F) POLITECNICA

UNIVERSITAT Y etsinf
DE VALENCIA ninyer

Escola Tecnica Superior d’Enginyeria Informatica

Universitat Politecnica de Valencia

Research on the detection of
test smells and flaky tests

Master’s Final Thesis

Master Universitario en Ingenieria Informatica

Author: Alejandro Vicent Micd
Tutor: Manuela Albert Albiol
External assistant: Shingo Takada

Year: 2022-2023

Y

Research on the detection of test smells and flaky tests

~ .

Abstract

This project is an empirical study that aims to research about test smells and flaky tests. Software
testing is a key part of the development process of every project. During the implementation of
test code, test smells arise, which are poor programming practices present in the test cases.
Because of that, not only the effectiveness of the tests is affected, but also the maintenance and
readability. In addition, some tests may have non-deterministic outcomes. These tests are called
flaky and often lead to confusion and unreliable results.

In this study, tools for the automated detection of test smells have been examined and used, which
allow developers to find test smells in their projects in an efficient way. The tools were executed
over a set of projects with flaky tests and the results were compared with the flaky results for
analyzing the test methods with flaky behavior and test smells. The most common smells were
found out and the relation between smells and flakiness was considered.

The reached conclusion was that there is not enough evidence to support a strong correlation
between test smells and flaky tests. However, some test smells might be related to other patterns
that cause flaky results, such as asynchronous behaviors and connections to external resources.
For easing the process of detecting and comparing test smells and flaky tests, an application was
developed. As a result, the introduction of these practices is a bad habit that should be avoided,

and some guidelines are provided in this regard.

Keywords: test smells, flaky tests, software testing, detection tools, programming practices.

Resumen

Este proyecto es un estudio empirico que pretende investigar sobre los malos olores en pruebas y
las pruebas inestables. Las pruebas de software son una parte fundamental del proceso de
desarrollo de cualquier proyecto. Durante la implementacién del cédigo de prueba, surgen los
malos olores, que son malas practicas de programacion presentes en los casos de prueba. Debido
a ello, no solo se ve afectada la eficacia de las pruebas, sino también su mantenimiento y
legibilidad. Ademaés, algunas pruebas pueden tener resultados no deterministas. Estas pruebas se

denominan "inestables" y a menudo provocan confusion y resultados poco fiables.

En este estudio se han examinado y utilizado herramientas para la deteccion automatizada de
malos olores, que permiten a los desarrolladores encontrar estos olores en sus proyectos de forma
eficiente. Las herramientas se ejecutaron sobre un conjunto de proyectos con pruebas inestables

y los resultados se compararon con los resultados defectuosos para analizar los casos de prueba

s ¥

Research on the detection of test smells and flaky tests

con comportamiento inestable y malos olores. Se descubrieron los olores mas comunes y se

considero la relacion entre olores e inestabilidad.

La conclusion obtenida es que no hay pruebas suficientes que apoyen una fuerte correlacion entre
los malos olores en casos de prueba y las pruebas inestables. Sin embargo, algunos malos olores
podrian estar relacionados con otros patrones que causan resultados inestables, como
comportamientos asincronos y conexiones a recursos externos. Para facilitar el proceso de
deteccion y comparacion de los "malos olores" y las "pruebas inestables”, se ha desarrollado una
aplicacién. Como resultado, la introduccion de estas practicas es un mal habito que debe evitarse,

y se proporcionan algunas pautas en este aspecto.

Palabras clave: malos olores, pruebas inestables, pruebas de software, herramientas de
deteccidn, practicas de programacion.

Resum

Aquest projecte es un estudi empiric que preten investigar sobre les males olors en proves i les
proves inestables. Las proves de software son una part fonamental del procés de desenvolupament
de qualsevol projecte. Durant la implementacio del cddi de prova, sorgeixen les males olors, que
son males practiques de programacio6 presents en els casos de prova. Per aquesta rad, no sols es
veu afectada I’eficacia de les proves, sind també el seu manteniment y legibilitat. Ademés, algunes
proves poden tenir resultats no deterministes. Aquestes proves es denominen “inestables” i sovint

provoquen confusio i resultats poc fiables.

En aquest estudi s’han examinat i utilitzat ferramentes per a la deteccié automatitzada de males
olors, que permeten els desarrolladors trovar aquestes olors en els seus projectes de forma eficient.
Les ferramentes es van executar sobre un conjunt de projectes amb proves inestables i els resultats
es van comparar amb els resultats defectuosos per a analizar els casos de prova amb comportament
inestable i males olors. Es van descobrir les olors més comunes i es considera la relacio entre

olors i inestabilitat.

La conclusion obtinguda es que no hi han proves suficiente que suporten una forta correlacié entre
males olors en casos de prova i proves inestables. No obstant, algunes males olors podrien estar
relacionades amb altres patrons que provoquen resultats inestables, com comportaments asincrons
I conexions a recursos externs. Per a facilitar el procés de deteccié i comparacié de les “males
olors” i les “proves inestables”, s’ha desarrollat una aplicacié. Com a resultat, la introduccion
d’aquestes practiques es un mal habit que es deuria d’evitar, i es proporcionen algunes pautes en

aquest aspecte.

~

Paraules clau: males olors, proves inestables, proves software, ferramentes de deteccio,

practiques de programacio.

s ¥

Research on the detection of test smells and flaky tests

Table of contents

(O [T [FTox {[o] o TSSO SRR PP PROPO 12
1.1 IMOTIVALION ..ottt 13
1.2 Justification of the SUDJECT..........cov i 14
IR T @] oLl (LSRR 14
1.4 Structure OF the theSIS........coveiiiir e 15

p Y [=11 70T (o] (oo Y2 USRS SSTPSON 16
2.1 RESEAICN DASEA ...t 16
2.2 WEEKIY MEETINGS ...ttt bbbt ere s 17

3. SHALE OF T8 ATt s 18
3L €00 SMEIIS ...ttt 18
B2 TS SIMEIIS. ...ttt 23
3.3 Test SMellS deteCtion tOOIScoviiiiiiieie e 26
R P LV (=T (SRS 39
3.5 Flaky tests deteCtion t00IScoviveiiii e e e 40

4. Analysis OF the ProbIEM. ... 43
4.1 Test smells detection t00IS COMPAISON.........ccveiviiieiieiece e e 43
4.2 Test smells as indicators of fIaKINESSccociiiiiiiiiei e 44

5. PropoSed SOIULIONciuiiiiiiiieieieese e 45
5.1 Architecture 0f the SYSIBM.....cui et e s 45
5.2 DeSIgN OF the SYSEMc.eiiiiiiiee bbb 46

5.2.0 IMIOCK=UPDS ...ttt ettt et bbbt b e s bbbt e bt sb et ekt nb st e b st st b s e n et e nea 46
522 FIOWCRNGIT ...ttt ettt sttt bbbttt sb et et nb et et e s e ebennenea 47

6. USEd tECHNOIOGIES ... 49
T €117 10 o SRR 49
0.2 REBACT......eeeieeeei et 49
TR IO oY =L Toa o SRR 50

~y

ORI O T PP U VPR PR PP 51
B.6 EIBCIION ... 51
B.7 PYENON ... 52
6.8 ViISUAI STUTIO COUE ..ot 52
LIRS IE 101 0] 1 o] SRS 53
7. IMPIEMENTATION ...ttt 54
7.1 INEFOTUCTION ...ttt 54
7.2 Algorithms for parsing and MEIGINgGcccoveieeiiiie e e 54
7.3 Smell Flaky ANAlYZEr TOOIccoiiiiiiicie sttt 55
8. VAIAALION ...ttt 64
8.1 OBLAINEU FESUILS. ...t 64
8.2 APPHCALION TESUILSvivieiiitecie ettt st s se e st esbeete e besae e e e 66
8.3 Manual inspections and fINAINGS..........cccoriieriieiei e 69
9. CONCIUSIONS ...ttt bttt b ettt b e b 73
10. FULUIE WOTK ..ottt 75
11, ACKNOWIEAGMENTS ...ttt saa e te e reesbeenee s 76
12. Bibliographical referenCeaScouciiiiiiieie s 77
13, APPENTICES ...ttt bbb bbbttt bbb 83
13.1 List of abbreviations and aCronymSccceivieieieeie it 83
13.2 Slides used for the final presentation ..o 84

'

List

Research on the detection of test smells and flaky tests

of figures

Figure 1. Software development life CYCIE........ccoiv i 12
Figure 2. COSt OF €ITON FEPAIN........iiieieiecie et e e be e sresra et 13
Figure 3. Timeline for the RESEArCh PrOCESS........ccivciiiiiieie et 17
Figure 4. List of Code Smells proposed By FOWIEN..........ccov v 19
Figure 5. Most Common Code Smells that the Tools Can Detectccceeeviviieeveiieieiecieinns 20
Figure 6. Programming Language Used to Develop the TOOIS.........ccccccvveviiiiievc i 21
Figure 7. Programming Language that the Tools Can Analyzecccocveviviiieveieeie e 21
Figure 8. Common Code Smells Detection TOOIS........cccoveviieiieiic i 22
Figure 9. Behavior of the TOOI UIS-HUNTETccoiiiiiiiiiiceeees s 23
Figure 10. List of Test SMellS DY A. DEUISENcviiiiiiiiriee e 24
Figure 11. Test Smells DeteCtion TOOIS.........coiiieiieiiirise s 26
Figure 12. CONfUSTON IMAEIIX......c.viiiiiiiiiieitiite ettt 27
Figure 13. PreCision FOIMUIA ..ot 28
Figure 14. ReCall FOMUIA..........coiiiiiiiii e 28
Figure 15. Conditional Test LOGiC EXaMPIEc.ooviiiiiiiiice s 29
Figure 16. Constructor Initialization EXAMPIEccviiiiiiiieicces s 29
Figure 17. Default TSt EXAMPIEc.oiuiiiiiiiieieeee e 29
Figure 18. Duplicate ASSErt EXAMPIEccceciiiiiiiiicie sttt st 30
Figure 19. EMpPty TeSt EXAMPIE.......coviiiiic ettt sttt sreete e 30
Figure 20. Exception Handling EXample ..ot 30
Figure 21. Ignored TeSt EXAMPIE........coviiiiiciec ettt sttt s re e 31
Figure 22. Magic Number TeSt EXAMPIEccovciviiieiiie ettt 31
Figure 23. Redundant Print EXampPIec.cooviiiiiie et 31
Figure 24. Redundant ASSErtion EXamPle.........cccooiiiiiiiiiie it 31
Figure 25. Sleepy TeSt EXAMPIEoviiviiiiiecece ettt 32
Figure 26. UnKnown TeSt EXAMPIE........cccvciiiiiii et sttt 32
Figure 27. Example of CsV File fOr TSDELECTccviiiiiiiiiieieeeee s 32
Figure 28. Example of TSDeteCt EXECULIONcvoiiiiiiiiiiieiiisie e 33
Figure 29. Example of TsDetect Detection RESUIL............ccoviiririeiiieie e 33
Figure 30. DARTS tool working on INellid.........ccooviiiiiiiiiieee s 34
Figure 31. TeStHOUNT TOOI Ulcooiiiiiiiieieee e 34
Figure 32. INOSE Project ClONE SCrEEN..........civiiiiiiiisit ettt 35
Figure 33. INOSE Project ANAIYZE SCrEENccviiiiiiiiie e 35
Figure 34. INose Analysis ReSUITS TabIe........c.coiiiiiiiiieriee s 36

&

Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.

JNose Analysis ReSUIES Chart..........cooiiioiiiie e 36
JNose Analysis RESUILS CSV FIleccoviiiiiiicc e 37
RAIDE IN ECHPSE vttt sttt ettt sra et e e sresreene s 37
RAIDE Results for AsSertion ROUIETEcoouiiiiiiieieieeeee e 38
RAIDE Results for DUPICAte ASSEIc.ciiiieiiieiie e steesie et sre e 38
Interface of the TeStQ TOOL........coiiii i 39
Dataset 0f FIAKEFIAGUETcvoiiiieeie e e e 42
List of Test Smells for the SiX TOOISccoiiiiiiiiiii e 43
Test Smells Tools and its Detected SMellS..........ccocoveiiiviiiiiiee 43
Test Smells TOOIS COMPATISONcc.ciiiieiiie e 44
Architecture of Smell Flaky Analyzer TOOL.........c.ccooiiiiiieiiiieeeee 46
Mock-up Smell Flaky Analyzer TOOI ..o 47
Flowchart Smell Flaky Analyzer TOOI..........cccooiiiiiiiieeece e 48
Git and GitHub 10g0s, reSPeCtiVelY.........cccoviiiiiiiiee s 49
(T2 10!) oo o BSOSOV PRTPRT PR PRPPRN 49
JAVASCIIPE LOQO .ttt 50
HTIML LOGO. ..ttt s ne e 50
(O8I oo o F PP PP R TP 51
EIECTION LOGO ...ttt 51
PYLNON LOQO......iiiciiiii ittt ettt sttt re b s be e sbeere et 52
Visual StUdIo COUE LOGO0.......cuciuiiieiiiieiieie ettt sttt st s re s 52
PhOtOSNOP LOQO ...cviiiiiiicccce et st sttt sre et re 53
Combined ResUItS from SCrIPL........ccoiiiiiiiiiciee s 55
HOMIE SCIBEN.... .ottt sttt ettt see e nneene e 56
INSEIUCTIONS SCIEENM.......c.eevieiiitiieete ettt 56
ANAIYSIS SCIBEN.....ue ittt st e e s e et e e s reete e besre e e e 57
RESUILS SCIBEN.......eiiiteieie ettt st sttt eneenenneas 57
Results Screen with Hidden ColUMNS............cooiiiiiiiieieeeee e 58
SEALS SCIEEN L.ttt ettt s e e snbe e beenbeeneeas 58
S LIRS ol -] 1T R USRI 59
LIRS Tol 1= 1 TSRS 59
Stats Screen EXplanatory MENUcociviiiiiiiiineesees s 60
Project FOIders and FileS..........cooiiiiiiiic e 61
S 0] £ O TSR 62
REAUCEIS ClIASSES.....eeuveitietiiitiitie sttt sttt e ettt e e s re e e e tesseesaesreanaeseeereenrens 62
Use of useSelector and USEDISPALCHccciiiiiiiiiie e 63
EIECTION SCIIPLS....vititieee et 63

Research on the detection of test smells and flaky tests

Figure 72. Methods and Flaky Methods...........c.cccoiiiiiiiiiei e 64
Figure 73. Methods with and Without SMELIS...........cccooviiiiiiiii e 65
Figure 74. Test Smells in FlaKy TestS DY TYPE....oovv i 65
Figure 75. Test Smells Percentage FOrMUIA...........ccoveiiiiieiiie i 65
Figure 76. Rank of Test Smells in Flaky TeStSc.ccviiiiiieiiieiie e 66
Figure 77. Test SMells in TeSt MEthOUS........cccvciiii i 66
Figure 78. Flakingss in TeSt MEthOUScccvcveiiiicicii e 67
Figure 79. Test Smell Types in SOftWare PrOJECESccccveiviieiiieie e 67
Figure 80. Test Smell Types iN FIaKY TeSIS......ciiiiiiiiiiieecie e 68
Figure 81. Test Smells in Flaky Methods L........c.ccovoiiiiiieiiiece e 68
Figure 82. Test Smells in Flaky Methods 2..........ccooiiiiiiiiiiicees s 69
Figure 83. Tests with Most Common SMEllS...........cooiiiiiiiii e 69
Figure 84. Verbose Test Smell Found EXample..........ccooooiiiiiiiiiiiceeeee 70
Figure 85. Exception Catching Throwing Smell Found Exampleccooviiiiniiiicicen, 70
Figure 86. Conditional Logic Test Found EXample ..o 70
Figure 87. Sleepy Test FOUNd EXAMPIEocvoiiiiiiic s 71
Figure 88. REST Connections Found EXample ... 71
Figure 89. Database Queries FOund EXample.........ccooiiiiiiiiiiiicee s 71
Figure 90. Date Class FOUNd EXaMPIE ... 72
Figure 91. SMTP Connections Found EXamPpPle..........cccovieiiiiiiiie e 72
Figure 92. File Read/Write FOUNd EXAMPIEcvoiiiiiiiiicecece e e 72
FIgUIre 93. SHAE 1 THtlE..ccueiieceice e et be e s re et et 84
Figure 94. Slide 2: Motivation SOftware TeStINGc.ccvvvvieiiiiie e e 85
Figure 95. Slide 3: Motivation TeSt SMEIIS........c.ccoioiiiiiiici e 86
Figure 96. Slide 4: Motivation FIaKy TESES.......ccccivieiiiiiieic et 87
Figure 97. Slide 5: Motivation DEtECLIONc.ccviiiiiiie it 88
Figure 98. Slide 6: State of the Art Smell Selection TOOISc.cccecvveiiiiieeiiie e, 89
Figure 99. Slide 7: State of the Art Citations to Test SMellS ..., 90
Figure 100. Slide 8: State of the Art Flakiness Detection TOOIS..........cccocvvreiineneicncceee, 91
Figure 101. Slide 9: State of the Art SUMMAIYccooiiiiiiiiiieeee s 92
Figure 102. Slide 10: ReSearch QUESTIONScc.eiveiririiiiriisie e 93
Figure 103. Slide 11: ReSearch Process OVEIVIEW.ccureierierieieieesiisiesie e 94
Figure 104. Slide 12: Research Test Smell Detection TOOIcccccevvviviiiiiiiiicce 95
Figure 105. Slide 13: Research Flaky DataSetccoouiiriiirieieiiieisise e 96
Figure 106. Slide 14: Research EMPIrical STUYccooiviiiriiiiiieiie e 97
Figure 107. Slide 15: Research Analysis Of RESUIESccociveiiiiiciiii e 98
Figure 108. Slide 16: AnalysiS Of RESUILSccveiiiiiiiieieieee s 99

‘v 10

Figure 109.
Figure 110.
Figure 111.
Figure 112.
Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.
Figure 119.

Slide 17:
Slide 18:
Slide 19:
Slide 20:
Slide 21:
Slide 22:
Slide 23:
Slide 24:
Slide 25:
Slide 26:
Slide 27:

ANALYSIS OF RESUILS ... 100
ANALYSIS OF RESUILSocvveiiciicc e 101
ANALYSIS OF RESUILSccvviieciicc e 102
ANALYSIS OF RESUILSocvveieciicie e 103
DISCUSSTON. ...ttt sttt bbbt nbe s 104
CONCIUSIONS ...ttt sttt 105
ANALYSIS OF RESUILSocvveieciicie e 106
ANALYSIS OF RESUILSocvviieciice st 107
Test SMells EXAMPIES.......ccv e 108
Flakiness Indicators EXamplescccccevivieieiesie e 109
Correlation Smells and Flakiness INdiCatorsc.ccocevvenereieiininnnns 110

11 ‘v

Research on the detection of test smells and flaky tests

1. Introduction

Nowadays, software plays a central role in shaping the modern world. The rapid advancement of
technology and the increasing reliance on digital solutions have significantly transformed the way
we live, work, and interact. From artificial intelligence (Al) to blockchain, many developments
have been accomplished during the past few decades, leading to a dynamic and continuously
evolving software industry.

But if we want to ensure the quality, functionality and reliability of the software products, we
must test it. As can be seen in Figure 1, software testing is a crucial phase in the software
development life cycle that aims to identify defects and ensure these aspects. It involves the
systematic evaluation of a software application or system to verify that it meets specified

requirements and works as intended.

Figure 1. Software development life cycle

However, testing is not always performed in the best possible way. Test case quality is a critical
aspect of the software testing process that directly influences the effectiveness and efficiency of
testing efforts. High-quality test cases are essential for uncovering defects in the software and

achieving accurate and reliable results.

This last aspect is the main point of this project. In this master’s final thesis, we focus on software
testing quality. In particular, the focus is to study about the detection of test smells, flaky tests

and the possible correlation between them. These particular details of software testing, which will

“J =

be later explained in detail in section 3, are extremely important and should be taken into account

when developing test code.

This final thesis has been developed as a result of the research done at Shingo Takada’s software
laboratory, in the Graduate School of Science and Technology, Keio University, Tokyo, Japan.
Thanks to the Promoe scholarship, | have been able to spend one year as an exchange student at
Keio University, where | could research at a laboratory and use the results to write this thesis.

1.1 Motivation

The main motivation of this project is to research about two key aspects of software testing. test
smells and flaky tests, to learn about them, their detection and possible ways for avoiding and
correcting them. Everyone wants to make a perfect software product from the beginning but that
is not reasonable. After my years as a computer science student, | have realized that it is important

to assume that some errors will appear during the different phases of the development.

