x%
rhoat*Sw*xsin(F(2)) + 32xCLalphaDot*CLdE*cw*xdEx*F
(1) "3%F (5) *K*m~2*rhoat*Sw*sin (F(2)) + 32+CLdEx
CLg*cwxdE*F (1) "3*F (5) *K*m~2*xrhoat*Swxsin(F(2)) +
32*%CLalpha*CLalphaDot*cw*F (1) "3*%F (3)*F (5) *K*m
“2xrhoat*Sw*xsin(F(2)) + 32xCLalpha*xCLg*cw*F (1)
"3xF (3) *F (5) *K*m~2*rhoat*Sw*sin (F(2)) + 8%
CLalphaDot "2*xcw”~2*F (1) "2*F (5) "2*K*m~2*rhoat *Sw*
sin(F(2)) + 16xCLalphaDot*CLg*cw ~2*F (1) "2*F(5)
“2xK*m“2*xrhoat*Swxsin(F(2)) + 8xCLq 2*xcw 2*F (1)
"2xF (5) "2%K*m~2*rhoat*Swxsin(F(2)) - 64%F (1) "3%F
(4)*m~3*xsin(F(3)) - 32*CLalphaDot*cw*F (1) "3%F (4)
*m~2*rhoat*Swxsec (F(2))*sin(F(3)) - 4xCLalphaDot
"2%xcw”2xF (1) "3%F (4) *m*xrhoat "2*Sw 2*sec (F(2)) "2x
sin(F(3)) - 64*F (1) "2xg*m~3*xcos(F(8))*sin(F (7))
- 32xCLalphaDot*cw*F (1) "2*g*m~2*rhoat*Sw*cos (F
(8))*sec(F(2))*sin(F(7)) - 4*xCLalphaDot "2*cw 2*F
(1) "2*xg*m*xrhoat "2*Sw"2*xcos (F(8))*sec(F(2)) "2*sin
(F(7)) + 16*%CDO*CLalphaDot*cw*F (1) "4*m*rhoat ~2*
Sw™2*xtan(F(2)) +
32%CLO*CLalphaDot*cw*F (1) "2*K*m*rhoat*Sw*Tzw*xtan (F
(2)) + 32*xCLalphaDot*CLdE*cw*xdEx*F (1) "2*xK*m*rhoat
x*SwxTzwxtan (F(2)) + 32xCLalpha*xCLalphaDot*cw*F
(1) "2*F (3) *K*m*xrhoat*Sw*Tzw*tan (F(2)) + 16
CLalphaDot "2*cw”2%F (1) *F (5) *K*m*rhoat*Sw*Tzw*tan
(F(2)) + 16*xCLalphaDot*CLg*cw 2*F (1) *F (5)*Kx*mx*
rhoat*SwxTzwxtan(F(2)) + 32*CLO*CLalphaDot*cw*F
(1) "2*g*K*m~2xrhoat*Swxcos (F(7))*cos(F(8))*tan (F
(2)) + 32*%CLalphaDot*CLAE*cw*dE*F (1) "2*gxK*m~2x%
rhoat*Swkxcos (F(7))*cos(F(8))*tan(F(2)) + 32x
CLalpha*CLalphaDot*cw*F (1) "2*%F (3) *g*xK*m~2*%rhoat*
Swxcos (F(7))*cos(F(8))*tan(F(2)) + 16*xCLalphaDot
“2%xcw"2xF (1) *F (5) *g*xK*m~2*xrhoat*Sw*xcos (F(7))*cos
(F(8))*tan(F(2)) +16*xCLalphaDot*CLg*cw 2xF (1) *F
(5) *xg*xK*m~2*xrhoat*Sw*xcos (F(7))*cos(F(8))*tan(F
(2)) + 2xCDO*CLalphaDot "2*cw”2*F (1) “4*rhoat ~3*Sw
"3*xsec(F(2))*tan(F(2)) + 8*CLalphaDot "2*cw ~2%Kx
rhoat*Sw*xTzw " 2*sec(F(2))*xtan(F(2)) + 16x%
CLalphaDot "2*xcw " 2*g*K*m*xrhoat*Sw*xTzw*cos (F (7)) *
cos(F(8))*sec(F(2))*tan(F(2)) + 8xCLalphaDot ~2x%

