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Abstract

Widely used simplified analytical methods for estimating the tensile force in tie-rods are clearly not applicable when they

contain significant discontinuities or irregularities. A common example for which this fact becomes relevant in practice

is the use of connectors to unify historical ties consisting of several segments. To address this challenge, a robust hybrid

methodology is proposed which can be applied to any historical tie by employing a data-driven approach to a dataset

generated using the finite element method. The methodology is applied to a real case study involving two historical ties.
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Introduction

Tie-rods have and are still commonly used in historical

masonry constructions to counteract lateral thrusts,

most often imposed by vaults or arches. They can

contribute significantly to structural equilibrium and

their effectiveness is usually directly related to the

magnitude of the tensile load they sustain. This load

can vary significantly over time due to phenomena

such as steel relaxation, corrosion damage, differential

settlements and support spreading, among others1. As

such, knowledge of the actual axial load in a tie-rod is

often a crucial piece of information required for adequate

structural safety assessment. It should therefore come

as no surprise that the development of experimental

methods for the accurate estimation of this quantity

has received considerable attention from the scientific

community in the past2–18.

At the broadest level, it can be said that there

are two types of experimental methods that may be

employed to estimate the axial force in tie-rods: direct

and indirect. The direct approach involves gradually

releasing the tension in a tie-rod until the axial stress is

eliminated while using strain gauges to measure the pre-

existing axial deformation. Knowledge of the geometric

characteristics of the tie-rod and elastic properties of its

material can then be used with these measurements to

infer the actual tensile load. Naturally, this method is

not applicable in many cases, either because the ends

of a tie-rod cannot be loosened (due to the type of

anchor itself or due to poor condition), or because the

release of the axial load in the tie-rod could compromise

structural safety. As such, the present study and most of

the research performed over the past 4 decades focuses

exclusively on indirect methods.

Indirect methods may be further categorised as static

or dynamic. Static methods involve measuring vertical

displacements (and strains) after imposing specific loads

on a tie-rod, whereas dynamic approaches involve

recording acceleration time-histories of the tie and

extracting modal parameters such as natural frequencies

and corresponding mode shape amplitudes. The axial

load can then be inferred from these experimentally

determined parameters using a suitable mathematical

model of the tie. Although the problem of determining

the axial load from the aforementioned measurements

may at first seem trivial, the case of historic ties

anchored in masonry walls is typically characterised

by significant uncertainty on the nature of the actual

boundary conditions15. These often lie somewhere in
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between fully pinned end restraints and fully fixed ones,

allowing a certain limited degree of rotation. Of course,

end constraints influence both the static and dynamic

response of the ties and in many cases, the effect of the

a priori uncertainty of end conditions on the observed

natural frequencies or deformations can be larger than

the effect of different axial load levels. In some cases,

uncertainties on the effective elastic modulus, on the

regularity of cross-sections, or on the straightness of the

bar can also have some effects on measured parameters,

but these are usually much less significant. To deal with

some of these challenges, most notably with the case of

uncertain boundary conditions, several different indirect

methods have been developed over the years (see Table

1), each having their own advantages and disadvantages

in terms of accuracy, applicability and difficulty of the

experimental procedure.

Among the model unknowns listed in Table 1, N

refers to the axial load, while kL and kR refer to

the rotational spring stiffnesses from the model shown

in Fig. 1(a). The model considered by Li et al.12

additionally includes two vertical translational springs

at each end with stiffnesses of kT,l and kT,r. MA

and MB refer to bending moments at either end of a

section of a tie instrumented with strain gauges placed

on the upper surface (measuring ϵx,u) and the lower

one (measuring ϵx,l). KA and KB each refer to a

2× 2 matrix containing the stiffness parameters of a

set of elastic springs considered by a reference model

of an instrumented section of a tie. E is the elastic

modulus of the tie’s material and ρ its density, while

J is the second moment of area of the tie’s cross-

section. L and lf refer to the lengths shown in Fig.

1 and mcen to the central lumped mass considered in

the model proposed by Garziera et al.10. With respect

to required experimental parameters, ∆z refers to the

vertical displacement of a tie measured under the effect

of a concentrated load imposed during a static test.

fn and ∆M refer respectively to the frequency of a

natural mode of vibration of a tie and any component

of the corresponding mode shape vector, identified from

acquisitions made during dynamic tests. It should be

mentioned that all the previous methods presented in

Table 1 consider the tie as a beam with at least flexural

rigidity. Additionally, some of the methods use a model

which also considers shear deformations according to the

Timoshenko beam theory. Earlier methods were based

on a vibrating wire model that neglects the flexural

rigidity of the tie19.

The vast majority of these methods rely on one of

the two idealisations of a tie-rod shown in Fig. 1. The

model shown in Fig. 1(a) consists of a tie-rod with length

L equal to the free span between the interior surfaces

of the two walls where the tie is anchored. In this

idealisation, the tie is modelled as a simply supported

beam sustaining an axial load N with rotational springs

at either end (with stiffnesses of kL and kR). Fig. 1(b)

shows a tie-rod modelled as a simply supported beam

with elastic Winkler foundations used to simulate the

interaction between the beam and walls. The Winkler

foundations with stiffness kf are assumed to be acting

over the length lf corresponding to the portion of the

beam inserted in the wall on either side.

In fact, most of the reviewed methods summarised

in Table 1 rely on the model presented in Fig. 1(a).

Specifically, the methods presented in2,3,5–8,11,14 rely on

this model. The model considered in12 also considers

two vertical translational springs at either end in

addition to the rotational ones. To the best of the

authors’ knowledge, the model shown in Fig. 1(b) was

first proposed by Amabili et al.9. A modified version of

this model, which simply considers an additional lumped

mass in the centre of the beam (indicated with a dotted

line in Fig.1(b)), was proposed by Garziera et al.10 to

deal with the special case of tie-rods consisting of a

central connector unifying two separate rod sections.

Besides the methods employed in9,10,12, only those

proposed by Bati & Tonietti4 and Rebecchi et al.13

are not based on one of the models shown in Fig. 1.

The models used as a basis for both these methods

only consider an instrumented section of the length of

the tie instead of the whole length from end-to-end. As

such, both these models do not require knowledge of

the tie length which can be characterised by significant

uncertainty stemming from the interaction between the

walls on either end and the tie-rod itself. Nevertheless,

since both these models do not consider the actual tie

ends, they cannot produce results on the stiffness of the

ends that can be readily interpreted. Apart from this

specific difference, the basic models employed by these

two methods are in fact very similar to that shown in

Fig. 1(a), consisting of an axially loaded member with

flexural rigidity and unknown moments or equivalent

elastic spring stiffnesses at either end of the considered

section.

Despite the fact that some experimental studies

performed under laboratory conditions show that the

static method proposed by Bati & Tonietti can lead to

Prepared using sagej.cls
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Table 1. Existing indirect methods for estimating the axial load in tie-rods.

