

1

Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

Research on the detection of

test smells and flaky tests

Master’s Final Thesis

Máster Universitario en Ingeniería Informática

Author: Alejandro Vicent Micó

Tutor: Manuela Albert Albiol

External assistant: Shingo Takada

Year: 2022-2023

Research on the detection of test smells and flaky tests

2

3

Abstract
This project is an empirical study that aims to research about test smells and flaky tests. Software

testing is a key part of the development process of every project. During the implementation of

test code, test smells arise, which are poor programming practices present in the test cases.

Because of that, not only the effectiveness of the tests is affected, but also the maintenance and

readability. In addition, some tests may have non-deterministic outcomes. These tests are called

flaky and often lead to confusion and unreliable results.

In this study, tools for the automated detection of test smells have been examined and used, which

allow developers to find test smells in their projects in an efficient way. The tools were executed

over a set of projects with flaky tests and the results were compared with the flaky results for

analyzing the test methods with flaky behavior and test smells. The most common smells were

found out and the relation between smells and flakiness was considered.

The reached conclusion was that there is not enough evidence to support a strong correlation

between test smells and flaky tests. However, some test smells might be related to other patterns

that cause flaky results, such as asynchronous behaviors and connections to external resources.

For easing the process of detecting and comparing test smells and flaky tests, an application was

developed. As a result, the introduction of these practices is a bad habit that should be avoided,

and some guidelines are provided in this regard.

Keywords: test smells, flaky tests, software testing, detection tools, programming practices.

Resumen
Este proyecto es un estudio empírico que pretende investigar sobre los malos olores en pruebas y

las pruebas inestables. Las pruebas de software son una parte fundamental del proceso de

desarrollo de cualquier proyecto. Durante la implementación del código de prueba, surgen los

malos olores, que son malas prácticas de programación presentes en los casos de prueba. Debido

a ello, no sólo se ve afectada la eficacia de las pruebas, sino también su mantenimiento y

legibilidad. Además, algunas pruebas pueden tener resultados no deterministas. Estas pruebas se

denominan "inestables" y a menudo provocan confusión y resultados poco fiables.

En este estudio se han examinado y utilizado herramientas para la detección automatizada de

malos olores, que permiten a los desarrolladores encontrar estos olores en sus proyectos de forma

eficiente. Las herramientas se ejecutaron sobre un conjunto de proyectos con pruebas inestables

y los resultados se compararon con los resultados defectuosos para analizar los casos de prueba

Research on the detection of test smells and flaky tests

4

con comportamiento inestable y malos olores. Se descubrieron los olores más comunes y se

consideró la relación entre olores e inestabilidad.

La conclusión obtenida es que no hay pruebas suficientes que apoyen una fuerte correlación entre

los malos olores en casos de prueba y las pruebas inestables. Sin embargo, algunos malos olores

podrían estar relacionados con otros patrones que causan resultados inestables, como

comportamientos asíncronos y conexiones a recursos externos. Para facilitar el proceso de

detección y comparación de los "malos olores" y las "pruebas inestables", se ha desarrollado una

aplicación. Como resultado, la introducción de estas prácticas es un mal hábito que debe evitarse,

y se proporcionan algunas pautas en este aspecto.

Palabras clave: malos olores, pruebas inestables, pruebas de software, herramientas de

detección, prácticas de programación.

Resum
Aquest projecte es un estudi empíric que preten investigar sobre les males olors en proves i les

proves inestables. Las proves de software son una part fonamental del procés de desenvolupament

de qualsevol projecte. Durant la implementació del códi de prova, sorgeixen les males olors, que

son males pràctiques de programació presents en els casos de prova. Per aquesta raó, no sols es

veu afectada l’eficàcia de les proves, sinó també el seu manteniment y legibilitat. Ademés, algunes

proves poden tenir resultats no deterministes. Aquestes proves es denominen “inestables” i sovint

provoquen confusió i resultats poc fiables.

En aquest estudi s’han examinat i utilitzat ferramentes per a la detecció automatitzada de males

olors, que permeten els desarrolladors trovar aquestes olors en els seus projectes de forma eficient.