83




cw 2%g " 2xK*m~2*%rhoat*Swxcos (F(7)) "2%cos (F(8)) "2x%
sec(F(2))*tan(F(2)) - 32*CLO*CLalphaDot*cw*F (1)
“3*%F (6)*K*m~2*xrhoat*Sw*xsin(F(2))*sin(F(3))*tan(F
(2)) - 32*xCLalphaDot*CLdE*cw*dE*F (1) "3%F (6) *K*m
“2xrhoat*Sw*xsin(F(2))*sin(F(3))*tan(F(2)) - 32%
CLalpha*CLalphaDot*cw*F (1) "3%F (3) *F (6) *xK*m ™~ 2%
rhoat*Sw*xsin(F(2))*sin(F(3))*tan(F(2)) - 16x%
CLalphaDot "2*xcw”~2*F (1) "2*F (5) *F (6) *K*m~2*rhoat *
Swxsin(F(2))*xsin(F(3))*tan(F(2)) - 16*CLalphaDot
x*CLg*cw ™ 2*F (1) "2xF (5) *F (6) *K*m~2*rhoat*Sw*sin (F
(2))*sin(F(3))*tan(F(2)) + 8xCLalphaDot "2*cw 2%F
(1) "2*F (4) "2*xKxm~2*rhoat*Swxcos (F(3)) "2*sin (F (2)
)*xtan(F(2))~2 - 16*CLalphaDot "2*cw”2*%F (1) *F (6) *K
*m*rhoat*Sw*Tzw*xsin(F(3))*xtan(F(2)) "2 - 16%
CLalphaDot "2*cw " 2*%F (1) *F (6) *gxK*m~2*xrhoat*Sw*cos
(F(7))*cos(F(8))*sin(F(3))*tan(F(2)) "2 +
8*CLalphaDot "2*cw”2*%F (1) "2*%F (6) "2*K*m~2*rhoat*Swx*
sin(F(2))*sin(F(3)) "2*xtan(F(2)) "2 + 8xCLalphaDot
“2%xcw"2xF (1) "2*%F (4) *F (6) *K*m " 2*xrhoat *Sw*xsin (F (2)
)*sin (2*%F(3) ) *tan(F(2)) "2 + 4%xF(1)*m*xcos (F(3))
*(16*xF (1) "2xF(6)*m~2 + 8*CLalphaDot*cw*F (1) "2%F
(6) *xm*rhoat*Swxsec(F(2)) + CLalphaDot"2%cw”2x%F
(1) "2xF(6) *rhoat "2*Sw"2*sec(F(2)) "2 - 4x
CLalphaDot*cw*F (1) *F (4) *(2xCLO*F (1) + 2xCLdEx*dEx
F(1) + 2xCLalpha*F(1)*F(3) + CLalphaDot*cw*F(5)
+ CLg*cw*F (5))*K*m*xrhoat*Sw*xsin (F(2))*tan(F(2))
- 4xCLalphaDot "2*xcw”2*F (4) *K*xrhoat*Sw*Tzwxtan (F
(2)) "2 - 4*xCLalphaDot "2*cw”2*F (4)*g*xK*m*rhoat*Sw
xcos (F(7))*xcos(F(8))*xtan(F(2))"2));
alphaDot = (-(2*xCLO*F (1) "2*xrhoat*Sw + 2*xCLAE*dEx*F (1) "2x%
rhoat*Sw + 2*xCLalpha*F (1) "2%F(3)*rhoat*Sw + CLg*cw*F
(1) *F (5) *rhoat*Sw - 4xTzw - 4xg*m*xcos(F(7))*cos(F(8)
))*xsec(F(2)) + 4xF(1)*m*x(F(5) - F(4)xcos(F(3))*tan(F
(2)) - F(6)*sin(F(3))*tan(F(2))))/(F(1)*(4*m +
CLalphaDot*cw*rhoat*Sw*xsec(F(2))));