When | first started programming, testing was not a part of the equation and, as a result, |
encountered many errors in the later stages of the development. What do these errors mean? What
is causing them? How can | correct them? These were some of the questions that arise in these
cases. However, finding the answer is not easy. Without implementing tests, | ended up spending
a lot of time reading the code I previously wrote (maybe weeks or months ago) to understand it
and find the errors.

% 16,000
85% — f:f._‘_‘-r:n:-rr.a
infroduced in
ths phase
Percentage %% Defects
of Bugs fourd in
ths phase
= 5 Cost to
repair defiect
in this phase
%25
Coding Unit Function System After

Test Test Test Release

Figure 2. Cost of error repair

As we can see in Figure 2, the cost of finding and solving errors increase in the later stages of the
development. There is more code to check, so more time has to be spent finding the errors, which

means more money. Therefore, being able to detect the errors in an early stage and solve them

13

'/

Research on the detection of test smells and flaky tests

before it gets too costly should be the path to follow when developing. This is the main objective
of testing. In this regard, ensuring that the tests written are effective is very important, but some

aspects, like test smells and flaky tests, make it difficult.

Ensuring that test smells and flaky tests do not appear in the testing code would improve the tests
performance, but a manual detection is not feasible. In small projects with few test cases, a manual
inspection of the tests in order to find test smells and flaky tests might be possible. However, in
real projects with thousands of test cases, this is not possible. Instead, this process of detection
has to be automated. After understanding the importance of these, | decided to focus on the

detection of test smells, flaky tests and the relationship between them.

1.2 Justification of the subject

The quality of software, especially good programming practices, has been one of my main
interests throughout my years as a student. Code smells are one of the most known issues
regarding programming practices, so | got interested in them.

The automatic detection of code smells allows to save a lot of time when finding and correcting
smells. Nevertheless, there has been a lot of research done about code smells. That is why |
decided to focus on a specific type of code smells: test smells; that is, code smells in test cases.
There are fewer articles about test smells, and even less about flaky tests. Then, | thought that it
was a good opportunity to research about these topics, which are a recent concern in the last

couple of decades.

1.3 Objectives

The main objective of this master’s thesis is to research about the detection of test smells, flaky

tests and the relation between them.
About specific objectives, the following ones have been established:

e Study about test smells to find out which test smells exist, which are the most common
ones in existing projects and what is their definition.

e Investigate which are the current trends about the automatic detection of test smells and
what technigues and tools are used in this regard.

e Research about flaky tests, what they are, what problems they can cause and how they
can be detected.

e Find out which flaky test techniques exist nowadays, how they work and to what extent
they can be used to automatically detect flakiness.

e Inquire if there is any correlation between test smells and flaky tests, to find out if there

is a way of detecting flakiness using test smells as the source.

~ .

e Developing an application that helps me carry out the research, by being able to
incorporate existing detection tools and use its results to graphically show the results so

that they can be inspected and analyzed.

1.4 Structure of the thesis
Different sections will be presented throughout this memory, starting by an explanation of the

methodology followed as part of the Promoe scholarship in an external university to carry out this
thesis. In the next section, the state of the art will be introduced, with an explanation about code
smells, test smells, flaky tests and current trends and tools about the automatic detection of these
problems in software developing and testing. Conclusions about these matters will be mentioned
at the end of the section.

After understanding the topics mentioned in the previous section and its importance, the problem
of test smells and flaky tests will be analyzed and the possible solutions will be exposed. Then, a
solution will be chosen, which Will be the path to follow in this research. In section 5, the
proposed solution will be explained in detail, with the work plane expected, the design and the
architecture of the system. In this section, some mock-ups and charts will be shown, which were
done before the implementation of the solution to outline the shape of the solution.

Next, it is exposed the technologies used for the application development, as well as the reason
why they were chosen and their impact in the development. In section 7, the implementation of
the application will be documented, with an introduction to roughly explain the overall idea and

different sections to explain in detail the functionality of the different parts of the application.

The next section is destined for validation, in which it will be checked if the work performed
meets the expected results by performing some tests. Last but not least, in the final sections it is
explained what conclusions can be obtained from the research done, the future projection and
work to do and the final acknowledgements. Then, the bibliography with the references consulted,
as well as the appendices with the abbreviations and acronyms used, and the slides employed for

the final presentation.

15 ‘v

Research on the detection of test smells and flaky tests

2. Methodology

The purpose of this section is to explain in detail which has been the methodology followed during
the time | have been working on this master’s thesis. As I said in the introduction, I have been
researching in a university outside from the UPV, so I think it is important to explain the path
followed, as this is a case a bit special.

I received a scholarship by the Promoe program of the UPV to study abroad as an exchange
student for one year at the Graduate School of Science and Technology, as part of Keio University,
Tokyo, Japan. The methodology | followed in Keio was different from the one | would have
followed in Valencia, so | am going to describe it in the following sections.

2.1 Research based

At Keio University and, as far as I know, at most universities in Japan, the bachelor’s tesis and
the master’s thesis are more research based than in Valencia. This implies that first of all, you
should read a lot of articles to understand the current state of the art and look for a possible topic

for your thesis that is innovative and proposes some improvements to the current options.

At Keio University, to do research, you first have to find a professor that works on topics you are
interested in, and then ask him if he allows you to join his laboratory. In a nutshell, joining a
laboratory means that you are part of a research group about a certain sector. This group is formed
by the professor and bachelor, master and PHD students. | was able to join the software and testing
laboratory of professor Shingo Takada, where | started my investigation as an exchange student

that would allow me to do my master’s thesis for the UPV.

In this regard, I invested the first months in trying to find the best topic for my research. My initial
goal was to research about good programming practices: refactoring, code smells, etc. My
professor suggested me some topics related to his laboratory research topics, like fairness testing
and code clones. Fairness tasting is based on finding discrimination towards certain individuals
based on personal attributes such as race, gender or nationality. | read some papers regarding this
topic [1], [2], [3] and found really interesting the things that were explained. Nevertheless, | was
interested in the topic itself, but not in the techniques used to perform the study, based in machine
learning approaches for testing. Also, | did not have much experience in machine learning, so |

decided to drop this option.

For code clones, it was a topic much more related to good programming practices, which is what
I was looking for. | also read many papers regarding this topic. Some of them are the following

ones [4], [5] and [6]. Although | was interested in this topic, after a few weeks of discussion, |

‘v 16

could not think of an innovative and new idea that could be a possible path to follow for my
research, so | also decided to move on to a different topic. Finally, | started reading papers about

code smells, which would be the starting point for my research, as | will explain in section 3.

As we can see in the timeline of Figure 3, the different phases of the research process are drawn.
It gives an overall view of the topics | researched about to find the final topic for my thesis, from
the ones | just mentioned in this section to the topics | will mention in section 3.

Te&tsmells
Code clones Test smells ?nﬁd:]ca;:glresﬁ
September November January
. 2022 . 202 2023
September October December
2022 2022 2022
Fairness testing Code smells Flaky tests

Figure 3. Timeline for the Research Process

2.2 Weekly meetings

The methodology followed in the laboratory is based on a meeting cycle that is repeated weekly
throughout the year. Every week, two meetings take place. Even though you have to attend both
meetings, you are able to decide which of these two days you want to make your presentation.
The day you are not presenting, you hear to everyone else’s presentation and give feedback
whenever appropriate. The day you are presenting, you prepare a set of slides and explain to the

professor the progress you were able to do during the whole week.

This methodology, though strict, helps you keep consistency among weeks, pushes you to work
and allows a direct meeting with the professor, that gives constructive feedback every single week
and helps you plan the next steps. First, | presented about the different papers | read and talked
with the professor about what else should | investigate and how to proceed. Once | finally selected
my thesis topic, | started making presentations about how | was progressing, which results were
obtained and the things I had already implemented. The professor was always willing to help me

and give me his opinion on my work.

17 ‘v

Research on the detection of test smells and flaky tests

3. State of the art

The objective of this section is to evaluate the current state of the art; that is, the highest level of
advancement regarding test smells, flaky tests and its detection. The state of the art is continually
evolving as new developments are made, and advancements are achieved. To know the specific
state of the art in this specific field, I referred to many papers published the last years about code
smells, test smells, flaky tests and its detection in software code.

3.1 Code smells

As | previously mentioned in section 2.1, | started researching about code smells before | decided
to focus on test smells. It is important to know the definition and features of code smells, as well
as the difference between code smells and test smells, before the state of the art about test smells

is explained.

According to the paper published by José Amancio M. Santos et al. [7], code smells are potential
problems in the design of software. The word potential is used because code smells themselves
might not be the cause of errors, but they are initial indicators of possible future problems that not

only affect the efficiency of the code, but also its readability and maintenance.

From the 1990s, the problems during the design of software started gaining importance and
strategies have been discussed to deal with these problems. In 1999, Martin Fowler [8] published
a book focused on refactoring, a technigque used to improve the design of existing code.
According to the following page [9], refactoring is a disciplined technique for restructuring an
existing body of code, altering its internal structure without changing its external behavior. In
other words, refactoring means that some code that has been previously written is modified and

written in a different way without changing what it does, its functionality.

In his book, Fowler adopted the name “code smell” to refer to these problems in the design of
software. He paid special importance in the question “When should you start refactoring?”, and
not only on “How should you refactor your code?”. He said that when to start refactoring and

when to stop is just as important to refactoring as how to operate the mechanics of a refactoring.

In this regard, he wanted some clear steps that would help people understand when refactoring is

needed and should be made.

Because of this reason, he elaborated a list of smells: a total of 22 code smells, with their
characteristics and specific actions to deal with them. In Figure 4, the list with the code smells

proposed by Fowler can be seen.

‘v 18

Duplicated Code Lazy Class

Long Method Speculative Generality

Large Class Temporary Field

Long Parameter List Message Chains

Divergent Change Middle Man

Shotgun Surgery Inappropriate Intimacy

Feature Envy Alternative Classes with Different Interfaces
Data Clumps Incomplete Library Class

Primitive Obsession Data Class

Switch Statements Refused Bequest

Parallel Inheritance Hierarchies Comments

Figure 4. List of Code Smells proposed by Fowler

However, even though these smells, as well as other poor programming practices have been
known for the past decades, and developers understand that they should be avoided, the reality is
different. Nowadays, software systems become more and more complex and companies, in order
to be competitive, have to continuously update their code within time limits [10]. This leads to a
development team more focused on meeting these time limitations by writing code in a short time

rather than taking into account good programming practices.

Code smells are not easy to find and correct manually, and as developers can’t afford the time to
focus on them, they leave them as they are, provoking some technical debt. Technical debt, which
is explained in the work by W. Cunningham [11], can lead to an uncontrollable program and an

inflexible product, when in excess quantities.

Because of the number of resources that have to be used in order to find these poor programming
practices, researchers have studied about the possible implementation of an automated way of
finding code smells. To achieve this, several code smells detection tools have been developed,
that can automatically find smells in the code by using various techniques. In the paper published
by Eduardo Fernandes [12], a study was done about the main characteristics of 84 different tools.

According to this study, the techniques used to discover code smells in these tools are based on
metrics, abstract detection trees (AST), textual analysis, Program Dependence Graph (PDG) or
token analysis. Out of the 84 smell tools, 31 are metric-based, 15 based on ASTs, 6 on textual
analysis, 5 on PDGs and 3 on token analysis. In addition, 11 tools are based on machine learning
techniques and the remaining 17 tools did not provide any information about the technique they

used.

19 ‘v

Research on the detection of test smells and flaky tests

Also, some other information was provided, such as the programming language of the projects
that the tools are able to analyze, the programming language that was used to develop the tools

and the type of code smells that can be detected by using the tools.

First of all, and as we can see in Figure 5, the top ten smells that can be detected by the tools are
shown. It can be observed that the smells Duplicated Code and Large class are the most common
ones among the tools, followed by Long Method and Feature Envy. This high percentage might
be because of the importance of these smells in order to write clean code.

4
O ss0s%
35 40.48%
8
F 30
6
525
2
22.62%

2 20
©1s 15.48%
@
£10 150% 1071%
5 833% 833% 833% 833%
B I I I I

0

z o (3 o 5)
& & & @“J‘ & & & & & &

> & QF 2 g A ° o &6‘

O S P I g
Q‘.’Q\ S « q\f% ‘3&% S

o &
N 9
Bad Smell

Figure 5. Most Common Code Smells that the Tools Can Detect

In addition, Figure 6 shows the programming languages used to develop these tools. We can
observe that Java is by far the preferred language when thinking about developing a code smell

detection tool, followed by C and C++.

‘v 20

45

410

Number of Tools
[l Psd] [F¥)
mn o wu o

[
o

40

7
4
. < - 1 1 1 1
- - | | | |
< IS o

=
>
o

Programming Language

Figure 6. Programming Language Used to Develop the Tools

And in Figure 7 we can see the programming language of the projects these tools aim at finding

code smells. Java is again the predominant language, followed by C, C++, Python and C#. It is

clear that Java is the easiest way to develop these tools, and that the most predominant languages

are well-known ones.

60

Number of Tools
(5] w =y un
o o o o

=
o

56

16 15
2 9
-
m - -
< o) Q ey =
G‘: ‘(\0 o Q\z\ o’(_}\q Q‘é’o
o &
\‘b

Programming Language

Figure 7. Programming Language that the Tools Can Analyze

o VY

Research on the detection of test smells and flaky tests

Finally, and according to the paper by Thanis Paiva et al. [13], some of the code smell detection
tools more known and used by developers are JDeodorant [14], inFusion [15], JSpIRIT [16] and
PMD [15]. We can see some features of these tools in Figure 8. They can all detect test smells in

Java programs, are free to download and their output allows to calculate recall, precision and

agreement.
Tool Type Languages Fefactoring Bepom Detecrion Technigues
inFusion Standalone Java, O, C++ Mo Yes Software Metrics
IDepooant Eclipse Plugin Java Yes Yes Refactoring opponunites
PMD Eclipse Plugin lava, , {++and others Mo Mo Software Metrics
J5pIRIT Eclipse Plugin lava Mo Mo Software Metrics

Figure 8. Common Code Smells Detection Tools

A possible option for this thesis was to develop a machine learning approach that could be
innovative in some way to exceed the results from already existing tools. However, there has been
a lot of research done about code smells detection tools based on machine learning [15], [17],
[18], and there is no way to know if the newly developed approach will improve the performance

of the existing tools until it is finished and tested. As a result, this path was discarded.

Another possible option was to develop a tool that could detect smells for a project written in a
different language than the ones existing tools can analyze. But at the same time, the programming
language should be known and used to some extent for the tool to be useful. After reading the
above papers and realizing that so many tools were done for detecting smells in Java programs,
C and its derivates, if the tool was at least for another language, it could be a good option, as there

is not much competence in other languages.

Then, I realized that none of these papers talked about the devices that we most use and carry with
us the whole day: mobile phones and its programming language, Android. The improvements in
mobile technology and the large number of applications developed for Android in the last years
are clear signs of the importance of software in these devices. These applications evolve faster
than regular software applications, as deadlines are marked to meet the new requirements from
the customers and rapidly fix possible bugs. This evolution may cause the introduction of bad

design practices, in particular code smells.

Because of the increasing popularity of software apps for Android, | decided to make some
research about the detection of code smells for this programming language. Although there is not
as much research done as for desktop programming languages, | could find papers related to the
detection of normal code smells in Android applications [19], [20]. In these cases, there is not

much innovation rather than changing the language where the smells are found to Android.

‘v 22

On the other hand, some approaches focus on detecting Android-specific code smells [21], [22],
[23], [24], [25], [26]. Although there is little knowledge on these types of smells, the tools just
mentioned were already able to achieve a pretty high performance, so | also decided not to focus

on this kind of smells for my study.

| also looked at some tools for detecting Ul design smells. | read the paper by Bo Yang [27] about
this topic. They developed a tool, named UIS-Hunter, for Android applications that had a database
of guideline knowledge, processes the input Ul, extracts the information from this Ul and
highlights the violated guidelines and provides useful corrections. We can see its behavior in

Figure 9.

%) Conformance Examples Violation Examples

NO.67 navigation-drawer-destination-icon-no-repeat i

Class: Iconography - Anatomy - Error

Content: ol
Avoid using the same icon to represent different primary destinations

Needed Information: Metadata Extractor

o «V e

Figure 9. Behavior of the Tool UIS-Hunter

Nevertheless, even though | found this idea interesting, due to time constraints of this project and
the complexity of a Ul smells detection tool, | decided not to develop this kind of tool as the result
of my thesis. Finally, | realized that there were only a few proposals regarding test smells, so |
wanted to research about them, as | will explain in section 3.2, and | finally chose them as the

topic of this thesis.

3.2 Test smells

It is known that good programming practices should be applied when coding but, as previously
said in section 3.1, in practice sometimes it is not possible. That is why the code is revisited to
look for errors and to be refactored. In the set of code smells proposed by Fowler [8], strategies
are explained to remove these smells and refactor the code. However, he does not mention

anything about the refactoring and application of good practices in test code.

Some papers talk about the importance of applying good programming practices to the test code
[28], [29], [30] and finally, code smells in the test cases were introduced. It was done in the work
of Arie van Deursen, called “Refactoring Test Code” [31]. According to him, refactoring test
cases is different from refactoring production code. Tests are organized and implemented in a
different way, and so a new set of test smells arise. The list of smells he proposed is the one shown

in Figure 10.

23

'/

Research on the detection of test smells and flaky tests

Mystery Guest Assertion Roulette
Resource Optimism Indirect Testing

Test Run War For Testers Only
General Fixture Sensitive Equality
Eager Test Test Code Duplication
Lazy Test

Figure 10. List of Test Smells by A. Deursen

And the explanation for every one of them, as well as the strategy used for removing them:

~/ .

Test Smell 1. Mystery Guest: A test method containing object instances of external
resources such as files and databases classes. It is hard to understand the functionality of
the test and hence use it, because there is not information about these extra resources. In
addition, more dependences are added to the test, as modifying the external resources
(file deletion, location change, etc.) might produce problems in the test, causing failures.
Apply strategy 1 Inline Resource or strategy 2 Setup External Resource.

Test Smell 2. Resource Optimism: A test method utilizes an instance of a File class
without calling the method “exists()”, “isFile()” or “notExists()’of the object. In this way,
it is assumed that some external resources like files, folders or databases are available (or
not). This might produce non-deterministic undesirable results, where the test succeeds
and fails in different reruns. Apply strategy 2 Setup External Resource.

Test Smell 3. Test Run War: Even though the test works if a single developer runs it, if
multiple developers are running the test at the same time, it fails, mostly because there is
some interference in the resources used by the test. Apply strategy 3 Make Resource
Unique.

Test Smell 4. General Fixture: When not all the fields instantiated within the “setup”
method of a test class are utilized by all test methods in the same test class. If this method
contains variables that are too generic and only some of them are used by the test cases,
it makes thinks more difficult to understand. In addition, extra instructions can slow the
performance of the tests. Use Fowler’s Extract Method, Inline Method or Extract Class.
Test Smell 5. Eager Test: When a test case contains multiple calls to different production
methods. It lowers the readability and understandability, making documentation harder.
It also adds dependencies among tests, affecting the maintainability. Apply Fowler’s

Extract Method to solve this.

Test Smell 6. Lazy Test: When multiple test cases call the same production method using
the same strategy to check it, even though they check different variables or resources.
Apply Fowler’s Inline Method.

Test Smell 7. Assertion Roulette: It happens when a test case contains more than one
assertion statement without an explanation (meaning the parameter that acts like a
message in the assertion method). In case one of the assertions fails, there is no way to
know which one was. Use strategy 5 Add Assertion Explanation to solve it.

Test Smell 8. Indirect Testing: When a test case is actually testing other methods rather
than the method it is supposed to be checking. It can be solved by applying Fowler’s
Extract Method and Move Method.

Test Smell 9. For Testers Only: Observed when a production class has methods that do
not do any specific functionality, but they are only being tested by the test cases. This
means that these methods are useless and can be removed. One possible solution is to
apply Fowler’s Extract Subclass.

Test Smell 10. Sensitive Equality: When a test method invokes the “toString()”” method
of an object. Even though the check through the “toString()” strategy can be seen as a
simple solution, it causes problems when the method is changed, as it starts failing
because it depends on irrelevant things, such as spaces or commas. Apply the strategy 6
Introduce Equality Method in this case.