Authors and year
Type of
approach

Required experimental
parameters (Inputs)

Model unknowns
Estimates obtained

(Outputs)

Beconcini (1996) 2 Static ∆z at 3 locations N , kθ=kL=kR All 2 unknowns

Blasi & Sorace (1994) 3 Mixed
∆z at mid-span

& fundamental fn
N , kθ All 2 unknowns

Bati & Tonietti (2001) 4 Static
∆z at 3 locations; ϵx,u
& ϵx,l at 3 locations N , MA, MB All 3 unknowns

Dardano et al. (2005) 5 Dynamic Two different fn N , kθ All 2 unknowns†

Lagomarsino & Calderini
(2005) 6

Dynamic Three different fn N , kθ, EJ All 3 unknowns

Park et al. (2005) 7 Dynamic As many fn as can be captured N , kθ All 2 unknowns†

Tullini & Laudiero
(2008) 8

Dynamic
fn & corresponding ∆M at 3

locations
N , kL, kR All 3 unknowns

Amabili et al. (2010) 9 Dynamic As many fn as can be captured N , kf All 2 unknowns†

Garziera et al. (2011) 10 Dynamic As many fn as can be captured
N , kf , L, lf ,

mcen
All 5 unknowns†

Gentilini et al. (2012) 11 Dynamic
First 4 fn under

different conditions* N , kL, kR, E All 4 unknowns

Li et al. (2012) 12 Dynamic
fn & corresponding ∆M at 5

locations

N , kL, kR,
kT,l, kT,r

All 5 unknowns

Rebecchi, Tullini &
Laudiero (2013) 13

Dynamic
fn & corresponding ∆M at 5

locations
N , KA, KB N

Campagnari et al.
(2017) 14

Dynamic
2nd, 3rd & 4th fn & corresponding

∆M at 2 locations

N , kL, kR,
L, E, ρ All unknowns

* The first 4 fn need to be evaluated under the effect of a concentrated load placed at least in one position.

† Although the complete solution is only provided for the case of equal stiffnesses at either end in the corresponding publications, the methods
can in theory be extrapolated to consider a different stiffness at the right and left ends.

Figure 1. Reference tie-rod models employed by most indirect methods: (a) tie-rod modelled as a simply supported beam, (b)
tie-rod modelled as a simply supported beam with elastic Winkler foundations used to simulate the interaction between the
beam and walls.

more accurate results compared to some of the dynamic

methods20, it is clear that the scientific community has

focused more on the development of dynamic methods

over the last decade (see Table 1). First and foremost,

this is most probably due to the greater effort that

the static experimental procedures require. Specifically,

they involve imposing concentrated loads at specific

points along the length of the tie and measuring

longitudinal strains as well as vertical deflections. All

of these tasks can prove to be challenging and very
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time-consuming, particularly for ties placed at great

heights. In addition, estimates from static methods can

be particularly sensitive to small experimental errors

which the testing procedures are particularly susceptible

to (e.g: errors in strain measurement).

With respect to previously proposed dynamic indirect

methods, it can be said that they can be further

subdivided into two main categories. The first includes

methods proposed in5,8,12,13 and involve the direct

solution of a particular analytical model based on

experimentally measured inputs. The approach used in5

only employs natural frequencies as inputs and therefore

imposes no specific constraints on the experimental

procedure. On the other hand, the methods used

in8,12,13 also employ components of a mode shape vector

as inputs, and therefore require a certain number of

sensors placed at specific locations. The second category

includes methods proposed in6,7,9–11 and basically

involve an iterative procedure to minimise the error

between experimentally identified natural frequencies

and those predicted by a set of theoretical or numerical

models. The method proposed by Campagnari et al.14

extends this concept by including an error minimisation

task within a systematic model updating procedure.

Clearly, the aforementioned methods that are based

on analytical models of a tie with a uniform cross-

section cannot be directly applied to cases when ties

contain discontinuities or significant irregularities. A

common example for which this fact becomes relevant

in practice is the use of connectors to unify historical

ties consisting of several segments. On the other

hand, such irregularities can naturally be considered in

methods based on minimising the error between natural

frequencies predicted by finite-element (FE) simulations

and experimentally observed ones. However, in doing

so, these methods do not allow useful information on

the mode shapes to be considered in the estimation

of the axial load, even if it has been acquired

experimentally. This can be a significant limitation,

given that the usefulness of mode shape components is

clearly demonstrated by the proven accuracy of some

of the analytical model-based methods for ties with a

continuous regular cross-section8,20,21.

Besides the ones based only on natural frequency error

minimisation, all the reviewed existing methods employ

an experimental procedure requiring the positioning of

sensors in very specific locations. This can become an

important limitation for certain cases, particularly for

ties with significant irregularities or discontinuities. For

instance, some methods could require the placing of

sensors in locations whereby the vibration is influenced

by a significant irregularity.

In general, a review of the exiting methods proposed

in literature appears to reveal that all of them suffer

from at least one of the following limitations:

� Not applicable for the case of ties with

irregularities or discontinuities.

� Experimental procedure cannot be adapted to the

specific constraints of a particular case.

� Methodology cannot be adapted to fully take

advantage of the useful information that could be

obtained experimentally.

Artificial Neural Networks (ANN) offer a promising

possibility for developing a methodology able to

overcome these limitations because they are essentially

a programming paradigm that enables a computer to

learn from observational data22. This is particularly

true today due to current capabilities to easily generate

accurate data sets of observable parameters for a

range of different situations using numerical simulations.

In fact, there are several examples of successful

applications of ANNs and other machine learning (ML)

techniques to extract useful information from images or

from data acquired using structural health monitoring

(SHM) systems installed in heritage structures23,24.

Some of these methods have even been used for damage

identification or model updating based on the acquired

vibration signatures of a structure24,25. However, to the

best of the authors’ knowledge, there exists no methods

proposed in literature that employ ANNs to estimate the

axial load in tie-rods from data acquired during dynamic

tests.

As such, this research aims to develop a novel

methodology, employing ANNs, to estimate the

actual axial load in historical ties from vibration

measurements. In particular, this methodology should

be able to overcome the aforementioned limitations of

existing methods.

A very brief overview of relevant aspects of ANNs is

first given before presenting the proposed methodology.

An application to the real case study of two historical

ties made up of several segments joined together by large

connectors is then presented before discussing the final

conclusions.
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Figure 2. (a) Basic example of a feedforward Artificial Neural Network. (b) Processing performed by neurons.

Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) are a family of

biologically-inspired machine learning algorithms that

have found widespread applications in a diverse range of

fields. Due to the context in which they are being used,

ANNs will only be discussed with respect to regression

problems in this article. However, it should be noted

that they may also be employed for classification and

density estimation problems26. Providing an extensive

and comprehensive overview of ANNs is beyond the

scope of this article but there exist many references that

can be consulted for this purpose22,27. Nevertheless,

the basic functionality and the most key aspects of

feedforward neural networks, one of the simplest types

of ANN, will be described in this section because this

information is necessary for understanding the proposed

methodology to estimate the axial load in historical ties

from vibration records.

The fundamental purpose of a feedforward ANN is

to learn relationships between a set of independent

variables, which serve as inputs to the network, and a

set of dependent variables, designated as the outputs of

the network. Following this learning process, the ANN

can be used to predict outputs from new input data.

Feedforward ANNs consist of an input layer, a number

of hidden layers, and an output layer, all made up of a

number of processing nodes often referred to as neurons.

The number of neurons in the input and output layers

rely entirely on the formulation of the problem and the

nature of the data. Specifically, the number of chosen

inputs and outputs correspond to the number of neurons

in these respective layers.