%» Rotation Equations

h [4] [5]1 [6]

pDot = Izz/(Ixx*Izz-Ixz"2)*(1/2*rhoat*xbw*F (1) "2*xSwx*(
Clbeta*F(2)+C1dA*dA+CldR*dR+Clr*bw/(2*F (1)) *F(6)+Clp
xbw/(2xF (1)) *F(4)))+Ixz/(Ixx*xIzz-Ixz"2)*(1/2*rhoat*
bwxF (1) "2xSwx (CNbeta*F (2) +CNdA*dA+CNdR*dR+CNr*bw/ (2%
F(1))*F(6)+CNp*bw/(2%F (1)) *F(4)))+((Ixz*(Ixx-Iyy+Izz
))/(Ixx*xIzz-Ixz"2))*F(4)*F(5)+((Izzx(Iyy-Izz)-Ixz"2)
/(Ixx*Izz-Ixz"2))*F(6)*F(5);

gDot = (1/2*rhoat*cw*F (1) "2*Sw*(CMO+CMalpha*F (3)+CMdJEx*
dE+CMg*cw/ (2*F (1) )*F (5)+CMalphaDot*cw/(2xF (1)) *
alphaDot))/Iyy+((Izz-Ixx)/Iyy)*F(4)*F(6)+Ixz/Iyy*(F
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(6) "2-F(4) ~2);

rDot = Ixx/(Ixx*Izz-Ixz"2)*(1/2*xrhoat*xbw*F (1) "2xSw*(
CNbeta*F (2) +CNdA*dA+CNdR*dR+CNr*bw/ (2*F (1) ) *F (6) +CNp
*bw/(2%F (1) )*F(4)))+Ixz/(Ixx*xIzz-Ixz"2)*(1/2*rhoat*
bw*F (1) "2*Swx(Clbeta*F (2)+CldA*dA+C1ldR*dR+Clr*bw/ (2%
F(1))*F(6) +Clp*xbw/(2*F (1)) *F (4)) ) +((Ixx*x(Ixx-Iyy)+
Ixz~2) /(Ixx*Izz-Ixz"2))*F(4)*F(5)+((Ixz*(Iyy-Ixx-Izz
))/(Ixx*xIzz-Ixz"2))*F(6)*xF(5) ;

% Angular velocities in wind axes

pw = cos(F(2))*(F(4)*cos(F(3))+F(6)*sin(F(3))) + sin(F
(2))*(F(5) -alphaDot) ;

qw = -sin(F(2))*(F(4)*cos(F(3))+F(6)*sin(F(3))) + cos(F
(2))*(F(5) -alphaDot);

rw = F(6)*xcos(F(3)) - F(4)*sin(F(3)) + betaDot;

% Euler

% [7Tbis] [8bis] [9bis]

muDot = pw+(qwxsin(F(7))+rwxcos(F(7)))*tan(F(8));
gammaDot = qw*cos (F(7))-rwxsin(F (7)) ;

chiDot = (quw*sin(F(7))+rw*xcos(F(7)))/cos(F(8));

%» Kinematic equations

% [10] [11] [12]

xDot = F(1)*cos(F(8))*cos(F(9));
yDot F(1)*cos(F(8))*sin(F(9));
zDot -(-F(1)*sin(F(8)));

%» Fuel mass consumption
fuelDot = -CexT;

% Integration vector

dFdt = [VDot; betaDot; alphaDot; pDot; qDot; rDot;
muDot; gammaDot; chiDot; xDot; yDot; zDot; fuelDot];

end
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C.6 Function for the Bryan Equations with quater-
nions

function dFdt= BRYANBODYQUATERNIONS(t,F)
global manoeuvre
run('InitialConditionsQuaternions.m')

run('AircraftParameters.m')

