
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2022) 23:133–155
https://doi.org/10.1007/s10710-021-09423-7

1 3

Generating networks of genetic processors

Marcelino Campos1 · José M. Sempere1 

Received: 8 April 2020 / Revised: 6 October 2021 / Accepted: 9 October 2021 /
Published online: 21 October 2021
© The Author(s) 2021

Abstract
The Networks of Genetic Processors (NGPs) are non-conventional models of com-
putation based on genetic operations over strings, namely mutation and crossover
operations as it was established in genetic algorithms. Initially, they have been
proposed as acceptor machines which are decision problem solvers. In that case,
it has been shown that they are universal computing models equivalent to Turing
machines. In this work, we propose NGPs as enumeration devices and we analyze
their computational power. First, we define the model and we propose its definition
as parallel genetic algorithms. Once the correspondence between the two formal-
isms has been established, we carry out a study of the generation capacity of the
NGPs under the research framework of the theory of formal languages. We investi-
gate the relationships between the number of processors of the model and its genera-
tive power. Our results show that the number of processors is important to increase
the generative capability of the model up to an upper bound, and that NGPs are
universal models of computation if they are formulated as generation devices. This
allows us to affirm that parallel genetic algorithms working under certain restrictions
can be considered equivalent to Turing machines and, therefore, they are universal
models of computation.

Keywords  Natural computing · Networks of bio-inspired processors · Parallel
genetic algorithms · Formal languages · Descriptive complexity

Mathematics Subject Classification  MSC 68Q07 · MSC 68Q19 · MSC 68Q45

This research was partially supported by TAILOR, a project funded by EU Horizon 2020 research
and innovation programme under GA No 952215.

 *	 José M. Sempere
	 jsempere@dsic.upv.es

	 Marcelino Campos
	 mcampos@dsic.upv.es

1	 Valencian Research Institute for Artificial Intelligence, Universitat Politècnica de València,
València, Spain

http://orcid.org/0000-0003-2393-9224
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-021-09423-7&domain=pdf

134	 Genetic Programming and Evolvable Machines (2022) 23:133–155

1 3

1  Introduction

In the framework of non-conventional computing, new models of computation
have been proposed by introducing new operations on data inspired by the nature
[11]. In this work, we focus our attention on biologically inspired models of com-
putation. This approach is not new in the history of computing: Artificial Neural
Networks and Genetic Algorithms were formulated many years ago by taking into
account biological aspects of information processing in nature. Currently, these
models can be considered classical models of computation. We are mostly inter-
ested in the new models that have been formulated with new operations based at
the molecular level (mainly, the DNA recombination and mutation) or cellular
level (mainly, by using the structure and organization of the living cell, and the
way it processes information).

This work is highly related to the Networks of Evolutionary Processors (NEP)
[9, 10]. That model was inspired by point mutations and evolutive selection on
DNA, in a similar way as in genetic algorithms mutation and INSDEL genome
evolution. The Networks of Splicing Processors (NSPs) [13] directly use splicing
operations over strings instead of point mutation of NEPs. Finally, the Networks
of Genetic Processors (NGPs) [6], use only substitution mutations together with
recombination (crossover), so it is an alternative way of formulating genetic algo-
rithms working in parallel, in a distributed way. All these models can be consid-
ered as Networks of Bio-inspired Processors (NBPs) [4], and all these models
have been proved to be equivalent to Turing machines, and they have been used to
solve NP-complete problems in polynomial time (in several cases, with a constant
number of processors) [7, 9, 12–14].

In the last few years, the Networks of Polarized Evolutionary Processors
(NPEP) have been proposed [1, 5]. In this case, the operations over strings are
those proposed in the NEP model, the processors are positively, negatively or
neutral polarized and all the strings in the network are numerically valuated.
Again, these models have been proved to be computationally complete, and they
have been proposed to solve hard problems efficiently.

In this work, we study the computational power of Networks of Genetic Pro-
cessors as generating devices. It has been proved that this model is equivalent to
Turing machines as an accepting device [6]. In addition, it was proved that they
are equivalent to parallel genetic algorithms with full migration rates and syn-
chronization, and they can solve hard problems efficiently [7].

The structure of this work is the following: First, we introduce basic concepts
on classical language theory and generative grammars. Then, we formally define
the Generating Networks of Genetic Processors (GNGP), and we relate them
directly to genetic algorithms showing the evidences about why GNGPs can be
considered parallel and distributed genetic algorithms with certain restrictions
in the migration and selection processes through fitness functions. We propose
different network structures to characterize each of the language classes defined
in the Chomsky hierarchy, and we define each of the processors involved in the
mentioned structures. In addition, we formally establish, through an inductive

135

1 3

Genetic Programming and Evolvable Machines (2022) 23:133–155	

proof, that the proposed topologies effectively characterize upper limits in the
language classes under study. Finally, we discuss our results, and we describe
future research on this topic.

2 � Basic concepts and notation

In the following, we introduce basic concepts about generative formal grammars and
formal language theory [15, 18].

An alphabet is a finite non-empty set of elements named symbols. A string is an
ordered finite sequence of symbols of an alphabet. The empty string is denoted by
� and it is defined as the string with no symbols. Given a string w, the length of the
string is the number of symbols that it contains and it is denoted by |w| (observe that
|�| = 0 ). The infinite set of all the strings defined over a given alphabet V is denoted
by V∗ . Given the alphabet V, the set V+ is defined as V+ = V∗ − {�} . Given the string
x ∈ V∗ , alph(x) denotes the minimal subset W ⊆ V such that x ∈ W∗ . Given the
string x ∈ V∗ , the set of segments of x is defined by seg(x) = {� ∈ V∗ ∶ x = ���
with �, � ∈ V∗} . Obviously, given any string x ∈ V∗ the set alph(x) is a subset of
seg(x). A language defined over an alphabet V is a subset of V∗.

A grammar is a tuple G = (N, T ,P, S) , where N is an alphabet of auxiliary sym-
bols, T is an alphabet of terminal symbols, with N ∩ T = � , S ∈ N is an axiom or
initial symbol, and P is a finite set of production rules. Every production rule is a
pair (�, �) (also written as � → � ), with � ∈ (N ∪ T)∗N(N ∪ T)∗ and � ∈ (N ∪ T)∗ .
Given two strings of terminal and auxiliary symbols, v and w, we say that w can be
obtained from v in a direct derivation according to G, and we denote it by v ⇒

G
w , if

v = v1�v2 , w = v1�v2 and � → � ∈ P . Observe that the direct derivation is a relation
between strings formed by terminal and auxiliary symbols, and we can define the
reflexive and transitive closure of ⇒

G
 as the derivation relation between any pair of

strings v and w, that is denoted by v
∗

⇒
G
w , and it is defined iff one of the following

conditions hold:

1.	 v = w (no production rule is applied over v), or,
2.	 v ⇒

G
u

∗

⇒
G
w (a positive number of rules are applied to obtain w from u).

In addition, we denote i derivation steps by the symbol
i

⇒
G

.
The language generated by G = (N, T ,P, S) is defined as follows

The grammars G1 and G2 are equivalent if L(G1) = L(G2) , and G1 is quasi-equivalent
to G2 if L(G1) = L(G2) − {�}.

The Chomsky hierarchy is a framework to study large formal language classes.
It is based on the classification of generative grammars according to the forms of

L(G) = {w ∈ T∗ ∶ S
∗

⇒
G
w}.

136	 Genetic Programming and Evolvable Machines (2022) 23:133–155

1 3

the production rules. It establishes four classes of grammars that we can enumer-
ate as follows:

1.	 Regular grammars (right linear grammars)
	  The productions of the grammar must be in one of the following forms

–	 A → aB , with A,B ∈ N and a ∈ T

–	 A → a , with A ∈ N and a ∈ T ∪ {�}

2.	 Context-free grammars
	  The productions of the grammar must be in the form A → � , with A ∈ N , and

� ∈ (N ∪ T)∗.
	  The Chomsky Normal Form for context-free grammars is defined whenever

the productions are in one of the following forms:

–	 A → BC , with A,B,C ∈ N

–	 A → a , with A ∈ N and a ∈ T

	  It is well known that for every context-free grammar there exists a quasi-
equivalent grammar in Chomsky Normal Form.