An example of the architecture of a very simple

feedforward ANN with a single hidden layer is shown

in Fig. 2(a), while the basic processing performed

in every neuron is shown in Fig. 2(b). As shown,

each input (xi) fed into a neuron is multiplied by a

corresponding weight (ωi) and a bias (b) is added to the

sum of all these products for a particular neuron before

passing the result through a specific function commonly

referred to as the activation function. The resulting

output is then passed on as inputs to the neurons of

the next layer. The fundamental process which allows

ANNs to learn from input-output data is known as

training, and broadly refers to the optimisation of all

the weight and bias variables of a given network in

order to minimise a suitable loss function, which is a

previously defined error metric between predicted and

actual outputs. This is achieved by first computing

the partial derivatives of the loss function with respect

to each weight and bias using an algorithm known as

backpropagation. These expressions tell us how quickly

the loss function changes when different weights and

biases are changed. An iterative optimisation algorithm

can then be used to find an optimal combination

of weights and biases corresponding to a minimum

point of the loss function, i.e minimising the error

metric. Every complete iteration using all the training

data to compute a new configuration of weights and

biases is known as an epoch. Naturally, given the

iterative nature of optimisation algorithms, they are

susceptible to converge at a local minimum rather than a

global one. Several factors influence this susceptibility:

from the number of hidden layers, which changes the

shape of the feature space being minimised, to specific

characteristics of the chosen optimisation algorithm

itself. These factors will not be discussed further in this

article but extensive descriptions of the most significant

ones are available in the book by Hagan et al.27. Since
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the backpropagation and optimisation algorithms are

always employed together in the context of feedforward

ANNs, this ensemble will hereafter be referred to as the

network training algorithm in this article.

Although weight and bias variables are optimised

based on the training data, choices still need to be made

on which network training algorithm and loss function

to use, on the number of hidden layers to include

in the ANN architecture, on the number of neurons

in each hidden layer, and on the specific activation

function. Such parameters, which are not automatically

optimised during training but need to be established

beforehand, are known as hyperparameters. There exists

a wide variety of strategies that can be employed for

optimising hyperparameters of different types of ANNs

for different problems. However, most of them naturally

require a suitable number of data points in order to

evaluate the performance of different hyperparameter

configurations. These data points need to differ from

those used for training the ANN in order to provide

reliable estimates of the general predictive capabilities

of the different models. Data used for this purpose are

known as validation data. Since validation data are

actually employed for improving the prediction model,

they cannot also be used to evaluate the generalisation

capability of the same model in an unbiased manner. For

this reason, in the context of ANNs, available labelled

data are typically sub-divided into three sets, commonly

referred to as the training, validation and test datasets,

with the latter only used to estimate the true general

predictive capability of the final tuned model.

Proposed methodology

The basic underlying concept behind the proposed

methodology for estimating the axial load in historical

ties is fundamentally a simple one. It relies on using a

suitable finite-element (FE) model to create a synthetic

input-output dataset that is then processed and used to

train feedforward ANNs. The trained ANNs can then

be employed with dynamic characteristics extracted

from experimentally-obtained vibration acquisitions to

predict the axial load, as well as equivalent spring

stiffnesses imposed at either end of the ties by actual

boundary conditions. The steps involved in the proposed

methodology are summarised in Fig. 3.

No specific experimental procedure is stated as part

of the methodology since adaptability of required

experimental inputs was in fact a motivating aim

behind its development. Instead, possible parameters

that may be extracted from vibration acquisitions are

presented along with the most relevant aspects that

need to be taken into account when selecting the ones

that will serve as inputs to the ANNs. Some key

aspects that should be considered when designing the

experimental procedure to obtain the selected inputs

are also elaborated. Subsequently, the different steps

that need to be followed to generate the required

data for training and optimising the ANNs based

on characteristics of the selected input parameters

are elaborated. Finally, the process of optimising the

hyperparameters of the feedforward ANNs until a

suitable predictive performance is achieved is also

described.

Data selection and experimental setup

Only two types of dynamic characteristics that may

be extracted from vibration acquisitions are in fact

useful for predicting the axial load sustained by a

tie-rod: natural frequencies and components of the

corresponding mode shape vectors. Being eigenvalues

and eigenvectors, it is well-known that there are several

values of these parameters that correspond to different

natural modes of vibration of a structural system.

If vibration acquisitions are obtained using contact

sensors, it is typically most advantageous to place

the accelerometers in positions where the mode shape

amplitudes are greatest because the signal-to-noise ratio

with respect to the natural mode of vibration will

naturally be higher in these zones. One exception to

this rule occurs when the mass of the accelerometer(s)

is significant with respect to the distributed mass of the

tie-rod. One advantage of using specifically developed

ANNs for predicting the axial load in a tie-rod is

that the position of accelerometers can be chosen in

order to maximise the number of vibration modes that

can be observed. This can contribute to improving

the reliability of the predicted axial load since it adds

redundancy in the estimation process. Additionally, if

there are any specific accessibility issues or if a tie-

rod contains significant discontinuities such as large

connectors, the experimental procedure may be adapted

accordingly.

As such, it is recommended to design the experimental

procedure so that as many vibration modes as possible

may be captured considering cost and accessibility

limitations. Fundamentally, the natural frequency and

shape vector of every vibration mode of a tie-rod
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Figure 3. Proposed methodology.

depends on its geometry, its loading and boundary

conditions, and on the density and elastic properties of

the material it is made of. Therefore, any data that can

be gathered on the geometry of a tie or on its material

properties will improve the reliability of the axial load

estimate. Although all the previously proposed methods

(Table 1) require accurate measurements of the tie-rod’s

geometry, none of them attempt to collect data on the

elastic properties of the material despite the existence

of fairly widespread non-destructive techniques that are

able to do so. For the method proposed as part of this

research, it is recommended to not only perform an

accurate geometrical survey of the tie-rod being tested

but also to use ultrasonic pulse velocity measurements

to estimate the actual dynamic elastic modulus of

the material it is made of. This allows for reduced

uncertainty in the dataset to be generated using FE

simulations (see subsection on data generation) and

ultimately results in more reliable axial load estimates.

Although it is recommended to employ natural fre-

quencies directly as inputs of the ANNs for predicting

the axial load in a tie-rod using the proposed methodol-

ogy, it is recommended to employ ratios between key

components of each mode shape vector as predictors

instead of the individual components themselves. This

practice condenses the useful information provided by

two mode shape components into a single input param-

eter, which simplifies the architecture of the ANNs

and ultimately leads to a more computationally cost-

effective solution.

Data generation

Once the dynamic characteristics that will be used to

estimate the axial load have been selected, the data that

will be used to train the ANNs must be generated using

FE simulations. It is important to note that the dynamic

characteristics that will serve as the input features of the

feedforward ANNs (natural frequencies, ratios between

mode shape components) will in fact be obtained

from outputs of the FE simulations. Specifically, they

will be obtained by performing eigenvalue analyses

using the stiffness and mass matrices corresponding to

different pre-defined initial configurations of the tie.