% Atmosphere model

[Tat ,aat ,Pat,rhoat] = atmosisa(F(13)); % Function to
obtain the atmosphere model as a function of
altitude

rho0 = 1.225; % Density at z = 0

TO = 288.16; %» Temperature at z = 0

PO = 101325; % Pressure at z = 0

thetaat = Tat/TO; % Relative temperature

sigmaat = rhoat/rho0; %» Relative density

deltaat = Pat/PO; % Relative pressure

% Value of the controls
unitstep = t>=unitsteptime; J Variation of the controls
dP = dPinitial+unitstep*(dPfinal-dPinitial);
dEO = dEinitial+unitstep*(dEfinal-dEinitial);
dAO dAinitial+unitstep*(dAfinal-dAinitial);
dRO dRinitial+unitstep*(dRfinal -dRinitial);

%» Aerodynamic Angles
alpha = atan(F(3)/F(1));
beta = asin(F(2)/(sqrt(F(1) "2+F(2) "2+F(3)"2)));
alphaDot = 0;
betaDot = 0;

% Thrust
% THRUSTMODEL (dP,z,V,mach,alpha,beta)
[T,Tx,Ty,Tz,~,~,~] = THRUSTMODEL (dP,F (13),sqrt (F(1) “2+F
(2) "2+F (3) "2) ,sqrt (F(1) "2+F(2) "2+F(3) “2) /aat ,alpha,
beta) ;

/» Aerodynamic coefficients
% coefficients(V,alpha,alphaDot,p,q,r,beta,betaDot,dE,
dA,dR)
[CL,CD,CY,C1,CM,CN] = coefficients (sqrt(F(1) "2+F(2) "2+F
(3)"2) ,alpha,alphaDot ,F(4) ,F(5) ,F(6) ,beta,betaDot,
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dEO,dAO,dRO) ;

%» Euler angles as a function of the quaternions

if (F(7)*F(9)-F(8)*F(10)) == 0.5
psi = 0;
phi = 2%asin(ql/cos(pi/4))+psi;

theta = pi/2;
elseif (F(7)*F(9)-F(8)x*F(10)) =
psi = 0;
phi 2*asin(ql/cos(pi/4))-psi;
theta = -pi/2;
else
phi = atan2 ((2*(F(7)*F(8)+F (9)*F(10))) ,(1-2xF(8)
"2-2xF(9)"2));
theta = real(asin (2*x(F(7)*F(9)-F(8)*F(10))));
psi = atan2 ((2*(F(7)*F(10)+F(8)*F(9))), (1-2%xF(9)
"2-2*%F (10) "2));

-0.5

end

nho [1] [2] [3]

% uDot=(Tx+1/2*%rhoat*Sw*x(u~2+v~2+w~2) *(-CD*cos (alpha) *
cos(beta)+CL*sin(alpha)+CY*cos(alpha)*sin(beta)) -m*g

xsin (theta))/m-q*w+r*v;

% vDot=(Ty+1/2*rhoat*Sw*(u~2+v~"2+w~2) *(-CD*sin(beta)+CY

xcos (beta))+m*g*cos (theta)*sin(phi))/m-r*u+p*w;

% wDot=(Tz+1/2*%rhoat*Swx(u~2+v~2+w~2) *(-CL*cos (alpha) -
CDxcos(beta)*sin(alpha)+CY*sin(alpha)*sin(beta))+m*g

xcos (theta)*cos (phi))/m-p*xv+qg*u;

h [4] [5] [6]
% pDot=Izz/(Ixx*xIzz-Ixz"2)*L+Ixz/(Ixx*xIzz-Ixz"2)*N+((

Ixz*(Ixx-Iyy+Izz))/(Ixx*xIzz-Ixz"2))*p*xq+((Izz*(Iyy-

Izz)-1Ixz"2)/(Ixx*xIzz-Ixz"2))*r*q;
% qDot=MA/Iyy+((Izz-Ixx)/Iyy)*p*r+Ixz/Iyy*x(r~2-p~2);
% rDot=Ixx/(Ixx*Izz-Ixz"2)*N+Ixz/(Ixx*xIzz-Ixz"2)*L+((