3.	 Context-sensitive grammars
	  The derivations of the grammar are length increasing (with the exception of the

derivation of � ). We can establish the Kuroda Normal Form for context-sensitive
grammars. It is defined by the following production forms:

–	 A → a , with A ∈ N and a ∈ T

–	 A → B , with A,B ∈ N

–	 A → BC with A,B,C ∈ N

–	 AB → CD with A,B,C,D ∈ N

	  In addition, we can add the production rule S → � , whenever S does not appear
in the right side of any production rule. In such a case, the grammar can generate
the empty string.

4.	 Phrase structure grammars
	  There are no restrictions in the form of the production rules. Nevertheless,

we can establish the following production rules, as an extended Kuroda Normal
Form:

–	 S → �

–	 A → a , with A ∈ N and a ∈ T

–	 A → B , with A,B ∈ N

–	 A → BC with A,B,C ∈ N

–	 AB → AC with A,B,C,D ∈ N

–	 AB → CB , with A,B,C ∈ N

–	 AB → B , with A,B ∈ N

	  The initial symbol S may appear only in the left-hand sides of the production
rules.

137

1 3

Genetic Programming and Evolvable Machines (2022) 23:133–155	

The Chomsky hierarchy establishes the relationship of the language classes defined
by the previously established classes of formal grammars. So, REG, CF, CS and RE
refer to the languages generated by the previously defined grammars, and we have
the following inclusions (the Chomsky hierarchy):

3 � Generating networks of genetic processors

In the following, we define the Generating Networks of Genetic Processors. The
basic elements of the model are inspired by previous works on Networks of Evolu-
tionary Processors (NEPs) [9, 10], and Networks of Splicing Processors (NSPs) [13,
14]. In addition, the main ingredients of Generating Networks of Genetic Processors
were previously defined as Accepting Networks of Genetic Processors [6].

Given the alphabet V, a mutation rule a → b , with a, b ∈ V  , can be applied over
the string xay to produce the new string xby. A mutation rule can be viewed as a
substitution rule introduced in [10].

A crossover operation is an operation over strings defined as follows: Let x
and y be two strings, then x ⋈ y = {x1y2, y1x2 ∶ x = x1x2 and y = y1y2} . Observe
that x, y ∈ x ⋈ y given that � is a prefix and a suffix of any string. The operation is
extended over languages as L1 ⋈ L2 =

⋃
x∈L1,y∈L2

x ⋈ y . The crossover operation is
a splicing operation over strings where the contexts of the strings are empty [17].

Let P and F be two disjoint subsets of an alphabet V, and let w ∈ V∗ . We define
the predicate � as follows:1

We can extend the predicate to act over segments instead of symbols. Let P and F be
two disjoint sets of finite strings over V, and let w ∈ V∗ , then

In the following, we work with this extension over segments instead of symbols. The
predicate � is based on random-context conditions defined by the sets P (permit-
ting contexts) and F (forbidding contexts). Let V be an alphabet and L ⊆ V∗ , then
�(L,P,F) = {w ∈ L ∶ �(w,P,F)}.

In the following, we define a genetic processor that can be viewed as an abstract
machine that can apply mutation rules or crossover operations over a multiset of
strings.

REG ⊂ CF ⊂ CS ⊂ RE.

�(w,P,F) ≡ (P = � ∨ alph(w) ∩ P ≠ �) ∧ (F ∩ alph(w) = �)

�(w,P,F) ≡ (P = � ∨ seg(w) ∩ P ≠ �) ∧ (F ∩ seg(w) = �).

1  In other works such as [6] there have been proposed other predicates where the definition is different
from the one proposed here.

138	 Genetic Programming and Evolvable Machines (2022) 23:133–155

1 3

Definition 1  Let V be an alphabet. A genetic processor over V is defined by the tuple
(MR,A,PI,FI,PO,FO, �) , where

–	 MR is a finite set of mutation rules over V
–	 A is a multiset of strings over V with a finite support and an arbitrary large num-

ber of copies of every string.2
–	 PI,FI ⊆ V∗ are finite sets with the input permitting/forbidding contexts
–	 PO,FO ⊆ V∗ are finite sets with the output permitting/forbidding contexts
–	 � ∈ {m, c} defines the function mode as follows:

–	 If � = m the processor applies mutation rules.
–	 If � = c the processor applies crossover operations, and MR = �.

In any genetic processor, and for any word w ∈ V∗ , there is an input filter
�(w) = �(w,PI,FI) and an output filer �(w) = �(w,PO,FO) . That is, �(w) (resp.
�(w) ) indicates whether or not the word w passes the input (resp. the output) filter of
the processor. We can extend the filters to act over languages. So, �(L) (resp. �(L) )
is the subset of L with the words that can pass the input (resp. output) filter of the
processor.

Once we have defined the main component of the model, that is the genetic pro-
cessor, we can formulate the Generating Networks of Genetic Processors as follows:

Definition 2  A Generating Network of Genetic Processors (GNGP) is defined by the
tuple � = (V ,Vout,N1,N2,… ,Nn,G,N,Nout) , where V is an alphabet, Vout ⊆ V is an
output alphabet, G = (XG,EG) is a graph, Ni(1 ≤ i ≤ n) is a genetic processor over V,
N ∶ XG → {N1,N2,… ,Nn} is a mapping that associates the genetic processor Ni to
the node i ∈ XG , and the processor Nout ∈ {N1,⋯ ,Nn} is the output processor.

A configuration of a GNGP � = (V ,Vout,N1,N2,… ,Nn,G,N,Nout) is defined by
the tuple C = (L1, L2,… , Ln) , where Li is a multiset of strings defined over V for
all 1 ≤ i ≤ n . A configuration represents the multisets of strings that every proces-
sor holds at a given time (remember that every string appears in an arbitrarily large
number of copies). The initial configuration of the network is C0 = (A1,A2,… ,An).

Every copy of any string in Li can be changed by applying a genetic step, accord-
ing to the mutation rules or the crossover operations in the processor Ni . Formally,
we say that the configuration C1 = (L1, L2,… , Ln) directly changes into the configu-
ration C2 = (L�

1
, L�

2
,… , L�

n
) by a genetic step, denoted by C1 ⇒ C2 , if L′i is the mul-

tiset of strings obtained by applying the mutation rules or the crossover operations
of Ni to the strings in Li . Since an arbitrarily large number of copies of each string
is available in every processor, after a genetic step, in each processor, one gets an
arbitrarily large number of copies of any string, that can be obtained by using all

2  A multiset is a set where each element can appear a number of times greater than one. In our case, each
element of the multiset A appears a non-bounded number of times but the number of distinct elements
defined in A is finite, that is, A has a finite support.

139

1 3

Genetic Programming and Evolvable Machines (2022) 23:133–155	

possible mutation rules or crossover operations associated with that processor. If Li
is empty for some 1 ≤ i ≤ n , then L′

i
 is empty as well.

In a communication step, each processor Ni sends all copies of the strings to all
the processors connected to Ni according to G, provided that they are able to pass its
output filter. In addition, it receives all the copies of the strings sent by the proces-
sors connected to Ni according to G, provided that they can pass its input filter. For-
mally, we say that the configuration C′ is obtained in one communication step from
configuration C, denoted by C ⊢ C′ , iff

Observe that, if one string leaves any processor together with all its copies, and it
cannot enter into any new processor due to its filter restrictions, then the string and
all its copies are lost.

Let � = (V ,Vout,N1,N2,… ,Nn,G,N,Nout) be a GNGP. A computation in � is a
sequence of configurations C0,C1,… , where C0 is the initial configuration of � ,
C2i ⇒ C2i+1 and C2i+1 ⊢ C2i+2 for all i ≥ 0 . In the following, we will use the symbol
↦ to denote a genetic step followed by a communication step. That is, C ↦ C′ iff
C ⇒ C′′ ⊢ C′ . In addition, to emphasize that the computation is carried out in the
network � we denote it by the symbol ↦

�
 . Consequently, the reflexive and transitive

closure of ↦ is denoted by ∗↦ . In addition, the symbol
i
↦
�

 denotes i genetic steps plus
i communication steps in the usual alternating way. All the strings defined over Vout
which are in the output processor Nout at any computation step belong to the lan-
guage generated by the network. Let � = (V ,Vout,N1,… ,Nn,G,N,Nout) be a
GNGP with Nout = Nk , the language generated by � is denoted by L(�) , and it is
defined as follows.

