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Abstract The current situation of COVID-19 highlights the paramount im-7

portance of infectious disease surveillance, which necessitates early monitoring8

for effective response. Policymakers are interested in data insights identifying9

high-risk areas as well as individuals to be quarantined, especially as the pub-10

lic gets back to their normal routine. This paper investigates both require-11

ments by the implementation of disease outbreak modeling and exploring its12

induced dynamic spatial risk in the form of risk assessment, along with its13

real-time integration back into the disease model. The paper implements a14

contact tracing-based stochastic compartment model as a baseline, to further15

modify the existing setup to include the spatial risk. This modification of each16

individual-level contact’s intensity to be dependent on its spatial location has17

been termed as Contextual Contact Tracing. The results highlight that the18

inclusion of spatial context tends to send more individuals into quarantine19

which reduces the overall spread of infection. With a simulated example of20

an induced spatial high-risk, it is highlighted that the new spatio-SIR model21

can act as a tool to empower the analyst with a capability to explore disease22

dynamics from a spatial perspective. The paper concludes that the proposed23

spatio-SIR tool can be of great help for policymakers to know the consequences24

of their decision prior to their implementation.25
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1 Introduction28

Detection and control of COVID-19 in particular, and infectious diseases in29

general, have irrupted as a major societal challenge. As of 31st January 2021,30

the COVID-19 pandemic has over 101 million confirmed cases with above 2.131

million deaths worldwide (WHO, 2021). This explosive dissemination is not32

only a universal threat to public health organizations, but it also jeopardizes33

social functioning, industry, economy and international relations (Zhou et al,34

2020). Countries such as Israel and South Korea which took prompt actions35

towards testing and identification of previous contacts in case of an identified36

individual were able to restrict the disease spread. However, countries that37

did not proceed with the initial massive testing and contact tracing had to38

go for extreme measures of lockdown, quarantining and contact precautions39

(social-distancing, facemasks, etc.) (Hernández-Orallo et al, 2020).40

Detecting all infected individuals among the population requires massive41

testing on a regional scale. Though authorities have followed ingenious medical42

methods to rapidly detect the infected individuals, it has a considerable eco-43

nomical burden and implementation barriers. In a situation like this, detection44

of an infectious disease requires non-pharmaceutical interventions (NPI) and45

is to be supported by methods outside of the medical system, which sets the46

basis of the term Digital Epidemiology (DE) (Salathé, 2018).47

One such DE based method is Digital Contact Tracing (DCT), which can48

provide prior contacts of a detected individual. This rapid identification of49

exposed individuals (who need to be tested or quarantined), can support the50

health system by restricting the uncontrolled asymptomatic propagation of51

infection. In DCT, the key to track the infectious transmission is to keep an52

eye on the physical interaction (contacts) of individuals, and understanding53

these interactions are as important as understanding the contagion process.54

These interactions are much more than just recording of a contact, and55

when studied from a spatio-temporal perspective provide a comprehensive56

understanding of disease dynamics. While the temporal domain deals with57

the duration and instance of contacts, the spatial aspect refers the influence of58

a geographical location on the outcome of a contact, with a notion that some59

areas are inducing disease transmission more than others due to their urban60

function (Wang et al, 2017), environment and overall infectious activities.61

On the other hand, these interactions based on individuals movement is62

subject to tracking of human mobility, where detection of an infected individ-63

ual means that infectious trajectories can be tracked. Such tracking is critical64

to understand how an infection propagates in population and in space, as65

it not only identifies future infectious contacts but also highlights the places66

these infectious trajectories have visited (Benreguia et al, 2020). Identification67

of such high-risk areas is critical for policymakers in decisions related to smart68

lockdown, areal curfew, etc.69

This scenario makes contact tracing, mobility tracking and spatial risk70

interconnected processes. It is a recursive sequence as illustrated in Figure71

1, where the probability of transmission of a contact is proportional to the72
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Fig. 1 Relation of temporally varying spatial risk affecting epidemic model and vice versa

risk intensity of its spatial location. This spatial location evolves based on73

infectious movement, which itself is an outcome of an infectious contact. Hence,74

there is a requirement of an approach to thoroughly fuse the effect of space75

into a disease model while dealing with infectious trajectories. In this paper,76

we focus on the inclusion of the spatial aspect of these physical interactions77

termed as Contextual Contact Tracing. The idea is that contacts taking place78

in contextually distinct geographical locations are to be treated differently79

based on the vulnerability they pose to the susceptible individual.80

In human infectious diseases, where the pathogen is another human being,81

there is a requirement to track human movement. Tracking the known infected82

individuals and their interactions are already demanding, but the existence83

of asymptomatic individuals makes this monitoring even more challenging84

(Müller et al, 2020). These undetected individuals are transmitting the infec-85

tion to a larger set of individuals, who themselves are infecting the community86

in an uncontrollable domino effect. Early detection of asymptomatic individ-87

uals followed by isolation or treatment is the key to restrict pandemic growth,88

where state of the art highlights the accepted practise of digital methods in89

such detection studies (Anglemyer et al, 2020). Ongoing research (Van Dore-90

malen et al, 2020; Simmerman et al, 2010) highlights the aerosol and surface91

stability of infectious diseases, where COVID-19, SARS-CoV1 and Influenza92

A/H1N1, all have indicated up to days surface transmission. Both these as-93

pects, tracking of individuals and risk assessment of space, sets the basis of94

infectious disease surveillance in this digital era.95

Tracking human movement relies on human mobility data, which is of96

prime importance in individual-level research on infectious disease dynamics97

(Brockmann et al, 2009). Recent advancement in location-aware technologies98

and computing procedures have resulted in a massive influx of mobility data,99

which is capable of representing the movement of an individual to a very small100

scale up to less than a meter (Zheng, 2015). This high-level detail makes these101

datasets an ideal candidate for high precision tasks such as contact tracing.102

Despite that, an important consideration is that continuous recording of103

an individual movement is highly invasive (Reichert et al, 2020), which is104

why there is no infectious disease related individual-level trajectory dataset105

publicly available so far. To minimize this concern, the use of bluetooth has106

been proposed (Martinez-Martin et al, 2020), though it only collects the con-107
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tact information as and when it happens. At the same time, Benreguia et al.108

(Benreguia et al, 2020) suggest that in preparation for an extremely critical109

scenario where entire humanity is at stake and the requirement of saving lives110

is of highest priority, the use of continuous recordings of individual’s movement111

is justified given it is implemented by government and with a guarantee of pri-112

vacy protection. Similarly, for spatial risk assessment, individual-level work is113

only executed on a sparse scale. Souza et al. (Souza et al, 2019) detected spa-114

tial clusters using spatial scan statistics, based on Twitter feed data. Another115

spatial clustering application on aggregated data is available in (Desjardins116

et al, 2020) where a countywide space-time clustering is executed.117

The long-standing COVID-19 has amplified research in this domain with118

several studies involving individual-level-mobility for investigation of disease119

dynamics. Many of these studies described the spatio-temporal trends inclusive120

of stochastic aspects, proposing statistical foundations to fit models to data.121