Ixx*x(Ixx-Iyy)+Ixz~2)/(Ixx*xIzz-Ixz"2))*p*xq+((Ixz*x(Iyy

-Ixx-Izz))/(Ixx*xIzz-1Ixz"2))*r*q;

% [q0] [q1] [q2] [q3]
% qODot 1/2*%(-ql*p-q2*q-q3*r) ;
% qlDot 1/2%(q0*p-q3*xq+q2*r) ;
% gq2Dot = 1/2*%x(q3*p+qO0*q-ql*r);
%» q3Dot 1/2%(-q2*p+ql*xq+qO0*r) ;

» [10] [11] [12]
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% xDot=uxcos(psi)*cos(theta)+v*(cos(psi)*sin(theta)*sin
(phi)-cos(phi)*sin(psi))+w*x(sin(theta)*cos (phi)*cos(
psi)+sin(phi)*sin(psi));

% yDot=uxcos (theta)*sin(psi)+v*(cos(phi)*cos(psi)+sin(
theta)*sin(phi) *sin(psi))+w*(-cos(psi)*sin(phi)+cos(
phi)*sin(theta) *sin(psi));

% —-zDot=-uxsin(theta)+v*cos(theta)*sin(phi)+w*cos(theta
)*cos (phi);

% Variables

%hu=F (1) uDot=dFdt (1)
hv=F (2) vDot=dFdt (2)
hw=F (3) wDot=dFdt (3)
hp=F (4) pDot=dFdt (4)
%hq=F (5) qDot=dFdt (5)
hr=F (6) rDot=dFdt (6)
%q0=(F (7)) qO0Dot=dFdt (7)
hql=(F(8)) qlDot=dFdt (8)
%q2=(F(9)) q2Dot=dFdt (9)
%q3=(F (10)) g3Dot=dFdt (10)
hx=F(11) xDot=dFdt (11)
hy=F (12) yDot=dFdt (12)
%hz=F (13) zDot=dFdt (13)

%» Bryan Equations

%» Traslation Equations

h (11 [2] [3]

uDot = (Tx+1/2*rhoat*Swx(F (1) "2+F(2) "2+F(3) "2) *(-CD*cos
(alpha)*cos(beta)+CL*sin(alpha)+CY*cos(alpha)*sin/(
beta)) -m*xg*sin(theta))/m - F(5)*F(3) + F(6)*F(2);

vDot = (Ty+1/2*rhoat*Sw*(F (1) "2+F(2) "2+F(3) "2) *(-CD*sin
(beta)+CY*cos (beta))+m*gxcos(theta)*sin(phi))/m - F
(6)*F (1) + F(4)x*F(3);

wDot = (Tz+1/2*xrhoat*Swx(F (1) "2+F(2) "2+F(3) "2) *(-CL*cos
(alpha)-CD*cos(beta)*sin(alpha)+CY¥*sin(alpha)*sin(
beta))+m*xg*xcos (theta)*cos(phi))/m - F(4)*F(2) + F(5)
*F (1) ;

% Rotation Equations

h [4] [5] [6]

pDot = Izz/(Ixx*xIzz-Ixz"2)*(1/2*xrhoat*bw*x(F (1) "2+F(2)
"2+F(3) "2) *Sw*Cl) + Ixz/(Ixx*xIzz-Ixz"2)*(1/2*xrhoatx
bwx (F (1) "2+F(2) "2+F(3) "2) *Sw*CN) + ((Ixz*(Ixx-Iyy+
Izz))/(Ixx*xIzz-Ixz"2))*F(4)*F(5) + ((Izz*(Iyy-Izz)-
Ixz~2) /(Ixx*Izz-Ixz"2))*F(6)*F(5) ;

gDot = (1/2*rhoat*xcwx(F (1) "2+F(2) "2+F(3) "2) *Sw*CM) /Iyy
+ ((Izz-Ixx)/Iyy)*F(4)*F(6) + Ixz/Iyy*(F(6) "2-F(4)
"2);