Test Smell 11. Test Code Duplication: When programming, sometimes the strategy of
copy-pasting code is used. This can lead to undesirable situations and extra dependences

later on. A possible solution is to apply Fowler’s Extract Method.

In addition, van Deursen proposed a number of strategies to refactor test code without removing

test cases and making the code more readable and maintainable:

Strategy 1. Inline Resource: A variable in the test code is added to hold some external
resource, so that the dependency between the test code and the external resource is
avoided. For example, a variable could hold the contents of a file that will be used later.
Strategy 2. Setup External Resource: Fix the test so that it correctly allocates the
external resources that will be used (files, databases, etc.) and release them after using
them.

Strategy 3. Make Resource Unique: Make sure that unique identifiers are used for the
different resources of the tests.

Strategy 4. Reduce Data: Use only the essential data in the tests, which will improve

the maintainability and documentation.

25

'/

Research on the detection of test smells and flaky tests

e Strategy 5. Add Assertion Explanation: Use the message in the optional first argument
of the tests to note the difference among the assertions in the same test.

e Strategy 6. Introduce Equality Method: Add an “equals” method to an object structure
that has to be checked in the tests, so that this method can be rewritten in the tests for its
specific purpose.

After the work of van Deursen, some other papers proposed additional test smells, increasing the
catalog of smells available [32], [33], [34], [35], [36], [37], [38]. Then, each researcher or
developer can select the set of test smells he is interested in studying or using for their research
or project/tool.

3.3 Test smells detection tools

Researchers all over the world have realized about the importance of avoiding these sub-optimal
design choices that are called test smells and hence some detection tools for the automatic
detection of test smells have been developed. In the work done by Wajdi Aljedaani et al. [39], a
list of 22 test smells detection tools was constructed by reviewing many papers related to this
topic. In this, list some aspects of the tools are analyzed, like the programming language, the

detection strategy or the number of smells they are able to detect.

The tools taken into account in his study can be seen in Figure 11:

. Number of new test smell types

. Number of existin o test smel types

O Tatal numeer of detected test smell types

OraclePaolish

Rritshe Asgertion
Unuses Ingurts

2013

- 23
- Wague Header Sewp -
TestHound TestEvoHound

Figure 11. Test Smells Detection Tools

From this list, | made a selection of tools that were able to detect test smells in Java

programs and were available online for download. In this selection, I included a total of

‘v 26

6 test smells detection tools: TsDetect [40], DARTS [41], TestHound [35], JNose [42],
[43], RAIDE [44] and TestQ [45].

The performance of these tools is normally evaluated using precision and recall. To
understand these, we first have to introduce the concepts of oracle, true positive, false

positive, true negative and false negative:

e Oracle: it is a list containing the “true” result (smelly/not smelly) of the Java
project instances. Normally, it is obtained by manually inspecting the code and
deciding if each instance contains smells or not.

e True positive: it is an instance of code smell reported by the tool and present in
the oracle.

e False positive: it is an instance of code smell reported by the tool but not present
in the oracle.

e True negative: it is an instance of code smell not reported by the tool and not
present in the oracle.

o False negative: it is an instance of code smell not reported by the tool but present

in the oracle.
The following chart, called Confusion Matrix (Figure 12), better shows these terms in a

graphical way:

PREDICTED
POSITIVE NEGATIVE

TRUE POSITIVES FALSE NEGATIVES

POSITIVES

ACTUAL

FALSE POSITIVES

NEGATIVE

Figure 12. Confusion Matrix

27 ‘v

Research on the detection of test smells and flaky tests

With these concepts clear, we can now understand the definitions of precision and recall

used in the test smells detection tools:

e Precision: in the simplest terms, precision is the ratio between the True positives
and anything predicted as a positive. In this case, it would be the number of smells
reported by the tool that are actually true smells out of all the smells found (Figure
133).

pr o True Positive{TF)
TECISIOn = True Positive(TF) + False Pagitive(FF)

Figure 13. Precision Formula
e Recall: the recall is the measure of our model correctly identifying True positives.
For our case, it is the number of smells reported by the tool that are actually true
smells out of all the true smells in the oracle (Figure 14).

True Positive(TFP)
True Pogitive(TP) + False Negative(FN)

Recall =

Figure 14. Recall Formula

After understanding these terms, we can start analyzing the tools studied. Starting by
TsDetect, it is a standalone command line application without user interface developed
by Anthony Peruma et al. It can detect a total of 19 different types of test smells in Java programs.
It achieved a precision score of 96% and a recall score of 97% and it is available in Github for
free to download [46]. It calls the JavaParser library to parse the source code files. JavaParser
builds an Abstract Syntax Tree from the unit test file that is under analysis. Then the AST is

analyzed by each of the smell detection modules.

From the 19 test smells it is able to detect, 7 of them come from the work of van Deursen [31]:
Assertion Roulette, Eager Test, General Fixture, Lazy Test, Mystery Guest, Resource Optimism
and Sensitive Equality, whose definition was already explained in section 3.2. In addition, they
propose 12 new smells. Because of the importance of this tool in my thesis, the new proposed

smells will be explained as follows:

e Conditional Test Logic: When there are one or more control statements in a test case.
TsDetect rules take into account if, switch, conditional expression, for, foreach and while

as control statements. Test methods should not be complicated to understand, thus control

‘v 28

statements should be avoided, leaving them to the production method. These conditions
modify the functionality of the test and its expected output, causing some statements in
the test to not be executed and then affecting the performance of the test. An example of

this smell is provided in Figure 15.

Fimat
peblic waid tastSpinner(} {

for [Hap.Eniry<3iramg, Sirang> entry mourcesMap .- entrySatid)y {

if [resultObject inatencesf EventaScdeli [

EvantaHodel result = {EventsModsl)] resmlidéjesct
1f [result.testSpineer. runTesk) [
for {int 1 = B; 1 & spinneridsptar . geelount () Lper) |

azsariEquels{spinneridnster geiltami2], result. EesESpinner
deta_getia])])

Figure 15. Conditional Test Logic Example
e Constructor Initialization: When there is a constructor declaration in the test case.
Instructions related to initialization have to be coded in the “SetUp()” method and not in

a specific test case. An example of this smell is provided in Figure 16.

peblic class TagEncodingTest axtends BrasblefestCsss [
private final CryptoComponest crypks;
privates finsl SacretEey tagEsy;

public TagEncodingTest{]
crypio = nes Cryptolfomponentimpld ({new TestSeoure®ssdomProvider(j);
EagEkey = TastUfils.getiecretleyd)

#Tani
peblic wold testkeyaffectafag() throws Exception {
for [int L = @; 4 < 18B; di++) §

crypio.ancodeTag{tsy, taglsy, PROTOOOL _WERSION sEressRusher };
spsartTrue{set. addi{iner Byitss{tag)))

Figure 16. Constructor Initialization Example

e Default Test: When the test case name is one of the following: “ExampleUnitTest” or
“ExamplelnstrumentedTest”. These names are the ones created by default when a new
project is started, and hence should be removed, and tests placed in a more logic and tidy

way. An example of this smell is provided in Figure 17.

peblic class ExamplaunitTest
FTaai

peblic vaid addition_isCorrect{] threws Exception [
asnartFrnal=ia 1

BTeut
public void shareProblem{)] threws InterrepgtsdExzception {

azsartEquels{begint ame. goki] FE2 e |

Figure 17. Default Test Example

29 ‘v

/%

Research on the detection of test smells and flaky tests

Duplicate Assert: When there is more than one assertion with the same parameters in a
test case. This means that the same test is checking the same condition more than once,
when in this case separated test cases should be used. An example of this smell is provided

in Figure 18.

#Tani
public void testEslZanztzzerd) {

valid = EmlSanitazer.isVelad{“Fritz-Box®)

pasartEquale{“"Himas is walzd Erums walid)
System.out. printlsg pannad

valid = EmlSanitazer.isVelad{“Fritz-Box®)

Figure 18. Duplicate Assert Example

Empty Test: When there is not any executable statement in a test case. This might be
because it has been forgotten or the statements have been commented. In this case, the
test will pass even when there are no statements, so this can cause confusion later on for

developers. An example of this smell is provided in Figure 19.

public void testCredimiFfuliSsmpleVi() thresas Throsabla|

Figure 19. Empty Test Example

Exception Handling: When there is a throw statement or catch clause in the test case. If
the test result (pass or fail) depends on the production method throwing an exception, this
can be complicated to understand when testing and can lead to more problems. An

example of this smell is provided in Figure 20.

AL EL

public void realCased{] {

try §
a.computeq]
catch {Calculationfaceptaion =) [
Anmeri.teal(e. geiHesnaged)]

Anmeri. assertEguele]”; 14 this df4 _ format(a. getResulis(}.get (@]}
grilnkncwndraantatiani))]

Figure 20. Exception Handling Example

Ignored Test: When the is an @Ignore annotation in the test case. This means that the
test will not be run when executing the test suit, but it will still cause some problems,
such as overhead in compilation time and an increase in complexity of the code. An

example of this smell is provided in Figure 21.

#Flaat

#lgnore[“dizabled for nom sz this ftest 18 #oo Flaky©)
peblic woid pmerPriority(} throms Exceptiom |
final Limt<lnetSocketiddress > addresses = Lisks.nesbrreplist(
nen ImstIocketAddress{” localhout Frd0 2 b
nen ImstSocketdddressd{”l wlhaat 2881
nan IrstSocketdddressd”l alhzat 2882)
searGroup . sddCannactedEventlaistener{connectedlsntanar)

Figure 21. Ignored Test Example

Magic Number Test: When an assertion statement uses a numeric literal as an argument

in the test case. Even though the assert will work the same, these numbers do not provide

the developer any information about the meaning and purpose of the value, so it is harder
to understand and should be replaced by a variable with its corresponding name. An

example of this smell is provided in Figure 22.

#laat
public wvaid tsstGatLocalTimsAsCalendar{] [
Calendar localTime = calc.getlocalTissdsCelsndarBiglecimal
Calendar_ geilnstasnca())
snsmrtEquals (1%, localTime.get{Calendsr_ HOUR_GOF _DOAY))
snsartEquals (30, localTims.get{Calendar HINUTE])

valusO® (15.50)

Figure 22. Magic Number Test Example

Redundant Print: When one of the following instructions is used in the test case: “print”,

“println”, “printf” or “write” method of the System class.

Because the tests already

provide the result, these statements are redundant and can increase the execution time.

An example of this smell is provided in Figure 23.

Flant

peblic void EsstTransforslBeHElGnSSwch (] |
Lag morthEastAndUp1B® = new Leg{l1@d,6 &% 48]
Czardi0 rasult = tranzforser.transfsreiCoordlD. ORELGIN nark
Syatem.out.println“result * resalt)
Lag ravearzs = nes Leg[l® 45}
result = Eranaformser.transform{result rEversa)
assartEquals(Coard3D. ORIGIN result]}

REsatAndUp] BH

Figure 23. Redundant Print Example

Redundant Assertion: When an assertion statement with the same expected and actual

parameters is used in a test case. When the statements of the method are always true or

false regardless of the input, it is not useful and should be removed. An example of this

smell is provided in Figure 24.

#lmat
public waid tastTrue(] £

snsartEquals [tres trum)

Figure 24. Redundant Assertion Example

31

Research on the detection of test smells and flaky tests

e Sleepy Test: When the instruction Thread.sleep() is invoked in the test case. This is used
when the developer wants to stop the execution for a certain amount of time, but can lead
to unexpected results depending on external causes. An example of this smell is provided

in Figure 25.

public woid testEdiciExterniesrch{)] thresa Esception {
sssartiqualsy marchang mntry.engdash)

Thread. slemp [SBE])
finel Intent a2 prilStartedictavatylntant ()

Figure 25. Sleepy Test Example

e Unknown Test: When there is not any assertion statement or “@Test(expected)
annotation parameter in the test case. The assertion statement explains an expected
condition for a test method and if it is missing, it becomes harder to understand the
purpose of the test. An example of this smell is provided in Figure 26.

#Taat
public void hitGatPOICategoraesipl(])] thress Esceptian |
POlCategoriss paoila Sraies mpallzant. geEfliCatagoriex(1d)}
for {FOlCategzry catmgery polCategerian) |
Syuimm.gut.printin{category - nema i) = + catagory)

Figure 26. Unknown Test Example

To execute the TsDetect tool, a csv file is needed as input containing, for every class that wants
to be analyzed, the application name of the project, the path to the test file within the project and
the path to the production file that is being tested. In the case of Figure 27, the test class
WPUTrlUtilsTest.java is being tested, so its path is provided, as well as the path of the production
file WPUrlUtils.java, both belonging to the app WordPress-Android-trunk.

WordPress-Android-trunk,
C:\Users\theal\OneDrive\Documents\Research\Code Smells\Test smells\WordPress-Android-trunk\lordPress\src\androidTest\java\org\wordpress\android\util\WPUrlUtilsTest.jav
[c:\Users\theal\OneDrive\Documents\Research\Code Smells\Test smells\HordPress-Android-trunk\WordPress\src\main\java\org\wordpress\android\util\WPUrlUtils.java

Figure 27. Example of Csv File for TsDetect

To run TsDetect, as we can see in Figure 28, the command line is necessary. First, the application
is downloaded. Then, by writing the command “java -jar \TestSmellDetector.jar Ts.csv”, we
execute the TsDetect smell detection over the classes specified in the csv file called Ts.csv, which

in this case is only the class WPUrlUtilsTest.java.

/.

Ps C:\Users\theal\OneDrive\Documents\Research\Code sSmells\Test sme
11s\TsDetect> java .\TestSmellDetector. jar Ts.csv

2022/12/04 13:41:09 Processing: C:\Usersi\theal\OneDrive\Documents’
Research\Code sSmells\Test smells‘\WordPress-Android-trunk’\wWordPress
‘srchandroidTest\javahorgiwordpresshandroidiutiT\WPUrlutilsTest. ja
"J’ a.

Processing: C:\Users\theal\OneDrive\Documents\Research\Code Smells
Z“Test smells\WordPress-aAndroid-trunk\wordPress\srch\androidTest\jav
a‘org\wordpress\androidi\uti1\WPUrlutilsTest. java

end

Ps C:\Users\theal\oOneDrive\Documents\Research\Code sSmells\Test sme
11s\TsDetect:

Figure 28. Example of TsDetect Execution

Finally, the result from the TsDetect test smell detection is saved into a new csv file. It contains,
for every test class analyzed, the name of the app, the name of the test class, the path to the test
class and to the production class (both absolute and relative), the number of methods in the test
class and the number of smells found in each class, ordered by type. As we can see in this other
example in Figure 29, four different test classes of the app commons-exec-main were analyzed.
For example, for the first class called CommandLineTest.java, 34 methods where found. In this
class, there were 21 Assertion Roulette smells, 0 Conditional Test Logic smells, 0 Construction

Initialization smells, and so on.

App TestClass TestFilePath ProductionFilePath RelativeTestFilePat RelativeProduction NumberOfMethods Assertion Roulette Conditional Test Le Constructor Initializ
commons-exec-ma CommandLineTest. C:\Users\theal\Dow C:\Users\theal\Dou 34 21 o 6} !
commons-exec-ma DefaultExecutorTes C:\Users\theal\Do\ C:\Users\theal\Do\ src\test\java\org\a src\main\java\org\'ST 17)) !
commons-exec-ma EnvironmentUtilsTe C:\Users\theal\Dor C:\Users\theal\Do src\test\java\orgha src\main\java\org\'ﬁ 4 £ 0} !
|cummun5'exec'ma LogOutputStreamT: C:\Users\theal\Dow C:\Users\theal\Do src\test\java\org\a src\main\java A\ g\I'S 1o) 0] !
:Default Test EmptyTest Exception Catching General Fixture Mystery Guest Print Statement Redundant Assertic Sensitive Equality Verbose Test Sleepy Test

0 o] 0 o 1 0 21 o 0

0 0 31 0 3 1 0 o 2

6]) 3 6]) 6} 6] 1 6} 6]

() o 1 () o (] () o (] ()

Eager Test Lazy Test Duplicate Assert Unknown Test IgnoredTest Resource Optimism Magic Number Tes Dependent Test

27 127 2 i} 0] 1 34 G}

27 %0 1 1 1 7 31 (]

2 11 0 o o 0 G o

6} G} o 6} 1 o 1 G}

Figure 29. Example of TsDetect Detection Result

Following it, we have DARTS, an IntelliJ plugin developed by Stefano Lambiase et al. It can
detect three different types of smells: General Fixture, Eager Test, and Lack of Cohesion of Test
Methods. TASTE detection rules are used, so its precision and recall are the same as this tool. It
achieved a precision score of 76% and a recall score of 62% and it is available in Github for free

to download [47]. Figure 30 shows the plugin interface inside IntelliJ and how it works.

33 ° W

4 Progetto-master =ro test

I © & 4 | T omenen

% Progetto-master [progette]

¥ 1 Project

dea
b CLASSES
e Example Test
main
L0t Exampla?Tast
lava
itunisa
progeiie
test
& ExampleOTest
& ExamplelTest
& Example2Test
& Example3Test
& ExampledTest
test
target

e ravis.yml
invioParamatro.bat
new 1.bat
pam xml
Fing: Retactoring Preview
" Extracting from class:
€« EBxamplelTest

o
H Referances to extract{ 3 refersnces in 1fila) 3 usages
it Unclassified usage
al % progetta
2 it.unisa.test
-

€ ExampleiTest
iy # % setUpl)
g i # = doSomethingl()
: _ # 20 private String testString;
* . cancel Do Refactor

B 3 Find =g 7000 | & version Control B Terminal
[2 files committed: Commit di test (2 minutes ago)

GeneralFixture EagesTest LackOfCahesion

» METHODS

doSomething

! DETALS
Method doSomethingl is affected by General Fixture because It doesn't use the following variables:

- private Examplel example;
- private Examplel axamplal;
- private Exampled exampled;
- private String testStringZ;

The Smell will be removed using these refactoring operations:

- Extract methed: setup method will be splitted into two different method s
- Extract class: the test class will ba splitted into two separated classes

Refactor preview

MethodSignatureBackedByPsiMethod: doSomethingl{ 1) {

testString = “check";

if (testString.equals(=ak"}) {
System.out.printlni“Hella™];

Research on the detection of test smells and flaky tests

i

wyw uwew3 2

Q) Event Log

331 CRLF UTF-8 4 spaces Gitmaster w O

Figure 30. DARTS tool working on IntelliJ

TestHound is a standalone desktop application developed by Michaela Greiler et al. It can detect

six different types of smells, all of them explained in [35]: General Fixture, Test Maverick, Dead
Fields, Lack of Cohesion of Test Methods, Obscure In-Line Setup, Vague Header Setup. Its
precision and recall scores and unknown and it is available in Github for free to download [48].

Although this tool could be opened (Figure 31), it had no documentation that explained how to
use it and I could not analyze any project with it.

| £ TestHound

Name Codebase: |

Choose Class Dir:

Choose Lib Dir:

Choose Test XML:
Generate HTML Java Source ® Yes) No
Test Framework ® Junitd O Junit4

Analyze Test Code

1 TestNG

Choose File &

Figure 31. TestHound Tool Ul

Next, there is JNose, a desktop application with user interface developed by Tassio

Virginio et al. It applies the TsDetect detection rules, so it achieves the same precision and recall,

Y 4

being a precision score of 96% and a recall score of 97%. It can detect 21 different test smells:
the 19 smells that TsDetect could find plus two more that were added after. It is available in
Github for free to download [49]. It performs a static analysis of the test code through an Abstract
Syntax Tree generated by JavaParser. Then, it extracts information about the code structure to

apply the TsDetector rules for the test smells detection.

To use the JNose tool, the needed input is the github URL of the program that is going to be
analyzed for finding test smells. This URL is provided in the text field of the clone screen (Figure

32) and, by pressing the clone button, the project is downloaded into a local folder.

Git Repository

Enter git repository
Here the address of the github repository can be used.
o] Test:

Project path url JUnit Stars Last Update
jnose Ch\Users\theal\jnose_projects\jnose https://github.com/tassiovirginio/jnose None 15 2471172022 O

13:49:11
WordPress- C\Users\theal\jnose_projects\WordPress- https://github.com/wordpress-mobile/WerdPress- Junitd 2746 03/12/2022 O
Android Android Android 03:19:09

Figure 32. JNose Project Clone Screen

In Figure 33, we can see the analyze screen of JNose where, once the project is
downloaded, you can run the test smell detector by pressing the analyze button. After
some time, that depends on the number of classes and methods that need to be analyzed,

the progress bar reaches 100% and the project is completely checked.