However, the spatial aspects focused more on spatial separation rather than122

spatial location. Even if the spatial location was considered, it was in the123

aggregated form of spatially varying demographic factor (Mahsin et al, 2020).124

In epidemic modeling, compartment models distribute each individual in125

the population based on their disease states. Generally, they are of Susceptible,126

Infected and Recovered (SIR) type, however many versions such as SEIR,127

SEIAHCRD (Berger et al, 2020; Bardina et al, 2020) exist which depend on128

the type of disease and applied methodologies. Though the temporal aspect is129

well addressed in these SIR models, the spatial context is generally new.130

In spatio-epidemic modeling, the idea of a space-dependent SIR model has131

been presented in (Takács and Hadjimichael, 2019) in form of a numerical132

experiment. They considered a generalized SIR model where population size133

differed over space. Another spatial-SIR model is explained in (Bisin and Moro,134

2020) to understand spatial diffusion of disease based on quantitative effects135

of geographical context in determining that diffusion. Modifying epidemic pa-136

rameters based on the spatial location have also been proposed. A space-time137

dependent basic reproductive ratio is implemented in (Martinez-Beneito et al,138

2020), while Lang et al. (Lang et al, 2018) discuss a framework of a SIR model139

on spatial networks where the probability of transmission is based on spatial140

distances along the edges. A bayesian maximum entropy based extension is also141

available for metapopulation-level epidemic modeling (Angulo et al, 2013).142

All these models propose population-level frameworks for the inclusion143

of space in SIR modeling. Complete integration of a spatial context in an144

individual-level study of contact tracing is still missing, which can consider145

the influence of space (location) for each specific contact.146

This paper proposes a new spatio enhanced setup of SIR modeling, where147

contacts are associated with an intensity of its risk score based on its spatial148

location. This association of risk with a contact is executed by reforming the149

quantitative value of a contact, where enhancement is in a manner that a riskier150

contact has a higher probability of disease transmission than the one which151

is of relatively lower risk. For temporally varying spatial risk, we re-evaluate152

spatial risk scores based on infectious activities of the recent past.153
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We analyze here real-life mobility data of NCCU Trace (Tsai and Chan,154

2015) which provides movement of 115 students recorded for 15 days. In the im-155

plementation, we first execute contact tracing to construct temporal network156

graphs. These contact graphs are further used to implement an epidemic model157

with self-induced infection, which was later enhanced to a spatially-enhanced158

epidemic model inclusive of spatial risk. In parallel, we track infectious tra-159

jectories and the location of contacts as elements for spatial risk assessment.160

The results highlight that the inclusion of spatial context tends to send more161

individuals into quarantine which reduces the overall spread of infection.162

The reason behind pursuing this study in the absence of real information163

about infection is because a methodology is also missing, which can consider164

spatial risk in a contact tracing process and track mobility trajectories. There-165

fore, the feasibility of this idea is developed in the form of a spatio-epidemic166

tool, which is an established proposal for future works, not only to work with167

a real dataset as they become available but also in the domain of spatial risk.168

A recent publication from February 2021 presents movement data of in-169

fected (COVID-19) individuals from South Korea (Park et al, 2021). However,170

data is not in the form of continuous trajectories, but are recordings of indi-171

vidual’s interactions with others through a contact tracing application. This172

availability is a motivating fact as more real-world datasets related to infection173

information as well as mobility trajectories will be publicly available offering174

a definite way forward for this work.175

The remainder of this paper is as follows: Section 2 describes the method-176

ology of both, SIR model (baseline setup) and its enhancement to a spatio-SIR177

model. Section 3 introduces the selected dataset with discussion on the exper-178

imental design. This section further presents results of both models supported179

by varying simulations to effectively understand the new spatio-SIR setup.180

Section 4 concludes the paper and presents limitations and future work.181

2 Methodology182

2.1 Baseline-SIR modeling183

The baseline-SIR model for this study is motivated by (Hernández-Orallo et al,184

2020), in which contact tracing technologies are evaluated along with a com-185

parison of stochastic versus deterministic approaches. In this paper, we repro-186

duce their stochastic setup (hereby referred to as base-SIR) as our baseline-187

SIR model, with a rationale that a stochastic model is more realistic than188

a deterministic one due to its probabilistic nature. Similarly, an event-based189

method as followed in base-SIR is preferred due to the incorporation of event-190

driven chance element. An overview of methodology for the implementation191

of baseline-SIR, and its modification to a spatio-SIR model (see Section 2.2)192

is available in Figure 2.193

Base-SIR brings forth a novel addition of Quarantine Susceptible and Quar-194

antine Infected related compartments which add a new perspective in the mod-195
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eling of a real-world scenario related to contact tracing based compartment196

modeling. Base-SIR implements Gillespie’s First Reaction Method (GFRM)197

(Keeling and Rohani, 2011), which handles efficiently a contact tracing prob-198

lem, especially on a trajectory-based dataset.199

Fig. 2 Summarized workflow of overall methodology

2.1.1 Contact Tracing200

Contact Tracing is the identification of colocation of two or more individuals.201

However, this colocation is not restricted to a single point or a single instance202

of time, but a range of an area and duration which are based on epidemiological203

aspects. Contact with a possibility of transmission is the one within two meters204

of an infected individual with an exposure of at least one minute (Hernández-205

Orallo et al, 2020). Therefore, we define dc as the distance threshold and tc as206

the duration threshold for considering a contact as risky.207

Identification of infectious contacts needs accurate information about the208

possible transmissible pathways from an infected person to each individual in209

the population (Eames and Keeling, 2003). A network graph is a computa-210

tionally efficient representation of such interactions where in individual-level211

studies, nodes refers to individuals and edges represents their contacts (En-212

right and Kao, 2018). A temporal network graph can be denoted as G(t), with213

ν (nodes) and ε (edges), where t represents the instance of time. In epidemic214

modeling, it is common to have a temporal frequency of a day (Keeling and215

Rohani, 2011), hence εij(t) will exist between individual i and j if there exists216

a contact between the two on day t.217

An adjacency matrix is commonly used to store graph information. It is a218

graph matrix, where rows and columns represent nodes (individuals), with a219

third dimension corresponding to the day of contact. A contact is represented220

with a value of either 0 or 1, where 1 depicts the existence of an edge (contact)221

between the two. Figure 3 presents a toy example of a network graph and the222

associated graph matrix.223

Directions of edges as in directed/undirected graph is ignored as contacts224

are independent of direction. This highlights the assumption that infection225

can be transmitted in both directions depending on the disease state of the226
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Fig. 3 A toy example: contacts of a single day in the form of contact network and graph
matrix

individual and not the structure of the network. For a pair (i, j) of individuals,227

this symmetry can be viewed as (Gij(t) = Gji(t)).228

In contact network, degree shows the count of connections of a node with229

the other nodes in the network. The temporal degree Ki(t) is the count of230

contacts of a person i with other individuals in the network G(t) on day t.231

Hence, an average degree κ for a time period T can be computed as (1)232

κ =
1

N

N∑
i=1

 1

T

T∑
j=1

Ki(tj)