Les ferramentes es van executar sobre un conjunt de projectes amb proves inestables i els resultats

es van comparar amb els resultats defectuosos per a analizar els casos de prova amb comportament

inestable i males olors. Es van descobrir les olors més comunes i es considerà la relació entre

olors i inestabilitat.

La conclusión obtinguda es que no hi han proves suficiente que suporten una forta correlació entre

males olors en casos de prova i proves inestables. No obstant, algunes males olors podrien estar

relacionades amb altres patrons que provoquen resultats inestables, com comportaments asíncrons

i conexions a recursos externs. Per a facilitar el procés de detecció i comparació de les “males

olors” i les “proves inestables”, s’ha desarrollat una aplicació. Com a resultat, la introducción

d’aquestes practiques es un mal hàbit que es deuria d’evitar, i es proporcionen algunes pautes en

aquest aspecte.

5

Paraules clau: males olors, proves inestables, proves software, ferramentes de detecció,

pràctiques de programació.

Research on the detection of test smells and flaky tests

6

Table of contents

1. Introduction .. 12

1.1 Motivation ... 13

1.2 Justification of the subject ... 14

1.3 Objectives .. 14

1.4 Structure of the thesis .. 15

2. Methodology ... 16

2.1 Research based .. 16

2.2 Weekly meetings ... 17

3. State of the art ... 18

3.1 Code smells ... 18

3.2 Test smells ... 23

3.3 Test smells detection tools .. 26

3.4 Flaky tests .. 39

3.5 Flaky tests detection tools ... 40

4. Analysis of the problem .. 43

4.1 Test smells detection tools comparison ... 43

4.2 Test smells as indicators of flakiness .. 44

5. Proposed solution ... 45

5.1 Architecture of the system ... 45

5.2 Design of the system ... 46

5.2.1 Mock-ups .. 46

5.2.2 Flowchart .. 47

6. Used technologies ... 49

6.1 Git/Github ... 49

6.2 React .. 49

6.3 Javascript ... 50

7

6.4 HTML ... 50

6.5 CSS .. 51

6.6 Electron ... 51

6.7 Python ... 52

6.8 Visual Studio Code ... 52

6.9 Photoshop .. 53

7. Implementation ... 54

7.1 Introduction ... 54

7.2 Algorithms for parsing and merging ... 54

7.3 Smell Flaky Analyzer Tool ... 55

8. Validation ... 64

8.1 Obtained results ... 64

8.2 Application results .. 66

8.3 Manual inspections and findings ... 69

9. Conclusions .. 73

10. Future work .. 75

11. Acknowledgments .. 76

12. Bibliographical references .. 77

13. Appendices ... 83

13.1 List of abbreviations and acronyms .. 83

13.2 Slides used for the final presentation .. 84

Research on the detection of test smells and flaky tests

8

List of figures

Figure 1. Software development life cycle .. 12

Figure 2. Cost of error repair ... 13

Figure 3. Timeline for the Research Process ... 17

Figure 4. List of Code Smells proposed by Fowler ... 19

Figure 5. Most Common Code Smells that the Tools Can Detect .. 20

Figure 6. Programming Language Used to Develop the Tools ... 21

Figure 7. Programming Language that the Tools Can Analyze .. 21

Figure 8. Common Code Smells Detection Tools ... 22

Figure 9. Behavior of the Tool UIS-Hunter .. 23

Figure 10. List of Test Smells by A. Deursen ... 24

Figure 11. Test Smells Detection Tools .. 26

Figure 12. Confusion Matrix ... 27

Figure 13. Precision Formula .. 28

Figure 14. Recall Formula ... 28

Figure 15. Conditional Test Logic Example ... 29

Figure 16. Constructor Initialization Example .. 29

Figure 17. Default Test Example .. 29

Figure 18. Duplicate Assert Example ... 30

Figure 19. Empty Test Example .. 30

Figure 20. Exception Handling Example .. 30

Figure 21. Ignored Test Example .. 31

Figure 22. Magic Number Test Example .. 31

Figure 23. Redundant Print Example .. 31

Figure 24. Redundant Assertion Example ... 31

Figure 25. Sleepy Test Example ... 32

Figure 26. Unknown Test Example ... 32

Figure 27. Example of Csv File for TsDetect ... 32

Figure 28. Example of TsDetect Execution .. 33

Figure 29. Example of TsDetect Detection Result .. 33

Figure 30. DARTS tool working on IntelliJ .. 34

Figure 31. TestHound Tool UI .. 34

Figure 32. JNose Project Clone Screen ... 35

Figure 33. JNose Project Analyze Screen ... 35

Figure 34. JNose Analysis Results Table .. 36

9

Figure 35. JNose Analysis Results Chart .. 36