Name Path Concluded %
WordPress-Android Ci\Users\theal\jnose_projects\WordPress-Andraid h B E
[OW.LEYE0 [Result of All

Figure 33. JNose Project Analyze Screen

After the analysis, the results of the test smell detection can be checked by pressing the
result button from the analyze screen. When doing so, a new screen will open (Figure 34),
showing for every test class, the app name, the file name, the production file path, the
lines of code, the number of methods and the number of smells found for all the different

types of smell.

35

Research on the detection of test smells and flaky tests

- Result By ClassTest: commons-exec - View Sample (100 of 5)

App TestFileMame ProductionFileMame LOC numberfethods Assertion Eager Mystery Sleepy Unknown
Roulette Test Guest Test Test

commaons- CommandlineTest ChlJzers\theal, jnose_projects\commons- 24 34 74 28 0 o 0
axec exec\srcymain'javalorg\apachecommonshexec\CommandLine java

commaons- DefaultExecutorTest CAUsers\theal, jnose_projectsi\commons- 782 |52 47 28 3

ExEC exec\src\main'javalorghapachecommonshexec,DefaultExecutor java

commans- EnvironmentUtilsTest ChUsers\theal jnose_projects\commons- 185 & 13 3 0 0 0

axec exec\srcymain'javalorg\apachecommonshexecienvironment\Environmentltils java

commaons- LogQutputStreamTest Ci\Users\theal jnose_projectsicommons- 117 | 11 1 o o o 0
ExEC exec\srcymain'javalorghapachecommonshexec\LogOutputStream. java
1ple (100 of 5) Export CSV
Redundant Dependent Magic Conditional EmptyTest General Ignoredlest Sensitive Verbose Default Resource Duplicate Exception Constructor Print Lazy
Azzertion Test Mumber Test Logic Fiture Equality Test Test Optimism ~ Assert Catching Initiglization Statement Test

Test Throwing

o o 2 0 o 0 0 30 2 o 1 7 T 0

o o 2 o 0 1 o T 0

o o o o o o o o o

o o 0 0 o 0 1 0 0 o o] o 0 0 0 0

Figure 34. JNose Analysis Results Table
A chart showing the results from the detection in a graphical way is also generated after
the process has finished (Figure 35). In this graph, a bar shows the number of smells found

of each type.

Charts By ClassTest: WordPress-Android

Quantity of TestSmells in the Project

Source: JNose

Mystery Guest
Il Unknown Test
EmptyTest
Verbose Test
I Default Test
M Resource Optimism
Exception Catching Throwing
I Print Statement
I Assertion Roulette

e __________________________________ | 90
Eager Test f—

ollc oH

Sleepy Test
Il Redundant Assertion
3 Dependent Test
Magic Number Test
M conditional Test Logic
I General Fixture
IgnoredTest
M Sensitive Equality
M Duplicate Assert
Constructor Initialization
Lazy Test

o o

e o

Figure 35. JNose Analysis Results Chart
Finally, even though the results can be seen in the user interface of the JNose application,
the option for downloading them into a csv file is also available (Figure 36). This is really
helpful, as the results can be analyzed using other tools and used as input of other

programs, as will do in the implementation of my application.

/%

1 |App TestFileName

2 |java-websocket Draft_g455Test

3 |java-websocket IncompleteExceptionTest

4 | java-websocket IncompleteHandshakeExceptionTest
5 |java-websocket InvalidDataExceptionTest

6 |java-websocket InvalidEncodingExceptionTest

7 |java-websocket InvalidFrameExceptionTest

8 java-websocket InvalidHandshakeExceptionTest

9 |java-websocket LimitExceededExceptionTest

10 |java-websocket NotSendableExceptionTest

11 |java-websocket
12 |java-websocket
13 |java-websocket
java-websocket
15 |java-websocket
16 |java-websocket
17 |java-websocket
18 |java-websocket
19 | java-websocket
20 | java-websocket
21 | java-websocket
22 |java-websocket

22 Linun

CompressionExtensionTest
DefaultExtensionTest
PerMessageDeflateExtensionTest
BinaryFrameTest
CloseFrameTest
ContinuousFrameTest
Framedatalmpl1Test
PingFrameTest

(=]

PongFrameTest
TextFrameTest
ProtocolTest

ohcarkat

WebsocketNotConnectedExceptionTest C:\Users\the

FrctamEC InhEnrkatEanuarEactanTac O\ Lcarci the

ProductionFiLOC

numberMetl Assertion Ro Eager Test

C:\Users\the 578 23 135 17
C:\Users\the 42 1 0 1
C:\Users\the a5 1 0 1
C:\Users\the 55 1 V] 1
C:\Users\the 53 1 0 1
C:\Users\the 67 2 0 1
C:\Users\the 68 2 0 1
C:\Users\the 57 2 0 1
C:\Users\the 50 1 V] 1

42 1 1]
C:\Users\the 77 2 0 0
C:\Users\the 153 11 20 0
c:\Users\the 225 19 25 10
C:\Users\the 72 3 V] 2
C:\Users\the 247 4 1 3
C:\Users\the 72 3 0 2
C:\Users\the 105 4 0 3
C:\Users\the 103 3 o 2
C:\Users\the 112 4 V] 3
C:\Users\the a9 3 V] 2
C:\Users\the 114 7 25 5

172 & o a

Figure 36. JNose Analysis Results Csv File

0

PO 000000000000 00000

P00 00000000 00000000000

Mystery Gue Sleepy Test Unknown Te Redundant 2

o

ho oo 0000000000000 e Do
PO OO0 000000000000 000000

RAIDE is an Eclipse plugin developed by Railana Santana et al. It was done to detect test

smells in Java programs and it can detect two different smells: Assertion Roulette and Duplicate

Assert. It is an Abstract Syntax Tree based tool that reuses rule-based components from tsDetect

to detect the test smells. Because of this, its precision and recall score are the same as the TsDetect

tool and it is available in Github for free to download [50]. Its functionality inside Eclipse is

shown in Figure 37.

&5

{5 Project Explorer 3 Ju Junit =
2 ACG
I codigozip_expanded
1% Codige (1) zip_expanded
v [Java-WebSocket-master
4 src/mainfjava
v B sic/test/java
orgjava_websocket
1 orgjava_websocket.client
1 org,java_websocket.drafts
4 org,java_websocket.example
4 org,java_websocket.exceptions
i orgjava_websocket.extensions
1 org,java_websocket framing
i orgjava_websacketissues
4 orgjava_websocket.misc
i orgjava_websocket.protocols
H orgjava_websocket.server
1 org,java_websocket.util
[sro/test/resources
=), JRE System Library [JavSE-1.7]
B, Maven Dependencies
=, Unit 5
B\ Referenced Libraries
(= autobahn reports
& s
(= target
A build.gradle
CHANGELOG.md
¥| checkstyle-suppressions.xml
X eclipse-java-google-stylexml
¥ intellij-java-google-stylexml
= LICENSE

i pom.xml
[l REANME rmarkdoism

For Assertion Roulette,

7 § = B [Customerjava X [1] Moviejava

-

[4) Rentaljava

import java.util.Arraylist;[]

& public class Customer {
9

private String name;
private List<Rental> rentals

public Customer(String name) {
this.name = name;
}

public String gethame() {
return name;
}

public void addRental(Rental
rentals.add(rental);
}

public String statement() {

rental) {

E

) AnalyticsT...

= new Arraylist<Rental>();

[£1 Problems @ Javadoc [G Declaration B Console ‘ Assertion Roulette 3

2= Outline X

= E
B AR e w

& Principal

v O Customer

@ name: String

a rentals: List<Rental>
©° Customer(String)

© getName(: String
addRental(Rental) : void
staternent() : String

° 0

Test Smell Source Method Line
Assertion Roulette testDefaultvalue() 61
Assertion Roulette testSetter() a7
Assertion Roulette testSetter() 2]
Assertion Roulette testSetter() Ll
Assertion Roulette testEncodeBytes() a
Assertion Roulette testEncodeBytes() 2
Assertion Roulette testEncodeBytes() u
Assertion Roulette testEncodeBytes() 45

File Path

C\Users\theal\D...
C\Users\theal\D...
C:\Users\theal\D...
C\Users\theal\D...
C\Users\theal\D...
C\Users\theal\D...
C\Users\theal\D...
C:\Users\theal\D...

Refactoring Type
Add Assertion Explanation
Add Assertion Explanation
Add Assertion Explanation
Add Assertion Explanation
Add Assertion Explanation
Add Assertion Explanation
Add Assertion Explanation
Add Assertion Explanation

Figure 37. RAIDE in Eclipse

we can see the results in Figure 38. For example, it found the

Assertion Roulette smell in the method called “testToString()” in lines 4473, 478 and 483 of the

test class CommandLineTest.java (with its respective path to the test file) and the refactoring

proposed is “Add Assertion Explanation”.

37

Research on the detection of test smells and flaky tests

< eclipse-warkspace - ¢ -master/src/test/java/org/apache/c fexec/util/MapUtiTest java - Eclipse IDE - x

File Edit Source Refactor Navigate Search Project TestSmells Run Window Help

mig BiniH-0- Q- Q-GBS F - [CR R |

& [2] Problems @ Javadoc [E) Declaration B Console ‘ Assertion Roulette X ‘ Duplicate Assert i

O Test smell Source Method Line File Path Refactoring Type

0| pssertion Roulete testCommandLinParsingWihE.. 1455 CAl -mastensrcitest h CommendLineTest, Add Assertion Explanation @
Assertion Roulette testCommandLineParsingWithE... 3436 CA\L -mastensrcitest hec \CommandLineTestjova Add Assertion Explanation
Assertion Roulette testCommandLineParsingWithe... 3457 G\l -mastensritest h \CommandLineTestjava Add Assertion Explanation
Assertion Roulette testCommandLineParsingWithE.. 3458 G\l -mastenisrcltest h CommendLineTest Add Assertion Explanation
Assertion Roulette testToString() 472 L -mastensrcitest h CommandLineTest, Add Assertion Explanation
Assertion Roulette testToString() 478 C\Users\theah Download -masten\sr\testijava\orghapach \CommandLineTestjava Add Assertion Explanation
Assertion Roulette testToString() 483 cal -masterisrcitest h CommandLincTest Add Assetion Explanation
Assertion Roulette testCopyConstructor() 517 cal -mastensrcitest h CommendLineTest, Add Assetion Explanation
Assertion Roulette testCopyConstructor() ste i “mastenisrcitest helc \CommandLineTestjova Add Assertion Explanation
Assertion Roulette testCopyConstructor() 519 cal -mastensritest h \CommandLineTestjava Add Assertion Explanation
Assertion Roulette testCopyConstructor() s20 cal -masterisrcitest h CommendLineTest Add Assertion Explanation
Assertion Roulette testExecute() 107 L -mastensrcitest h D Testjava Add Assertion Explanation
Assertion Roulette testExecute() 108 L -mastensre\testijava\org\apach D Testjavs Add Assertion Explanation
Assertion Roulette testExecute() 109 c -masterisrcitest h D Testjavs Add Assertion Explanation
Assertion Roulette testExecuteWithWorkingDirector... 118 L -mastensrcitest h D Testjava Add Assertion Explanation
Assertion Roulette testExecuteWithWorkingDirector.. 119 i -mastensrcitest hec D utorfestjava Add Assertion Explanation
Assertion Roulette testExecuteWithWorkingDirector.. 120 cal -mastensritest h D Testjavs Add Assertion Explanation
Assertion Roulette testExecuteWithError() 140 c —masterisrcitest h D Testjavs Add Assertion Explanation
Assertion Roulette testExecuteWithArg() 150 i -mastensrcitest h D Testjava Add Assertion Explanation
Assertion Roulette testExecuteWithArg() 151 L -mastensre\testijava\org\apach D Testjavs Add Assertion Explanation
Assertion Roulette testExecuteWithSingleEnvironm... 167 c -masterisrc)test h D Testjavs Add Assertion Explanation
Assertion Roulette testExecuteWithSingleEnvironm... 168 L -mastensrcitest h D Testjava Add Assertion Explanation
Assertion Roulette testExecuteAsync() 183 cal “mastenisrcitest helc D utorfestjava Add Assertion Explanation
Assertion Roulette testExecuteAsync() T84 cal -mastensrctest h D Testjavs Add Assertion Explanation
Assertion Roulette testExecuteAsync() 185 c —masterisrcitest h D Testjavs Add Assertion Explanation
Assertion Roulette testExecuteAsync() 186 i -mastensrcitest h D Testjava Add Assertion Explanation
Assertion Roulette testExecuteAsyncWithError() 201 L -mastensre\testijava\org\apach D Testjavs Add Assertion Explanation
Assertion Roulette testExecuteAsyncWithError() 202 c -masterisrcitest h D Testjavs Add Assertion Explanation
Assertion Roulette testExecuteAsyncWithError() 202 L -mastensrcitest h D Testjava Add Assertion Explanation
Assertion Roulette _ testExecuteAsyncWithError() 2m C\Users\theah Download -mastensrcitest h D Testjavs Add Assertion i v

Figure 38. RAIDE Results for Assertion Roulette

And for Duplicate Assert, the results are in Figure 39. For example, the smell Duplicate Assert

is found twice, in the lines 477 and 484 in the test method “testExecuteWithProcessDestroyer()”

of the test class DefaultExecutorTest.java, and the proposed refactoring type is “Method

Extraction”.

S cclipse-workspace - ¢ -master/stc/test/java/org/apache/c fexec/util/MapUtiTest java - Eclipse IDE - X

File Edit Source Refactor Navigate Search Project TestSmells Run Window Help

B -HE et -0~ Gt @i 5T cEl e Q m|l

& [£] Problems @ Javadoc [G) Declaration (& Console @y Assertion Roulette fy Duplicate Assert 3¢ i =8 s

o

1 Fest smel Source Method Lines File Path Refactoring Type | .

2 Duplicate Assert testCommandLineParsingWitk] 1366, 371 CL -master\src\test) h CommandLineTest.java Wiethod Extraction | =
Duplicate Assert testCommandLineParsingWithExpansion() 1367, 372, .. CAl -mastensrcitest apacheic \CommandlLineTest java Method Extraction | [C]
Duplicate Assert testCommandLineParsingWithExpansion() 1376, 382 Gl -master\src\test) h CommandLineTest, Method Extraction
Duplicate Assert testCommandLineParsingWithExpansion() 137,383 CUsersit load -mastensrcltestljavalorg\spachelc \CommandlLineTest java Method Extraction
Duplicate Assert testCommandLineParsingWithExpansion() 242,439 Cal -mastensrcitest apacheic \CommanclLineTest java Method Extraction
Duplicate Assert testCommandLineParsingWithExpansion() 2423, 440 L -masterisrc\test! apache\c \CommandLineTest java Method Extraction
Duplicate Assert testCommandLineParsingWithExpansion() 2424, 441 Cal -mastensrcitest apachec \CommandlLineTest java Method Extraction
Duplicate Assert testExecuteWithProcessDestroyer() 477, 484 Gl -master\src\test) h D Test.java Method Extraction
Duplicate Assert testExecuteWithProcessDestroyer() 478,455 CoUsesith load -mastensrc\testijavalorghapach, D Testjava Method Extraction
Duplicate Assert testCopyMap() 4,49 cat -mastensrcitest apacheic \uti\ MapUtilTest java Method Extraction

Figure 39. RAIDE Results for Duplicate Assert

Finally, TestQ is a desktop application aimed at Linux with a Ul that allows to detect 12 different

types of test smells (Figure 40). It achieves a precision score of 89% and recall score of 52% and

it is available online to download [51].

/.

-'['--i||"- -||i|-'|r" *'I'[i"“n [F=5

'Il'j;\."l“].

Figure 40. Interface of the TestQ Tool

3.4 Flaky tests

Flakiness is also a big issue when implementing tests. Flaky tests are tests that can intermittently
pass or fail even when the source code has not been changed and the code version remains the
same. Flaky tests can lead to confusion and unreliable results because developers must waste time
debugging in order to find the problem, and then they realize that it did not occur because the
recent changes, but because of a flaky test. In addition, they are hard to reproduced because of
their randomness and they might hide other errors. As a result, people have researched about these

kinds of tests, their characteristics, their impact, and their possible causes [52], [53].
The most common sources of flakiness are the following ones:

e Asynchronous behaviors: when a function that is asynchronous is called but the
program is still able to execute other instructions before the result from the function is
obtained. If the following instructions use the result from the asynchronous function as
an input, the availability of this result may provoke the pass or fail of the test case
depending on how fast this result is obtained. In addition, asynchronous instructions such
as “Thread.sleep()” are the cause of unpredictable results.

e Network connections: connections to the network normally depend on waiting times,
which makes it a dependency hard to control. When the server does not respond in a
timely manner, because of thread scheduling or network delay, the result of the test can
be affected. Because of this reason, if the delays are not considered, some “pass” and
“fail” results can be obtained intermittently.

e Input/Output operations: when relying on external resources obtained via 1/O, test

cases should be coded carefully. For example, if the application was expecting to find a

39

'/

Research on the detection of test smells and flaky tests

file in a specific folder but it is not there, or the format is not the expected one. In these
cases, the test can produce different results based on the availability and format of the
expected resources.

e Time instructions: if the program relies on time instructions such as
“java.time.LocalDateTime” or “java.time.Clock”, the test depends on the time zone and
it can fail, for example, when the midnight changes or the precision of the obtained result
is not the expected one.

e Testorder dependency: when implementing the test cases, we might think that they will
be executed in a specified order, but the truth is that there is no specific order, and they
are executed randomly. When the outcome of some tests is affected by other tests
because, for example, they share some common variables, the order of execution affects
the test results. This behavior should be avoided by isolating the different tests.

o Randomness: if the test cases make use of random numbers, there might be some cases
that were not considered and hence produce an unexpected result. It is the case of a
random number generator that, when obtaining exactly a zero and then dividing any
number by it, produces as a result NaN.

e Platform dependency: a project, together with its test cases, is normally developed in a
specific environment: a specific operating system (OS), computer hardware, screen size,
etc. If this is not taken into account, the result of the test can be affected, as different

platforms mean different delays and specification details.

3.5 Flaky tests detection tools

As we have explained in the previous section 3.4, flaky tests are a problem present in every real
software project, and they are difficult to detect and deal with (even more manually). The most
common way to find them is to rerun the tests that fail multiple times to check if they produce a
different result. However, this consumes a lot of resources and, even if you run a flaky test 10000
times, it might not give any sign of flakiness or different result, so you would need more reruns
to confirm that it is flaky. Because of that, there has been some research done on the automatic

detection of these type of tests, and tools have been developed to perform this task.

DeFlaker is a tool developed by Jonathan Bell et al. [54] that can detect flaky tests without the
need to rerun the failing tests multiple times, considerably reducing the spent resources. It is based
on a technique that keeps track of the changes done in the code. If a test that was always passing
and checks code that was not modified fails, then it is marked as flaky. It is a useful option that

reduces the overhead, as it instantly notifies if a test that failed is flaky, avoiding extra reruns.

However, as it only aims at test that were passing but suddenly failed, it is not covering all possible

flaky tests, are tests that still did not produce a different result are not checked. Nevertheless, even

“J

in the case where the developer wants to rerun the test to personally check for different results
and address it as flaky, the test is already identified by the tool, so the developer only needs to

rerun that test and not the complete test suit.

This tool was made available for everyone on Github [55]. When downloaded and installed
through Maven, a.qgit directory has to be put in the same folder as the root POM of the build. Then,
by running the command “mvn test” or “mvn verify”, a file will be obtained as output with four

values: testClass, coveredClass, isCoverageClassLevel and lineNumber.

The tool FlakeFlagger is developed by Abdulrahman Alshammari et al. [56] and its based in a
technic that focuses on collecting behavioral features of the tests to then predict if they are flaky
or not. The tool can be downloaded from [57]. It provides a specific dataset that contains a total
of 24 projects with over 22,000 test methods. The tests of these projects were classified as flaky
or non-flaky by automatically executing them 10,000 times each. If a test method gave a different
result at least once, it was declared as flaky. In the end, a total of 811 test methods were marked

as flaky.

This dataset was used by the developers of FlakeFlagger to evaluate the tool. It contains the
following columns (Figure 41):

¢ Project: the name of the project that the test method belongs to.

e Test: the path to the test method.

o IsFlaky: if the method analyzed is flaky or not. It is set to 0 in case of non-flaky and to 1
in the case of flaky.

e NumpFailingRuns: out of the 10000 runs, the number of times the test method resulted
in a failure.