 (1)233

As the rate of infection is influenced by the count of infected individuals,234

hence it is useful to have a degree only involving contacts with infected in-235

dividuals. Such a degree of diffusion can be represented as (2), where Ij(t)236

denotes that individual j can infect others (return 1) or not (returns 0).237

Ki(t) =

N∑
j=1

Gij(t) · Ij(t) (2)238

Identifying prior contacts is the overall essence of contact tracing in order239

to restrict next generation of cases. This requires a backward time window240

4 depending on the type of disease (infectious period, incubation time, etc.),241

and can be used in the form of (3) to extract all prior contacts Ci(t,4) of an242

individual i at t with window 4243

Ci(t,4) =

N∑
j=1

(
max

τ∈[t−∆,t]
Gij(τ)

)
Dj(t) (3)244

Here, Dj(t) is 1 if at time t person j is infected and traced. Algorithm (1)245

explains the process flow of contact tracing. Once the contacts are identified,246

a baseline setup can be formulated to simulate SIR events. The model also247

evaluates the efficiency of the contact tracing methods. Contact tracing can be248

manual (that is, based on interviewing the detected and infected individuals)249

or smartphone based (using contact tracing apps). We define a value q as250
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the fraction of traced individuals being quarantined. For example, this value251

can reflect the number of individuals that use the mobile contact tracing app.252

In the case where the tracing time is greater than 1, the q value must be253

normalised by the average tracing time (1/τT ), as q
′

= q/(1/τT ) = q · τT254

in order to distribute the tracing quarantine over the days. The idea is that255

if the tracing time is long (for example, by using interviews), it is precisely256

because it takes time to trace back the prior contacts, so the whole number257

of traced individuals during this tracing time is equally distributed over these258

days. Finally, apart from contacts, baseline-SIR model relies on (a) infection259

states and (b) epidemic parameters.260

Algorithm 1 Pseudocode of contact tracing process

input: trace dataset, n . (n← count of individuals)
output: G . (G← contact graph)

// initialize G(n, n, d)← 0 . (d← number of days)
1: for (t← 1 to d× 86400) do . (t← time in seconds)
2: for (p1← 1 to n) do . (p1 ← first person)
3: for (p2← 2 to n) do . (p2 ← second person)
4: if (p1 != p2) then

dist = distance between p1 and p2
5: if (dist < dc) then . (dc ← distance threshold)
6: record duration
7: if (duration > tc) then . (tc ← duration threshold)
8: G(p1, p2, day)← 1 . (day ← t/86400)
9: return: G

2.1.2 Infection states (compartments)261

Infection states refer to the compartments an individual can be during an262

epidemic. As in base-SIR, a total of five compartments are considered which263

represent the states of Susceptible (S), Infected (I), Recovered (R), Quaran-264

tine Susceptible (QS) and Quarantine Infected (QI). With these five compart-265

ments, there are seven possible SIR events that will imply the transition of266

an individual from a compartment to another. Figure 4 presents the possible267

events (transfers among compartments), which are:268

(S→I, S→QS , S→QI , I→QI , QS→S, I→R, QI→R)269

As information about the latency states of individuals is not available, a270

self-induced infection approach is followed. This means that out of the total271

population, a certain count of individuals in the population are initiated as272

infected being in compartment (I), to have a sense of disease propagation273

based on their future contacts, as epidemic progresses.274
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Fig. 4 Overview of compartments and possible transfers between them

2.1.3 Epidemic parameters275

Epidemic parameters, as introduced in Table 1, refer to the disease-specific276

elements in the form of coefficients that contribute to computing the rates of277

each event associated with individuals.278

Table 1 Summary of infectious disease related modeling parameters

parameter description

κ Average degree (daily contacts per individual)

Ki Contacts of individual i with infected individuals

R0 Basic reproductive ratio

δ Rate of detection

γ Recovery rate (1/γ = disease specific days for recovery)

b Probability of transmission of infection (b = R0 · γ/κ)

β Transmission rate (β = κ · b)
τQ Time in quarantine

q
′

Tracing efficiency (q
′

= q · τT )

Ci(4) Backward contact tracing of individual i with detected infected individuals

The core of the model is to answer the question of how individuals move279

from one compartment to another. In a closed environment where births,280

deaths and migration are ignored, transition (S → I ) is subject to disease281

transmission and is a function of three aspects: (i) the presence of infected282

individuals, (ii) contacts between susceptible and infected (S↔I) and (iii) the283

probability of transmission. Considering κ as the degree of (S↔I) contacts284

and b representing the probability of transmission of infection, the transmis-285

sion rate β can be deduced as β = κ·b. The transition from (I → R) is simpler286

as it can be considered a constant around a mean value based on clinical data287

of infectious period. The probability of an infected individual to be recovered288

relies on how long they have been infected, which can be denoted as recovery289

rate γ, a constant value representing the inverse of infectious period. The ratio290

β/γ is called as basic reproductive ratio R0. It represents the expected count291
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Table 2 Rate equations related to each SIR event

event description of rate rate equation

S → I Transmission of infection (1− Ci(t,4)) · b · Ki(t)

S → QS Susceptible person being quarantined q
′ · Ci(t,4) · (1− b · Ki(t))

S → QI Susceptible person being infected & detected q
′ · Ci(t,4) · b · Ki(t))

I → QI Infected person being detected δ
QS → S End of quarantine after quarantine period TQ
I → R Recovery after infectious period γ
QI → R Recovery after infectious period in quarantine TQ

of cases directly affected by a single case and is considered as one of the more292

representative parameters of disease in epidemiology.293

Similarly, based on the epidemic parameters enlisted in Table 1, rates of294

each event can be computed using equations provided in Table 2. In this paper,295

we propose a generalized framework for spatio-SIR modeling through the use of296

values corresponding to COVID-19, as given in Table 3; however, any disease-297

specific model can be developed by adjusting these parameters.298

Table 3 Estimated values for COVID-19 (extracted from (Ferretti et al, 2020; Hellewell
et al, 2020; Li et al, 2020))

parameter estimated value

R0 3

δ 0.1

γ 1/15

τQ 1/14

2.1.4 Event-based modeling299

In an event-driven model, each possibility is considered as an event and then a300

random element will decide which event may happen, based on the cumulative301

rates of all events and converting those rates into probabilities. This highlights302

that even if the probability of an event is similar, an individual may experience303

a varied event based on the chance element. There are numerous methods to304

implement event-driven approaches, one of which is Gillespie’s Method (Gille-305

spie, 1977), common in SIR modeling (Keeling and Rohani, 2011).306

Gillespie’s algorithm, initially intended for the study of chemical reactions,307

is also applicable in scenarios such as SIR modeling where an outcome of the308

contact is like a biochemical reaction of a cell with fluctuating possibilities309

of events. It is a variant of a Monte Carlo method, with a computationally310

feasible solution. Gillespie’s First Reaction Method (GFRM) is a simplified311

version of the original Gillespie’s Direct Method with a scalable approach.312
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Fig. 5 Process flow of an event-driven stochastic SIR model