Observe that according to the definition any finite language L can be trivially gener-
ated by a GNGP by defining Aout = L . Hence, the empty string � can be generated
by including it as an element of Aout . In the following section we will not consider
the empty string since, according to the criteria defined above, it can be generated in
a trivial way.

3.1 � Generating networks of genetic processors are parallel genetic algorithms

Once we have defined the Networks of Genetic Processors as generating devices,
we are going to relate them to the classical concept of genetic algorithms and, par-
ticularly, to the case of parallel genetic algorithms. We followed this approach in
a previous work [6] where we could also formulate genetic algorithms as decision
problem solvers, as opposed to the more classical view that implies their definition
as optimization algorithms. We have followed fundamentally the reference [16] for
the case of genetic algorithms, and [8] for the case of parallel genetic algorithms.

(∀x ∈ XG) C
�(x) = (C(x) − �x(C(x))) ∪

⋃

{x,y}∈EG

(�y(C(y)) ∩ �x(C(y))).

L(�) = {x ∈ V∗
out

∩ Lk ∶ (A0,… ,Ak,…An)
∗
↦
�

(L0,… , Lk,… , Ln)}

140	 Genetic Programming and Evolvable Machines (2022) 23:133–155

1 3

We can see that every string inserted in a genetic processor is an individual of its
population with an undefined number of clones. In addition, the mutation and crossover
operations are applied in this case in a non-uniform way (the genetic crossover of two
individuals is considered as a case where the new individuals can extend their genetic
code indefinitely). In our case, the fitness function, used for the selection of different
individuals to generate new populations, is limited to the selection of individuals for
the migration rates discussed below. In the case of GNGPs, the genetic operators are
applied to the entire population without making any exceptions. Mutation and crosso-
ver ratios are kept uniform throughout the process and no elitism technique is applied
to the selection of individuals. Finally, we want to note that the output processor of
the network would contain individuals resulting from computation which, in the case
of genetic algorithms, would be the population with all feasible solutions to a given
problem.

For the case of parallel and distributed genetic algorihms, [3] and [2] define the
main components to be established. We can enumerate these components as follows:

1.	 The distribution of the individuals in different populations. They can be organ-
ized in different topologies: master– slave, multiple populations or islands, fine-
grained populations or hierarchical and hybrid populations. In addition, the neigh-
borhood connections can be rings, (m, n)-complete, ladders, grids, etc.

2.	 The synchronicity of evolution and communication of the populations
3.	 The migration phenomena: migration rates (the percentage of individuals that

migrate from one population to a different one), migration selection (the selec-
tions of the individuals that migrate) and migration frequency.

The above three aspects are covered in the definition of the GNGPs. The topology of
connection of populations, and their initial distribution is made by means of the con-
figuration of the processors connection graph. The evolution and communication of the
populations is carried out by means of the universal clock underlying the definition of
the operating mode of the networks. Finally, the migration processes are regulated by
the definition of the input and output filters of each processor. In other words, the filters
defined in the processors are effective procedures for selecting the individuals who can
migrate from one population to another.

Therefore, we can conclude that the GNGPs definition meets the main ingredients of
parallel and distributed genetic algorithms. In this way, we can initiate a formal study
about the generative capacity of the genetic algorithms and how many populations act-
ing in parallel are necessary to be able to generate different populations formalized
under the paradigm of the theory of formal languages. This study will be addressed in
the following section.

141

1 3

Genetic Programming and Evolvable Machines (2022) 23:133–155	

4 � Generating formal languages through generating networks
of genetic processors

In this section, we propose different Generating Networks of Genetic Processors to
generate the formal languages according to the Chomsky hierarchy. The number of
processors of every proposed network structure is important in order to generate
every language class. A general criterion that has been followed to formulate the
different topologies and their use in the theorem proofs is that processors that use
crossover are used to increase the lengths of the strings that are generated in the
grammar, while processors that use mutation are used to make effective the substitu-
tion of non-terminal symbols by new terminal or non-terminal symbols.

In the following, we denote a complete graph with n vertexes by Kn and the iden-
tity function from processors to vertexes by id.

Our first result is related to the regular language class, defined by right linear
grammars. We provide the following theorem.

Theorem 1  Every regular language can be generated by a GNGP with 3 processors.

Proof  Let L = L(G) and G = (N, T ,P, S) be a right linear grammar. We define
the GNGP � = (V , T ,N1,N2,N3,K3, id,N1) , where V = N ∪ T ∪ N̂ ∪ [TN] , with
N̂ = {Â ∶ A ∈ N} and [TN] = {[aB] ∶ a ∈ T ,B ∈ N} . The processors in � are
defined as follows

1.	 N1 = (M1, {S},N,FI1,PO1, �,m)

	 
M1 = {A → [bC] ∶ (A → bC) ∈ P} ∪ {A → a ∶ (A → a) ∈ P}

FI1 = [TN] ∪ N̂

PO1 = [TN]
2.	 N2 = (�,A2,PI2, �,PO2, �, c)

Fig. 1   GNGP structure for regular grammars

142	 Genetic Programming and Evolvable Machines (2022) 23:133–155

1 3

	 
A2 = N̂

PI2 = [TN]

PO2 = VV ∪ (V − N̂)
3.	 N3 = (M3, �,PI3, �,V ,FO3,m)

	 
M3 = {[aA] → a ∶ A ∈ N ∧ a ∈ T} ∪ {Â → A ∶ A ∈ N}

PI3 = {[aA]Â ∶ a ∈ T ∧ A ∈ N}

FO3 = [TN] ∪ N̂

The network structure is shown in Fig. 1, and it simulates the derivation process
in the regular grammar. Processor N1 collects the output strings and it applies
the productions of the grammar. Observe that the strings of the language cannot
leave the processor due to the output filter definition. Processor N2 is used for the
case when a production in the form A → bC has been applied. It applies crossover
in order to add a new symbol from N̂ at the end of the string. Observe that, due
to the PO2 filter definition, all the symbols from N̂ remain in the processor N2 .
Finally, processor N3 substitutes the symbols from N̂ and [TN] used by N1 and N2
in order to keep the derivation process of the grammar. We propose the following
enunciate that allows the formal proof of the theorem:

with � ∈ L1 ∩ (N ∪ T)∗

In order to prove the statement, we carry out an induction process over the num-
ber of derivation steps in the grammar G to obtain � . So, we prove that if S

∗

⇒
G
� then

a configuration (L1, L2, L3) exists such that � ∈ L1 ∩ (N ∪ T)∗

Induction base
In this case, only one derivation step in the grammar is applied as S ⇒

G
� (observe

that we have omitted the trivial case S
∗

⇒
G
S ). If one derivation step is carried out, the

production S → � ∈ P . If � = a then S → a ∈ M1 , and in the first genetic step S
mutates to a and, in the following communication step, a does not leave the proces-
sor N1 . So, ({S},A2, �) ↦

�
(L1, L2, L3) , a ∈ L1 and the statement is true.

If � = aB then S → [aB] ∈ M1 and [aB] → a ∈ M3 . The following steps are car-
ried out in � : First, S mutates to [aB] in N1 during the first genetic step, then the
string [aB] is communicated to N2 . Here, by applying the crossover operation, the
string [aB]B̂ is obtained and it is communicated to N3 . The other strings that can
be obtained by applying the crossover operations are sent out the processor N2 , and
they cannot enter into a new processor, so they are lost. In the processor N3 , the
symbol [aB] mutates to a and the symbol B̂ mutates to B in the next two genetic
steps. Finally, the string aB is communicated to N1 and the statement is true.

Induction hypothesis
Let us suppose that for every integer p such that S

p

⇒
G
� , with 1 ≤ p , there is a

number k such that ({S},A2, �)
k
↦
�

(L1, L2, L3) with � ∈ L1 ∩ (N ∪ T)∗.