Figure 36. JNose Analysis Results Csv File ... 37

Figure 37. RAIDE in Eclipse .. 37

Figure 38. RAIDE Results for Assertion Roulette .. 38

Figure 39. RAIDE Results for Duplicate Assert ... 38

Figure 40. Interface of the TestQ Tool .. 39

Figure 41. Dataset of FlakeFlagger ... 42

Figure 42. List of Test Smells for the Six Tools ... 43

Figure 43. Test Smells Tools and its Detected Smells .. 43

Figure 44. Test Smells Tools Comparison .. 44

Figure 45. Architecture of Smell Flaky Analyzer Tool ... 46

Figure 46. Mock-up Smell Flaky Analyzer Tool .. 47

Figure 47. Flowchart Smell Flaky Analyzer Tool ... 48

Figure 48. Git and GitHub logos, respectively .. 49

Figure 49. React Logo ... 49

Figure 50. JavaScript Logo ... 50

Figure 51. HTML Logo ... 50

Figure 52. CSS Logo ... 51

Figure 53. Electron Logo .. 51

Figure 54. Python Logo ... 52

Figure 55. Visual Studio Code Logo ... 52

Figure 56. Photoshop Logo ... 53

Figure 57. Combined Results from Script ... 55

Figure 58. Home Screen .. 56

Figure 59. Instructions Screen ... 56

Figure 60. Analysis Screen.. 57

Figure 61. Results Screen .. 57

Figure 62. Results Screen with Hidden Columns.. 58

Figure 63. Stats Screen 1 ... 58

Figure 64. Stats Screen 2 ... 59

Figure 65. Stats Screen 3 ... 59

Figure 66. Stats Screen Explanatory Menu ... 60

Figure 67. Project Folders and Files .. 61

Figure 68. Store Class ... 62

Figure 69. Reducers Classes.. 62

Figure 70. Use of useSelector and useDispatch .. 63

Figure 71. Electron Scripts .. 63

Research on the detection of test smells and flaky tests

10

Figure 72. Methods and Flaky Methods .. 64

Figure 73. Methods with and without Smells.. 65

Figure 74. Test Smells in Flaky Tests by Type ... 65

Figure 75. Test Smells Percentage Formula .. 65

Figure 76. Rank of Test Smells in Flaky Tests ... 66

Figure 77. Test Smells in Test Methods .. 66

Figure 78. Flakiness in Test Methods ... 67

Figure 79. Test Smell Types in Software Projects .. 67

Figure 80. Test Smell Types in Flaky Tests .. 68

Figure 81. Test Smells in Flaky Methods 1... 68

Figure 82. Test Smells in Flaky Methods 2... 69

Figure 83. Tests with Most Common Smells .. 69

Figure 84. Verbose Test Smell Found Example.. 70

Figure 85. Exception Catching Throwing Smell Found Example .. 70

Figure 86. Conditional Logic Test Found Example .. 70

Figure 87. Sleepy Test Found Example .. 71

Figure 88. REST Connections Found Example .. 71

Figure 89. Database Queries Found Example ... 71

Figure 90. Date Class Found Example .. 72

Figure 91. SMTP Connections Found Example .. 72

Figure 92. File Read/Write Found Example ... 72

Figure 93. Slide 1: Title... 84

Figure 94. Slide 2: Motivation Software Testing .. 85

Figure 95. Slide 3: Motivation Test Smells ... 86

Figure 96. Slide 4: Motivation Flaky Tests ... 87

Figure 97. Slide 5: Motivation Detection .. 88

Figure 98. Slide 6: State of the Art Smell Selection Tools ... 89

Figure 99. Slide 7: State of the Art Citations to Test Smells .. 90

Figure 100. Slide 8: State of the Art Flakiness Detection Tools ... 91

Figure 101. Slide 9: State of the Art Summary ... 92

Figure 102. Slide 10: Research Questions .. 93

Figure 103. Slide 11: Research Process Overview .. 94

Figure 104. Slide 12: Research Test Smell Detection Tool .. 95

Figure 105. Slide 13: Research Flaky Dataset .. 96

Figure 106. Slide 14: Research Empirical Study .. 97

Figure 107. Slide 15: Research Analysis of Results ... 98

Figure 108. Slide 16: Analysis of Results ... 99

11

Figure 109. Slide 17: Analysis of Results ... 100

Figure 110. Slide 18: Analysis of Results ... 101

Figure 111. Slide 19: Analysis of Results ... 102

Figure 112. Slide 20: Analysis of Results ... 103

Figure 113. Slide 21: Discussion ... 104

Figure 114. Slide 22: Conclusions .. 105

Figure 115. Slide 23: Analysis of Results ... 106

Figure 116. Slide 24: Analysis of Results ... 107

Figure 117. Slide 25: Test Smells Examples ... 108

Figure 118. Slide 26: Flakiness Indicators Examples ... 109

Figure 119. Slide 27: Correlation Smells and Flakiness Indicators .. 110

Research on the detection of test smells and flaky tests

12

1. Introduction