In GFRM, there are two stochastic elements. First is the type of event313

which includes the person to which event will happen and the kind of event314

(out of defined seven events) that will happen. The other stochastic element315

is of the time of next event which refers to the duration since the latest event316

after which this event will take place. The former, as per GFRM, is determined317

by computing the rates of each event and then stochastically drawing the next318

event. For the latter, in our approach, it is completely stochastic based on a319

random element instead of computing time for each event. This modification320

is due to the reason that there is no inherent time of an event in a contact321

tracing process. Based on this modified GFRM, event-based stochastic SIR322

model can be implemented on identified contacts using infection states and323

epidemic parameters. Figure 5 shows the workflow of GFRM-based SIR model.324

2.2 Spatio-SIR modeling325

This section focuses on two aspects: temporally varying spatial risk and spatio-326

SIR model. Here, spatial risk refers to the transmission vulnerability a spatial327

location poses to a susceptible individual involved in an infectious contact.328

This spatial risk is for a certain period and is continuously evolving based on329

previous infectious activities. Our spatio-SIR model extends the baseline setup330

taking into account the spatial risk in the future tracing of contacts.331

As the goal is to associate a risk score to each contact based on its spatial332

location, it is important to address the definition of location. A simple and333

computationally efficient approach is to consider a regular lattice (grid) struc-334

ture segmenting the study area into smaller cells, each one having a risk score.335

From this, location of a contact can be defined as the corresponding cell of the336

grid in which the contact is taking place.337
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Fig. 6 Computing risk basis from trajectories and contacts

2.2.1 Temporally varying spatial risk338

In this study, spatial risk relies only on monitoring of SIR events, to track339

infectious trajectories and location of contacts (Benreguia et al, 2020). With340

such monitoring, we computed risk scores based on four risk basis, as follows:341

(a) Infectious trajectories refer to the amount of time an infectious trajec-342

tory has spent in each cell, where infected person is only tracked from the343

time of infection until recovery or quarantine.344

(b) Infected individuals refer to the count of infected individuals in each345

cell. This is distinct from (a) in a sense that shorter cumulative duration346

of many individuals is riskier than a longer duration of a single individual.347

(c) Infectious contacts refer to the locations of all contacts involving an348

infected individual. They are more than the count of times infection is ac-349

tually transmitted as this involves all (S↔I) contacts; and on the other350

end, transmission is dependent on the randomly chosen event. From this,351

a relation transmissive contacts ∈ all (S↔I) contacts, can be deduced.352

(d) Social distancing violations refer to all (S↔S) contacts. This property353

reflects population density and also captures the notion that a place (cell)354

with higher precautionary violations must be of higher risk than a place355

following the public health regulations (Rezaei and Azarmi, 2020).356

As contact graphs are developed per day, the same frequency can be fol-357

lowed in order to develop these four risk types. This means that risk scores358

of each cell is based on the cumulative effect of activities from the previous359

day and are to be updated every next day. Figure 6 depicts the process of360

computing risk basis, by tracking infectious trajectories for their duration and361

count, alongside the monitoring of contacts for their spatial locations.362

With four risk basis, there comes a need for integrating these risk attributes363

into a single representation. This requires normalizing all grids to a common364

range and to further combine them into a single grid. This results in a risk365
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map, based on activities from the previous day to provide an evolved risk for366

the next day.367

2.2.2 Unsupervised classification using SOM and K-means368

For combining multiple aspects into a single map form, implementation of a369

multi-criteria analysis approach is not applicable as there is no prior informa-370

tion of which criterion is significant over others. For classification, a supervised371

method requires information about the characteristics of the target class and372

pre-existing labels for the method to cluster data and label them accordingly.373

However, lack of validation data restricts the application of supervised classifi-374

cation. A possible solution is to implement an unsupervised learning method,375

as it does not rely on pre-existing labels for reinforcement. Such methods only376

require input patterns to highlight relationships and can assist in the explo-377

ration of the available covariates to develop a single classified risk map.378

One such unsupervised clustering technique is Self Organizing Map (SOM),379

which can serve to the purpose of combining information of multiple grids380

into a single one. SOM is basically a dimensionality reduction technique but381

as SOM preserves the topographic relationships in feature space to ensure382

nearby objects are clustered together, it has been extensively used for the383

clustering of geospatial data (Henriques et al, 2012; Gopal, 2016).384

Considering the dimensionality reducing capability, SOM is similar to the385

statistical equivalent of Principal Component Analysis, whereas Baccao et386

al. (Bação et al, 2005) suggest SOM as a possible substitute for K-means387

clustering when the neighbourhood is not considered. Besides, in comparison388

to statistical techniques, SOM offers three main advantages due to its non-389

parametric nature: (i) it works independent of variable’s distributions, (ii) it390

is computationally efficient to non-linear problems and (iii) it caters for noise391

or missing data more effectively (Asan and Ercan, 2012).392

As highlighted in (Vesanto and Alhoniemi, 2000), the best approach to393

implement SOM is a two-step process. First, input data is to be transformed394

into a two-dimensional neurons network; secondly, SOM neurons are to be395

clustered using a hierarchical or partitive approach. The major benefits of396

this two-step approach is; (i) the computational efficiency even with a smaller397

dataset and (ii) noise reduction in case of imperfect data as input for clustering.398

An important consideration here is to choose the size of SOM neurons net-399

work which is dependent on the size of input dataset. In our implementation,400

we use a regular lattice of 12× 15 = 180 cells, hence an optimal size of SOM401

neurons can be acquired as 5 ·
√

180 = 67.08. For a two-dimensional structure402

of neurons network, we considered the total of 64 neurons instead of 67, which403

could be arranged in symmetric shape of 8x8 neurons network.404

After the establishment of SOM network as a representation of input data405

(multiple grids), a hierarchical clustering process can cluster the neurons into406

the desired number of groups. In this paper, we follow the partitioning ap-407

proach of K-means clustering as they do not rely on previously found clusters408

as the hierarchical approach does (Vesanto and Alhoniemi, 2000).409
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Fig. 7 Unsupervised classification workflow using SOM and K-means