S
∗

⇒
G
� iff ({S},A2, �)

∗
↦
�

(L1, L2, L3)

143

1 3

Genetic Programming and Evolvable Machines (2022) 23:133–155	

Induction step
Finally, let us suppose that S

p

⇒
G
� ⇒

G
� . Here, � = wA with w ∈ T∗ and A ∈ N

and, by our induction hypothesis, ({S},A2, �)
k
↦
�

(L1, L2, L3) with wA ∈ L1 . Now, we
consider two cases to obtain � from wA: First, A → b ∈ P , with b ∈ T  , and � = wb .
In this case, the string wA mutates to wb in N1 given that A → b ∈ M1 . In the follow-
ing communication step, wb does not leave the processor N1 and the statement is
true. The second case is established whenever A → bC ∈ P and � = wbC . Here, the
string wA is in processor N1 by our induction hypothesis. Then, the string wA
mutates to w[bC] given that A → [bC] ∈ M1 . The string w[bC] is then communi-
cated to N2 and, in the next genetic step, by applying the crossover operation in N2
the string w[bC]Ĉ is obtained and communicated to N3 . In the next two genetic
steps, the string w[bC]Ĉ mutates to wbC which is finally communicated to N1 , and
the statement is true.

The second part of the statement can be established as follows:

Here, we can carry out the induction proof in a way similar to the previous one.
Given that for every string w ∈ L(G) , S

∗

⇒
G
w , we have proved that there exists a

configuration (L1, L2, L3) with w ∈ L1 which can be obtained during the network
computation and, consequently, w ∈ L(�) . So, the theorem is proved to be true. 	� ◻

Example 1  Let G be the regular grammar defined by the following productions

The grammar G generates the language L(G) = {an ∶ n ≥ 2} ∪ {bn ∶ n ≥ 2}.

We define a GNGP � = (V , T ,N1,N2,N3,K3, id,N1) that generates L(G) as
follows:

The processor N1 = (M1, {S}, {S,A,B},FI1,PO1, �,m) where M1 is defined by the
rules:

The processor N2 = (�,A2,PI2, �,PO2, �, c) where

if ({S},A2, �)
∗
↦
�

(L1, L2, L3) with � ∈ L1 ∩ (N ∪ T)∗ then S
∗

⇒
G
�.

S → aA ∣ bB A → aA ∣ a B → bB ∣ b

V ={S,A,B, a, b, Ŝ, Â, B̂, [aA], [aB], [aS], [bA], [bB], [bS]}

T ={a, b}

S → [aA] S → [bB] A → [aA]

A → a B → [bB] B → b

FI1 = {Ŝ, Â, B̂, [aA], [aB], [aS], [bA], [bB], [bS]}, and

PO1 = {[aA], [aB], [aS], [bA], [bB], [bS]}

144	 Genetic Programming and Evolvable Machines (2022) 23:133–155

1 3

The processor N3 = (M3, �,PI3, �,V ,FO3,m) where M3 is defined by the rules:

The functioning of the network is explained in the following: In processor N1 , the
productions of the grammar are effectively applied. For example, if the produc-
tion is A → a then directly the mutation A → a is applied, while if the production
A → aA is applied then the mutation A → [aA] mutates the auxiliary symbol. Then
the mutated string with the [aA] symbol is sent to the N2 processor. In processor
N2 , by means of crossover operations, strings with the segment [aA]Â are obtained.
These strings are sent to processor N3 . In processor N3 the mutation symbols [aA]
are changed to a and the mutation symbols Â are changed to A. The string, which
already contains only auxiliary and terminal symbols of the grammar G, is sent back
to processor N1 and a new grammar derivation cycle can be applied. Note that those
strings containing only terminal symbols do not leave the processor N1 and they are
the strings generated by the grammar G. 	� ◻

A2 ={Ŝ, Â, B̂},

PI2 ={[aA], [aB], [aS], [bA], [bB], [bS]}, and

PO2 =VV ∪ {S,A,B, a, b, [aA], [aB], [aS], [bA], [bB], [bS]}

[aS] → a [bS] → b [aA] → a

[bA] → b [aB] → a [bB] → b

Ŝ → S Â → A B̂ → B

PI3 = {[aS]Ŝ, [bS]Ŝ, [aA]Â, [bA]Â, [aB]B̂, [bB]B̂}, and

FO3 = {Ŝ, Â, B̂, [aA], [aB], [aS], [bA], [bB], [bS]}

Fig. 2   GNGP structure for context-free grammars

145

1 3

Genetic Programming and Evolvable Machines (2022) 23:133–155	

For the class of context-free languages we use an additional processor with
respect to the network structure used in the regular case. In Fig. 2, we show the
network structure that we use in the following proof.

Theorem 2  Every context-free language can be generated by a GNGP with 4
processors.

Proof  Let G = (N, T ,P, S) be a context-free grammar in Chomsky Normal Form
and L = L(G) . We define the GNGP � = (V , T ,N1,N2,N3,N4,K4, id,N1) , where

V = N ∪ T ∪ N̂ ∪ T̂ ∪ N̄ ∪ T̄ ∪ [NT] ∪ [NN] ∪ [TN]

∪ [TT] ∪ [NT]� ∪ [NN]� ∪ [TN]� ∪ [TT]� ∪ [[NN]] ∪ [[NN]] ∪ [[NN]]f
 . The alphabets

are defined as follows:

The processors in � are defined as follows

1.	 N1 = (M1, {S},V ,FI1,PO1, �,m)

	 
M1 = {A → [[BC]] ∶ (A → BC) ∈ P} ∪ {A → a ∶ (A → a) ∈ P}

FI1 = N̄ ∪ T̄ ∪ N̂ ∪ T̂ ∪ [NT] ∪ [NN] ∪ [TN] ∪ [TT] ∪ [NN]� ∪ [[NN]] ∪ [[NN]]f

PO1 = [[NN]]
2.	 N2 = (M2, �,PI2, �,V ,FO2,m)

	 

M2 = {A → [BA] ∶ A,B ∈ (N ∪ T)} ∪ {A → [BA]� ∶ A,B ∈ (N ∪ T)}

∪{A → Ā ∶ A ∈ (N ∪ T)} ∪ {[[AB]] → [[AB]] ∶ A,B ∈ N}

∪{[[AB]] → [[AB]]f ∶ A,B ∈ N}

PI2 = [[NN]]

FO2 = [[NN]] ∪ N ∪ T
3.	 N3 = (�, (N̂ ∪ T̂),PI3,FI3,PO3, �, c)

	 

PI3 = {[AB]� ∶ A,B ∈ (N ∪ T)} ∪ {[[AB]]f ∶ A,B ∈ N}

FI3 = N ∪ T ∪ N̂ ∪ T̂ ∪ {[AB][CD] ∶ B ≠ C}

∪{[AB][CD]� ∶ B ≠ C} ∪ {[[AB]][CD] ∶ B ≠ C}

∪{[[AB]][CD]� ∶ B ≠ C} ∪ {[AB][[CD]] ∶ A,B ∈ (N ∪ T) ∧ C,D ∈ N}

∪{[AB]�C ∶ A,B ∈ (N ∪ T) ∧ C ∈ V} ∪ {Ā[BC]� ∶ A,B,C ∈ (N ∪ T)}

∪{Ā[BC] ∶ A,B,C ∈ (N ∪ T)} ∪ {[[AB]]f C ∶ A,B ∈ N ∧ C ∈ V}

∪{[AB][[CD]]f ∶ A,B ∈ (N ∪ T) ∧ C,D ∈ N}

PO3 = {AB ∶ A,B ∈ V} ∪ (V − (N̂ ∪ T̂))

N̂ = {Â ∶ A ∈ N} [NT]� = {[Aa]� ∶ A ∈ N, a ∈ T}

T̂ = {â ∶ a ∈ N} [NN]� = {[AB]� ∶ A,B ∈ N}

N̄ = {Ā ∶ A ∈ N} [TN]� = {[aA]� ∶ a ∈ T ,A ∈ N}

T̄ = {ā ∶ a ∈ T} [TT]� = {[ab]� ∶ a, b ∈ T}

[NT] = {[Aa] ∶ A ∈ N, a ∈ T} [[NN]] = {[[AB]] ∶ A,B ∈ N}

[NN] = {[AB] ∶ A,B ∈ N} [[NN]] = {[[AB]] ∶ A,B ∈ N}

[TN] = {[aA] ∶ a ∈ T ,A ∈ N} [[NN]]f = {[[AB]]f ∶ A,B ∈ N}

[TT] = {[ab] ∶ a, b ∈ T}

146	 Genetic Programming and Evolvable Machines (2022) 23:133–155

1 3

4.	 N4 = (M4, �,PI4, �,V ,FO4,m)

	 