¢ NumPassingRuns: out of the 10000 runs, the number of times the test method resulted
in passing.

o FirstFailingRunID: the number of the repetition that failed for the first time. For
example, if it failed three times and the first time failed in the repetition number 2386,
that is the number. In case it did not fail, it is set to -1.

e FirstPassingRunlID: the number of the repetition that passed for the first time. In most
of the cases, as it passes more than fails, the first repetition is usually a pass, so that is
why it is set to 0. In case it did not pass, it is set to -1.

e UniqueFailingExceptionTypes: the different number of exceptions that were thrown in

case it failed multiple times. If it did not fail, it remains 0.

41

'/

Research on the detection of test smells and flaky tests

Project _________ Rdlfest R sriakyRd numEailingRuns R NumpassingRuns R FirstFailingRuniD R FirstPassingRuniD Rd UniqueailingExceptionTypes _hd
activiti-activiti org.activiti.spring_boot.ta 0 1] 10000 -1 1] 1]
activiti-activiti org.activiti.spring.boot.ta 0 0 10000 -1 1] 0
activiti-activiti org.activiti.spring.boot.ta] 0 10000 -1 0 0
activiti-activiti org.activiti.spring.boot.ta 0 o 10000 -1 0 0
activiti-activiti org.activiti.spring_boot.ta 0 1] 10000 -1 1] 1]
activiti-activiti org.activiti.spring.boot.ta 0 0 10000 -1 1] 0
activiti-activiti org.activiti.spring.boot.ta] 0 10000 -1 0 o
activiti-activiti org.activiti.spring.boot.ta 0 0 10000 -1 0 0
activiti-activiti org.activiti.spring.boot.ta (1] [1] 10000 -1 [1] (1]
activiti-activiti org.activiti.spring.boot.ta o o 10000 -1 o o
activiti-activiti org.activiti.spring.boot.ta] 0 10000 -1 0 o
activiti-activiti org.activiti.spring.boot.RL 0 0 10000 -1 0 0
activiti-activiti org.activiti.spring.boot.RL (1] [1] 10000 -1 [1] (1]
activiti-activiti org.activiti.spring.boot.ta o o 10000 -1 o o
activiti-activiti org.activiti.spring.boot.ta [0 10000 -1 0 [
activiti-activiti org.activiti.spring.boot.ta 0 0 10000 -1 0 0
activiti-activiti org.activiti.spring.boot.ta (1] [1] 10000 -1 [1] (1]
activiti-activiti org.activiti.spring.boot.ta o o 10000 -1 o o
activiti-activiti org.activiti.spring.boot.ta 1] 1] 10000 -1 0 1]
activiti-activiti org.activiti.spring.boot.ta o o 10000 -1 0 0
activiti-activiti org.activiti.spring.boot.ta (1] [1] 10000 -1 [1] (1]
activiti-activiti org.activiti.spring.boot.ta o o 10000 -1 o o
activiti-activiti org.activiti spring_boot ta 1] (1] 10000 -1 0 (1]
activiti-activiti org.activiti.spring.boot.ta 0 0 10000 -1 1] 0
activiti-activiti org.activiti.spring.boot.pr] 0 10000 -1 0 0
activiti-activiti ore.actjviti.sorine.boot.or o 0 10000 -1 0 1]

Figure 41. Dataset of FlakeFlagger

iDFlakies is developed by Wing Lam et al. [58] and can detect flaky tests by reordering and
rerunning the test cases of a software system. The tool is also able to classify flaky tests as order-
dependent when the cause of flakiness is the order in which tests are executed and non-order-
dependent otherwise. For the order-dependent tests, they are flaky because the order in which
they are executed cannot be controlled. However, they can deterministically pass or fail if we take
the order into account. For the non-order-dependent tests, its causes are harder to control, such as

depending on external resources on asynchronism.

To run the tool, we first download the project, which is available in Github [59]. Then, we need
to create a csv file with, for every project we want to analyze, the Github URL and its SHA,
separated by a comma. Next, we move to scripts/docker/create_and_run_dockers.sh within the
iDFLakes project and run the following command: “bash create and run_dockers.sh <path to
csv> <round num> <timeout (seconds)>. After that, a folder is created for every project in the csv
file, containing a docker image. Inside, a csv file with the results of the flaky test analysis will be
obtained.

.

4. Analysis of the problem

4.1 Test smells detection tools comparison

A comparison among the test smell detection tools mention in section 3.3 was made. To
do that, the smells that the different tools were able to analyze were compiled into a table
in Figure 42, with a total of 34 smells combining all the tools.

(01) Assertionless (AL) (18) Lack of Cohesion of Test Method (LCM)

(82) Assertion Roulette (AR) (19) Lazy Test (LT)
(83) Constructor Initialization (CI) (20) Mystery Guest (MG)

{(84) Conditional Test Logic (CTL) (21) Magic Number Test (MNT)

(85) Duplicate Assert (DA) (22) Obscure In-line Setup Smell (0ISS)
(B6) Duplicated Code (DC) {23) Redundant Assertion (RA)
(87) Dependent Test (DepT) (24) Resource Optimism (RO)
(08) Dead Field (DF) (25) Redundant Print (RP)
(89) Default Test (DT) (26) Rotten Green Tests (RT)
(18) Exception Handling (EH) (27) Sensitive Equality (SE)
(11) Empty Test (EmT) (28) Sleepy Test (ST)

{12) Eager Test (ET) (29) Test Maverick (TM)

{(13) For Testers Only (FTO) (38) Test Redundancy (TR)
(14) General Fixture (GF) (31) Test Run War(TRW)

(15) Ignored Test (IgT) (32) Unknown Test (UT)

(16) Indented Test (InT) (33) Vague Header Setup(VHS)
(17) Indirect Test (IT) (34) Verbose Test (VT)

Figure 42. List of Test Smells for the Six Tools

The tools selected can be seen in this table (Figure 42) represented as rows. The columns
are all the test smells mentioned in the previous list. If the tool is able to detect a specific

smell, it is marked with a green “Y”".

olfSmell Type AL AR € CTL DA DC DepT DF DT EH EmT ET FIO GF IgT InT IT LCM LT MG MNT OISS RA RO RP RT SE ST T™™ TR TRW UT VHS VT
TsDetect Y ¥ Y Y Y Y ¥ Y ¥ ¥ ¥ Y Y ¥ ¥ Y ¥ ¥ ¥
INose Y Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y Y
DARTS Y Y ¥
Y

[Test Hound ¥
RAIDE Y Y

TestQ Y ¥ ¥ ¥ Y Y ¥ ¥ Y Y ¥ Y
"

Figure 43. Test Smells Tools and its Detected Smells

In this other table (Figure 44), for every one of the tools, the number of different test smells
that can be detected is written in the second column, while the precision and recall can be

seen in the third and fourth column.

a3

Research on the detection of test smells and flaky tests

Tool Smells detected Precision Recall
TsDetect 21 96% 97%
JNose 21 96% 97%
DARTS 3 76% 62%
Test Hound 6 Unknown Unkown
RAIDE 2 96% 97%
TestQ 12 89% 52%

Figure 44. Test Smells Tools Comparison

Some of these tools were too old or had no clear documentation for me to make them
work. It is the case of TestHound and TestQ. Others, such as DARTS and RAIDE, were
only able to detect a few smells and are only plugins, which makes it difficult to
incorporate them into a new project. Finally, TsDetect and JNose were the best choice to
detect test smells in Java programs, as they can detect the larger number of smells, as well
as being the easiest and most convenient to use. JNose uses TsDetect detection rules but
builds an interface on top of that and improves the way of providing the input: it only
needs the Github URL, in contrast to TsDetect, which needs a csv file with multiple fields.

Because of that, JNose was the test smell detection tool selected for my study.

4.2 Test smells as indicators of flakiness

Current approaches to combat flaky tests are rather unsatisfactory. The most common approach
is to run a flaky test multiple times, and if it passes in any run, declare it passing, even if it fails
in several other runs. But these approach wastes a lot of machine resources and reduces the test

suite effectiveness if the flaky test is excluded.

Some tools, like FlakeFlagger, DeFlaker and iDFlakies, propose different approaches that are not
based on rerunning tests a lot of times. However, these tools are more like a complement to other
techniques for finding flakiness and there is still a lot of work to do in this filed if flaky tests are

to be found in an efficient way.

On the other hand, there has been a lot of research done about the automatic detection of
test smells. In general, the results of the different detection tools are pretty accurate. If the
points mentioned before are considered, that test smell detection tools are efficient and accurate
and flaky test detection tools are rather unsatisfactory, then we can think of a possible next step.
In this line and following the objectives | stated in section 1.3, | decided to conduct an empirical
study to find out if there is a correlation between test smells and flaky tests and if test smell

detection tools can be used to find flaky tests.

' Y

5. Proposed solution

In this section, the proposed solution for this study will be explained, as well the design and
architecture of its system. As | mentioned in section 4.1, JNose was the tool selected for analyzing
the projects of this study. On the other hand, I also had to select the dataset with flaky tests that |
wanted to use as input of the JNose tool. FlakeFlagger already provides a dataset with the needed
information; that is, the tests classified as flaky or non-flaky. Because this dataset was very large
and contained a total of 24 projects with over 22,000 test methods, | decided to choose it for my

empirical study.

5.1 Architecture of the system

The empirical study was conducted by developing a tool that is able to run JNose for detecting
the test smells. This tool is developed using React, which means the use of Javascript, HTML and
CSS. Itis called Smell Flaky Analyzer and it is available in Github [60]. In addition, some Python
scripts were implemented, that are necessary for running JNose and obtaining the parsed results
from JNose and the flaky dataset.

React applications are web applications, which means that because of browser security policies,
they cannot execute command line instructions. | needed to do that in order to execute the Python

scripts, so | decided to convert it into a desktop application by using Electron.

To start with, the dataset resulting from the test smell detection and the dataset containing the
flaky tests must be obtained. As we will be working with the projects from the FlakeFlagger study,
its dataset will be used. The instructions to be followed are explained in my tool and a button
directly sends you to the FlakeFlagger page where you can download the dataset csv file.
Moreover, the csv file has to be uploaded to the tool, which parses it so that is has the desired

format for combining in later with the JNose detection results.

Then, another button allows to open the JNose tool, which has been added to the project folder,
into a new window. By using JNose, the URL of the projects present in the flaky dataset are
provided, and then the JNose tool is used to analyze them for detecting test smells. When the

detection process is completed, the results are downloaded into another csv file.

After that, the test smells csv file obtained from JNose and the parsed csv file with the flaky
dataset are uploaded to the tool and merged into a single file. The results are shown in the tool
with a table and different graphs. This tool wrapped all the process | would have to make manually

into a single application, which made the process easier and more convenient to replicate, and it

45

'/

Research on the detection of test smells and flaky tests

also provided a better way of inspecting the results rather than a raw csv file, so that | could reach

some conclusions.
An overview of the research process that was done can be seen in Figure 45:

1. The test smell detection tool and the flaky dataset had to be selected.

2. The dataset was used as input of the test smell tool.

3. The results of step 2 and the flaky dataset were mixed into one single file.

4. This file was analyzed to look for some correlation between test smells and flaky tests.

FlakeFlagger

{ Flaky dataset
research

Show
4 Its
Smelly flaky | Merged | Smelly flaky resul .
Dataset . analyzer results analyzer

JINose < Smelly dataset

Figure 45. Architecture of Smell Flaky Analyzer Tool

5.2 Design of the system

5.2.1 Mock-ups
Mock-ups are a model of the graphical user interface of an application, in a partial and preliminary

version. They can be designed on paper, on a whiteboard or even using software tools that
facilitate their creation. They are said to be partial and preliminary because designing a mock-up
does not imply that its final version will be the same. On the contrary, mock-ups are conceived
with the aim of showing customers and other developers, using the prototyping technique, what

the initial design idea for an interface is.

By having graphical references and not just descriptions and text, users are able to better
understand how the application will work, and thus give feedback to the developers on which
functionalities they would like to introduce, and which ones will be left out for the time being.
Normally, the initial idea will undergo modifications and the final interface will end up being
different from the first version shown. The mock-up of the Smell Flaky Analyzer tool that was

created before its implementation is shown in Figure 46.

ST

(W) T T a1k s

Home Screen
FlakeFlagger
Dataset
Download

H [(1) & | R | s

Instructions Screen

H [1 J(a)J] ® s

JNose Tool
Analysis Screen

H A J(RI] s

Results Screen

H A R_[(s)

Stats Screen

Figure 46. Mock-up Smell Flaky Analyzer Tool
5.2.2 Flowchart
A flowchart is a graphical representation that shows the logical sequence or steps to follow to
navigate between the different screens of the application. These are connected by arrows, which
indicate that the target window can be accessed from the source window. This type of diagrams
allows to show the whole application and helps to understand how it works and what possibilities
it offers. Additionally, it presents the style of the product as a whole, since you can see all the

windows and how they combine with each other.

Below, in Figure 47, the flowchart of the Smell Flaky Analyzer tool is shown, pointing out the
navigation between windows. Starting from the top-left corner, the first screen accessed is the
home menu. It shows basic information of the application and its development. If we use the
scrollbar, we can go down in the home menu and see the different screens. By clicking on a button
from the top bar, we can access the five different menus: home, instructions, analysis, results and
stats. Then, from each of the five screens, four arrows exit, showing the possible navigation to the
other four screens. Finally, from the instructions menu, we can also access the website of
FlakgeFlagger for downloading its dataset, as well as to the JNose tool to run the test smell

detection.

47

'/

Home Instuctions Analysis Results

Smell Flzky Anabyzer 14 a
tool uses for the analysis ot
test smells anel f1aky tests in
sofiware projecrs

of Lest coe, tesL smells

— arlse, wnich are poor
Droutamiiy practvs
oy present in the test cuses
Bacause of that, not only the

Clfiutnens ol the st v

. bt also Lh

mantenatcs and readabiliy.

In addition, sama 1067 may
have non determi i

s These tests are
called flaky and aftan las
ro contusion and unreliahe
results

Home __ Instrucions _ Analy

This app hit heen dezloped by Aleaadm -
renr Mich, 6T T adre of

rofescor Shingo Takads
kel Urhereiry 1apan

Professon Mauela & bare Aol
NI TSHAL PRITEET 63 £ Valcnsia, SEEn

Research on the detection of test smells and flaky tests

Step 1

s e e servatning i b follvming form

[
[AT
s o 1k aed T el Pt Ty

FikePaggee il 2 daracss e 8¢5 0k
Hnumloadd Froonche olloning sage.

e Rz e
fema
e 0 50, put 0 B the 5t Fo T uploas 1 anc 1c< o the paise
bt
T rning e, st aesults_uecsed, 1 b sk 1M s

o e

s s i 1 sl

Step 3
Otaci e e comaltee 5t sl s s oot
P e ol s s Pl o o el s a5

. Elick on et 54" e the e et e fobleraf he prre

e === .
Tlaky Tast Daneser o Aneomoany EC
"Flake-lagger: “red ctira Flz ciness Witout S

c
Rewnning Tests”

OpenAIRE

I\Y
L)

e

e

[e T e e e

Tast smells file

Flaky tests file

o T T

s (D [er—

e e e

i) bt

et |

Home Instructions Analysis Results Stats

Smelly Methods

b f 5338 et wah vt N
et amayeed

Flaky methods

1t e o 11 Ty s e
b i 22395 mathad w3 zea.

/.

Figure 47. Flowchart Smell Flaky Analyzer Tool

[Heome It Resul Stats

Smelly and Flaky Methods.
Aol ;o134

Smelly and Flaky Methods

—. s b of 158 Bk b st
= 0 Ny
methods anaed

Test Smells in Flzky
Test smells B
A cstal b of 16256 s el e A i o 3 et e
Pl
- o

6. Used technologies

6.1 Git/Github

git O
GitHub

Figure 48. Git and GitHub logos, respectively

Git (Figure 48) [61], developed by Linus Torvalds, is undoubtedly the most widespread version
control software. This tool allows you to work on projects as a team and monitor changes to
source code files. GitHub, using Git, is a collaborative software development platform that allows
a team to work in parallel on a project, hosted in a cloud repository, which can be downloaded,

modified and updated by its members.

I have chosen to use Git and GitHub so that the development of the project can be done in a
comfortable, secure and stable way. This tool facilitates the saving of the project in a cloud
repository, allowing other people to see and use it if necessary. In addition, it offers the possibility
of controlling different versions of the code in case of any conflict or unforeseen event. Another
functionality is to create different branches to work on new and untested features without affecting

the code of the main branch, which is in a more stable and verified state.

6.2 React

React

Figure 49. React Logo

React (Figure 49) [62] is an open-source JavaScript library for building user interfaces that was

developed by Facebook and released in 2013. Its main focus is to create dynamic and interactive

429

Research on the detection of test smells and flaky tests

web applications by building reusable Ul components. These components encapsulate the visual
and functional aspects of an application's user interface, allowing developers to create complex

Uls by composing these smaller building blocks together.

It was chosen for the development of this thesis’ application because it is a relatively simple way
for creating attractive user interfaces. | have already used it before and had some experience with
it, which made the implementation quicker, so that | could focus on other aspects of this project,

such as the smells detection, rather than in the application’s user interface.

6.3 Javascript

Figure 50. JavaScript Logo

JavaScript (Figure 50) [63] is a versatile and widely used programming language that powers the
interactive and dynamic elements of most modern websites and web applications, although its
versatility extends beyond the web browser, allowing developers to build a wide range of
applications across different platforms. It was initially created in the mid-1990s by Brendan Eich
while he was working at Netscape, and it has since evolved into a fundamental technology for
web development. JavaScript is the main programming language for this application, as it’s the
base language for the React library to work.

6.4 HTML

HTML

Figure 51. HTML Logo

/5

HTML (Figure 51) [64] is a fundamental language for creating and structuring content on the
World Wide Web. It forms the backbone of web pages, defining the structure, layout, and
elements that make up the content you see when you visit a website. HTML works in conjunction
with other technologies like CSS (Cascading Style Sheets) and JavaScript to create visually
appealing and interactive web experiences. It is the language used for defining the structure and

components of the application of this thesis, as it works in conjunction with the React library.

6.5 CSS

Figure 52. CSS Logo

CSS (Figure 52) [65] is a crucial technology used in web development to control the presentation
and visual styling of HTML documents. While HTML defines the structure and content of web
pages, CSS focuses on how those elements should be displayed, including aspects like layout,
colors, fonts, and spacing. CSS allows developers to separate the structure of a webpage from its
design, making it easier to maintain and create consistent styles across a website.CSS is the
technology that brings visual appeal and design to web pages. It's an essential tool for web
developers, enabling them to create beautiful and responsive layouts, define typography, apply
colors, and create a consistent user experience across different devices and screen sizes. It is used
in this project because it works together with React and HTML to develop the appealing screens
of the application.

6.6 Electron

Figure 53. Electron Logo

Electron (Figure 53) [66] is an open-source framework developed by GitHub. It enables

developers to create desktop applications using web technologies such as HTML, CSS, and

51

Research on the detection of test smells and flaky tests

JavaScript. Electron packages your web application along with a custom browser engine and
exposes APIs that allow interaction with the underlying operating system. This way, you can
create applications that work on Windows, macOS, and Linux using the same codebase. It has
been chosen in this project because it allows to convert the web application developed using React
into a desktop application, needed to execute the Phyton scripts that will run command line

instructions.

6.7 Python

Figure 54. Python Logo

Python (Figure 54) [67] is a versatile, high-level programming language known for its simplicity,
readability, and broad range of applications. Created by Guido van Rossum and first released in
1991, Python has gained immense popularity among developers due to its clean syntax, ease of
use, and extensive standard library. It's used for web development, data analysis, scientific
computing, artificial intelligence, automation, scripting, and more. It has been chosen in this
project for executing some tasks, from creating the scripts for running command line instructions
that allow to open browser windows (for executing JNose or accessing the FlakeFlagger
webpage), to load and save csv files into local folders.

6.8 Visual Studio Code

Figure 55. Visual Studio Code Logo

f

Visual Studio Code (Figure 55) [68] is a widely used source code editor developed by Microsoft.
It has gained immense popularity among developers due to its versatility, efficiency, and a vast
ecosystem of extensions and features. Launched in 2015, VS Code has quickly become a go-to
choose for programmers working with various programming languages and technologies. It has
been chosen for this project because it provides a practical and useful way of programming using
React and it is the most used editor in this regard.

6.9 Photoshop

Figure 56. Photoshop Logo

Adobe Photoshop (Figure 566) [69] is an image and graphics editing and retouching tool
developed by Adobe Systems Incorporated. Photoshop has been chosen as the editor for the
images used in the application’s user interface, which have been specifically modified for the
purpose of this project.