As risk values of grid cells vary over time, and a flexible value of k (number410

of clusters) in K-means can result in a different count of classes for different411

days, we fixed the count of classes to 5 so as so to have an equal number of412

groups every time a new spatial risk is computed. However, in case data does413

not allow to have five classes, then an optimized number of classes is chosen414

for an appropriate representation. This results in a classified grid-based risk415

where each cell corresponds to a class of risk. As the output after K-means is an416

un-ordered classification, which is the same as segmenting the cells in different417

groups but not knowing which group is of higher risk, classes are assigned with418

appropriate labels by comparing the cumulative average of the risk score in419

all cells associated with each class and further assignment of ordered labels420

in descending order with greater average as the highest risk class. Figure 7421

illustrates the complete process of combining multiple grids through the use422

of SOM followed by K-means and further labelling.423

2.2.3 Contextual contact tracing424

In order to include the temporally varying spatial risk for each specific con-425

tact, we modify the previous contact graph G to obtain a new contact graph426

G′. For this modification, we use the daily-acquired risk-based grids (spatial427

risk) and based on the location of the contacts we obtain G′ which considers428

the risk score of each contact’s location. In G′, each contact value is a varying429

intensity depending on the spatial risk instead of the previous constant value430

of 1 (which represented a contact). Here, we introduce a new range represen-431

tation for a contact between the value of 0.5 (lowest risk) to 1.5 (highest risk).432

The rationale behind this range is to be able to compare with baseline-SIR433

setup (see Figure 13) where previous value 1 is the mean of the new range rep-434

resentation. Once real data about spatial risk as well as infection information435
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is available to fit the model to the data, different values for this range can be436

configured to identify the best fit.437

Using this new matrix G′ in (2), we obtain new degree of diffusion K′i(t),438

which is used on the rate equations defined on Table 2. As rates of events in439

SIR model are based on the cumulative infectious contacts represented by Ki,440

a varying contact value (between 0.5 to 1.5) will result in a varied influence441

to the transmission process for each specific contact, meaning a direct effect442

of spatial risk on the disease transmission. As in the baseline-SIR model, this443

spatio-SIR model can be solved using the GFRM’s rate equations as stated444

in Table 2. Besides, the consideration of varying K′i in these equations only445

influence events related to Susceptible population (S → I , S → QS and S →446

QI). However, there is no influence of spatial risk on events related to Infected447

individuals and those in Quarantine. This process of dynamically computing448

risk scores based on daily movement and reflecting its effect by modifying449

contact graph is termed as Contextual Contact Tracing.450

3 Data analysis and simulations451

3.1 Dataset and experimental design452

NCCU Trace (Tsai and Chan, 2015) refers to an android application to trace453

movements of 115 students in a campus environment of National Chengchi454

University (Taiwan), for a period of 15 days with measurement interval up455

to 10 minutes and spatial position rounded to meters. The application was456

designed to capture information regarding GPS, WiFi, and Bluetooth devices457

in proximity, resulting in their movement traces. The Appendix contains de-458

tails of the NCCU dataset with an overview of the study area and sample of459

recordings. For an epidemic, a period of 15 days is very short to assess the460

spread of infection. A possible solution is to extend the period of the dataset461

by concatenating the same dataset multiple times, as the pattern of human462

mobility shows a regularity over the same weekdays. Such joining can produce463

a data for 150 days, an appropriate duration for epidemic modeling.464

Both baseline-SIR and the spatio-SIR models are evaluated over NCCU465

data. The experiments assume 10 individuals as initial infected (I0 = 10) on466

the first day of the epidemic with no recovered individual (R = 0). Sum of indi-467

viduals in all compartments is 115 at all times. We used the values of COVID-468

19 parameters as discussed in Table 3 and tracing efficiency q′ of 0.1. For the469

stochasticity, 10 realizations of the same initial conditions but the random al-470

location of initial infection are executed. This means that in each realization,471

infected individuals are different. Averaging the results over 10 realizations,472

average curves are obtained, where a curve represents the count of individuals473

in each compartment. Due to stochasticity, duration of the epidemic in these474

realizations varies, hence we extrapolate trends of other realizations to the475

epidemic with the longest duration to obtain an average representation.476
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In each run within a single realization of a model, only one epidemic event477

is executed. The time of next event is a stochastic duration as a part of day,478

hence there are multiple events per day, with at least one event in a day, and479

overall hundreds of events even for a short epidemic of few weeks. Hence, a480

single realization of model moves forward executing events after each time481

step. As a whole, these executed events simulates a disease outbreak scenario.482

3.2 Data analysis483

3.2.1 Results - Baseline-SIR model484

The ability of an individual-level compartment model to monitor the latent485

state of each individual at all times highlights its importance in the infectious486

diseases realm. To understand this capability, Figure 8 illustrates individual-487

level latency of a subset of the population (33 out of 115). At the start of488

the epidemic (day 1), four individuals (2, 21, 26 & 32) are infected as the489

initial outbreak, whereas the remaining all are Susceptible. The first stochastic490

event (second column from left) is of infection for individual (8). In every491

iteration, there is only one event, where the time of the next event (a part492

of the day) is also random, hence there can be multiple events in a single493

day. Individual (8) remains infected for a week and gets detected around the494

11th day. Individual (2) gains recovery only after few days. Individual (21)495

remains infected and undetected for the whole shown period. Similarly, the496

state of each individual can be observed based on the time-series review of497

their associated compartment.498

Exploring the modification of a spatial context needs the setup of a base-499

line model to experiment over. Figure 9 presents the output of such a baseline500

setup in form of an outbreak scenario using parameters from Table 1. At the501

beginning of the epidemic, everyone except the Infected is in the Suscepti-502

ble compartment, which means there is no Recovered individual. Initially, the503

count of Infected individuals increases from 10 to 14 in the first few days as504

Susceptible population interacts (contacts) with already infected (initial out-505

break). However, not only their count decreases afterwards as they are sent506

into Quarantine Infected, but the Susceptible count also diminishes from initial507

count of 105 to 40 in a fortnight. Due to backward tracing Ci, higher number508

of individuals are identified as exposed and sent into Quarantine Susceptible as509

a precautionary measure. These plummeted trends of the count of Susceptible510

and Infected forces less population on the streets, which not only restricts the511

future infectious contacts but ultimately the overall disease outbreak.512

The peak of individuals in Quarantine Susceptible is around 19th day with513

40 plus individuals, where afterwards the sum of individuals remains nearly514

constant which depicts an equal frequency of individuals moving between515

(S↔QS) compartments. Quarantine Infected compartment reaches its highest516

count of 5 twice on the 13th and 22nd days. Once a person is Recovered, that517

individual remains in that compartment, which is evident from the continuous518
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Fig. 8 Individual-level change in latency of 35 out of 115 total individuals is shown based
on the SIR events as model runs forward. Each row belongs to a single individual, where
the compartment they belong to at an instance of time is represented column-wise chrono-
logically from left to right. There is only one event per column with multiple events per day,
where figure illustrates first 100 events from the initial 12 days of epidemic.