Each example (or instance) constituting the dataset

to be used for ANN training therefore corresponds

to an FE simulation and the output features to be

predicted by the ANNs are in fact specified as initial

configurations of the simulations. Although these output

features primarily refer to the axial load sustained by the

tie and to the rotational stiffness of equivalent boundary

springs, they may in theory also include any other

relevant unknown parameter that is to be predicted

by the ANNs. If a particular application requires
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incorporating variations of other unknown parameters,

such as the length of tie-rods for example, the range

of variations that needs to be included in the training

data will naturally depend on the specific needs of the

application in question. It should be noted that specific

guidance is given in this subsection only for applications

which require treating the axial load and the stiffness

of end constraints as unknowns. Nevertheless, the same

philosophy used to generate the combinations of these

parameters to be included in the synthetic dataset

may be readily extended to other situations which may

require treating other parameters as unknowns.

First, a base model must be created using the

measured geometry of the tie-rod, including any

connectors or changes in cross-section. Depending on

the slenderness of the tie under investigation, Euler-

Bernoulli or Timoshenko beam elements can be used for

the base model. A linear elastic material model should

be used with the elastic modulus set at the average

value estimated using ultrasonic pulse velocity readings.

Guidance on how to choose suitable transducers as well

as the expression for relating the measured velocity of

ultrasonic P-waves to the elastic modulus of an isotropic

material can be found in many references28. Knowledge

of the material density and the Poisson’s ratio are

required for computing the elastic modulus. The former

can be assumed to be 7850 kg/m3 or 7750 kg/m3

depending on whether the tie is made of steel or wrought

iron respectively. This information can typically be

inferred from historical information on when the tie

was installed. The Poisson’s ratio can be assumed to

be 0.3. The same assumptions for these two material

parameters used for estimating the elastic modulus from

the ultrasonic pulse velocity measurements should be

employed for defining the material of the FE model.

Additionally, if there are significant differences in the

elastic moduli evaluated in different parts of a tie,

this can be considered in the base model through the

definition of different material models.

At first, three configurations of the base model

with no axial load should be created in order to

quantify the extreme boundary condition possibilities

at both extremities of the tie’s free span. Specifically,

one model should be created with pin connections at

both ends, one with fixed connections, and a third

model with pin connections together with a rotational

boundary spring at both ends (equivalent to the model

shown in Fig. 1(a)). Based on the difference between

the predicted frequency of the first vibration mode

from the models with pinned-pinned and fixed-fixed

boundary conditions, the rotational stiffness of the

boundary springs that effectively correspond to the

fixed-fixed condition can be estimated through a simple

parametric study. Specifically, the rotational stiffness

corresponding to a fixed condition should be defined

as the one for which the predicted frequency of the

first vibration mode differs by less than 1% from that

predicted by the model with the fixed-fixed boundary

condition. Once this range has been determined, only

the model with rotational springs needs to be used

for generating the data for training the ANNs. It

should be noted that the parametric study is not

only useful for generating training data but also for

interpreting eventual rotational spring stiffnesses that

will be predicted by the ANNs.

The next step that needs to be performed involves

establishing the maximum axial load that needs to be

represented in the training data. In many cases, if a

tie is accessible, observing the vibration response after

a small impact can help to determine whether a tie

is highly tensioned or very loose. In the latter case,

the entire range of loads to be investigated may be

limited to 30% of the axial load capacity of the tie

assuming a reasonable yield strength for the material.

In the former case, or if no such observation can be

made, the full range of possible axial loads should

be represented in the training data. Once the ranges

of rotational spring stiffness and axial load that need

to be represented in the training data have been

determined, all the FE simulations that need to be run

for generating a suitable dataset need to be defined.

This can be achieved through the definition of four

datasets that constitute different combinations of axial

load and rotational spring stiffness: a main dataset,

one with only pinned-pinned boundary conditions, one

with only fixed-fixed boundary conditions, and one with

additional training examples involving low axial loads.

The main characteristics of these four datasets along

with the recommended minimum number of examples

in each are summarised in Table 2. Note that in the case

of an apparently very loose tie, the reference maximum

value to which the prescribed ranges for subsets shown

in Table 2 refer to corresponds to the aforementioned

30% of the estimated axial load capacity of the tie.

The axial load variations in each of the subsets of

the main dataset (low, mid-range and high axial loads)

can be simply defined using a linearly spaced vector

between the minimum and maximum values of the
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Table 2. Recommended minimum number of input-output examples to include in generated dataset.

Dataset
Axial load range

(% of max. value)
Number of variations

Axial load
Boundary
conditions

Total

Main dataset: low axial loads 1% < N ⩽ 10% 3
250∗

+
2× 50†

1050
Main dataset: mid-range 10% < N ⩽ 50% 3 1050

Main dataset: high axial loads 50% < N ⩽ 100% 2 700
Main dataset - Total 1% < N ⩽ 100% 8 2800

Pinned boundary conditions 0% < N ⩽ 100% 500 1 500

Fixed boundary conditions 0% < N ⩽ 100% 500 1 500

Extra low axial load dataset 0% < N ⩽ 1% 8
200∗

+
2× 50†

2400

Synthetic data - Total 6200

* Symmetric boundary condition variations in which the magnitude of both left and right spring stiffnesses are varied but are always kept
equal to each other.

† Two asymmetric sets of at least 50 boundary condition variations. In the first asymmetric set, the spring stiffness corresponding to the left
end is kept constant while that corresponding to the right end is varied. In the second asymmetric set, only the spring stiffness corresponding
to the left end is varied.

ranges shown in Table 2 as a function of the previously

established maximum axial load value that needs to be

represented in the training data. As shown in Table

2, at least 350 different boundary condition variations

should be defined for the main dataset to be combined

with at least 8 axial load variations, resulting in a

minimum of 2800 training examples in that dataset.

The boundary condition variations can also be defined

using linearly spaced vectors of equivalent rotational

spring stiffnesses spanning from 0 kNm/° up to a value

which is twice as much as the previously estimated

rotational spring stiffness corresponding to the fixed

condition. If the minimum number of asymmetric

boundary condition variations shown in Table 2 is

chosen, a linearly spaced vector of 50 elements should

first be defined. Then, one set of boundary condition

variations should be defined by assigning that vector to

the rotational spring at the right end of the tie while

the value for the rotational spring at the left end is

kept constant for all combinations at the maximum

value to be included in the dataset. Similarly, the next

set of asymmetric boundary condition variations would

then involve assigning the linearly spaced vector of 50

elements to the left spring while keeping the value of

the right spring constant at the same maximum value.

The set of symmetric boundary condition variations can

simply be defined by assigning a linearly spaced vector

of equivalent rotational spring stiffnesses to both the left

and right ends.

As its name suggests, the rotational stiffness at

both ends of all combinations in the pinned boundary

conditions dataset should be set to zero, while the

axial load is varied using a linearly spaced vector of

at least 500 elements from zero to the maximum value

in the previously established range. Similarly, the fixed

boundary condition dataset should consist of the same

vector of axial loads but with the rotational stiffnesses

at both ends set at the previously estimated rotational

spring stiffness corresponding to the fixed condition.

The final dataset required for generating suitable

synthetic data should be made up of at least 2400

examples with low axial loads and similar boundary

condition variations as those defined for the main

dataset. The minimum number of variations specified

in Table 2 can also be defined by generating linearly

spaced vectors. This last dataset has been specified

because previous research reveals that it is more difficult

to obtain accurate solutions to this particular inverse

vibration problem at low levels of axial load8,13,21. This

can in part be attributed to the fact that measurable

dynamic characteristics of a tie become less sensitive

to changes in boundary conditions as the axial load it

sustains increases.