53

Research on the detection of test smells and flaky tests

/. Implementation

7.1 Introduction

In the following chapter, the work done for the implementation of the solution of this project will
be explained, as well as the development of the application obtained as a result of it. The main

points of the development are the following ones:

e Implement a set of algorithms in the form of Python scripts that can use the output of a
test smell detection tool (JNose in this case) and a flaky tests detection tool (FlakeFlagger
in this case) as input for parsing them, merging them, and providing a csv file with the

combined results, to later analyze them.

e Combine the different aspects of the process in a single application: the use of the test
smell detection tool JNose for obtaining the test smells, the access to the FlakeFlagger
webpage for obtaining the flaky tests, the execution of the Python scripts, the loading of
input files and saving of output files, etc.

o Design and develop the user interface of the application for studying the relationship
between code smells and flaky tests. This means creating the screens of the application
that the user can interact with to access the set of functionalities that it offers and showing

the analyzed output in a graphical and easy to understand way to the user.

7.2 Algorithms for parsing and merging

The first thing that was done before the implementation of the actual React application with its
user interface was to do the parsing and merging of the results from JNose and FlakeFlagger by
developing some Python scripts.

On the one hand, the first script is the one in charge of reading the csv file obtained from the
FlakeFlagger project. This file, as it is obtained, contains a lot of unnecessary information when
combined with the smell detection results (the number of times the test passed and failed, the
exact run that failed for the first time, etc.), so some data is cut.

First, the script asks for the csv file from FlakeFlagger. We execute it and provide the file using
the following command: “python get_test_flakiness.py test results.csv”. By using the
csv.reader() function, each row of the file is read (which are the different tests of the dataset) and
the columns that are not necessary are removed. Then, a new csv file named

test_results_parsed.csv is saved into a local folder with the flaky tests information containing, for

Y 54

every test, the project name it belongs to, the test name and if it is flaky (marked as a 1) or not
(marked as a 0).

On the other hand, a second script was created to parse the test smell results obtained from the
JNose tool and merge them with the csv file obtained in the first script. To do that, it asks for both
the smells csv file and the flaky tests csv file. It can be executed by writing the command: python
get_test_smells.py <test smells file> <flaky tests file>".

This script creates an array of elements. Every element will contain the combined information for
every test case. This is, the project name it belongs to, the test name, if it is flaky or not and the
21 different smells (marked as 1 for smelly and 0 for non-smelly). To do that, the flaky
information from the previous step is obtained and added to the element and the file with the test
smells is traversed. When a smell is found, the name of the test where the smell is can be read and
the column of that test is updated to 1 in the new array. Finally, the result is saved in a file named
sfa_results.csv. The contents of this file can be seen in Figure 577.

Project name Test method name Is flaky Assertion Roi Conditional T Constructor || Default Test Dependent Ti Duplicate Ass Eager Test
activiti-activiti aCreateStandaloneTaskForAnotherAssignee 1] 0 1] 0 1]] 0]
iti-activiti bCreateCheckTaskCreatedForSalaboyFromAnotherUser 0 0 [t} 0 [t}] [}]
activiti cCreateStandaloneTaskForGroupAndClaim 0 0 0 0 0 0 0 0
activiti dCleanUpWithAdmin 4] 0 1] 0 1]] 1]]
activiti aCreateStandaloneTaskForGroup 1] 0 1] 1) 1]] 0]
activiti-activiti bClaimAndRelease 0 0 0 0 0 0 0 0
activiti-activiti cCreateStandaloneTaskReleaseUnAuthorized 0 0 0 0 0 0 0 0
activiti-activiti dCreateStandaloneTaskAndClaimAndReleaseUnAuthorized o 0 1] 0 1] o 1] o
activiti-activiti eCreateStandaloneTaskAndClaimAndReleaseUnAuthorized 0 0 [t} 0 [t}] [}]
activiti fCreateStandaloneTaskAndClaimAndReleaseUnAuthorized 0 0 0 0 0 0 0 0
iviti-activiti gCleanUpWithAdmin 4] 0 1] 0 1]] 1]]
iti-activiti validatingConfigurationForlUser 1] 0 1] 1) 1]] 0]
activiti validatingConfigurationForAdmin 1] 0 0 0 0 o 0 o
activiti aCreateStandaloneTaskForSalaboy 1] 0 0 0 0 o 0 o
activiti bCreateStandaloneTaskForGroup 1] 0 1] 1] 1] o 1] o
activiti-activiti cCleanUpWithAdmin 0 0 [t} 0 [t}] [}]
activiti-activiti aCreateStandaloneTaskAndDelete 0 0 0 0 0 0 0 0
activiti-activiti cCreateStandaloneGroupTaskClaimAndDeleteFail 4] 0 1] 0 1]] 1]]
activiti-activiti dClaimTaskCreatedForGroup 1] 0 1] 1) 1]] 0]
0 0 [t} 0 [t}] [}]

activiti-activiti eClaimTaskCreatedForGroup

Figure 57. Combined Results from Script

7.3 Smell Flaky Analyzer Tool

To combine all the steps done, from the use of JNose to run the test smell detection to the
execution of the scripts, a React tool with user interface named Smell Flaky Analyzer was
developed. It is made up by a central screen that changes depending on the menu selected and a
top bar menu with five buttons that allow the navigation among the different menus of the
application: home, instructions, analysis, results and stats. The color palette selected is a
combination of light blue, light grey and white, which combined form an appealing and easy to
understand interface.

The first of the menus is the “Home” screen (Figure 588), which provides basic information about
test smells, flaky tests, the application, and its developer, me. The different sections of the menu

can be seen by using the right scrollbar to move between them.

55

X'/

Research on the detection of test smells and flaky tests

i i LI Ty 2
SF Home Instructions Analysis Results Stats SF Home Instructions Analysis Results Stats
During the implementation
— of test code, test smells
—— arise, which are poor
Smell Flaky Analyzer is a programming practices
tool used for the analysis of present in the test cases
test smells and flaky tests in <I> Because of that, not only the
software projects. effectiveness of the tests is
affected, but also the
maintenance and readability.
[e S8 % Db - -
SE Home Instructions Analysis Results Stats SF Home Instructions Analysis Results Stats
This app has been developed by Alejandro
In addition, some tests may Vicent Mico, with the advice of: '
have non-deterministic B, 8
outcomes. These tests are
called flaky and often lead !
to confusion and unreliable
results. Professor Shingo Takada
Keio University, Japan
Professor Manuela Albert Albiol
Universitat Politécnica de Valéncia, Spain |

Figure 58. Home Screen

The second menu is the “Instructions” screen (Figure 59), that shows all the steps that need to be
done prior to the final merging between flaky test and test smells results. It is divided in:
e Step 1: Obtention of the flaky tests results from the FlakeFlagger tool. A button can be
pressed to access the tool’s webpage, where the flaky dataset can be downloaded.
e Step 2: Parsing of the flaky results. The first of the python scripts is used in this step. To
do that, the “Upload file” button must be pressed to load the flaky dataset. Then, the
“Parse file” button is pressed to run the script through a command line instruction.
e Step 3: Obtention of the test smells detection results from JNose. When the”Run JNose”
button is pressed, the tool is opened in a new screen. The user has to follow the steps

explained in the screen to load projects and download the resulting csv file.

s 2 LI P a
SF Home Instructions Analysis Results Stats [} Home Instructions Analysis Results Stats
Step 1: Step 2:
The downloaded file will have to be parsed for matching the desired input
Obtain a ¢sv file containing the flaky tests with the following format: format.
ProjectName MethodName IsFlaky To do so, put the file in the csv folder, upload it and ¢lick on the parse
Example: my_project my_test_method 0 button.
0 stands for "non-flaky" and 1 stands for "flaky" The resulting file, test_results_parsed, will be saved in the csv folder.

Step 2 can be skipped if you already have a valid csv.

FlakeFlagger provides a dataset named test_results.csv that can be

downloaded from the following page:

0 vl R s LN P L
SF Home Instructions ~ Analysis Results Stats SE Home Instructions Analysis Results Stats
Step 3: Step 3:
Obtain a csv file containing the test smells with the JNose tool. Obtain a csv file contal Loading INose bse tool.
Run the tool with the following button and follow these steps: Run the tool with the f 9 steps:
1. Go to the "Projects” tab and clone a project by providing a github url. 1. Go to the "Projects” ding a github url.
2. Go to the "By TestSmells” tab and analyze the project you want. 2. Go 1o the "By TestSs . T you want,
3. When the bar reaches 100% click on the yellow button next to it. 3. When the bar reach .. o b next to it
.

4. Click on "Export CSV" and save the file in the csv folder of the project. 4. Click on "Export CS der of the project

Figure 59. Instructions Screen

The third menu is the “Analysis” screen (Figure 60), where the results from the test smells
analysis and the flaky tests are combined. The “Upload file” button on the left asks for the csv
file that was obtained in step 3 of the instructions screen. And the “Upload file” button on the
right asks for the flaky tests csv file downloaded from the FlakeFlagger page. Then, by clicking
the “Analzye” button, both files are taken as input of the second Python script, which creates a
new file named “sfa_results.csv” with the combination of test smells and flaky tests and saves it
in a local folder.

Instructions Results Stats

SF Home Analysis

Test smells file

Load a valid ¢sv containing the test smell analysis
results. It has to be located in the csv folder of this
project.

alluxio_result_byclasste...

Flaky tests file

Load a valid csv containing the flaky tests analysis
results. It has to be located in the csv folder of this
project.

test_results_parsed.csv

Figure 60. Analysis Screen
The fourth menu is the “Results” screen (Figure 61), where the results of the previous step can
be seen. First, a button on the left will allow you to upload the csv file from a local folder to the
application. Then, this file will be read, and the results will be put in a table that is comprehensible
and straightforward. It shows, for every test case, the project name, the method name, if it is flaky
“1” or not “0” and for every test smell if, it was found in the test case “1” or not “0”. For the third

column and the remaining columns of test smells, the box is painted in red in case of a “1”, which

makes it easier to read and understand.

Results Stats

SF Home Instructions Analysis

Results from sfa_results.csv

Is [Assertion|Conditional| Constructor |Default|Dependent Dl

Sroject Test method name : esa i

name flaky| Roulette | Test Logic |Initialization| Test Test
;‘l'l'l'l':i‘g getClientsTest i o o o o o o
AIXIO- JeaitTest D 0 o o o 0
aAIIIIllII))((iig createFileTest U 0 0 0 0 0 0
AIXIO- LjoleteFileTest i o o o o o
ﬁllllll::(‘iig deleteDirectoryWithDirectories Test U 0 0 0 0 0 0
ANUXIO- i Test o o o o o o
{l\llllllll))((iit‘l} addCheckpointTest U LO 0 0 0 0 0
aAlllllll':iioo' notFileCheckpointTest o 0 0 0 0 0

Figure 61. Results Screen

57

Research on the detection of test smells and flaky tests

When analyzing large projects, this table tends to become also very large, so a “Hide columns
without smells” button was added. When pressed, it will hide all the columns whose test smell

was not found in any method, so that it is easier to red and navigate through the table (Figure 62).

E3 smell Flaky Analyzer - X
SF Home Instructions Analysis Results Stats
Results from sfa_results.csv idlcounn -
without smells
A0 reaqTests o 0 o o o o 0
’;'I'l‘j;iig' readTests 1 0 0 o o o 0 0
A0 lopenCloseTest o 0 o o o o 0
’;IIIS;:S’ comparableTest 0 0 0 0 0 0 0 0
A0 lequalsTest o i 0 1 1 o 1 0
';'I'S)’(‘iig' isDirectoryTest b o 0 o o o 0 0
A0 ligFileTest b o 0 o o o o o
';'I'L‘l‘;iig' getinodeTypeTest b o 0 o o o 0 0
’;'I'l‘j)’(‘iig' getidTest b o 0 o o o 0 0
AllUXIo- | o seldTest b o 0 b lo lo o o

Figure 62. Results Screen with Hidden Columns

Finally, the fifth menu is the “Stats” screen (Figure 63), where some graphs are displayed to show
additional information about the results of the detection. The first graph shows the total number
of methods with test smells found (in red) in comparison to all the methods analyzed (in blue).
The second one shows the total number of flaky methods found (in red) in comparison to all the
methods analyzed (in blue).

3 smell Flaky Analyzer - X

SF Home Instructions Analysis Results Stats

Smelly Methods Flaky methods

A total number of 5339 methods with test
smells have been found in 22245
methods analyzed.

A total number of 811 flaky methods have
been found in 22245 methods analyzed.

Smelly Tests [Non-smelly Tests [| Flaky Tests (JEN] Non-flaky Tests

Figure 63. Stats Screen 1

/

In the second part of this screen (Figure 64) the left graph shows the number of methods that were
flaky and had at least some test smells at the same time (in red) in comparison to the total number

of methods (in blue). The right graph shows the number of flaky methods with some test smells

(in red) in comparison to all the methods analyzed (in blue).

3 5mell Flaky Analyzer

SF Home Instructions Analysis Results Stats

Smelly and Flaky Methods

A total number of 136 flaky methods with
test smells have been found in 22245
methods analyzed.

[Smelly Tests (WU Non-smelly Tests

Smelly and Flaky Methods

A total number of 136 flaky methods with
test smells have been found in 811 flaky
methods analyzed.

[Smelly Tests [Non-smelly Tests

x

Non-smelly Tests
m22.109

Figure 64. Stats Screen 2

And the third part of the menu shows the final two graphs (Figure 65). On the left, the different
number of smells found in all the test methods are shown in different colors. If the cursor is put
on one color, it shows which type of smell it is. On the right, the test smells found in the flaky
methods are shown, divided also by color.

3 smell Flaky Analyzer - X

SF Home Instructions Analysis Results Stats

Test Smells in Flaky
Methods

A total number of 483 test smells have
been found in 811 flaky methods
analyzed.

Test Smells

A total number of 16656 test smells have
been found in 22245 methods analyzed.

Figure 65. Stats Screen 3

59

Research on the detection of test smells and flaky tests

When a slide of the graph is clicked, the details on which project and method are part of that slide

are shown. For example, in the first graph on the right, if the red slide is clicked, it will show the

name of all the flaky methods that were found (Figure 66).

3 Smell Flaky Analyzer

SF

- X
Home Instructions Analysis Results '
1 [
Smelly Me Methods with flaky tests methods
A total number of 5 m Project Method
- - - 16 flaky methods have
smells have been found | Alluxio-alluxio getClientsTest []
| - - 7 methods analyzed.
analyze Alluxio-alluxio faultTest
Alluxio-alluxio createFileTest
Smelly Tests | |] Non-flaky Tests
e Alluxio-alluxio deleteFileTest T
//" Alluxio-alluxio deleteDirectoryWithDirectories
y Alluxio-alluxio IsTest
Alluxio-alluxio addCheckpointTest
Alluxio-alluxio notFileCheckpointTest
Alluxio-alluxio createfilePerfTest
Alluxio-alluxio createDirectorvTest

Figure 66. Stats Screen Explanatory Menu

The development of the application was done using the Visual Studio Code editor, which allows

to organize the different folders and files of the project in a practical way (Figure 67):

‘v 60

node_modules folder: stores all the Javascript and React libraries that are installed in

the project.

public folder: contains basic files, such as index.html or main.js, which will be executed

at the beginning of the application start.

src folder: contains all the elements necessaries to build the application:

-assets folder: the images used in the project, such as logos or icons.
-components folder: the Javascript and CSS component files that are used to
build the different screens of the application.

-csv folder: the csv files used as input in the application and the ones obtained
as output.

-reducers folder: the reducers files used by React Redux (explained after this
part).

-scripts folder: the Python scripts executed from the Ul of the application.
-index.js and index.css files: the root files that start calling the other components
so that they are displayed on the screen.

-App.js and App.css: the main component of the application, called from

index.js, that starts having functionality and organizing the other components.

-reducer.js and store.js files: the Javascript files that allow the React Redux
store to work properly.
-logo.svg file: the image used as icon of the application.

e package.json file: contains the information of the project, such as the version, the

dependencies and the scripts that can be executed.

J5 reportWi
Js store,j

.gitignore

Figure 67. Project Folders and Files

React uses “states” to store and keep track of the current state of the application. In this way, when
the variables that are stored in the state of React are modified, the components are updated and
the user interface is reloaded, so that the user is able to see the changes to the state. For example,
the state can store a boolean variable called “buttonPressed” that controls if a button has been
pressed or not. This variable is initialized in the state to false, meaning that it still has not been
pressed. In addition, a popup menu component conditionally renders based on the
“buttonPressed” variable: when the button is clicked, the menu activates. Then, if we click the
button, the handler method associated to it will modify the state of the component, updating the

variable to “true” and rendering the component again so that the popup menu is now shown.

This procedure, although a bit hard to get familiar with at the beginning, becomes really useful
when a bit of experience on React is acquired. However, when large applications are developed
and a lot of components are created, it becomes trickier. This is because each component has its
state, so if multiple components want to communicate to change someone else’s state, a lot of

code has to be added, and it becomes harder to understand.

61 ‘v

'/

Research on the detection of test smells and flaky tests

To solve this problem, many people choose to use React Redux instead of the default React state
mechanism. Redux allows to encapsulate your application inside a “store” which will manage the

state of the application (Figure 68).

J5 indexjs

= ReactDOM.createRoot(document.getElementById(root’
r(

J5 store.js

rootReducer f

= ereateStere(rootReducer,
window._ REDUX_DEVTOOLS_EXTENSION__ &&
window._ REDUX_DEVTOOLS_EXTENSION_ ());

Figure 68. Store Class

This store allows the use of “reducers” which will contain the information of the global state of
the application. By default, a single reducer is created, but “combineReducers” can be used, which
is a technique that permits to split the global state into different slices, allowing the developer to
organize the different variables of the project depending on the purpose they serve (Figure 69).

J5 mainSlicej IS reducerjs X

t { combineReducers } from 're
import mainReducer from °

rootReduce combineReducers({
main: mainRe r,

hiddenTable:

fault rootReducer

mainReducer = (state = ini e, action)
ch{action.type) {

creen: action.payload

mells: action.payload

laky: action.payload

: action.payload

Figure 69. Reducers Classes

62

The variables that are part of these global state in the reducers can be accessed from any of the
components of the application, by using the React Hooks “useSelector” and “useDispatch”
(Figure 70).

J5 TopBarjs

state.main)

changeScreen Screen
dispatch({type: T n", payload: newScreen}
L) aJ I

Figure 70. Use of useSelector and useDispatch

Finally, the execution of the Python scripts has been possible thanks to the introduction of
Electron to this project, which allows the execution of the React application as a desktop
application instead of a web one. To run it, it is enough to navigate to the project’s folder and
write the command “npm run electron:serve”, which will cancel the launch of the app in the
navigator and will instead lunch it as a desktop app on port 3000 (Figure 71).

"electron:serve”: "con)
"electron:build”: rn b H n-bui traMetad ain=build/main. j

"electron:start™:

Figure 71. Electron Scripts

63 ‘v

Research on the detection of test smells and flaky tests

8. VValidation

At the end of the implementation, we must verify the utility of the application and the work done,
as well as the obtained results. A total of 24 projects with over 22,000 test methods were used as
input for obtaining the results. First, the obtained results from the execution of the python scripts
will be explained, followed by the results shown once the application was finished. Finally, some
findings obtained during the validation regarding sources of flakiness will be explained.

8.1 Obtained results

By executing the Python scripts developed and explained before, a csv file is obtained, where the
results from the analysis of the test smells and flaky tests can be studied. This file was opened in
an excel sheet and some data was obtained. First of all, Figure 72 shows the number of methods
and flaky methods that had a specific amount of test smells, and its percentage. For example, 1368
methods had one test smell. From these number of methods, 17 of them were flaky, which means
only the 1,24% of the 1368 methods were flaky. As another example, 542 methods had 4 test

smells. Of these methods, only 16 were flaky, which means the 2,95% of the total amount of tests.

We can observe that the number of methods decrease when more smells are found in the same
method. This is expected, as it might be common to find one, two or a few smells in a test case,

but finding many smells in the same method is more complicated.