increase in its count from 0 at the start to 38 at its end. Even after there is519

no Infected person on the street after the 45th day, the model continues in520

anticipation of risk due to the presence of individuals in Quarantine Infected ;521

and ultimately ends the epidemic with their recovery around 113th day.522

3.2.2 Results - Enhanced spatio-SIR model523

Spatio-SIR enhancement is achieved by computing the spatial risk out of events524

in the baseline setup, which requires monitoring of SIR events for infectious525

activities. Figure 10 presents a 1-day sample of such infectious activities. Figure526

10-A illustrates the movement of infectious individuals shown over the study527

area. In this sample, there are 7 infected individuals with mobility concentrated528

inside the NCCU campus (center-top). Out of these infectious trajectories, two529

sorts of attributes are extracted. First is the collective duration of time spent530

by these individuals in each area, and secondly how many individuals were531

located in each area. The other two basis are of Infectious Contacts and All532

Contacts, where the latter is shown in Figure 10-B. It identifies locations of533

all contacts termed as social distancing violations in order to highlight the534

notion that a place with a higher number of contacts means it is of higher535

risk than a place with a lower number of contacts. This concept has been also536

implemented by (Rezaei and Azarmi, 2020) for infection risk assessment.537

Based on the risk basis shown in Figure 10, grid-based risks are developed538

as presented in Figure 11. Here, the trajectories and contacts are transformed539

into a grid structure with an intensity of associated attributes normalized to540
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Fig. 9 Output of a disease outbreak scenario by baseline-SIR model. (Top) presents trends
related to counts of Susceptible, Infected & Recovered, whereas (Bottom) illustrates count
of individuals in Quarantine related compartments. Each of the 10 realizations of stochastic
model is shown (light in color), with their average curves represented with (dark bold) lines.
Count of total population is 115 which are represented over the Y-axis.

Fig. 10 Risk basis of infectious trajectories and location of contacts from one complete day
during an epidemic. In the sample shown in Sub-Figure (A), there are total of 7 infected
individuals from that day. Sub-Figure (B) shows locations of all contacts from the same day.

[0,1]. Figure 11-A and 11-B capture information of infectious trajectories in541

terms of duration and count respectively. Similarly, the location of different542
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Fig. 11 Grid-based risk computed out of risk basis. Sub-Figure (A) and (B) refer to grid-
based representation of duration and count of trajectories shown in Figure 10-(A). Sub-
Figure (C) depicts location of an infectious contact occurred on the same day, whereas Sub-
Figure (D) presents translation of Figure 10-(B) into grid form. All values are normalized
to the range of 0 to 1, where 1 refers to highest risk.

nature of contacts is captured in Figure 11-C and 11-D. Based on the previous543

day, these attributes serve as the basis of risk for the next day.544

To identify spatial risk for the future contextual tracing of contacts, mul-545

tiple grids from Figure 11 are integrated into a single grid as shown in Figure546

12. In order to classify the output to segment areas of higher or lower risk,547

risk scores are grouped into 5 classes with their labels corresponding to their548

intensity of risk. The classes of risk are (0.50, 0.75, 1.00, 1.25, 1.50) with 1.50549

referring to the highest risk. A review of this result shows that based on activi-550

ties from the previous day (Figure 10), the highest risk area is at the centre-top551

cells, whereas the surrounding areas are also of higher risk. While there is no552

spatial risk in the remaining study area on this particular day, however, due to553

the temporally varying nature, the spatial risk may evolve in future instants.554

Results of the spatio-SIR model are compared with the results of baseline-555

SIR in Figure 13. As the inclusion of spatial risk tends to affect the rates556

of events related to Susceptible individuals and getting infected is subject to557

an infectious contact, hence in the spatio-SIR model, there are more events558

of the population moving into Quarantine Susceptible. Though the trends of559
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Fig. 12 Combining risk from multiple grids shown in Figure 11 into a single grid output
using SOM and K-means. Due to lack of validation data, integration is executed in unsu-
pervised manner through the implementation of SOM followed by K-means. Risk scores are
computed in the range of [0.5,1.5], where 1 refers to the previous normal (existing SIR model
with a constant spatial risk and all contacts being of equal nature)

Fig. 13 Comparing average of 10 stochastic realizations of a disease outbreak scenario
from baseline-SIR (dashed) and spatio-SIR (solid). (Top) presents trends related to count
of Susceptible, Infected & Recovered, whereas (Bottom) illustrates counts of individuals in
Quarantine related compartments. Count of total population is 115 which are represented
over Y-axis.
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Quarantine Susceptible in both models are similar till day 15th, however, the560

mentioned phenomenon is evident afterwards where peak of individuals in561

Quarantine Susceptible (spatio-SIR) is 59 on 29th day, whereas there are less562

than 50 individuals in Quarantine Susceptible (baseline-SIR) by the same day.563

Early events of quarantining reduces the counts of Infected, Recovered and564

Quarantine Infected. Comparing the trends of Susceptible population, it can be565

observed that in the first week both are more or less similar, however, the first566

week onward the susceptible population in baseline-SIR decreases to 40 by 17th567

day, whereas it takes an extra week (23rd day) for the same decline up to 40568

in spatio-SIR. This highlights that due to the additional aspect of spatial risk,569

a greater fraction of the population remains susceptible. Similarly, an increase570

in the count of Susceptible around 45th day depicts the return of quarantined571

population after a period of two weeks, whereas such a return is not visible in572

baseline-SIR as there is no consideration of spatial risk. With a higher count of573

total individuals in Quarantine Susceptible, overall infection is controlled which574

can be confirmed from the trend of Infected and Recovered. As in spatio-SIR575

model, total recovered are 21 compared to the count of 35 in baseline-SIR576

model. The same can be observed in the trends of Quarantine Infected, as577

with less Infected on the streets, the spread of infection is controlled; hence,578

a lower count of Quarantine Infected in spatio-SIR compared to baseline-SIR,579

apart from the start and end of an epidemic which is nearly similar.580

3.2.3 Simulated scenarios over the NCCU data581

This section reinforces the need for a spatio-epidemic tool. As model simulates582

a scenario based on the initial values configured for it, changing the initial583

setup can help assess impact of the change on the overall disease outbreak584

simulation. Here, baseline-SIR model executes one such variation as presented585

in Figure 14 with different intensities of the Initial Infected I0.586

In general, the higher quantum of initial outbreak results in a longer epi-587

demic which is evident in all subplots. In Figure 14-A, Susceptible population588

is compared, where higher count of initial outbreak reflects in early departure589

of individuals from the susceptible compartment; either getting Infected (due590

to greater frequency of infectious contacts) or Quarantined (because of prior591

contact tracing of Infected individuals). Higher infected count (I0 = 10 and592

I0 = 15) results in decrease of Susceptible count from 105/100 to approxi-593

mately 40 within 2 weeks, whereas when I0 = 5 reaches the count of 40 after594

six weeks. Figure 14-B illustrates the effect of varying initial outbreak on the595

total counts of Infected, where a directly proportional relationship is evident596

in the initial spread of infection up to 19th day. However, once a majority of597