Nowadays, software plays a central role in shaping the modern world. The rapid advancement of

technology and the increasing reliance on digital solutions have significantly transformed the way

we live, work, and interact. From artificial intelligence (AI) to blockchain, many developments

have been accomplished during the past few decades, leading to a dynamic and continuously

evolving software industry.

But if we want to ensure the quality, functionality and reliability of the software products, we

must test it. As can be seen in Figure 1, software testing is a crucial phase in the software

development life cycle that aims to identify defects and ensure these aspects. It involves the

systematic evaluation of a software application or system to verify that it meets specified

requirements and works as intended.

Figure 1. Software development life cycle

However, testing is not always performed in the best possible way. Test case quality is a critical

aspect of the software testing process that directly influences the effectiveness and efficiency of

testing efforts. High-quality test cases are essential for uncovering defects in the software and

achieving accurate and reliable results.

This last aspect is the main point of this project. In this master’s final thesis, we focus on software

testing quality. In particular, the focus is to study about the detection of test smells, flaky tests

and the possible correlation between them. These particular details of software testing, which will

13

be later explained in detail in section 3, are extremely important and should be taken into account

when developing test code.

This final thesis has been developed as a result of the research done at Shingo Takada’s software

laboratory, in the Graduate School of Science and Technology, Keio University, Tokyo, Japan.

Thanks to the Promoe scholarship, I have been able to spend one year as an exchange student at

Keio University, where I could research at a laboratory and use the results to write this thesis.

1.1 Motivation

The main motivation of this project is to research about two key aspects of software testing. test

smells and flaky tests, to learn about them, their detection and possible ways for avoiding and

correcting them. Everyone wants to make a perfect software product from the beginning but that

is not reasonable. After my years as a computer science student, I have realized that it is important

to assume that some errors will appear during the different phases of the development.

When I first started programming, testing was not a part of the equation and, as a result, I

encountered many errors in the later stages of the development. What do these errors mean? What

is causing them? How can I correct them? These were some of the questions that arise in these

cases. However, finding the answer is not easy. Without implementing tests, I ended up spending

a lot of time reading the code I previously wrote (maybe weeks or months ago) to understand it

and find the errors.

Figure 2. Cost of error repair

As we can see in Figure 2, the cost of finding and solving errors increase in the later stages of the

development. There is more code to check, so more time has to be spent finding the errors, which

means more money. Therefore, being able to detect the errors in an early stage and solve them

Research on the detection of test smells and flaky tests

14

before it gets too costly should be the path to follow when developing. This is the main objective

of testing. In this regard, ensuring that the tests written are effective is very important, but some

aspects, like test smells and flaky tests, make it difficult.

Ensuring that test smells and flaky tests do not appear in the testing code would improve the tests

performance, but a manual detection is not feasible. In small projects with few test cases, a manual

inspection of the tests in order to find test smells and flaky tests might be possible. However, in

real projects with thousands of test cases, this is not possible. Instead, this process of detection

has to be automated. After understanding the importance of these, I decided to focus on the

detection of test smells, flaky tests and the relationship between them.