88




rDot = Ixx/(Ixx*xIzz-Ixz"2)*(1/2*rhoat*bwx(F (1) "2+F(2)
"2+F(3) "2) *Sw*CN) + Ixz/(Ixx*Izz-Ixz"2)*(1/2*xrhoatx*
bwx(F (1) "2+F(2) "2+F(3) "2) *Sw*Cl) + ((Ixx*x(Ixx-Iyy)+
Ixz~2) /(Ixx*xIzz-Ixz"2) )*F(4)*F(5) + ((Ixz*x(Iyy-Ixx-
Izz))/(Ixx*xIzz-Ixz"2))*F(6)*F(5) ;

% Quaternions
% q0 ql q2 g3
q0Dot = 1/2%(-F(8)*F(4)-F(9)*F(5)-F(10)*F(6)) ;
qlDot = 1/2*%(F(7)*F(4)-F(10)*F(5)+F(9)*F(6));
q2Dot = 1/2%(F(10)*F (4)+F(7)*F(5)-F(8)*F(6));
q3Dot = 1/2*%x(-F(9)*F (4)+F(8) *F (5)+F (7)*F(6));

% Kinematic Equations

» [10] [11] [12]

xDot = F(1)*cos(psi)*cos(theta) + F(2)*(cos(psi)*sin(
theta)*sin(phi)-cos(phi)*sin(psi)) + F(3)*(sin(theta
)*cos (phi)*cos(psi)+sin(phi)*sin(psi));

yDot = F(1)*cos(theta)*sin(psi) + F(2)*(cos(phi)=*cos(
psi)+sin(theta)*sin(phi)*sin(psi)) + F(3)*(-cos(psi)
*sin (phi)+cos(phi)*sin(theta)*sin(psi));

zDot = -(-F(1)*sin(theta) + F(2)*cos(theta)*sin(phi) +
F(3)*cos(theta)*cos (phi));

/» Fuel mass consumption
fuelDot = -Cex*T;
% Integration vector
dFdt = [uDot; vDot; wDot; pDot; qDot; rDot; qODot;

qlDot; q2Dot; q3Dot; xDot; yDot; zDot; fuelDot];

end
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C.7 Flight simulator

clear
close all

global manoeuvre

%» WARNING: before running the file, make sure that the
files corresponding to the aircraft parameters and the
initial conditions are properly filled. Make sure to
also select the proper coordinate system

%» FILL ONLY THE VARIABLES THAT HAVE THE WORD 'COMPLETE'
WRITTEN

run('AircraftParameters.m')

manoeuvre = ; % COMPLETE
% Vertical plane equilibrium -> manoeuvre = 1;
%» Vertical loop -> manoeuvre 2; (not available for
body-fixed axes)
% Gliding flight -> manoeuvre = 3;

% Dive recovery -> manoeuvre = 4;

% Ascending turn -> manoeuvre = 5;

% Horizontal turn -> manoeuvre = 6;
coordinates = ; % COMPLETE

» Body-fixed -> coordinates = 1;

% Wind -> coordinates = 2;

% Quaternions -> coordinates = 3;
tf = ; % COMPLETE

tspan=(0:tf);
if coordinates == 1
run('InitialConditionsBody.m"')
% Vector of initial conditions
FO = [u0; vO0; wO; pO; qO0; rO; phiO; thetaO; psiO; xO0;
y0; z0; fuelDotO];
% Solver
options = odeset('RelTol', 1le-10, 'AbsTol', 1e-10);

[t,F] = ode45(@BRYANBODY, tspan, FO, options);