#Smells #Methods #Flaky Methods % #Smells #Methods #Flaky Methods %
10 65 2 3,07 21 0 0 0
9 45 0 0 20 0 0 0
8 125 1 0,8 19 0 0 0
7 116 7 6,03 18 0 0 0
6 190 9 4,73 17 78 1 1,28
5 333 20 6 16 0 0 0
4 542 16 2,95 15 0 0 0
3 1046 28 2,67 14 0 0 0
2 1418 35 2,46 13 0 0 0
1 1368 17 1,24 12 5 0 0
0 16906 675 3,99 11 8 0 0

Figure 72. Methods and Flaky Methods

In Figure 73, we can see that there are 16906 methods that did not have any test smell. From
these, only 675 were flaky which means the 3,99% of them. On the other hand, 5339 methods had
at least one or more test smells. From this amount, 136 were flaky. That is 2,54% of the methods
with test smells. It can be observed that the percentages of flaky methods with test smells is pretty

low (2,54%). It is even less than the percentage of flaky methods without any test smell, which is

/o

3,99%. In this first analysis, it looks like there is no clear correlation between a method been flaky

and having smells.

#Smells #Methods #Flaky Methods %
>0 5339 136 2,54
0 16906 675 3,99

Figure 73. Methods with and without Smells

Next, the numbers were split depending on the different 21 smells (Figure 74). For every test
smell, the number of methods that were found with that specific smell are shown in the “#Smells”
row and from that number, the amount of flaky methods are shown in the “#Smells in flaky test”

row. And in the third row, the percentage of that smell being in a flaky test is displayed. Some

smells score higher percentages than others, but in general, they are still very low.

Assertion Roulette Conditional Test Logic Constructor Initialization Default Test Dependent Test Duplicate Assert
#5mells 4150 651 1] 1] 0 755
#smells in flaky test 118 38 0 0 a 27
% 2,84 5,83 0 0 0 3,57
Eager Test EmptyTest «ception Catching Throwir General Fixture IgnoredTest Lazy Test
#5mells 2459 161 651 1] 1579 1252
#5smells in flaky test 58 1 39 (1] 26 16
% 2,35 0,62 5,99 0 1,64 1,27
Magic Number Test Mystery Guest Print Statement Redundant Assertion Resource Optimism
#3mells 1603 345 234 121 289
#5smells in flaky test 55 5 10 1 4
% 3,43 1,43 4,27 0,82 1,38
Sensitive Equality Sleepy Test Unknown Test Verbose Test Total
#5mells 387 136 1124 755 16656
#5smells in flaky test 12 7 11 55 483
% 3.1 5,14 0,97 7,28 2,89

Figure 74. Test Smells in Flaky Tests by Type

Finally, the rank of smells in flaky tests was created (Figure 76). Here, we can more clearly see
that all the percentages are below 8%, which means that test smells do not seem to strongly affect
the creation of flaky tests. For a given smell, the percentage means the number of times that smells
appears in a flaky test divided by the number of times it appears in total (Figure 75). For the smell
with highest presence Verbose Test, only 7,28% of the smells were in a flaky test. Most of them
(17/21) were below 5%.

#smells in flaky tests
#smells in total

OAJ=

Figure 75. Test Smells Percentage Formula

65 ‘v

Research on the detection of test smells and flaky tests

Rank % Smell Rank % smell
1 1,28 Verbose Test 12 1,43 Mystery Guest
2 5,99 Exception Catching Throwing 13 1,38 Resource Optimism
3 5,83 Conditional Logic Test 14 1,27 Lazy Test
4 5,14 Sleepy Test 15 0,97 Unknown Test
5 4,27 Print Statement 16 0,82 Redundant Assertion
5] 3,57 Duplicate Assert 17 0,62 Empty Test
7 3,43 Magic Number Test 18 0 Constructor Initialization
8 3,1 Sensitive Equality 18 0 Default Test
9 2,84 Assertion Roulette 18 0 Dependent Test
10 2,35 Eager Test 18 0 General Fixture

11 1,64 Ignored Test

Figure 76. Rank of Test Smells in Flaky Tests

8.2 Application results

After developing the application, the results of analyzing more than 22000 methods can be better
displayed and studied. From the “Stats” screen, we can see if test smells and flaky tests are
common in software projects. For test smells yes, as 24.00% of the test methods had at least one

test smell (Figure 77).

Smelly Methods

A total number of 5339 methods with test
smells have been found in 22245
methods analyzed.

Smelly Tests [| Non-smelly Tesis

Figure 77. Test Smells in Test Methods

For flaky tests not so much, as only 3.64% of the test methods were flaky (Figure 78).

Y 66

Flaky methods

A total number of 811 flaky methods have
been found in 22245 methods analyzed.

[Flaky Tests (RN Non-flaky Tests

Figure 78. Flakiness in Test Methods

From the next two graphs, we can see which test smells are the most common in software projects
(Figure 79). For the 24 projects analyzed, these smells are Assertion Roulette with a percentage
of 24.91%, Eager Test with a percentage of 14.76%, Magic Number Test with a percentage of
9.62% and Ignored Test with a percentage of 9.48%.

Test Smells

A total number of 16656 test smells have
been found in 22245 methods analyzed.

Figure 79. Test Smell Types in Software Projects

67 'v

Research on the detection of test smells and flaky tests

And which test smells are the most common in flaky tests (Figure 80). These are Verbose Test in
7.28% of the flaky tests, Exception Catching Throwing in 5.99% of the tests, Conditional Logic
Test in 5.83% of the tests and Sleepy Test in 5.14% of the tests.

Test Smells

A total number of 16656 test smells have
been found in 22245 methods analyzed.

Figure 80. Test Smell Types in Flaky Tests

And from the last two graphs, we can observe if test smells are good indicators of flakiness in the
test methods. Only 136 flaky methods had test smells, which is the 16,76% of the 811 flaky
methods (Figure 82), in contrast with 24% of the total 22245 methods (Figure 81). In addition,
and as we could see in Figure 76, all the percentages are below 10%. Therefore, there is not

enough evidence to support a strong correlation between test smells and flaky tests.

Smelly and Flaky Methods

A total number of 136 flaky methods with
test smells have been found in 22245
methods analyzed.

Figure 81. Test Smells in Flaky Methods 1

Y 68

Smelly and Flaky Methods

A total number of 136 flaky methods with
test smells have been found in 811 flaky
methods analyzed.

Smelly Tests | | Non-smelly Tests

Figure 82. Test Smells in Flaky Methods 2

8.3 Manual inspections and findings

After the previous step, | decided to manually inspect some of the methods marked as flaky to

look for some common indicators of flakiness. A lot of the reviewed flaky tests (Figure 83)

contained one or more of the first four smells in the Figure 76.

Test method name

aCreateStandaloneTaskForAnotherAssignee
bCreateCheckTaskCreatedForSalaboyFromAnotherlUser
testAsyncExecutorDisabledOnOneEngine

testRegularAsyncExecution
testAsyncFailingScript

Is flaky EmptyTest Exception Ca General Fixtu Unknown Tes Verbose Test
0 0 o 0 0 0
0 0 0 0
1 1] 1] 1]
1 1] 1] 1]
1 o o o

Figure 83. Tests with Most Common Smells

Some examples of the smells found are:

e Verbose test: a method containing a large number of statements (JNose establishes the

threshold in 30 statements per method), found in 7.28% of the flaky tests (Figure 84).

69 ‘v

'/

70

Research on the detection of test smells and flaky tests

stRegularAsyncExecution

essEngine =

processEngine .getRuntim ice().startProcessInstanceByK

1);
EqualTo(e);

Figure 84. Verbose Test Smell Found Example

Exception catching throwing: a test method that contains either a throw statement or a
catch clause, found in 5.99% of the flaky tests (Figure 85).

d testRegularAsyncExecution()

e processEngine =

processEngine = createProcessEngine(
setClockToCurrentTime(processEngine);
deploy(processEngine, "AsyncExecutorTest.

Figure 85. Exception Catching Throwing Smell Found Example

Conditional logic test: a test method containing one or more control statements, found
in 5.83% of the flaky tests (Figure 86).

d testRegularAsyncExecution()

e processkEngine =

if (proce =) {
cleanup(processEngine);

Figure 86. Conditional Logic Test Found Example

e Sleepy test: a method that invokes the “Thread.sleep()” instruction, found in 5.14% of
the flaky tests (Figure 87).

d testExecuteAsyncWithProcessDestroyer()

Thread.sleep(2868);

getProcessDest

1, processDestro
"p r = ", proce

Figure 87. Sleepy Test Found Example

In addition, some sources of flakiness mentioned in section 3.4 were also predominant in the test

cases marked as flaky:

o REST connections; that is, relying on external resources (Figure 88).

Test method name 5 Is flsly | testGetTableDescriptor I0Exceptior
testGetTableDescriptor : y > table = TEST_UTIL.getConnection().getTable(TABLE)
testGet 1 I scriptor local = table.getDescriptor();

testPut 1 assertEquals(remoteTable.getDescriptor(), local);
testDelete 1

testScanner 1

remoteTable =
ew RemoteHTable(new Client(new Cluster().add("localhost™, REST_TEST_UTIL.getServletPort())),
TEST_UTIL.getConfiguration(), TABLE.toBytes());

Figure 88. REST Connections Found Example

o Database queries, which is also relying on external resources (Figure 89).

> g2 = createColumnQi
etColumnFamily(cf);

Test method name Is flaky I Column<String, i > r = q2.setKey(
testinsertGetRemove [
testBatchlnsertGetRemove
testSuperinsertGetRemove
testSubColumnQuery
testMultigetSliceQuery
testSliceQuery
testSuperSliceQuery
testSubSliceQuery
testMultigetSuperSliceQuery
testMultigetSubSliceQuery

deleted”, r.get());

P e R b e ek e e

cq = createCountQuery(ko, se

= Cq.execute

Figure 89. Database Queries Found Example

S |

'/

Research on the detection of test smells and flaky tests

The Date class, with its time dependent instructions (Figure 90).

Test method name Is flaky
date assertion should support timestamp string represe 1
testDelayedActivateProcessDefiniticn 1

oid date assertion_should_support_date with_utc_time_zone strlng repr‘ese’ntatlon

isoFormat = new SlmpleDateFormat

isoFormat.setTimeZone(TimeZone. getTlmeZone(1C"));
» date soFormat.parse("2003-04-26700:00:00");

assertThat(date).isEqualTo

resources

void testDelayedAct1vateProcessDef1n1t10n
> startTime = new Date();

processeEngineConfiguration.getClock().setCurrentTime(startTime);

)ng oneDayFromStart = startTime.getTime() + (24 * 60 * 60 * 1000);
repositoryService.activateProcessDefinitionById(processDefinition.getId(), « Date(oneDayFromStart)

Figure 90. Date Class Found Example

SMTP connections, that means relying on network connections (Figure 91).

Test method name Is flaky
testCustomEvaluator 1
testCustomBufferSize

ustomBuffersize()
er(NO_SsL);
lackboxClassicTestConstant

te~tLustomE\.raluator‘

s.JORAN_INP|

logger.error(msg);
waitUntilEmailIsSent

Figure 91. SMTP Connections Found Example

File read/write, which is again relying on external resources (Figure 92).

Test method name Is flaky
fallbackToSafe 1
installFilter 0

1

gafferinstallFilter

d fallbackToSafe()
path = 2 onstants.OUTPUT |

tDpLE_.»:lFlle File(path);

eToFile(topLevelFi

d gafferInstallFilter()
File file = new File(G SCANL FILE AS STR);
gConfigure(file);
List¢File» filelist - getConfigurationFilelist(loggerConte
assertThatListContainsFile(filelist, file);
assertThatFirstFilterIsROCF();

rocfDetachReconfigurationToNewThreadAndAwaitTermination();

Figure 92. File Read/Write Found Example

9. Conclusions

The accomplishment of this project has allowed me to fulfill successfully the objectives stablished
in section 1.3 for the reasons explained as follows. The first objective consisted in studying about
the definition, types and presence of test smells. This has been done by researching and Reading
state of the art papers about test smells, as explained in section 3, as well as by implementing my
tool and obtaining the results over a set of projects. As a result, it can be affirmed that this
objective has been met. The second objective was focused on the detection of test smells. This
has also been fulfilled, by researching about it and studying and executing current tools with
different approaches for the automatic detection of smells in software projects.

Moreover, the third and fourth objectives focused on flaky tests. The study of papers related to
flaky tests allowed me to better understand the importance of avoiding and correcting them. |
learned about what problems they can cause, how they can be detected and how to properly
refactor the code to correct them. In addition, some tools that could automatically detect flaky
tests were also studied, and its results were examined. This allowed me to achieve the third and
fourth objectives successfully.

The fifth objective is related to find if there is any correlation between test smells and flaky tests.
Because flaky tests are hard to find, | wanted to know if test smells were a good indicator to find
flaky tests. In the end, | conclude that test smells might not be the source of flakiness themselves,
so that is why the percentages are so low. However, some of them might be related to other
flakiness indicators. It is the case for example of the Sleepy test smell, exception catching
throwing and conditional test logic. | manually inspected some of the tests where these smells are
present, and | could find other indicators of flakiness. For example, a sleepy test smell combined
with asynchronous behavior can cause flakiness and a conditional statement or a try catch clause
that depends on network connection or input/output operations can also cause flakiness. Because
of that, even if the result was not the desired one, | could study the relation between them and

hence complete the fifth objective.

And for the sixth objective, | developed a tool that provides an easy way of inspecting test smells
and flaky tests, with all the steps explained. State of the art tools requires to spend time learning
how to use them and what kind of input is needed. Some of these tools provide the results in an
unclean and difficult way to understand. With my tool, test smells and flakiness are brought
together to the same table, for analyzing if the test smells of the project under test are in flaky
methods, and graphs are also provided to get a better idea of the situation of the projects. Then, |

can say that this objective has also been successfully achieved.

73

'/

Research on the detection of test smells and flaky tests

As a conclusion, I conducted an empirical study concerning test smells and flaky tests. | learned
a lot about code smells, test smells, flaky tests and its detection and | came up with an application
capable of showing results in a clear and user-friendly way. | think that this research will provide
a new path for thinking about the best way of detecting flakiness, by using flakiness indicators

mentioned previously or test smells in combination with other techniques.

i A

10. Future work

The final project resulted in an application completely finished, with the basic functionality
necessary for combining test smell detection results with flaky tests detection results and then
studying the combination of both in a convenient and straightforward way. Starting from this
point, we can divide the future work in three different sections.

First, if the application was to be used by other developers to find test smells and flaky tests, the
offered features would be extended. The application would be improved so that it can detect the
exact point in the methods were test smells have been found. This would be shown to the user in
a new screen, maybe similar to a code editor, with remarks and recommendations on how to

refactor it so that the user could see the smell and correct them when appropriate.

Secondly, a flaky tests detection tool could be developed. This tool would use the flakiness
indicators mentioned in step 3.4 to look for flakiness in the tests. These indicators seem to be a
better way of finding flaky tests than test smells, so a tool that used them would seem to achieve
higher performance than existing approaches. Test smells could also be used to find flakiness
indicators, and then find flaky tests, if considered a good idea.

Finally, more research could be done on the detection of flaky tests. It is still a considerably new
field, and there is still room to improve and new approaches to be discovered. These bad
programming practice, as explained before, is something to take into account and developers
should avoid introducing them in their code and, if this has already happened, use an efficient

way for detecting and refactoring them.

75

Research on the detection of test smells and flaky tests

11. Acknowledgments

I would like to thank professor Takada for his help throughout the year. It has not been an easy
year for me as an exchange student in a completely different country, but professor Takada has
always been willing to evaluate the work | have done, give me constructive feedback all the weeks
and propose possible ideas | could look into. His support during my year at Keio University was

one of the main reasons this project has been completed.

In addition, I would also like to thank professor Manuela Albert. Being a thesis advisor from the
other side of the planet is not an easy thing to do, but she always responded to by messages and
doubts, and did not have any problems in arranging meetings with me to check my progress and

help me with the project.

J

12. Bibliographical references

[1] Daniel Perez Morales et al., "Coverage-Guided Fairness Testing", International Conference
on Intelligence Science (ICIS) 2021 <https://link.springer.com/chapter/10.1007/978-3-030-
79474-3 13>

[2] Sakshi Udeshi et al., "Automated Directed Fairness Testing", International Conference on
Automated Software Engineering (ASE) 2018
<https://dl.acm.org/doi/10.1145/3238147.3238165>

[3] Shinya Sano et al., "An efficient discrimination discovery method for fairness testing",
International Conference on Software Engineering and Knowledge Engineering (SEKE) 2022

<https://ksiresearch.org/seke/seke22paper/paper064.pdf>

[4] Francesco Leone et al., "Overcoming Type Limitations in Semantic Clone Detection",
International Workshop on Software Clones (IWSC) 2022
<https://ieeexplore.ieee.org/document/9978229>

[5] Yu-Liang Hung et al., " CPPCD: A Token-Based Approach to Detecting Potential Clones”,
International Workshop on Software Clones (IWSC) 2020
<https://ieeexplore.ieee.org/document/9047636>

[6] Muhammad Waseem Anwar et al., "A Systematic Review on Code Clone Detection”,
Emerging Technologies in Data Mining and Information Security 2020

<https://ieeexplore.ieee.org/abstract/document/8719895>

[7] José Amancio M. Santos et al., "A Systematic Review on the Code Smell Effect”, The
Journal of Systems and Software 2018
<https://www.sciencedirect.com/science/article/abs/pii/S0164121218301444?via%3Dihub>

[8] Martin Fowler et al., "Refactoring: Improving the Desing of Existing Code", Object
Techonology Series. Addison-Wesley, 1999
<https://books.google.co.jp/books?hl=es&Ir=&id=2H1 DwAAQBAJ&oi=fnd&pg=PT14&ots=
NgFqvho20V&sig=AIX0x40WQXm93L 7-
BMRHTOShOng&redir_esc=y#v=onepage&q&f=false>

[9] Refactoring.com, a webpage about refactoring
<https://refactoring.com/#:~:text=Refactoring%20is%20a%20disciplined%20technique,0f%20s

mall%20behavior%20preserving%?20transformations.>

7

https://link.springer.com/chapter/10.1007/978-3-030-79474-3_13
https://link.springer.com/chapter/10.1007/978-3-030-79474-3_13
https://dl.acm.org/doi/10.1145/3238147.3238165

Research on the detection of test smells and flaky tests

[10] M. M. Lehman, "Programs, life cycles, and laws of software evolution”, International in
Proceedings of the IEEE, vol. 68, no. 9, 1980 <https://ieeexplore.ieee.org/document/1456074>

[11] W. Cunningham, "The WyCash portfolio management system™ OOPS Messenger, vol. 4,
no. 2, 1993 <https://dl.acm.org/doi/pdf/10.1145/157710.157715>

[12] Eduardo Fernandes et al., "A Review-based Comparative Study of Bad Smell Detection
Tools" International Conference on Evaluation and Assessment in Software Engineering
(EASE) 2016 <https://dl.acm.org/doi/10.1145/2915970.2915984>

[13] Thanis Paiva et al., "On the evaluation of code smells and detection tools" International
Journal of Software Engineering Research and Development 2017
<https://jserd.springeropen.com/articles/10.1186/s40411-017-0041-1>

[14] Nikolaos Tsantalis et al., "JDeodorant: Identification and Removal of Type-checking Bad
Smells" European Conference on Software Maintenance and Reengineering (CSMR) 2008

<https://ieeexplore.ieee.org/document/4493342>

[15] F. A. Fontana et al., "Code Smell Detection: Towards a Machine Learning-Based
Approach" International Conference on Software Maintenance 2013

<https://ieeexplore.ieee.org/document/6676916>

[16] Santiago A. Vidal et al., "An Approach to Prioritize Code Smells for Refactoring”
Automated Software Engineering 2014 <https://dl.acm.org/doi/10.1007/s10515-014-0175-x>

[17] Dario Di Nucci et al., "Detecting code smells using machine learning techniques: Are we
there yet?" International Conference on Software Analysis, Evolution and Reengineering
(SANER) 2018 <https://ieeexplore.ieee.org/abstract/document/8330266>

[18] Seema Dewangan et al., "A Novel Approach for Code Smell Detection: An Empirical
Study" IEEE Access 2021 <https://ieeexplore.ieee.org/document/9641807>

[19] Oumayma Hamdi et al., "An Empirical Study on Code Smells Co-occurrences in Android
Applications” ACM International Conference on Automated Software Engineering Workshops
(ASEW) 2021 <https://ieeexplore.ieee.org/document/9680287>

[20] Dustin Lim, "Detecting Code Smells in Android Applications™ Master’s Thesis 2018
<http://resolver.tudelft.nl/uuid:bab69ac3-07b7-4dae-8b80-670443af2faa>

[21] Geoffrey Hecht et al., "Tracking the Software Quality of Android Applications Along Their
Evolution (T)" ACM International Conference on Automated Software Engineering (ASE) 2015
<https://ieeexplore.ieee.org/document/7372012>