1.2 Justification of the subject

The quality of software, especially good programming practices, has been one of my main

interests throughout my years as a student. Code smells are one of the most known issues

regarding programming practices, so I got interested in them.

The automatic detection of code smells allows to save a lot of time when finding and correcting

smells. Nevertheless, there has been a lot of research done about code smells. That is why I

decided to focus on a specific type of code smells: test smells; that is, code smells in test cases.

There are fewer articles about test smells, and even less about flaky tests. Then, I thought that it

was a good opportunity to research about these topics, which are a recent concern in the last

couple of decades.

1.3 Objectives

The main objective of this master’s thesis is to research about the detection of test smells, flaky

tests and the relation between them.

About specific objectives, the following ones have been established:

● Study about test smells to find out which test smells exist, which are the most common

ones in existing projects and what is their definition.

● Investigate which are the current trends about the automatic detection of test smells and

what techniques and tools are used in this regard.

● Research about flaky tests, what they are, what problems they can cause and how they

can be detected.

● Find out which flaky test techniques exist nowadays, how they work and to what extent

they can be used to automatically detect flakiness.

● Inquire if there is any correlation between test smells and flaky tests, to find out if there

is a way of detecting flakiness using test smells as the source.

15

● Developing an application that helps me carry out the research, by being able to

incorporate existing detection tools and use its results to graphically show the results so

that they can be inspected and analyzed.

1.4 Structure of the thesis

Different sections will be presented throughout this memory, starting by an explanation of the

methodology followed as part of the Promoe scholarship in an external university to carry out this

thesis. In the next section, the state of the art will be introduced, with an explanation about code

smells, test smells, flaky tests and current trends and tools about the automatic detection of these

problems in software developing and testing. Conclusions about these matters will be mentioned

at the end of the section.

After understanding the topics mentioned in the previous section and its importance, the problem

of test smells and flaky tests will be analyzed and the possible solutions will be exposed. Then, a

solution will be chosen, which Will be the path to follow in this research. In section 5, the

proposed solution will be explained in detail, with the work plane expected, the design and the

architecture of the system. In this section, some mock-ups and charts will be shown, which were

done before the implementation of the solution to outline the shape of the solution.

Next, it is exposed the technologies used for the application development, as well as the reason

why they were chosen and their impact in the development. In section 7, the implementation of

the application will be documented, with an introduction to roughly explain the overall idea and

different sections to explain in detail the functionality of the different parts of the application.

The next section is destined for validation, in which it will be checked if the work performed

meets the expected results by performing some tests. Last but not least, in the final sections it is

explained what conclusions can be obtained from the research done, the future projection and

work to do and the final acknowledgements. Then, the bibliography with the references consulted,

as well as the appendices with the abbreviations and acronyms used, and the slides employed for

the final presentation.

Research on the detection of test smells and flaky tests

16

2. Methodology

The purpose of this section is to explain in detail which has been the methodology followed during

the time I have been working on this master’s thesis. As I said in the introduction, I have been

researching in a university outside from the UPV, so I think it is important to explain the path

followed, as this is a case a bit special.

I received a scholarship by the Promoe program of the UPV to study abroad as an exchange

student for one year at the Graduate School of Science and Technology, as part of Keio University,

Tokyo, Japan. The methodology I followed in Keio was different from the one I would have

followed in Valencia, so I am going to describe it in the following sections.

2.1 Research based

At Keio University and, as far as I know, at most universities in Japan, the bachelor’s tesis and

the master’s thesis are more research based than in Valencia. This implies that first of all, you

should read a lot of articles to understand the current state of the art and look for a possible topic

for your thesis that is innovative and proposes some improvements to the current options.

At Keio University, to do research, you first have to find a professor that works on topics you are

interested in, and then ask him if he allows you to join his laboratory. In a nutshell, joining a

laboratory means that you are part of a research group about a certain sector. This group is formed

by the professor and bachelor, master and PHD students. I was able to join the software and testing

laboratory of professor Shingo Takada, where I started my investigation as an exchange student

that would allow me to do my master’s thesis for the UPV.