/i Fuel consumption
fuelconsumption = F(end,13)
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% Plots

figure

plot (t,F(:,1),t,F(:,2),t,F(:,3))

title('Time evolution of linear velocities')
xlabel ('t [s]"')

ylabel ('Linear velocities [m/s]"')

legend ('u(t) ', 'v(t) ', 'w(t)")

figure

plot (t,F(:,4),t,F(:,5),t,F(:,6))

title('Time evolution of angular velocities')
xlabel ('t [s]"')

ylabel ('Angular velocities [rad/s]')
legend('p(t) ', 'q(t) ", 'r(t) ")

figure

plot(t,F(:,7),t,F(:,8),t,F(:,9))
title('Time evolution of the Euler angles')
xlabel ('t [s]')

ylabel ('Euler angles [rad]"')

legend ('\phi(t) ', '\theta(t)"', '\psi(t)")

figure

plot(t,F(:,10))

title('Time evolution of position')
xlabel ('t [s]')

ylabel ('x(t) [m]"')

figure

plot(t,F(:,11))

title('Time evolution of lateral position')
xlabel ('t [s]')

ylabel('y(t) [m]")

figure

plot(t,F(:,12))

title('Time evolution of altitude')
xlabel ('t [s]")

ylabel ('z(t) [m]"')

figure

plot (F(:,10) ,F(:,12))
title('Two-dimensional trajectory')
xlabel ('x(t) [m]")

ylabel ('z(t) [m]"')

figure
plot3(F(:,10) ,F(:,11) ,F(:,12)),grid
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title('Three-dimensional trajectory')
xlabel ('x(t) [m]")
ylabel('y(t) [m]")
zlabel('z(t) [m]")

figure

plot(t,atan(F(:,3)./F(:,1)),t,asin(F(:,2)./(sqrt(F(:,1)
LC2+4F (:,2) L72+4F (:,3).72))))

title('Time evolution of the aerodynamic angles')

xlabel ('t [s]')

ylabel ('Aerodynamic angles [rad]')

legend ('\alpha(t)','\beta(t)"')

figure

plot (t,sqrt(F(:,1) .7 2+F(:,2)."2+F(:,3).72))
title('Time evolution of the airspeed')
xlabel ('t [s]"')

ylabel ('V(t) [m/s]"')

elseif coordinates == 2

run('InitialConditionsWind.m')

% Vector of initial conditions
FO = [VO; beta0O; alphaO; pO; qO0; r0; muO; gammaO; chiO;
x0; y0; z0; fuelDotO];

% Solver
options = odeset('RelTol', 1le-10, 'AbsTol', 1e-10);
[t,F] = o0de45(@BRYANWIND, tspan, FO, options);

/» Fuel consumption
fuelconsumption = F(end,13)

% Plots

figure

plot(t,F(:,1))

title('Time evolution of the airspeed')
xlabel ('t [s]")

ylabel ('V(t) [m/s]"')

figure

plot (t,F(:,2),t,F(:,3))

title('Time evolution of the aerodynamic angles')
xlabel ('t [s]')

ylabel ('Aerodynamic angles [rad]')

legend ('\beta(t)','\alpha(t)")
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figure

plot(t,F(:,4),t,F(:,5),t,F(:,6))

title('Time evolution of angular velocities')
xlabel ('t [s]')

ylabel ('Angular velocities [rad/s]')

legend ('p(t) "', 'q(t) ", 'r(t)")

figure

plot (t,F(:,7),t,F(:,8),t,F(:,9))

title('Time evolution of the Euler angles in wind axes'
)

xlabel ('t (s) ")

ylabel ('Euler angles [rad]')

legend ('\mu(t) ', '\gamma(t) ', '\chi(t)"')

figure

plot (t,F(:,10))

title('Time evolution of position')
xlabel ('t [s]"')

ylabel ('x(t) [m]")

figure

plot(t,F(:,11))

title('Time evolution of lateral position')
xlabel ('t [s]')

ylabel ('y(t) [m]")

figure

plot(t,F(:,12))

title('Time evolution of altitude')
xlabel ('t [s]"')

ylabel ('z(t) [m]"')

legend ('z(t) ")

figure

plot (F(:,10) ,F(:,12))
title('Two-dimensional trajectory')
xlabel ('x(t) [m]")

ylabel ('z(t) [m]"')

figure

plot3(F(:,10) ,F(:,11),F(:,12)),grid
title('Three-dimensional trajectory')
xlabel ('x(t) [m]")

ylabel('y(t) [m]")

zlabel ('z(t) [m]")