M4 = {[AB] → A ∶ A,B ∈ (N ∪ T)} ∪ {[AB]� → A ∶ A,B ∈ (N ∪ T)}

∪{[[AB]] → A ∶ A,B ∈ N} ∪ {[[AB]]f → A ∶ A,B ∈ N}

∪{Â → A ∶ A ∈ (N ∪ T)} ∪ {Ā → A ∶ A ∈ (N ∪ T)}

PI4 = {[[AB]]f B̂ ∶ A,B ∈ N} ∪ {[AB]�B̂ ∶ A,B ∈ (N ∪ T)}

FO4 = N̂ ∪ T̂ ∪ N̄ ∪ T̄ ∪ [NT] ∪ [NN] ∪ [TN] ∪ [TT] ∪ [[NN]] ∪ [NT]�

∪[NN]� ∪ [TN]� ∪ [TT]� ∪ [[NN]]f

The processor N1 collects the output strings and, in the network, the following trans-
formations are carried out: Processor N1 applies the grammar rules in the Chomsky
Normal Form. The rule A → a is directly applied, while the rule A → BC needs a
sequence of transformations in processors N2 , N3 and N4 . First, A is transformed into
[[BC]] in processor N1 . Then, a string in the form x[[BC]]y, with x, y ∈ (N ∪ T)∗ ,
enters into processor N2 . In processor N2 the string x[[BC]]y1y2 … yn , with
yj ∈ N ∪ T is transformed into the string x̄[[BC]][Cy1][y1y2]… [yn−2yn−1][yn−1yn]

�
and [[BC]] is transformed into [[BC]] or [[BC]]f  . The symbol [[BC]]f is used for the
case that y is the empty string and the symbol [[BC]] is at the end of the string. Hence,
only the strings in the form x̄[[BC]][Cy1][y1y2]… [yn−2yn−1][yn−1yn]

� or x̄[[BC]]f
can enter into the processor N3 . The rest of transformed strings leave the processor
N2 and cannot enter into a new processor, so they are lost. In processor N3 , cross-
over is carried out, and the strings x̄[[BC]][Cy1][y1y2]… [yn−1yn]

�ŷn or x̄[[BC]]f Ĉ
can be obtained. In one communication step, all the strings obtained by crossover
leave the processor N3 . Only the strings in the form x̄[[BC]][Cy1]… [yn−1yn]

�ŷn or
x̄[[BC]]f Ĉ can enter into processor N4 . In the processor N4 , all the symbols that have
been inserted or transformed in processors N2 and N3 are changed to the symbols
of the grammar G. So, the string x̄[[BC]][Cy1][y1y2]… [yn−1yn]

�ŷn is transformed to
xBCy1y2 … yn−2yn−1yn and the string x̄[[BC]]f Ĉ is transformed to xBC. The trans-
formed strings leave the processor N3 and they can enter only in processor N1 where
a new sequence of transformation could start again.

Formally, we can prove the following statement

We carry out an induction process over the number of derivation steps in the gram-
mar G to obtain � . So, we prove that if S

∗

⇒
G
� then a configuration (L1, L2, L3, L4)

exists with � ∈ L1 ∩ (N ∪ T)∗

Induction base
In this case, only one derivation step in the grammar is applied as S ⇒

G
� . If one

derivation step is carried out, the production S → � ∈ P . If � = a ∈ T then
S → a ∈ M1 , and in the first genetic step S mutates to a and, in the following com-
munication step, a does not leave the processor N1 . So,
({S}, �, (N̂ ∪ T̂), �)

∗
↦
𝛱

(L1, L2, L3, L4) , a ∈ L1 and the statement is true.
If � = AB then S → [[AB]] ∈ M1 . Then, [[AB]] leaves N1 and enters into N2 where

it mutates to [[AB]]f  . The string [[AB]]f leaves N2 and it enters into N3 . In the proces-
sor N3 , the strings [[AB]]f and B̂ are recombined by crossover to obtain the string
[[AB]]f B̂ that leaves the processor N3 and it enters into the processor N4 . Finally, in

S
∗

⇒
G
𝛼 iff ({S}, �, (N̂ ∪ T̂), �)

∗
↦
𝛱

(L1, L2, L3, L4) with 𝛼 ∈ L1 ∩ (N ∪ T)∗

147

1 3

Genetic Programming and Evolvable Machines (2022) 23:133–155	

the processor N4 , the string [[AB]]f B̂ is transformed into AB and communicated to
the processor N1 where it enters. So, ({S}, �, (N̂ ∪ T̂), �)

∗
↦
𝛱

(L1, L2, L3, L4) , AB ∈ L1
and the statement is true.

Induction hypothesis
Let us suppose that for every integer p ≥ 1 such that S

p

⇒
G
� , it also holds that

({S}, �, (N̂ ∪ T̂), �)
∗
↦
𝛱

(L1, L2, L3, L4) with 𝛼 ∈ L1 ∩ (N ∪ T)∗

Induction step
Let us suppose that S

p

⇒
G
� ⇒

G
� , with p ≥ 1 . Here, � = �1A�2 with

�1, �2 ∈ (N ∪ T)∗ and A ∈ N and, by our induction hypothesis,
({S}, �, (N̂ ∪ T̂), �)

∗
↦
𝛱

(L1, L2, L3, L4) with 𝛽1A𝛽2 ∈ L1 ∩ (N ∪ T)∗ . Now, we con-
sider two cases to obtain � from �1A�2 : First, A → b ∈ P and � = �1b�2 . In this case,
the string �1A�2 mutates to �1b�2 in N1 given that A → b ∈ M1 . In the following
communication step, �1b�2 does not leave the processors N1 and the statement is
true.

The second case is when A → BC ∈ P and � = �1BC�2 . Here, the string �1A�2 is
in processor N1 as it is established in our induction hypothesis, and it is transformed
into the string �1BC�2 through a sequence of operations in the processors N2 , N3 and
N4 as we have described before. The string �1BC�2 enters into the processor N1 , and
the statement holds.

The second part of the statement can be established as follows:

Here, we can carry out the induction proof in a way similar to the first part of the
statement.

if ({S},A2, �)
∗
↦
�

(L1, L2, L3) with � ∈ L1 ∩ (N ∪ T)∗ then S
∗

⇒
G
�.

Fig. 3   GNGP structure for context-sensitive grammars

148	 Genetic Programming and Evolvable Machines (2022) 23:133–155

1 3

Given that every string w ∈ L(G) follows from S
∗

⇒
G
w , we have proved that there

exists a configuration (L1, L2, L3, L4) such that w ∈ L1 that can be obtained during the
network computation and, consequently, w ∈ L(�) . Hence, the theorem is true. 	� ◻

The following class in the Chomsky hierarchy is the class of context-sensi-
tive languages. In this case, we use part of the constructions that we have shown
before. In Fig. 3, we show the network structure that we propose in the following
result.

Theorem 3  Every context-sensitive language can be generated by a GNGP with 6
processors.

Proof  Let G = (N, T ,P, S) be an arbitrary grammar in Kuroda’s normal form.
We propose the network � = (V ,N1,N2,N3,N4,N5,N6,K6, id,N1) with

V = N ∪ T ∪ N̂ ∪ T̂ ∪ N̄ ∪ T̄ ∪ [NT] ∪ [NN] ∪ [TN] ∪ [TT] ∪ [NT]� ∪ [NN]�

∪ [TN]� ∪ [TT]� ∪ [[NN]] ∪ [[NN]]f ∪ [[NN]] ∪ [NNN]l ∪ [NNN]r
  ,

where the alphabets are defined as in the proof of Theorem 2, and the
new alphabets are defined as [NNN]l = {[ABC]l ∶ A,B,C ∈ N} and
[NNN]r = {[ABC]r ∶ A,B,C ∈ N} .