Infected are sent into Quarantine Infected and higher count of individuals are598

already in Quarantine Susceptible, all scenarios tends to have a similar pattern599

afterwards. Similarly, Figure 14-C depicts a likewise trend of initial difference,600

where two setups of (I0 = 05) and (I0 = 10) later (after 70th day) coincide to601

have a similar pattern (around 30 Recovered individuals). However, (I0 = 15)602

results in a massive outbreak with almost 50 Infected individuals by the 70th603
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Fig. 14 Comparing the average of 10 stochastic realizations (of baseline-SIR model) with
varying count of Initial Infected I0, to observe their effect on the overall disease outbreak.
Three scenarios of I0 = 5/10/15 are shown with a population size of 115. Subplots (A,B,C
and D) shows comparison of Susceptible, Infected, Recovered & Quarantine Susceptible,
respectively. Due to stochasticity, final duration of epidemic varies depending on the overall
spread of infection.

day. Figure 14-D highlights that higher count of initial infected will either604

send more contacts into Quarantine Infected or Quarantine Susceptible, which605

is dependent on (i) the transmission rate (β = κ·b) and (ii) the chance element606

of event-based setup. Hence, the relation of initial infected with Quarantine607

related compartments is not straightforward. However, trend of (I0 = 15) spe-608

cially after the 40th day depicts that due to greater initial outbreak, more609

individuals were Infected, thus more people are in Recovered and Quarantine610

Infected, because of which overall count of Quarantine Susceptible is low.611

Another possible variation on the analyzed scenarios can be the Tracing612

Efficiency which is available in Figure 15. Tracing efficiency refers to the frac-613

tion of identified prior contacts based on backward tracing. As 100% tracing is614

not plausible, only a proportion is evaluated as an estimate of tracing. In the615

case of no backward tracing (zero efficiency) shown in Figure 15-A, there are616

no individuals in Quarantine Susceptible. Only Infected who gets detected are617

sent into quarantine, which results in a massive disease outbreak with count618

of Recovered more than 80 individuals. In Figure 15-B, 62 individuals are in619

Quarantine Susceptible by the 10th day, whereas with efficiency of 0.50 (Figure620

15-C) and 0.75 (Figure 15-D), there are 77 and 88 individuals in Quarantine621

Susceptible by the same period of 10 days. It can be deduced that for ev-622

ery 25% increase in the Tracing Efficiency, 10% more population is sent into623

quarantine. In general, it can be said that with greater tracing efficiency, the624

greater amount of population is early forced for quarantine, which ultimately625

reduces the overall spread of infection (less Infected and less Recovered). The626
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Fig. 15 Comparing the average of 10 stochastic realizations (of baseline-SIR model) with

varying Tracing Efficiency q
′
, to observe their effect on the overall disease outbreak (popu-

lation size = 115). Subplots (A,B,C and D) present four cases of q
′
=0, 0.25, 0.50 and 0.75,

respectively, where 1 means 100% backward tracing.

population being forced to quarantine means they are leaving the Suscepti-627

ble compartment, which is evident by the degree of slope in the downward628

trend of Susceptible count proportional to tracing efficiency. Due to high trac-629

ing efficiency in the Figure 15-D, a huge subset of the population is sent into630

Quarantine immediately as the infection breaks out. This large amount of in-631

dividuals when collectively comes out of quarantine (after a period of 14 days),632

results in a sudden drop of QS count around the 40th day. An opposite can be633

observed in the count of Susceptible.634

Other than varying the initial configuration, another capability of the635

spatio-epidemic tool is the ability to simulate real-world scenarios such as636

relaxation in social-distancing, spatio-temporal curfew/lockdown or a holiday637

season with more population on the streets. This capability of the tool can638

assist policymakers to simulate scenarios, visualizing the consequence of their639

decisions prior to their actual implementation. One such real-world scenario640

of a holiday season with higher count of public on the streets is presented in641

Figure 16. In this experiment, we introduce a holiday season as an Intervention642

in a specific period from day 11th to 20th. Quantitatively, this intervention is643

in the form of spatial high-risk of value 1.5 at all areas (cells).644

A major difference is in the overall period of epidemic, where the Interven-645

tion setup executes an epidemic of more than 100 days considering the added646

spatial risk from day 11 to 20, whereas in spatio-SIR modeling the epidemic is647

finished in less than 60 days. Observing the trend of Recovered individuals, a648

continuous increase after day 10 is evident in Intervention setup, compared to649

spatio-SIR output. This escalation ends up with a total of 37 recovered in the650
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Fig. 16 Comparing average of 10 stochastic realizations of a disease outbreak scenario
from spatio-SIR (solid) and a case of Intervention - spatio-SIR model with spatial risk
of 1.5 from day 11 to 20 (dotted). (Top) presents trends related to counts of Susceptible,
Infected & Recovered, whereas (Bottom) illustrates counts of individuals in Quarantine
related compartments. Count of total population is 115 which are represented over Y-axis.

former, while total recovered individuals in the latter are 11. A similar pattern651

is identifiable while observing the trends of Infected population, where since652

day 10th, the rate of infection is more or less constant (a horizontal line) un-653

til the 20th day. This is different from the infected trend in spatio-SIR model654

where the rate of infection is decreasing after the initial increase in the first few655

days of the epidemic. Observing the trend of Quarantine Susceptible, a spike656

is noticeable after day 11 in the Intervention setup. Counts of susceptible in657

quarantine in Intervention setup is 56 on day 20th, whereas under the spatio-658

SIR model there are only 43 susceptible individuals in quarantine by the same659

day, confirming the capability of new setup to capture spatial high-risk.660

3.3 Mobility simulation in a new space661

As individual-level mobility datasets are scarcely available, a possible solution662

is to self-simulate movement trajectories for the study area (new space). This663
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Fig. 17 Comparing average of 10 stochastic realizations of a disease outbreak scenario
from baseline-SIR (dashed) and spatio-SIR (solid). (Top) presents trends related to counts
of Susceptible, Infected and Recovered, whereas (Bottom) illustrates counts of individuals
in Quarantine related compartments. Count of total population is 50 which are represented
over Y-axis.

can also help in the application of methodology on multiple datasets to assess664

its performance in different spaces.665

In this study, we have also generated a synthetic dataset using spatial666

movements from Geolife Data (Zheng et al, 2011). Geolife, a project by Mi-667

crosoft, provides trajectory movements of 178 users for a period of four years668

with temporal resolution of 1 to 5 seconds and spatial resolution of 5 to 10 me-669

ters. The dataset in total contains 17621 trajectories, total distance of 1251654670

kilometers holding information of 48203 hours. As for contact tracing and spa-671

tial risk assessment, we require mobility to be highly concentrated on a small672

study area. Unfortunately, this is not the case in the original Geolife dataset.673