Once all the configurations of FE simulations (or

output features of the synthetic data) have been

defined, they should be collected in tabular form

and any duplicates should be eliminated. The input

features of the synthetic data can then simply be

obtained by performing an eigenvalue analysis for each

pre-defined configuration of the FE model and by

collecting the relevant predicted dynamic characteristics

in tabular form. In order to achieve this, it is most

convenient to define a batch analysis job which can

be relatively straightforward to program nowadays

Prepared using sagej.cls



10 Authors’ version of Accepted Manuscript

for many commercial FE packages. For the case

study presented in this article, all numerical analyses

were performed using the DIANA FEA commercial

package29 and a similar procedure as that used by

Saloustros et al. for the probabilistic assessment of

seismic vulnerability30 was employed for defining the

batch analysis job. It should be noted that FE

eigenvalue analysis performed using beam elements is

not very computationally expensive and results for a

single training example can typically be obtained in a

matter of seconds on most modern personal computers.

This means that the generation of all the necessary data

required for ANN training and optimisation is likely to

require less than a day of computation on most personal

computers.

Data pre-processing

Once the results from FE simulations have been

collected and manipulated to form a synthetic dataset,

two important pre-processing steps need to be

performed before ANN training: feature scaling and

noise addition. As previously described, the synthetic

data will consist of natural frequencies and ratios

between mode shape components as inputs and axial

loads, equivalent rotational spring stiffnesses, and any

other relevant unknown parameter to be predicted by

the ANNs as outputs. Each of these variables represent

fundamentally different quantities whose range of

possible values can differ drastically. This means that

any functions expressing relationships between them

are likely to be characterised by very steep gradients

in very localised zones which is likely to make the

process of learning through any network training

algorithm highly inefficient or even impossible. In

order to address this issue, all the variables present

in the synthetic data should be transformed to a

normalised scale. There exist different possible ways of

performing such transformations and their effectiveness

typically depends on the characteristics of the variables

and of the activation functions employed in different

layers of feedforward ANNs. For the hyperparameters

recommended as part of the methodology proposed in

this article, it was found that applying a feature scaling

method commonly referred to as min-max scaling results

in adequate performance. Specifically, this involves

transforming all the examples of each input and output

variable to a range of [0,1] using the expression shown

in Eq. (1).

x′ =
x−min(x)

max(x)−min(x)
(1)

Where x refers to the original value of an element

of an input or output variable, while x′ corresponds to

the transformed value. Naturally, to be able to interpret

resulting outputs predicted by the ANNs, they need to

be transformed back to their original scale using the

inverse of the function shown in Eq. (1).

In addition to feature scaling, it is also important

to add noise to each vector of dynamic characteristics

acting as an input variable before training the ANNs.

This pre-processing step is very important to ensure

that the ANNs perform well when employed with

real-world data. Trials performed as part of this

research revealed that when an ANN has learnt only

from training data generated by simulations, it can

show extremely good prediction performance across

the entire range of interest when tested with different

data generated from simulations, but still perform

poorly when fed with dynamic characteristics extracted

from vibration acquisitions. This is because real world

data can be influenced by many factors, including

background noise during vibration acquisitions, which

can lead to small deviations when compared to dynamic

characteristics predicted by numerical simulations. If

such variations are not included in the training data,

the resulting ANN will inevitably not be well equipped

to deal with them.

As such, a Gaussian white noise profile with a

specific standard deviation should be superimposed to

the elements of each input variable in the synthetic

data. Specifying an adequate standard deviation for

each input variable requires appropriate consideration

of the type of quantity it represents, the possible errors

that can occur during the measurement of this quantity,

and the range of values present in the synthetic data

sample. For the purpose of estimating the axial load

in tie-rods, some heuristics are proposed as part of

this research for the addition of the noise profiles. For

input variables consisting of ratios between mode shape

components, the standard deviation of the Gaussian

white noise can be set at 0.5% of the range present in

the synthetic data. For each frequency used as an input

variable, the standard deviation of the generated noise

profile should always be greater than the theoretical

frequency resolution of the modal analysis that will be

performed for its estimation. Naturally, this value does

not consider environmental and operational conditions
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that can add significant uncertainty to the measurement

of natural frequencies. As such, the specified standard

deviation of the Gaussian noise profile typically needs to

be greater than this theoretical frequency resolution. For

frequencies that will be based on simultaneous vibration

acquisitions taken at 2 or more locations excluding any

placed in the vicinity of a vibration node (location with

zero mode shape amplitude), the standard deviation of

the noise profile can be set as the minimum between 0.1

Hz and 2% of the range represented in the synthetic

data. For natural frequencies that will be estimated

using a single vibration acquisition excluding vibration

node locations, the standard deviation of the noise

profile can be set as the minimum between 0.25 Hz

and 5% of the range represented in the synthetic data.

Of course, if the noise is to be added to the synthetic

data after feature scaling, the standard deviations

estimated from the aforementioned heuristics should be

transformed before superposition in exactly the same

manner as the elements of the corresponding input

variable using Eq. (1).

ANN training and optimisation

Once all the synthetic data have been pre-processed,

they only need to be separated into training, validation,

and test subsets (see section on ANNs) before

proceeding to ANN training and optimisation. The data

to be allocated to each subset should be randomly

selected from the ranges of values present in the entire

synthetic dataset. For the purpose of estimating the

axial force in tie-rods using the methodology proposed

in this article, 70% of the data should be allocated to the

training subset, 20% to the validation subset, and 10%

to the test subset. This will ensure there are sufficient

examples in each subset to obtain suitably performing

feedforward ANNs.

As part of the proposed methodology, only two ANN

hyperparameters need to be optimised: the number

of neurons to include in the first and second hidden

layers of a feedforward ANN. A suitable predictive

performance can be achieved without changing any

other hyperparameter. Specifically, a feedforward ANN

architecture consisting of 2 hidden layers should be

used. For all neurons in these two layers, a hyperbolic

tangent transfer function should be used as activation

function31, while a simple linear transfer function

should be used for activation in the output layer.

The backpropagation learning algorithm should be used

together with Levenberg-Marquardt optimisation for

updating weights and biases during network training32

and the mean squared of errors should be used as

the loss function to be minimised. For stopping the

iterative optimisation algorithm, 20% of the elements

of the training dataset should be randomly selected and

allocated to an “Early stopping” dataset. This subset of

the training data should not be directly considered by

the network training algorithm for optimising weights

and biases, but the iterative algorithm should be

stopped when the network performance on this subset

fails to improve or remains the same for 50 epochs in a

row. This occurrence would be a clear sign of overfitting,

whereby although the network’s capability to represent

relationships in data used for learning is improving, its

ability to generalise to new unseen data is worsening.

In this case, as shown in Fig. 4, the configuration

with the lowest error on the Early stopping dataset

before this occurrence should be selected to prevent

overfitting. If this condition still has not been met

after at least 1000 epochs, network training may also

be stopped and the configuration corresponding to

the best performance on the Early stopping dataset

should be selected. It is important to note that these

recommended epoch thresholds may have to be modified

if the synthetic dataset employed contains much more

elements compared to the minimum recommended as

part of the proposed methodology.