The processors are defined as follows:

1.	 N1 = (M1, {S},V ,FI1,PO1, �,m)

	 

M1 = {A → [[BC]] ∶ (A → BC) ∈ P} ∪ {A → a ∶ (A → a) ∈ P}

∪{A → B ∶ (A → B) ∈ P} ∪ {A → [ACD]l ∶ ∃B ∈ N ∧ (AB → CD) ∈ P}

FI1 = N̄ ∪ T̄ ∪ N̂ ∪ T̂ ∪ [NT] ∪ [NN] ∪ [TN] ∪ [TT] ∪ [NN]� ∪ [[NN]]f ∪ [[NN]]

PO1 = [[NN]] ∪ {[ACD]l ∶ ∃B ∈ N ∧ (AB → CD) ∈ P}
2.	 N2 = (M2, �,PI2, �,V ,FO2,m)

	 

M2 = {A → [BA] ∶ A,B ∈ (N ∪ T)} ∪ {A → [BA]� ∶ A,B ∈ (N ∪ T)}

∪{A → Ā ∶ A ∈ (N ∪ T)} ∪ {[[AB]] → [[AB]] ∶ A,B ∈ N}

∪{[[AB]] → [[AB]]f ∶ A,B ∈ N}

PI2 = [[NN]]

FO2 = [[NN]] ∪ N ∪ T
3.	 N3 = (�, (N̂ ∪ T̂),PI3,FI3,PO3, �, c)

	 

PI3 = [NN]� ∪ [NT]� ∪ [TN]� ∪ [TT]� ∪ [[NN]]f

FI3 = {[AB][CD] ∶ B ≠ C} ∪ {[AB][CD]� ∶ B ≠ C} ∪ {[[AB]][CD] ∶ B ≠ C}

∪{[[AB]][CD]� ∶ B ≠ C} ∪ {[AB][[CD]] ∶ A,B ∈ (N ∪ T) ∧ C,D ∈ N}

∪{[AB]�C ∶ A,B ∈ (N ∪ T) ∧ C ∈ V} ∪ {Ā[BC]� ∶ A,B,C ∈ (N ∪ T)}

∪{Ā[BC] ∶ A,B,C ∈ (N ∪ T)} ∪ {[[AB]]f C ∶ A,B ∈ N ∧ C ∈ V}

∪{[AB][[CD]]f ∶ A,B ∈ (N ∪ T) ∧ C,D ∈ N}

∪N ∪ T ∪ N̂ ∪ T̂

PO3 = {AB ∶ A,B ∈ V} ∪ (V − (N̂ ∪ T̂))

149

1 3

Genetic Programming and Evolvable Machines (2022) 23:133–155	

4.	 N4 = (M4, �,PI4, �,V ,FO4,m)

	 

M4 = {[AB] → A ∶ A,B ∈ (N ∪ T)} ∪ {[AB]� → A ∶ A,B ∈ (N ∪ T)}

∪{[[AB]] → A ∶ A,B ∈ N} ∪ {[[AB]]f → A ∶ A,B ∈ N}

∪{Â → A ∶ A ∈ (N ∪ T)} ∪ {Ā → A ∶ A ∈ (N ∪ T)}

PI4 = {[[AB]]f B̂ ∶ A,B ∈ N} ∪ {[AB]�B̂ ∶ A,B ∈ (N ∪ T)}

FO4 = N̂ ∪ T̂ ∪ N̄ ∪ T̄ ∪ [NN] ∪ [NT] ∪ [TN] ∪ [TT] ∪ [[NN]]

∪[NN]� ∪ [NT]� ∪ [TN]� ∪ [TT]� ∪ [[NN]]f

5.	 N5 = (M5, �,PI5, �,V , �,m)

	  M5 = {B → [BCD]r ∶ ∃A ∈ N ∧ (AB → CD) ∈ P}

PI5 = {[ACD]lB ∶ (AB → CD) ∈ P}
6.	 N6 = (M5, �,PI6, �,V ,FO6,m)

	 

M6 = {[ACD]l → C ∶ ∃B ∈ N with (AB → CD) ∈ P}

∪{[BCD]r → D ∶ ∃A ∈ N with (AB → CD) ∈ P}

PI6 = {[ACD]l[BCD]r ∶ (AB → CD) ∈ P}

FO6 = {[ACD]l ∶ A,C,D ∈ N} ∪ {[BCD]r ∶ B,C,D ∈ N}
As in the proof of Theorem 2, the processor N1 collects the output strings. The net-
work � simulates the derivation process in the grammar G. Observe that G is in
Kuroda Normal Form. Hence, the productions of the grammar can only be of the
following forms:

1.	 A → a , with A ∈ N and a ∈ T

2.	 A → B , with A,B ∈ N

3.	 A → BC with A,B,C ∈ N

4.	 AB → CD with A,B,C,D ∈ N

Fig. 4   GNGP structure for phrase structure (non-restricted) grammars

150	 Genetic Programming and Evolvable Machines (2022) 23:133–155

1 3

For the case of productions in the form (1) and (3), the network carries out a set of
operations that simulate the rule application as we have described in the proof of
Theorem 2. In the case of productions of type (3), the processors N1,N2,N3 and N4
carry out the sequence of transformations previously described. For the case of pro-
ductions of type (2), the networks directly applies this production at processor N1 in
a way similar to productions of type (1).

Now, we focus on the productions of type (4). The first transformation is carried
out at processor N1 , where, for any production in the form AB → CD , the symbol
A mutates to the symbol [ACD]l . Then the string is sent out of processor N1 and it
enters into processor N5 provided that the segment [ACD]lB appears in the string.
Then, the symbol B mutates to [BCD]r , the string is sent out of the processor N5 and
it enters into processor N6 where [ACD]l mutates to C and [BCD]r mutates to D. So,
the application of rule AB → CD is completed and the transformed string returns to
processor N1.

We must prove the following statement

The proof is similar as in Theorem 2, with the new rule applications that we have
explained before. 	� ◻

Finally, we define a GNGP network for the last class in the Chomsky hierarchy,
that is the phrase structure (non-restricted) grammars. In this case, we propose
the network structure that is shown in the Fig. 4. Observe that we take advantage
of the previously proposed topologies, and we add new processors in order to
deal with grammar productions in the form AB → B . We enunciate the following
theorem that can be considered as an universality result for the Generating Net-
works of Genetic Processors.

Theorem 4  Every recursively enumerable language can be generated by a GNGP
with 8 processors.

Proof  Let G = (N, T ,P, S) be an arbitrary phrase structure (non-restricted) grammar
with the productions in the form established at Sect. 2. We omit the case for the
production S → �.

We propose the network � = (V ,N1,N2,N3,N4,N5,N6,N7,N8,K8, id,N1) , with
V = N ∪ T ∪ N̂ ∪ T̂ ∪ N̄ ∪ T̄ ∪ �N ∪ �T ∪ [NT] ∪ [NN] ∪ [TN] ∪ [TT]

∪ [NT]� ∪ [NN]� ∪ [TN]� ∪ [TT]� ∪ [[NN]] ∪ [[NN]]f

∪ [[NN]] ∪ [NNN]l ∪ [NNN]r ∪ ⟨NN⟩ ∪ ⟨NT⟩ ∪ ⟨TN⟩ ∪ ⟨TT⟩
∪ ⟨NX⟩ ∪ ⟨TX⟩ ∪ ⟨NN⟩ ∪ ⟨NT⟩ ∪ ⟨TN⟩ ∪ ⟨TT⟩ ∪ ⟨⟨NN⟩⟩ ∪ ⟨⟨NN⟩⟩

 , where

X ∉ (T ∪ N) . In this case, the new alphabets are defined in a way similar to the pre-
vious results.