/s

[22] Fabio Palomba et al., "Lightweight detection of Android-specific code smells: The aDoctor
project” International Conference on Software Analysis, Evolution and Reengineering
(SANER) 2017 <https://ieeexplore.ieee.org/document/7884659>

[23] Marouane Kessentini et al., "Detecting Android Smells Using Multi-Objective Genetic
Programming" International Conference on Mobile Software Engineering and Systems
(MOBILESoft) 2017 <https://ieeexplore.ieee.org/document/7972726>

[24] Jehan Rubin et al., "Sniffing Android code smells: an association rules mining-based
approach” International Conference on Mobile Software Engineering and Systems
(MOBILESoft) 2019 <https://dl.acm.org/doi/10.5555/3340730.3340753>

[25] Chenguang Mao et al., "Droidlens: Robust and Fine-Grained Detection for Android Code
Smells" International Symposium on Theoretical Aspects of Software Engineering (TASE)
2020 <https://ieeexplore.ieee.org/document/9405264>

[26] Jing Yu et al., "A Novel Tree-based Neural Network for Android Code Smells Detection"
International Conference on Software Quality, Reliability and Security (QRS) 2021
<https://ieeexplore.ieee.org/document/9724832>

[27] Bo Yang et al., "Don’t Do That! Hunting Down Visual Design Smells in Complex Uls
Against Design Guidelines" International Conference on Software Engineering (ICSE) 2021

<https://ieeexplore.ieee.org/document/9402139>

[28] Kent Beck, "Test Driven Development: By Example™ Addison-Wesley Longman
Publishing Co. 2002 <https://github.com/clarabez/SoftwareTestingBooks/blob/master/Test-
Driven%20Development%20By%20Example%20(Kent%20Beck).pdf>

[29] A. Schneider et al., "JUnit best practices" Java World 2000

<https://www.infoworld.com/article/2076265/junit-best-practices.htmI>

[30] Abdallah Qusef et al., "SCOTCH: Test-to-code traceability using slicing and conceptual
coupling” International Conference on Software Maintenance (ICSM) 2011
<https://ieeexplore.ieee.org/document/6080773>

[31] Arie van Deursen et al., "Refactoring test code™ Technical Report CWI Centre for
Mathematics and Computer Science 2001 <https://dl.acm.org/doi/10.5555/869201>

[32] Gerard Meszaros, "xUnit Test Patterns: Refactoring Test Code" Addison-Wesley 2007
<https://github.com/ahmedfarhat/software-development-ebooks-
1/blob/master/%5BxUnit%20Test%20Patterns%20Refactoring%20Test%20Code%20(Addison-

79

'/

Research on the detection of test smells and flaky tests

Wesley%20Signature%20Series%20(Fowler))%20Kindle%20Edition%20by%20Gerard%20Me
$zaros%20-%202007%5D.pdf>

[33] Helmut Neukirchen et al., "Utilising code smells to detect quality problems in ttcn-3 test
suites™ International Conference on Testing of Communicating Systems and International
Workshop on Formal Approaches to Testing of Software (TestCom/FATES) 2007
<https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16>

[34] Bart Van Rompaey et al., "Characterizing the relative significance of a test smell”
International Conference on Software Maintenance (ICSM) 2006
<https://ieeexplore.ieee.org/document/4021366>

[35] Michaela Greiler et al., "Automated Detection of Test Fixture Strategies and Smells"
International Conference on Software Testing, Verification and Validation 2013
<https://ieeexplore.ieee.org/document/6569744>

[36] Davide Spadini et al., "On the Relation of Test Smells to Software Code Quality"
International Conference on Software Maintenance and Evolution (ICSME) 2018

<https://ieeexplore.ieee.org/document/8529832>

[37] Michele Tufano et al., "An empirical investigation into the nature of test smells"
International Conference on Automated Software Engineering (ASE) 2016
<https://dl.acm.org/doi/abs/10.1145/2970276.2970340>

[38] Manuel Breugelmans et al., "TestQ: Exploring Structural and Maintenance Characteristics
of Unit Test Suites" 2008 <https://api.semanticscholar.org/CorpusID:9839569>

[39] Wajdi Aljedaani et al., "Test Smell Detection Tools: A Systematic Mapping Study™
International Conference on Evaluation and Assessment in Software Engineering (EASE) 2021
<https://dl.acm.org/doi/10.1145/3463274.3463335>

[40] Anthony Peruma et al., "TsDetect: an open source test smells detection tool" ACM Joint
Meeting on ESEC/FSE 2020 < https://dl.acm.org/doi/10.1145/3368089.3417921 >

[41] Stefano Lambiase et al., "Just-In-Time Test Smell Detection and Refactoring: The DARTS
Project” International Conference on Program Comprehension 2020
<https://dl.acm.org/doi/10.1145/3387904.3389296 >

[42] Téssio Virginio et al., "On the influence of Test Smells on Test Coverage™ Brazilian
Symposium on Software Engineering (SBES) 2019
<https://dl.acm.org/doi/10.1145/3350768.3350775>

‘v 80

[43] Téssio Virginio et al., "JNose: Java Test Smell Detector” Brazilian Symposium on
Software Engineering (SBES) 2020 < https://dl.acm.org/doi/10.1145/3422392.3422499>

[44] Railana Santana et al., "RAIDE: A Tool for Assertion Roulette and Duplicate Assert
Identification and Refactoring” Brazilian Symposium on Software Engineering 2020
<https://dl.acm.org/doi/abs/10.1145/3422392.3422510>

[45] Manuel Breugelmans et al., "TestQ: Exploring Structural and Maintenance Characteristics
of Unit Test Suites” International Workshop on Advanced Software Development Tools and
Techniques (WASDeTT) 2008 <https://api.semanticscholar.org/CorpusID:9839569>

[46] Github repository to download the test smell detection tool TsDetect
<https://github.com/TestSmells/TestSmellDetector>

[47] Github repository to download the test smell detection tool DARTS
<https://github.com/StefanoLambiase/DARTS>

[48] Github repository to download the test smell detection tool TestHound
<https://github.com/SERG-Delft/TestHound>

[49] Github repository to download the test smell detection tool JNose

<https://github.com/arieslab/jnose>

[50] Github repository to download the test smell detection tool RAIDE

<https://github.com/arieslab/raide>

[51] Webpage link to download the test smell detection tool TestQ

<https://code.google.com/archive/p/tsmells/downloads>

[52] Moritz Eck et al., "Understanding flaky tests: the developer’s perspective" ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE) 2019 <https://dl.acm.org/doi/10.1145/3338906.3338945>

[53] Qingzhou Luo et al., "An empirical analysis of flaky tests” ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE) 2014
<https://dl.acm.org/doi/10.1145/2635868.2635920>

[54] Jonathan Bell et al., "DeFlaker: Automatically Detecting Flaky Tests" International
Conference on Software Engineering (ICSE) 2018
<https://ieeexplore.ieee.org/document/8453104>

81 ‘v

Research on the detection of test smells and flaky tests

[55] Github repository to download the flaky tests detection tool DeFlaker

<https://github.com/gmu-swe/deflaker>

[56] Abdulrahman Alshammari et al., "FlakeFlagger: Predicting Flakiness Without Rerunning
Tests" International Conference on Software Engineering (ICSE) 2021
<https://ieeexplore.ieee.org/document/9402098>

[57] Github repository to download the flaky tests detection tool FlakeFlagger
<https://github.com/AlshammariA/FlakeFlagger>

[58] Wing Lam et al., "iDFlakies: A Framework for Detecting and Partially Classifying Flaky
Tests" Conference on Software Testing, Validation and Verification (ICST) 2019
<https://ieeexplore.ieee.org/document/8730188>

[59] Github repository to download the flaky tests detection tool iDFlakies
<https://github.com/iDFlakies/iDFlakies>

[60] Github repository to download the tool of this project, Smell Flaky Analyzer
<https://github.com/TheAlexet/smell-flaky-analyzer>

[61] Git webpage <https://git-scm.com>
[62] React webpage <https://react.dev>

[63] Javascript <https://developer.mozilla.org/en-US/docs/Web/JavaScript>

[64] HTML <https://developer.mozilla.org/en-US/docs/Web/HTML >

[65] CSS <https://developer.mozilla.org/en-US/docs/Web/CSS>

[66] Electron webpage <https://www.electronjs.org>

[67] Python webpage <https://www.python.org>

[68] Visual Studio Code webpage <https://code.visualstudio.com>

[69] Photoshop webpage <https://www.adobe.com/es/products/photoshop.html>

‘v 82

13. Appendices

13.1 List of abbreviations and acronyms
Al: Artificial Intelligence

UPV: Universitat Politécnica de Valéncia
PHD: Philosophy Doctorate

AST: Abstract Detection Trees

PDG: Program Dependance Graph

Ul: User Interface

CSV: Comma-Separated Values

URL: Uniform Resource Locator

1/0O: Input and Output

NaN: Not a Number

OS: Operating System

SHA: Secure Hashing Algorithm
HTML: Hypertext Markup Language
CSS: Cascading Style Sheets

REST: Representational State Transfer

SMTP: Simple Mail Transfer Protocol

83 ‘v

Research on the detection of test smells and flaky tests

13.2 Slides used for the final presentation

Research on the correlation of
test smells and flaky tests

Alejandro Vicent Mico
ID: 92255237

Independent Study for Exchange Student

Figure 93. Slide 1: Title

&

Motivation: Software testing

 Key part in the development process

« A perfect product is not reasonable, some
errors will appear

 Objective: detect the errors and correct them
as soon as possible

 Ensure the effectiveness of the tests written
« Difficult aspects: test smells and flakiness

Figure 94. Slide 2: Motivation Software Testing

85 ‘v

Research on the detection of test smells and flaky tests

Motivation: Test smells

« Definition: sub-optimal design choices applied
by developers when implementing test cases

« Test smells affect the efficiency, readability and
maintainability of the tests

F. Palomba et al., “Automatic Test Smell Detection Using Information
Retrieval Techniques” (ICSME 2018)

« Examples: Mystery Guest, Eager Test,
Assertion Roulette

A.van Deursen et al., “Refactoring test code™ (XP 2001) 3

Figure 95. Slide 3: Motivation Test Smells

Y 86

Motivation: Flaky tests

« Definition: tests that can intermittently pass or
fail even for the same code version

« Flaky tests can lead to confusion and unreliable
results

Qingzhou Luo et al., “An empirical analysis of flaky tests” (FSE 2014)

« Sources of flakiness: Asynchronous
behaviours, Network connections, Input/output
operations

Figure 96. Slide 4: Motivation Flaky Tests

87 ‘v

Y 88

Research on the detection of test smells and flaky tests

Motivation: Detection

* In small projects, the manual detection of test
smells and flaky tests is possible

* In real projects, it is not feasible
* The detection has to be automated

 Focus on the detection of test smells, flaky
tests and the relationship between them

Figure 97. Slide 5: Motivation Detection

State of the art: Smell detection tools

programs

TsDetect

JNose

A lot of research done
In general, accurate results
Selection of test smell detection tools for Java

Tool Smells detected Precision
TsDetect 21 96%
JNose 21 96%
DARTS 3 76%

Test Hound 6 Unknown
RAIDE 2 96%
TestQ 12 89%

Figure 98. Slide 6: State of the Art Smell Selection Tools

89 ‘v

Recall
97%
97%
62%

Unknown
97%
52%

/o

Research on the detection of test smells and flaky tests

State of the art: Citations to test smells

 TsDetect: Anthony Peruma et al., “TsDetect: an open source test
smells detection tool” (ESEC/FSE 2020)

 JNose: Tassio Virginio et al., “JNose: Java Test Smell Detector’
(SBES 2020)

« DARTS: Stefano Lambiase et al., “Just-In-Time Test Smell Detection
and Refactoring: The DARTS Project” (ICPC 2020)

 TestHound: M. Greliler et al., "Automated Detection of Test Fixture
Strategies and Smells" (ICST 2013)

 RAIDE: Railana Santana et al., “RAIDE: a tool for Assertion Roulette
and Duplicate Assert identification and refactoring” (SBES 2020)

 TestQ: M. Breugelmans et al., “TestQ: Exploring Structural and
Maintenance Characteristics of Unit Test Suites” (WASDeTT 2008)

Figure 99. Slide 7: State of the Art Citations to Test Smells

State of the art: Flakiness detection tools
 The current approaches are unsatisfactory

-Waste of machine resources
-Reduce test suite effectiveness
« Common approach: run a test multiple times

« Different approaches:
- FlakeFlagger: Alshammari et al., "FlakeFlagger: Predicting
Flakiness Without Rerunning Tests" (ICSE 2021)
- DeFlaker: J. Bell et al., "DeFlaker: Automatically Detecting Flaky

Tests" (ICSE 2018)
- iDFlakies: W.Lam et al., "iDFlakies: A Framework for Detecting

and Partially Classifying Flaky Tests" (ICST 2019) 8

Figure 100. Slide 8: State of the Art Flakiness Detection Tools

o1 T

.

Research on the detection of test smells and flaky tests

State of the art: Summary

Test smell detection tools: accurate and
efficient

Flaky test detection tools: unsatisfactory

Research direction: empirical study to find out
If test smell detection tools can be used to find
flaky tests

Figure 101. Slide 9: State of the Art Summary

Research questions

o Are test smells and flaky tests common in

software projects?

e RQ2: Which test smells are the most common
In software projects?

« RQ3: Which test smells are the most common
In flaky tests?

. Are test smells good indicators of
flakiness In the test methods?

Figure 102. Slide 10: Research Questions

10

93

Research on the detection of test smells and flaky tests

Research: Process overview

1. Selection of the test smells detection tool
2. Selection of the flaky dataset

3. Run the tools with the dataset

4. Merge the results from both tools

5. Analyze the results

11

Figure 103. Slide 11: Research Process Overview

e AR

Research: Test smell detection tool

« Which tool should be selected?
 JNose reuses TsDetect rules, but improves:

-Easy and fast way for uploading projects and
downloading the results

-Can detect 21 different test smells
« Selected tool: JNose

Figure 104. Slide 12: Research Test Smell Detection Tool

95

12

Research on the detection of test smells and flaky tests

Research: Flaky dataset

 The FlakeFlagger research provides a dataset:
-24 projects with over 22,000 test methods

-Test methods automatically executed 10,000
times and classified as flaky or non-flaky

-The dataset contained 811 flaky methods
-Used for evaluating the accuracy of the tool

-The FlakeFlagger dataset was chosen for this

study 3

Figure 105. Slide 13: Research Flaky Dataset

o

Research: Empirical study
 Development of the Smell Flaky Analyzer tool:

-Uses JNose for running the smell detection
-Merges the JNose results with the flaky dataset
-More convenient process to inspect the results

FlakeFlagger

- Flaky dataset
research 4

S
. Smelly flaky Merged Smelly flaky = results
. analyzer ' results analyzer

JNose - Smelly dataset

14

Figure 106. Slide 14: Research Empirical Study

97

Research on the detection of test smells and flaky tests

Research: Analysis of results

« (CSV file uploaded to the tool

« The results can be seen in a table and some
graphs provide additional information

SF Home Instructions Analysis Results Stats SF Home Instructions Analysis Results Stats
FPEUIRY MO STAIRSEA S — - Smelly Methods Flaky methods
o] Termeodmme |l flessionCondtionsicontrcio DstaufOugenden sl have b o n 167 mechod e e s 147 saohs coyoet
analyzed
ihegic, feaChent u
ol T . \
‘,‘:"m ated e Tent 1 b
e { b ‘
o] ' i
Al]
ol 3
i [00BeCheckpoine] e g

15

Figure 107. Slide 15: Research Analysis of Results

Y A

Analysis of results

Smelly Methods

A total number of 5339 methods with test

e RQ1 5 Are teSt Sme"S smells havtehbgen fon.lmd (ijn 22245
metnods analyzed.
and flaky tests common
in software projects?

For test smells yes,
24.00% of the test
methods had at least

one test smell

Figure 108. Slide 16: Analysis of Results

9

Research on the detection of test smells and flaky tests

Analysis of results

Flaky methods

 RQ1: Are test smells et e 3045 el
and flaky tests common
in software projects?

For flaky tests not so
much, only 3.64% of the
test methods were flaky

17

Figure 109. Slide 17: Analysis of Results

au
I 100

Analysis of results

RQ4: Are test smells
good indicators of
flakiness in the test
methods?

-Only 16.76% of the flaky
methods had test smells,
In contrast with 24% of the
total methods

Smelly and Flaky Methods

A total number of 136 flaky methods with
test smells have been found in 811 flaky
methods analyzed.

18

Figure 110. Slide 18: Analysis of Results

aw
101 l

Research on the detection of test smells and flaky tests

Analysis of results

-All the percentages are below 10%

-For any smell, %= #smells in flaky tests
#smells in total

Rank % Smell Rank % Smell
1 7,28 Verbose Test 12 1,43 Mystery Guest
2 5,99 Exception Catching Throwing 13 1,38 Resource Optimism
3 5,83 Conditional Logic Test 14 1,27 Lazy Test
4 5,14 Sleepy Test 15 0,97 Unknown Test
5 4,27 Print Statement 16 0,82 Redundant Assertion
6 3,57 Duplicate Assert 17 0,62 Empty Test
7 3,43 Magic Number Test 18 0 Constructor Initialization
8 31 Sensitive Equality 18 0 Default Test
9 2,84 Assertion Roulette 18 0 Dependent Test
10 2,35 Eager Test 18 0 General Fixture

11 1,64 Ignored Test 1 9

Figure 111. Slide 19: Analysis of Results

au
I 102

Analysis of results

RQ4: Are test smells good indicators of
flakiness in the test methods?

- There is not enough evidence to support a
strong correlation between test smells and flaky
tests

20

Figure 112. Slide 20: Analysis of Results

103 ‘v

Research on the detection of test smells and flaky tests

Discussion

« Test smells are not flakiness indicators themselves,
so that is why the percentages are low

« Some smells might be related to other flakiness
indicators: Sleepy test, Conditional logic test,
Exception catching throwing

« Sleepy test -> Asynchronous behavior

« Conditional logic test and Exception catching
throwing -> Network connections and |/O

operations -

Figure 113. Slide 21: Discussion

‘v 104

Conclusions

* | conducted an empirical study concerning test
smells and flaky tests

* Not the desired results, but new path for thinking
about the best way of detecting flakiness

e Future work:

-Use test smells to look for other flakiness
iIndicators and find flaky tests

-Tool improvement that helps developers

analyze and correct the flaky and smelly code -

Figure 114. Slide 22: Conclusions

105 ‘v

Research on the detection of test smells and flaky tests

Analysis of results

- RQ2: Which test smells festomells

A total number of 16656 test smells have

dare the mOSt common in been found in 22245 methods analyzed.
software projects?

-Assertion Roulette 24.91%
-Eager Test 14.76%

-Magic Number Test 9.62% |
-lgnored Test 9.48% |

23

Figure 115. Slide 23: Analysis of Results

‘v 106

Analysis of results

« RQ3: Which test smells
are the most common in
flaky tests?

-Verbose Test 7.28%

-Exception Catching Throwing
5.99%

-Conditional Logic Test 5.83%
-Sleepy Test 5.14%

Test Smells

A total number of 16656 test smells have
been found in 22245 methods analyzed.

Figure 116. Slide 24: Analysis of Results

107 ‘v

24

‘v 108

Research on the detection of test smells and flaky tests

Test smells examples

Mystery Guest: the test uses external
resources such as a file, adding additional
dependencies

Eager Test: the test checks several methods at
the same time, making it difficult to understand

Assertion Roulette: the assertions of the test
have no explanation

29

Figure 117. Slide 25: Test Smells Examples

Flakiness indicators examples

« Asynchronous behavior: the test execution
makes an asynchronous call and does not
properly wait for the result

« Network connections: the test depends on a
network resource, which is hard to control

* Input/Output operations: the test doesn'’t

properly manage resources such as files or
database connections

Figure 118. Slide 26: Flakiness Indicators Examples

109 ‘v

26

Research on the detection of test smells and flaky tests

Correlation smells and flakiness
indicators

« Sleepy test: if Thread.sleep() is used without
caution in an asynchronous environment, it can
cause flakiness

« Conditional logic test and Exception catching
throwing: if the success of a test depends on
fulfilling a conditional statement or throwing an
exception and the test relies on external resources

or network connections, it can cause flakiness
27

Figure 119. Slide 27: Correlation Smells and Flakiness Indicators

au
I 110