As previously mentioned, the number of neurons

to use in the first and second layers of the

feedforward ANNs are still left to define. A grid search

technique22 can be used for the selection of these

two hyperparameters. This technique systematically

searches through a grid of possible hyperparameter

configurations. In this case, possible hyperparameters

now simply refer to possible numbers of neurons in

each hidden layer and the search seeks to find the

configuration resulting in the smallest mean prediction

error over all outputs in the validation data. First,

a grid search should be made using only ANNs with

a single hidden layer, varying the possible number of

neurons in this layer from 5 to 100. At least the 3

best performing configurations for the first hidden layer

should be retained. Then, a second grid search should

be performed over ANNs with two hidden layers, but

limiting the possible options for the first layer to those

retained after the first grid search. For this second grid

search, the possible options to be considered for the

number of neurons in the second layer may be limited

to 5 equally spaced numbers that are smaller than
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Figure 4. Example evolution of mean squared error in different datasets during ANN training.

the selected best performing options for the first layer.

This means that the second grid search will consist in

evaluating at least 15 different possible configurations.

At this point, it is worth reiterating the fact that weights

and biases are optimised on the basis of a randomly

selected subset of the synthetic data and that they

would differ slightly if another random selection was

made. Therefore, it is possible to achieve improved

performance by training multiple ANNs on different

random selections (of the same size) from the synthetic

data and keeping the average of the multiple predicted

outputs. For this reason, it is recommended to train 3

ANNs for each network configuration evaluated during

the grid search procedure, and to train 10 ANNs of the

final chosen configuration to be used for predictions.

It should be noted that the entire recommended grid

search procedure as well as the training of the final

10 ANNs to be used for prediction can be performed

in less than a day using a personal computer if the

minimum recommended number of data samples are

used. Naturally, the required computation time will

increase if larger datasets are used. Once the final

ANNs have been trained, they may be used to obtain

instantaneous predictions of the axial load and other

outputs based on experimentally obtained dynamic

characteristics.

Application to case study

The ties that are the subject of the chosen case study

are shown in Fig. 5. They are found at a height of

approximately 14.3 m just below the lantern tower

(cimborio) in the main crossing of the church of

the monastery of Sant Cugat, an important medieval

heritage structure near Barcelona consisting of different

parts built mostly between the mid-12th century and

the 15th century. The ties were installed as part of

strengthening and repair works which were performed

towards the end of the 19th century due to concerns

over the outward leaning of elements such as the bell

tower and visible cracks in several elements including the

cimborio 33. Recent results from a monitoring campaign

reveal that one of the pillars supporting the cimborio is

still experiencing an active outward rotation34. Since

ties are meant to contribute to resisting the lateral

thrust exerted on the pillar, knowledge of the actual

force resisted by the ties can definitely contribute to a

better understanding of the actual loading conditions.

Vibration testing and modal analysis

Both ties forming part of this study consist of three

segments unified by the connectors that join them.

Several geometrical measurements of both ties were

made. The disposition along the length as well as

the cross-sectional dimensions of both ties were found

to be almost identical (characterised by coefficients
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Figure 5. (a) Location of the ties shown in a longitudinal cross-section of the church going through the crossing (all dimensions
in m). (b) Picture of the ties from above showing the connection of the western tie to the wall on the northern side. (c)
Connection of both ties to the wall on the southern side. (d) Close-up view of a connector.

of variation of less than 1%), with the average

measured dimensions shown in Fig. 6(a). This means

that a FE model with a unique geometry can be

used for simulating the behaviour of both ties. As

described in the proposed methodology (subsection

on data selection and experimental setup), ultrasonic

pulse velocity measurements were also made using

a PROCEQ Pundit PL-20035 commercial ultrasonic

testing instrument equipped with 500 kHz transducers.

From these measurements, the elastic modulus of the

material making up both ties was estimated as being

174 GPa.

The main components of the data acquisition

system employed for the vibration tests include

an instrumented impact hammer (PCB 086C03),

piezoelectric accelerometers, and an embedded real-

time controller (cRIO-9064) equipped with vibration

input modules (NI-9234). Some of these components

are shown in Fig. 6. Specifically, vibration signatures

recorded with a sampling frequency of 5 kHz from a total

of three uniaxial accelerometers were used for modal

analysis. The exact locations of these accelerometers

for the tests on each tie are shown in Fig. 6(a). These

locations were chosen so as to identify as many modes

as possible considering the available equipment and

time for testing. As shown, the western tie was only

instrumented with 2 accelerometers. This modification

had to be implemented on the day of testing due to

time constraints. In addition to ambient vibration tests

which simply involve recording the vibration signatures

of the ties with no specific excitation, tests which

involve exciting the tie at specific locations using the

instrumented hammer were also performed. A total of

11 vibration acquisitions were recorded while testing the

eastern tie and a total of 7 were recorded for the western

one. The average duration of impact hammer tests was

of 2.4 min while that of ambient vibration tests was of

7.4 min.

Modal analysis was performed using the Frequency

Domain Decomposition (FDD) technique36, which relies

on selecting clearly distinguishable peaks from singular

values of the power spectral density matrix or frequency

response function as shown in Fig. 7(b). The MACEC

toolbox37 for MATLAB38 was used for performing these

computations.

As summarised in Table 3, a total of 4 modes could

be identified from the acceleration records. Although

vibration modes could clearly be identified, it is worth
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Figure 6. (a) Average measured dimensions and locations at which accelerometers (PU1, PU2 and PU3) were placed. (b)
Real-time controller fixed on the northern wall next to the eastern tie. (c) Uniaxial accelerometer before connecting wires. (d)
Accelerometer PU3 placed on the western tie.

Figure 7. (a) First three expected resonance mode shapes predicted by numerical model of fully clamped tie. Records from
accelerometers placed at the locations shown by points 1 to 3 on the eastern tie were used for modal analysis. On the western
tie, accelerometers were only placed at locations 1 and 2. (b) Examples of natural frequencies identified using the Frequency
Domain Decomposition (FDD) technique.

mentioning that the acquired acceleration records were

characterised by a relatively high level of noise. The use

of an excessively high sampling frequency during testing

could most definitely have contributed to this situation.

ANN training and results

In order to be able to use the same ANNs for predicting

the axial load in the eastern and western tie, only mode

shape components from locations 1 and 2 shown in

Fig. 7(a) were used for defining input variables. Given

the location of accelerometers with respect to vibration

nodes (see Fig. 7(a)), this means that adequate mode

shape ratios could only be defined for modes of odd

index (modes 1 and 3). As such, only the 6 quantities

shown in Table 3 were chosen as input variables for

prediction. Since both the geometric properties and

elastic modulus were determined accurately as part of

the experimental procedure, only the axial load and

equivalent rotational spring stiffnesses at both ends of

each tie were defined as outputs to be predicted by the

ANNs.

A synthetic dataset consisting of 8730 input-output

examples was generated from FE simulations using

the procedure described as part of the proposed

methodology (see subsection on data generation and

Table 2). The parametric study forming part of this

procedure revealed that a rotational spring stiffness

of approximately 43.6 kNm/° corresponds to a fixed

condition (see Fig. 8). As previously described, the

maximum rotational spring stiffness included in the
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Table 3. Dynamic parameters estimated from vibration acquisitions using the FDD technique. The mode shape ratio values
refer to the amplitude measured at location 2 divided by that measured at location 1 (see Fig. 7(a)).