The processors are defined as follows:

S
∗

⇒
G
𝛼 iff ({S}, �, (N̂ ∪ T̂), �, �, �)

∗
↦
𝛱

(L1, L2, L3, L4, L5, L6)

with 𝛼 ∈ L1 ∩ (N ∪ T)∗

151

1 3

Genetic Programming and Evolvable Machines (2022) 23:133–155	

1.	 N1 = (M1, {S},V ,FI1,PO1, �,m)

	 

M1 = {A → [[BC]] ∶ (A → BC) ∈ P} ∪ {A → a ∶ (A → a) ∈ P}

∪{A → B ∶ (A → B) ∈ P} ∪ {A → ⟨⟨AB⟩⟩ ∶ (AB → B) ∈ P}

∪{A → [ACD]l ∶ ∃B ∈ N with (AB → CD) ∈ P}

FI1 = N̄ ∪ T̄ ∪ N̂ ∪ T̂ ∪ �N ∪ �T ∪ [NN] ∪ [NT] ∪ [TN] ∪ [TT] ∪ [NN]

∪[[NN]]f ∪ [[NN]] ∪ ⟨⟨NN⟩⟩ ∪ ⟨NN⟩ ∪ ⟨NT⟩ ∪ ⟨TN⟩
∪⟨TT⟩ ∪ ⟨NX⟩ ∪ ⟨TX⟩ ∪ ⟨NN⟩ ∪ ⟨NT⟩ ∪ ⟨TN⟩ ∪ ⟨TT⟩

PO1 = {[ACD]l ∶ ∃B ∈ N with (AB → CD) ∈ P} ∪ [[NN]] ∪ ⟨⟨NN⟩⟩
2.	 N2 = (M2, �,PI2, �,V ,FO2,m)

	 

M2 = {A → [BA] ∶ A,B ∈ (N ∪ T)} ∪ {A → [BA]� ∶ A,B ∈ (N ∪ T)}

∪{A → Ā ∶ A ∈ (N ∪ T)} ∪ {[[AB]] → [[AB]] ∶ A,B ∈ N}

∪{[[AB]] → [[AB]]f ∶ A,B ∈ N}

PI2 = [[NN]]

FO2 = N ∪ T ∪ [[NN]]
3.	 N3 = (�, (N̂ ∪ T̂),PI3,FI3,PO3, �, c)

	 

PI3 = [NN]� ∪ [NT]� ∪ [TN]� ∪ [TT]� ∪ [[NN]]f

FI3 = N ∪ T ∪ N̂ ∪ T̂ ∪ {[AB][CD] ∶ B ≠ C} ∪ {[AB][CD]� ∶ B ≠ C}

∪{[[AB]][CD] ∶ B ≠ C} ∪ {[[AB]][CD]� ∶ B ≠ C}

∪{[AB][[CD]] ∶ A,B ∈ (N ∪ T) ∧ C,D ∈ N}

∪{[AB]�C ∶ A,B ∈ (N ∪ T) ∧ C ∈ V}

∪{Ā[BC]� ∶ A,B,C ∈ (N ∪ T)}

∪{Ā[BC] ∶ A,B,C ∈ (N ∪ T)}

∪{[[AB]]f C ∶ A,B ∈ N ∧ C ∈ V}

∪{[AB][[CD]]f ∶ A,B ∈ (N ∪ T) ∧ C,D ∈ N}

PO3 = {AB ∶ A,B ∈ V} ∪ (V − (N̂ ∪ T̂))

4.	 N4 = (M4, �,PI4,FI4,V ,FO4,m)

	 

M4 = {[AB] → A ∶ A,B ∈ (N ∪ T)} ∪ {[AB]� → A ∶ A,B ∈ (N ∪ T)}

∪{[[AB]] → A ∶ A,B ∈ N} ∪ {[[AB]]f → A ∶ A,B ∈ N}

∪{Â → A ∶ A ∈ (N ∪ T)} ∪ {Ā → A ∶ A ∈ (N ∪ T)}

∪{�A → A ∶ A ∈ (N ∪ T)} ∪ {⟨⟨AB⟩⟩ → B ∶ A,B ∈ N}

∪{⟨⟨AB⟩⟩ → B ∶ A,B ∈ N} ∪ {⟨AB⟩ → B ∶ A,B ∈ (N ∪ T)}

∪{⟨AB⟩ → B ∶ A,B ∈ (N ∪ T)}

PI4 = {[[AB]]f B̂ ∶ A,B ∈ N} ∪ {[AB]�B̂ ∶ A,B ∈ (N ∪ T)} ∪ ⟨⟨NN⟩⟩
∪⟨⟨NN⟩⟩

FI4 = {⟨AB⟩C ∶ A,B ∈ N ∧ C ∈ V} ∪ {⟨⟨AB⟩⟩C ∶ A,B ∈ N ∧ C ∈ V}

FO4 = N̂ ∪ T̂ ∪ N̄ ∪ T̄ ∪ �N ∪ �T ∪ [NN] ∪ [NT] ∪ [TN] ∪ [TT] ∪ [[NN]]

∪[NN]� ∪ [NT] ∪ [TN]� ∪ [TT]� ∪ [[NN]]f ∪ ⟨NN⟩ ∪ ⟨NT⟩ ∪ ⟨TN⟩
∪⟨TT⟩ ∪ ⟨NN⟩ ∪ ⟨NT⟩ ∪ ⟨TN⟩ ∪ ⟨TT⟩ ∪ ⟨⟨NN⟩⟩ ∪ ⟨⟨NN⟩⟩

152	 Genetic Programming and Evolvable Machines (2022) 23:133–155

1 3

5.	 N5 = (M5, �,PI5, �,V , �,m)

	  M5 = {B → [BCD]r ∶ ∃A ∈ N with (AB → CD) ∈ P}

PI5 = {[ACD]lB ∶ (AB → CD) ∈ P}
6.	 N6 = (M5, �,PI6, �,V ,FO6,m)

	 

M6 = {[ACD]l → C ∶ ∃B ∈ N with (AB → CD) ∈ P}

∪{[BCD]r → D ∶ ∃A ∈ N with (AB → CD) ∈ P}

PI6 = {[ACD]l[BCD]r ∶ (AB → CD) ∈ P}

FO6 = [NNN]l ∪ [NNN]r

7.	 N7 = (M7, �,PI7, �,V ,FO7,m)

	 

M7 = {A → Ã ∶ A ∈ (N ∪ T)} ∪ {A → ⟨AB⟩ ∶ A,B ∈ (N ∪ T)}

∪{A → ⟨AB⟩ ∶ A,B ∈ (N ∪ T)} ∪ {A → ⟨AX⟩ ∶ A ∈ (N ∪ T)}

∪{⟨⟨AB⟩⟩ → ⟨⟨AB⟩⟩ ∶ A,B ∈ N} ∪ {⟨⟨AB⟩⟩ → ⟨⟨AB⟩⟩ ∶ A,B ∈ N}

PI7 = {⟨⟨AB⟩⟩B ∶ (AB → B) ∈ P}

FO7 = N ∪ T ∪ ⟨⟨NN⟩⟩
8.	 N8 = (�, �,PI8,FI8,V , �, c)

	 

PI8 = ⟨⟨NN⟩⟩ ∪ ⟨⟨NN⟩⟩
FI8 = {⟨⟨AB⟩⟩C̃ ∶ A,B ∈ N ∧ C̃ ∈ (Ñ ∪ T̃)}

∪{⟨AX⟩B ∶ A ∈ (N ∪ T) ∧ B ∈ V}

∪{⟨AB⟩C̃ ∶ A,B,C ∈ (N ∪ T)}

∪{C̃⟨AB⟩ ∶ A,C ∈ (N ∪ T) ∧ B ∈ (N ∪ T ∪ {X})}

∪{⟨AB⟩C̃ ∶ A,B,C ∈ (N ∪ T)}

∪{C̃⟨AB⟩ ∶ A,B,C ∈ (N ∪ T)}

∪{⟨AB⟩⟨CD⟩ ∶ A,B,C,D ∈ (N ∪ T)}

∪{⟨AB⟩⟨CD⟩ ∶ A,B,C,D ∈ (N ∪ T)}

∪{⟨AB⟩⟨⟨CD⟩⟩ ∶ A,B ∈ (N ∪ T) ∧ C,D ∈ N}

∪{⟨⟨AB⟩⟩⟨CD⟩ ∶ B ≠ C} ∪ {⟨⟨AB⟩⟩⟨CD⟩ ∶ B ≠ C}

∪{⟨AB⟩⟨CX⟩ ∶ B ≠ C} ∪ {⟨AB⟩⟨CD⟩ ∶ B ≠ C}

∪{⟨AB⟩⟨CD⟩ ∶ B ≠ C}

∪{⟨⟨AB⟩⟩⟨CX⟩ ∶ A,B ∈ N ∧ C ∈ (N ∪ T)}

∪{⟨⟨AB⟩⟩CD ∶ A,B ∈ N ∧ C,D ∈ V}

∪{⟨⟨AB⟩⟩C̃ ∶ A,B ∈ N ∧ C̃ ∈ (Ñ ∪ T̃)}

∪{⟨⟨AB⟩⟩⟨CD⟩ ∶ A,B ∈ N ∧ C,D ∈ (N ∪ T)}

∪{⟨CD⟩⟨⟨AB⟩⟩ ∶ A,B ∈ N ∧ C,D ∈ (N ∪ T)}

∪{⟨⟨AB⟩⟩⟨CD⟩ ∶ A,B ∈ N ∧ C,D ∈ (N ∪ T)}

∪{⟨CD⟩⟨⟨AB⟩⟩ ∶ A,B ∈ N ∧ C,D ∈ (N ∪ T)}
In the proposed network we use the structure that we have established at Theorem 3,
and we introduce new processors, filters and mutation rules in order to apply the