93




elseif coordinates == 3
run('InitialConditionsQuaternions.m')

% Vector of initial conditions
FO = [u0; vO0; wO; pO; qO0; r0; q00; ql10; q20; q30; x0;
yO; z0; fuelDotO];

% Solver

options = odeset('RelTol', 1le-10, 'AbsTol', 1e-10);

[t,F] = 0de45(@BRYANBODYQUATERNIONS, tspan, FO, options
)

% Fuel consumption
fuelconsumption = F(end,14)

% Plots

figure

plot (t,F(:,1),t,F(:,2),t,F(:,3))

title('Time evolution of the linear velocities')
xlabel ('t [s]"')

ylabel ('Linear velocities [m/s]"')

legend ('u(t) ', 'v(t) ", 'w(t)")

figure

plot(t,F(:,4),t,F(:,5),t,F(:,6))

title('Time evolution of the angular velocities')
xlabel ('t [s]')

ylabel ('Angular velocities [rad/s]')
legend('p(t) ', 'q(t) ", 'r(t)")

figure
plot(t,F(:,7),t,F(:,8),t,F(:,9),t,F(:,10))
title('Time evolution of the quaternions')
xlabel ('t [s]')

ylabel ('Quaternions')
legend('q0(t)"','ql(t) "', 'q2(t) "', 'g3(t) ")

figure

plot(t,F(:,11))

title('Time evolution of position')
xlabel ('t [s]')

ylabel ('x(t) [m]")

figure

plot (t,F(:,12))
title('Time evolution of lateral position')
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end

xlabel ('t [s]')
ylabel ('y(t) [m]")

figure

plot(t,F(:,13))

title('Time evolution of altitude')
xlabel ('t [s]")

ylabel ('z(t) [m]"')

figure

plot (F(:,11) ,F(:,13))
title('Two-dimensional trajectory')
xlabel ('x(t) [m]")

ylabel ('z(t) [m]"')

figure

plot3(F(:,11) ,(F(:,12)),F(:,13)),grid
title('Three-dimensional trajectory')
xlabel ('x(t) [m]")

ylabel ('y(t) [m]")

zlabel ('z(t) [m]")

figure

plot(t,atan(F(:,3)./F(:,1)),t,asin(F(:,2)./(sqrt(F(:,1)
LC2+F(:,2) L 72+F (:,3).72))))

title('Time evolution of the aerodynamic angles')

xlabel ('t [s]"')

ylabel ('Aerodynamic angles [rad]')

legend ('\alpha(t)', '\beta(t)"')

figure

plot (t,atan2 ((2*x(F(:,7) .xF(:,8)+F(:,9) .*F(:,10))), (1-2%
F(:,8).72-2%xF(:,9).72)),t,asin(2*x(F(:,7) .*F(:,9)-F
(:,8) .xF(:,10))),t,atan2((2.x(F(:,7) .xF(:,10)+F(:,8)
KF(:,9))),(1-2.%F(:,9) .72-2.%F(:,10) .72)))

title('Time evolution of the Euler angles')

xlabel ('t [s]"')

ylabel ('Euler angles [rad]"')

legend ('\phi(t) "', '\theta(t) "', '\psi(t)"')

figure

plot (t,sqrt(F(:,1) .7 2+F(:,2)."2+F(:,3).72))
title('Time evolution of the airspeed')
xlabel ('t [s]"')

ylabel ('V(t) [m/s]"')
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