Tie
Natural frequency [Hz]

Mode shape ratio
(loc. 2/loc. 1)

Mode 1 Mode 2 Mode 3 Mode 4 Mode 1 Mode 3

Eastern tie 2.55 6.00 12.44 21.42 1.75 -1.60
Western tie 2.17 5.05 11.46 20.10 1.8 -1.55

entire synthetic dataset thus consisted of twice this

value. In summary, the synthetic dataset generated

for this case according to the proposed methodology

contained axial loads that varied from 0 kN to 200

kN and rotational spring stiffnesses that varied from

0 kNm/° to 87.2 kNm/°. The specific combinations of

axial loads with symmetric and asymmetric boundary

conditions included in the synthetic dataset are shown

in Fig. 9. It should be noted that the data points

shown in the figure have been grouped according to the

four datasets defined in the subsection of the proposed

methodology on data generation (see Table 2). The

distributions of the aforementioned 6 input variables

collected after performing the FE simulations are shown

in Fig. 10.

Based on the heuristics presented in the subsection

of the proposed methodology on data pre-processing, a

Gaussian white noise profile with a standard deviation

of 0.1 Hz was superimposed to the input vectors

corresponding to the first and third natural frequencies

while one with a standard deviation of 0.25 Hz was

added to the input vectors corresponding to the second

and fourth natural frequencies. The standard deviation

of the noise profiles used for the input vectors with mode

shape ratios from the first and third modes were defined

as 0.003 and 0.004 respectively using the same set of

heuristics. Following the grid search procedure described

in the subsection of the proposed methodology on ANN

training and optimisation, the final ANN architecture to

be used for prediction could be defined. It consisted of 2

hidden layers, the first with 34 neurons and the second

with 10. As described in the proposed methodology, 10

such ANNs were trained so that the average of their

outputs could be used for predictions.

Evaluating the performance of these 10 ANNs over the

873 elements of the test dataset reveal an average root-

mean-square error (RMSETest) of 0.28 kN for axial load

predictions, 0.73 kNm/° for predictions of the rotational

spring stiffness on the left end, and 1.16 kNm/° for

predictions of the rotational spring stiffness on the right

end. Regression plots for the three outputs over the

validation and test datasets are also shown in Fig.

11. As can be seen, prediction errors from the final

ANNs are very small, particularly considering the range

of values being tested and the fact that none of the

reviewed analytical model-based methods (see Table 1)

can be directly applied to this particular case due to the

presence of two connectors on each tie. For instance, FE

simulations can be used to show that direct application

of two such analytical model-based methods8,13 to this

case would result in prediction errors that are greater

than 50% of the actual axial load. Some discrepancies

in the ANN predictions can be observed from Fig. 11,

most notably related to the prediction of the equivalent

rotational spring stiffnesses at either end of the tie-

rod. However, the greatest differences always occur for

simulated stiffness values equal to 0 kNm/°, an ideal

pinned condition that is unlikely to be encountered in

most practical applications. Nevertheless, even in these

cases, the sparsity of outliers and the low RMSETest

values suggest that the average prediction from 10 ANNs

will undoubtedly still be sufficiently accurate to provide

a good understanding of the boundary conditions. Based

on these comparisons with FE simulation results, it

is clear that the achievable accuracy of the proposed

method employing ANNs for predicting the axial load

in historical ties is more than satisfactory for most

practical applications.

After the 6 dynamic characteristics extracted from

vibration tests on the two ties were fed into the trained

ANNs (see Table 3), the average predicted axial load

was found to be 15.76 kN for the eastern tie and 1.03

kN for the western one. Both these values can in fact

be considered as being low and suggest that the ties

are currently not contributing significantly to resisting

lateral thrusts imposed by the geometry of the masonry

structure. This may partly be due to the specific height

and location at which they are placed, which can be

considered as being rather inefficient with respect to

the structural form and expected load paths in the

masonry structure. Furthermore, these results concur

with observations made during testing indicating that

the vibration response of both ties is characterised by a

relatively loose behaviour.
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Figure 8. Effect of rotational stiffness at the extremities of the free span of a tie-rod.

Figure 9. Combinations of axial load and rotational spring stiffnesses used to generate synthetic data.

Figure 10. Histograms showing the distribution of input data used for training and testing the ANNs.

With respect to boundary conditions, as previously

mentioned, a parametric study revealed that a

rotational stiffness of 43.6 kNm/° clearly corresponds

to the fixed-fixed condition for this case (Fig. 8). The

predicted equivalent rotational spring stiffnesses at the

left and right end of the ties turned out to be 49 kNm/°

and 26 kNm/° respectively for the eastern tie. For the

western tie, the same spring stiffnesses turned out to be

22 kNm/° and 26 kNm/° respectively. By analysing the

results of the parametric study shown in Fig. 8, it can be

said that all of the predicted rotational spring stiffnesses

for both ties correspond to a boundary condition whose
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Figure 11. Regression plots showing the relationship between theoretical values computed using FE models and predictions
from ANNs for the test and validation data. The individual data points from these datasets for all 10 trained ANNs are plotted.
The average root-mean-square error computed over the test dataset (RMSETest) for each ANN is also shown.

Table 4. Comparison between natural frequencies predicted by calibrated numerical models and those estimated from the
vibration tests.

Tie

Natural frequency estimate [Hz]
Relative change
from FE estimate

FE model (configured
from ANN results)

Vibration
acquisitions

Mode 1
East 2.71 2.55 6.11%
West 2.16 2.17 0.79%

Mode 2
East 6.32 6.00 5.22%
West 5.63 5.05 10.82%

Mode 3
East 12.63 12.44 1.57%
West 11.74 11.46 2.42%

Mode 4
East 21.56 21.42 0.66%
West 20.48 20.10 1.89%

behaviour is very close to that of a fixed connection.

This prediction is in good agreement with the fact that

no gaps could be observed around the ends of the ties

where they go through the wall (see Fig. 5(c)). In fact, it

appears that the stiffness of these connections has been

ensured by filling the area at the interfaces between the

walls and ties with a cement mortar.

In order to further validate the proposed methodol-

ogy, the axial load and rotational spring stiffnesses of

the eastern and western tie predicted by the ANNs

were used to configure a FE model of each tie. The

first four natural frequencies obtained by performing an

eigenvalue analysis using these models are compared in

Table 4 to the first four natural frequencies obtained

experimentally through vibration tests. In general,

we can see that there is a good agreement between

the experimentally determined natural frequencies and

those predicted by the calibrated models. This indicates

that the models provide a good representation of reality

and that the tensile loads can be considered as being

reliable.

A greater relative difference can be identified in Table

4 between frequency estimates of the second mode of

vibration, particularly in the case of the western tie.