153

1 3

Genetic Programming and Evolvable Machines (2022) 23:133–155	

grammar rules in the form AB → B . We can summarize the rules application as fol-
lows: The rules in the form A → a or A → B are directly applied in processor N1
through mutation rules. The rules in the form A → BC are simulated by the proces-
sors N1,N2,N3 and N4 in a way similar as in Theorem 2 and Theorem 3. The rules in
the form AB → AC and AB → CB are simulated by the processors N1,N5 and N6 in
a way similar as in Theorem 3 (observe that these rules are a restricted case of the
rules in the form AB → CD ). Finally, the rules in the form AB → C are simulated
as follows: First, at processor N1 , the symbol A mutates to the symbol ⟨⟨AB⟩⟩ , and
the mutated string is sent out of the processor N1 . The string enters into the proces-
sor N7 provided that it contains the segment ⟨⟨AB⟩⟩B . At processor N7 the string
�⟨⟨AB⟩⟩BA1A2 …An mutates to �̃⟨⟨AB⟩⟩⟨BA1⟩⟨A1A2⟩⟨A2A3⟩… ⟨An−1An⟩⟨AnX⟩ .
Observe that if B is the symbol at the rightmost position then the mutated string
should be �̃⟨⟨AB⟩⟩⟨BX⟩ . The string is sent out of the processor N7 and it enters into
the processor N8 where only crossover is applied in order to eliminate the last sym-
bol of the string. Observe that in processor N8 only self-crossover is carried out,
given that the only string at processor is the mutated one. Finally, after the last sym-
bol elimination, the string enters into processor N4 where all the marked symbols are
restored to the symbols of the grammar and the string is sent out to the processor N1.

As in the previous theorems we can enunciate and prove the following statement:

	� ◻

5 � Further remarks and conclusions

First, we remark some achievements of this work: we have proposed the Networks
of Genetic Processors as a generative model of computation. In addition, we have
justified its definition as parallel genetic algorithms that act with certain restric-
tions when applying genetic operations, fitness selection and migration procedures
between populations. This allows us to see parallel genetic algorithms as computa-
tional mechanisms for information generation. We have carried out a study about the
generative capacity of the model based on the number of processors that act simul-
taneously. In our case, the research framework has been that of formal language the-
ory, which is a valid operating framework because it covers all computational pro-
cesses from the point of view of theoretical computer science. We have been able to
prove that three, four, six and eight processors are sufficient to generate the classes
of languages according to Chomsky hierarchy which is a generally accepted frame-
work for the study of computatbility theory.

Regarding some improvements that we can address on our proposal, provided that
the unitary productions A → B with A,B ∈ N can be eliminated in the grammar,

S
∗

⇒
G
𝛼 iff ({S}, �, (N̂ ∪ T̂), �, �, �, �, �)

∗
↦
𝛱

(L1, L2, L3, L4, L5, L6, L7, L8)

with 𝛼 ∈ L1 ∩ (N ∪ T)∗

154	 Genetic Programming and Evolvable Machines (2022) 23:133–155

1 3

then the mutation rules A → B can be removed from the processors. Observe that
the formulation of new normal forms for the grammars in the Chomsky hierarchy,
can lead to new network structures. We think that the proposed networks are optimal
with respect to the number of the processors for every language class, and we will
analyze the question in future works. Nevertheless, this is not the case for the alpha-
bet of the network and the filters used to apply the grammar productions. We think
that these parameters should be deeply studied in order to produce optimal solutions
for the descriptive complexity of the proposed model.

Finally, we would like to remark the roles of the operations in the network: The
crossover operation is used only to add or remove new symbols in the strings, while
the mutation rules together with the input and output filters are the main core of
the processors to apply the grammar rules. Hence, the set of strings of a predefined
length obtained in the grammar could be generated by applying only mutation rules.
This opens a new aspect of Networks of Bio-inspired Processors in order to propose
a complexity measure based in a (semi)uniform approach.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author states that there is no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 P. Alarcón, F. Arroyo, V. Mitrana, Networks of polarized evolutionary processors. Inf. Sci. 265,
189–197 (2014)

	 2.	 E. Alba, M. Tomassini, Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 6(2),
443–462 (2002)

	 3.	 E. Alba, J. Troya, A survey of parallel distributed genetic algorithms. Complexity 4(4), 31–52
(1999)

	 4.	 F. Arroyo, J. Castellanos, V. Mitrana, E. Santos, J. Sempere, Networks of bio-inspired processors.
Triangle 7, 3–22 (2012)

	 5.	 F. Arroyo, S. Gómez Canaval, V. Mitrana, S. Popescu, On the computational power of networks of
polarized evolutionary processor. Inf. Comput. 253, 371–380 (2017)

	 6.	 M. Campos, J. Sempere, Accepting networks of genetic processors are computationally complete.
Theor. Comput. Sci. 456, 18–29 (2012)

	 7.	 M. Campos, J. Sempere, Solving combinatorial problems with networks of genetic processors. Int.
J. Inf. Technol. Knowl. 7(1), 65–71 (2013)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

155

1 3

Genetic Programming and Evolvable Machines (2022) 23:133–155	

	 8.	 E. Cantú-Paz, Efficient and Accurate Parallel Genetic Algorithms (Kluwer Academic Publishers,
New York, 2001)

	 9.	 J. Castellanos, C. Martín-Vide, V. Mitrana, J. Sempere, Solving NP-complete problems with net-
works of evolutionary processors. In: Proceedings of the 6th International Work-Conference on
Artificial Intelligence, IWANN 2001 LNCS 2084, Springer, pp. 621–628 (2001)

	10.	 J. Castellanos, C. Martín-Vide, V. Mitrana, J. Sempere, Networks of evolutionary processors. Acta
Inform. 39, 517–529 (2003)

	11.	 L. Kari, G. Rozenberg, The many facets of natural computing. Commun. ACM 51(10), 72–83
(2008)

	12.	 F. Manea, V. Mitrana, All NP-problems can be solved in polynomial time by accepting hybrid net-
works of evolutionary processors of constant size. Inf. Process. Lett. 103, 112–118 (2007)

	13.	 F. Manea, C. Martín-Vide, V. Mitrana, Accepting networks of splicing processors. In: Proceedings
of the First Conference on Computability in Europe, CiE 2005 LNCS 3526, Springer, pp. 300–309
(2005)

	14.	 F. Manea, C. Martín-Vide, V. Mitrana, Accepting networks of splicing processors: complexity
results. Theor. Comput. Sci. 371, 72–87 (2007)

	15.	 A. Mateescu, A. Salomaa, Aspects of Classical Language Theory. In Handbook of Formal Lan-
guages, vol. I (Springer, Berlin, 1997)

	16.	 Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (Springer, Berlin,
1992)

	17.	 G. Păun, G. Rozenberg, A. Salomaa, DNA Computing (Springer, New Computing Paradigms, Ber-
lin, 1998)

	18.	 G. Révész, Introduction to Formal Languages (McGraw-Hill Book Co., New York, 1983)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Generating networks of genetic processors
	Abstract
	1 Introduction
	2 Basic concepts and notation
	3 Generating networks of genetic processors
	3.1 Generating networks of genetic processors are parallel genetic algorithms

	4 Generating formal languages through generating networks of genetic processors
	5 Further remarks and conclusions
	References