However, we used only its spatial movement but modified the temporal and674

user-related attribute to reflect the daily movement of 15 days for 50 users, for675

a study area of 20× 16 square kilometres. Figure 22 in the Appendix presents676

a visualization of this modified construction, whereas Figure 17 illustrates the677

comparison of the SIR model and spatio-SIR model over this new dataset.678

Both models, SIR and spatio-SIR, depict a similar trend on synthetic trajec-679

tories as over NCCU trace. The consideration of spatial risk tends to send680

more people in Quarantine Susceptible which initially protects them from the681

infection, but the population remain susceptible in general as the quaran-682

tined population comes back to Susceptible stage after quarantining period.683
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Similarly, the overall infection propagation is reduced due to lower count of684

infectious contacts which results in lower counts of Recovered.685

4 Conclusions and discussion686

We conclude that the inclusion of spatial risk in epidemic modeling can greatly687

support the public health system by identification of infectious contacts and688

highlighting places carrying the high risk. It is a bi-fold domino effect that689

relies on both, persons and places, and breaking the chain is necessary not690

only in terms of individuals but also high-risk areas. For a critical time such691

as COVID-19, an integrated approach as the one introduced here can be devel-692

oped into a comprehensive system of infectious disease surveillance. In terms693

of modeling, consideration of spatial risk as in spatio-SIR model increases694

the tracing efficiency, where a greater number of individuals are highlighted695

as exposed depending on the location of contacts; as in this study contacts696

are mostly concentrated in a small region that is at high-risk at all times.697

These vulnerable individuals who are currently Susceptible will either be in-698

fected or sent into quarantine, depending on the chance element of event-based699

setup. This consideration of exposure based on spatial risk tends to perform700

more meaningful events 1 concerned with the Susceptible population rather701

than events to the Infected or Quarantined. Furthermore, it is shown that this702

framework can act as a tool for policymakers to execute scenarios, visualizing703

the consequence of their decisions prior to their actual implementation.704

We have proposed a generalized framework for spatio-SIR modeling, how-705

ever, a disease-specific model can be developed by adjusting the parameters706

available in Table 3. With regards to contact tracing, the study highlights707

that for contact tracing to be effective, the maximum fraction of the popu-708

lation needs to be digitally activated, using the contact tracing app or other709

implemented mode of tracking (Hernández-Orallo et al, 2020).710

The major limitation of the study is the non-availability of actual informa-711

tion about infected individuals. With that, the proposed methodology could712

have been configured to fit a model to data. In this paper, this limitation713

was handled through a self-induced initial outbreak. Another aspect is that714

the selected dataset is not of an epidemic scenario. A dataset from an era of715

an epidemic situation can assist in the analysis of such patterns and further716

explore its spatial risk. Similarly, 15 days recording of movements is an in-717

adequate period for a long-standing scenario of an epidemic. In this paper,718

this limitation was handled by concatenating the same dataset multiple times719

for 150 days. However, a better option would be to have a mobility dataset720

of a longer duration. A limitation of the followed approach is that the con-721

tacts were identified per day. This approach helped in establishing a setup to722

understand disease dynamics in a spatial context, however, a finer frequency723

such as hourly contacts graphs or a real-time application of tracing in terms724

of recording a contact as they happen can be followed for higher accuracy.725

1 Infection or Quarantining, compared to Recovery while in Quarantine
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This modification of an existing SIR model into a spatio-SIR model through726

the inclusion of spatial risk serves only as a foundation of an idea. This leads to727

many way forwards opening new avenues for the integration of spatial compo-728

nent into digital epidemiology. Spatial risk is a complete domain in itself that729

includes the identification of factors stimulating the vulnerability of being in-730

fected at a certain place and time. Hence, it is recommended to incorporate the731

spatial context from additional perspectives other than just infectious trajec-732

tories. A suggested idea is to integrate spatial information such as points of in-733

terests (restaurants, parks, etc.), public transits, urban functions, demographic734

details and environmental factors, for the overall spatial risk assessment. Such735

a study will explore the spatial effect of covariates in disease transmission by736

understanding their intrinsic underlying relationships presenting a higher or737

lower score of risk, and additionally, how these covariates amalgam as a whole.738

Implementation of this study was based on an event-based SIR model where739

rates of events were computed to randomly draw the next event, as well as740

the time of the event and the person to which event will occur. This complete741

stochasticity can be adjusted in a sense to develop a semi-stochastic setup742

where the person to which event will occur is not completely random but a743

factor based on their exposure. Such a factor can be associated with each744

individual based on their movement in infectious places and the frequency of745

their contacts. Though semi-stochastic in nature, a specific model like this can746

also provide with the exposure profile for each individual.747

Given that this domain of infectious diseases generally lacks data avail-748

ability related to infection and/or movement, a practical way forward is to749

transform this spatio-enhanced model into a comprehensive tool for simula-750

tions. Such a tool can allow users to feed in movement data and then based751

on infectious movements, the user can execute spatio-SIR modeling while con-752

figuring the initial setup. Furthermore, the tool can have the capabilities to753

implement real-world scenarios like spatial curfew, commercial lockdown, re-754

laxation in social distancing etc. The overall situation of COVID-19 signifies755

the importance of such a tool that can support public health policymakers as756

and when required.757

Overall, this paper concludes that tracking of individual-level infectious758

trajectories is critical not only for person-to-person contact tracing but also759

to identify spatial risk which is transmitting (surface/aerosol transmission)760

as well as propagating (inducing riskier contact) in nature. The study also761

highlights that accurate modeling of this sort is restricted due to the data un-762

availability, and there is a critical requirement of datasets to ensure a practical763

application of the proposed approach.764

The authors conclude this study with the remarks, that even if this domain2
765

is generally hindered due to the lack of data availability, the investigation pro-766

cess related to it should keep on exploring methods to effectively understand767

disease dynamics. This is beneficial not only for literature but also critical for768

the overall well being of humanity.769

2 individual-level trajectory-based infectious diseases SIR modeling
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5 Appendix: NCCU data884

This section provides details related to the study area and the selected dataset.885

Figure 18 depicts coordinates of the study area, whereas Figure 19 illustrates886

the complete dataset of all 115 individuals for the period of 15 days where887

each user is shown with a different colour.888

Fig. 18 Coordinates of the study area

Fig. 19 Extent of recorded dataset
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Figure 20 illustrates mobility trajectories of a single user for a period of889

one day, and Figure 21 shows 1-day movement for 5 users.890

Fig. 20 Mobility trajectory of a single user for a 1-day period

Fig. 21 Mobility trajectory of five users for a 1-day period
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Figure 22 shows self-generated mobility trajectories of all 50 users for a891

period of 15 days.892

Fig. 22 Geolife data based self simulated mobility trajectories of 50 users for complete data
period of 15 days