This can most likely in part be attributed to the fact

that the second mode shape is known to contain a

node exactly at the midspan for symmetric boundary

conditions. The low vibration amplitude around this

location can therefore significantly hinder the ability

of the accelerometer placed there to register this mode

of vibration. In the case of the western tie, this means

that the estimated frequency mostly relies on the records

from a single accelerometer. In fact, a greater relative

difference can be observed for the natural frequencies

of the western tie across three of the four identified

modes of vibration. This may be attributed to the fact

that one less sensor was used for the tests on this

tie. Despite the existence of these specific disparities

between the simulated and experimentally determined

structural behaviour, the good general agreement is

a clear indication that the proposed methodology is

robust.
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Relative importance of ANN inputs

Although ANNs have received considerable attention

across a wide range of scientific fields due to the

superior predictive power they have often been able to

demonstrate compared to traditional approaches, they

have also received significant criticism regarding the lack

of explanatory insight they provide. As a consequence,

there have been considerable research efforts on methods

aiming to provide explanatory insight into the relative

influence of variables used as inputs to ANNs for

prediction. According to a study performed by Olden

et al.39, which compares nine different methods for

assessing variable contributions in ANNs, one of the

most accurate methods for achieving this purpose

is known as the connection weight approach 40. The

method involves computing the product of all raw input-

hidden and hidden-output weights connecting each

input neuron and output neuron and summing these

products across all hidden neurons39. As a result, an

importance score is obtained for each input with respect

to each output that is predicted by the ANN. Although

this value can be used to rank inputs according to their

relative importance for predictions made by a single

ANN, it is important to note that it cannot be compared

across several ANNs. This is because different ANNs

may be characterised by weights whose magnitude can

differ significantly, even if trained for the same purpose.

Since the importance score is computed on the basis

of raw connection weights, its value is only meaningful

within the context of other weights in the same ANN.

Nevertheless, the rank of each input with respect to its

relative importance for predicting a particular output

can naturally be compared across different ANNs. Since

the average output from 10 ANNs is used for prediction

as part of the proposed methodology, the average rank

evaluated using the connection weight approach across

all these ANNs was employed to assess the relative

importance of each input feature. The average rank of

each input with respect to the prediction of each output

for the ANNs used as part of the presented case study

is shown in Fig. 12. Error bars are used to show the

full range of ranks determined for each input. For each

output, the input feature with the highest average rank

has been coloured in green while that with the lowest

average rank has been coloured in red.

The first observation that can be made from the

estimated ranks is that the relative importance of

most of the selected input features tend to be well

balanced. The error bars shown in Fig. 12 reveal

that there are considerable fluctuations in the rankings

across the 10 trained ANNs with many of the input

features occupying ranks that vary between the 2nd

and 5th position in terms of relative importance for

prediction. This demonstrates that the chosen input

features do indeed provide useful information for

estimating axial loads and constraint stiffness, and

highlights the importance of using the average value

of predictions from multiple ANNs to ensure robust

prediction performance.

Nevertheless, it does appear that the second natural

frequency is consistently ranked amongst the least

important input features for prediction of all three

outputs. Given the location of antinodes in the shape

of this vibration mode, it is likely to be one of the

modes most influenced by the lumped masses of the

connectors. This could make the frequency of this

vibration mode less sensitive to changes of the axial

load and constraint stiffness, which would explain why

it appears to play a less important role in predictions.

Finally, it is interesting to note that the third mode

of vibration is consistently ranked amongst the most

important predictors for determining the axial load

and that the fourth mode of vibration appears to

be relatively important for prediction of constraint

stiffness.

Conclusions

This research has proposed a novel methodology

employing Artificial Neural Networks (ANNs) for the

estimation of the axial force in historical ties from

outcomes of vibration tests. Although this particular

inverse vibration problem has received considerable

research interest in the past, many of the most popular

analytical model-based methods cannot be applied

to cases where ties contain significant discontinuities

or irregularities. In addition to being applicable

to such cases, the proposed methodology relies on

an experimental procedure that can be adapted to

specific constraints of a particular case and the

methodology itself may be adapted to best utilise

useful experimental results for predictions. In fact, the

proposed methodology stands out from all reviewed

existing methods for solving this problem as being the

only one that displays all three of the aforementioned

characteristics.

A validation of the proposed methodology is

presented involving its application for the estimation of
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Figure 12. Average rank for each input feature with respect to each output that can be predicted by the ANNs. The full range
of ranks determined for each input over the 10 ANNs is also shown with error bars. Note that greater bar heights indicate a
lower rank.

the axial load in two tie-rods found in an important

heritage structure in Catalonia. Both ties consist of

three segments joined together by two larger connectors

and it was estimated that they sustain relatively low

axial loads (15.76 kN and 1.03 kN). Although previous

research shows that the latter condition can significantly

hinder the ability of obtaining accurate solutions for this

inverse vibration problem8,13,21, coherent predictions on

the stiffness of the connections to masonry walls could

also be made in addition to the axial load predictions.

This outcome combined with the very small differences

observed over the complete range of possible output

values between Finite Element (FE) results and the

ANN predictions from applying the methodology are

clear indicators of its robustness.

It must be said that there exist nowadays a multitude

of different Machine Learning (ML) algorithms that

have found useful applications in a truly diverse

range of fields. As such, there most definitely exist

certain types of ML algorithms, including different

ANN architectures, that can prove to be more efficient

than the proposed feedforward ANN at solving this

particular inverse vibration problem. However, the

proposed methodology is clearly able to produce

sufficiently accurate results for many practical purposes.

In this case, a suitable performance level is attained

in large part thanks to the incorporation of domain

knowledge when designing the synthetic data to be

used for ANN training. Such approaches have in fact

recently been identified by leading Artificial Intelligence

(AI) practitioners as being crucial for improving the

performance of AI solutions in real-world applications41.

Nevertheless, it is important to highlight that the

presented validation case study required only axial

loads and constraint stiffnesses to be assumed as

unknowns. In practice, certain applications may require

additional geometrical or material parameters to also

be considered as unknowns. This may include situations

involving ties that have suffered from significant damage

or deterioration. Although the same philosophy used

as part of this research to generate combinations of

features for training ANNs may in principle be extended

to consider other unknowns, more application cases

are required to develop specific guidance and fully

demonstrate the validity of the proposed methodology

for such situations. In fact, an extension of the

presented research could involve a specifically designed

experimental campaign to explore a greater range

of variations and to evaluate the effect of different

acquisition conditions on predictive performance. This

could contribute greatly to improving the proposed

methodology.

Finally, the versatility of the new proposed method-

ology employing ANNs indicates that it may be easily

adapted to be combined with other novel approaches

for estimating the axial load in historical ties, e.g.

to improve the accuracy of predictions derived from

measurements obtained using contactless techniques.
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30. Saloustros S, Pelà L, Contrafatto FR et al. Analytical

Derivation of Seismic Fragility Curves for Historical

Masonry Structures Based on Stochastic Analysis of

Uncertain Material Parameters. International Journal

of Architectural Heritage 2019; 13(7): 1142–1164. DOI:

10.1080/15583058.2019.1638992.

31. Baughman D and Liu Y. Fundamental and Practical

Aspects of Neural Computing. In Neural Networks in

Bioprocessing and Chemical Engineering. Elsevier, 1995.

pp. 21–109. DOI:10.1016/B978-0-12-083030-5.50008-4.

32. Hagan M and Menhaj M. Training feedforward networks

with the Marquardt algorithm. IEEE Transactions on

Neural Networks 1994; 5(6): 989–993. DOI:10.1109/72.

329697. URL http://ieeexplore.ieee.org/document/

329697/.

33. Garcia Ramonda L, Isalberti F, Garcia Roca I et al. MSc

SAHC SA7 PROJECT: Structural evaluation and safety

assessment of the monastery’s church of Sant Cugat del

Vallès, 2015.
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