In this regard, I invested the first months in trying to find the best topic for my research. My initial

goal was to research about good programming practices: refactoring, code smells, etc. My

professor suggested me some topics related to his laboratory research topics, like fairness testing

and code clones. Fairness tasting is based on finding discrimination towards certain individuals

based on personal attributes such as race, gender or nationality. I read some papers regarding this

topic [1], [2], [3] and found really interesting the things that were explained. Nevertheless, I was

interested in the topic itself, but not in the techniques used to perform the study, based in machine

learning approaches for testing. Also, I did not have much experience in machine learning, so I

decided to drop this option.

For code clones, it was a topic much more related to good programming practices, which is what

I was looking for. I also read many papers regarding this topic. Some of them are the following

ones [4], [5] and [6]. Although I was interested in this topic, after a few weeks of discussion, I

17

could not think of an innovative and new idea that could be a possible path to follow for my

research, so I also decided to move on to a different topic. Finally, I started reading papers about

code smells, which would be the starting point for my research, as I will explain in section 3.

As we can see in the timeline of Figure 3, the different phases of the research process are drawn.

It gives an overall view of the topics I researched about to find the final topic for my thesis, from

the ones I just mentioned in this section to the topics I will mention in section 3.

Figure 3. Timeline for the Research Process

2.2 Weekly meetings

The methodology followed in the laboratory is based on a meeting cycle that is repeated weekly

throughout the year. Every week, two meetings take place. Even though you have to attend both

meetings, you are able to decide which of these two days you want to make your presentation.

The day you are not presenting, you hear to everyone else’s presentation and give feedback

whenever appropriate. The day you are presenting, you prepare a set of slides and explain to the

professor the progress you were able to do during the whole week.

This methodology, though strict, helps you keep consistency among weeks, pushes you to work

and allows a direct meeting with the professor, that gives constructive feedback every single week

and helps you plan the next steps. First, I presented about the different papers I read and talked

with the professor about what else should I investigate and how to proceed. Once I finally selected

my thesis topic, I started making presentations about how I was progressing, which results were

obtained and the things I had already implemented. The professor was always willing to help me

and give me his opinion on my work.

Research on the detection of test smells and flaky tests

18

3. State of the art

The objective of this section is to evaluate the current state of the art; that is, the highest level of

advancement regarding test smells, flaky tests and its detection. The state of the art is continually

evolving as new developments are made, and advancements are achieved. To know the specific

state of the art in this specific field, I referred to many papers published the last years about code

smells, test smells, flaky tests and its detection in software code.

3.1 Code smells

As I previously mentioned in section 2.1, I started researching about code smells before I decided

to focus on test smells. It is important to know the definition and features of code smells, as well

as the difference between code smells and test smells, before the state of the art about test smells

is explained.

According to the paper published by José Amancio M. Santos et al. [7], code smells are potential

problems in the design of software. The word potential is used because code smells themselves

might not be the cause of errors, but they are initial indicators of possible future problems that not

only affect the efficiency of the code, but also its readability and maintenance.

From the 1990s, the problems during the design of software started gaining importance and

strategies have been discussed to deal with these problems. In 1999, Martin Fowler [8] published

a book focused on refactoring, a technique used to improve the design of existing code.

According to the following page [9], refactoring is a disciplined technique for restructuring an

existing body of code, altering its internal structure without changing its external behavior. In

other words, refactoring means that some code that has been previously written is modified and

written in a different way without changing what it does, its functionality.

In his book, Fowler adopted the name “code smell” to refer to these problems in the design of

software. He paid special importance in the question “When should you start refactoring?”, and

not only on “How should you refactor your code?”. He said that when to start refactoring and

when to stop is just as important to refactoring as how to operate the mechanics of a refactoring.

In this regard, he wanted some clear steps that would help people understand when refactoring is

needed and should be made.

Because of this reason, he elaborated a list of smells: a total of 22 code smells, with their

characteristics and specific actions to deal with them. In Figure 4, the list with the code smells

proposed by Fowler can be seen.

19

Figure 4. List of Code Smells proposed by Fowler

However, even though these smells, as well as other poor programming practices have been

known for the past decades, and developers understand that they should be avoided, the reality is

different. Nowadays, software systems become more and more complex and companies, in order

to be competitive, have to continuously update their code within time limits [10]. This leads to a

development team more focused on meeting these time limitations by writing code in a short time

rather than taking into account good programming practices.

Code smells are not easy to find and correct manually, and as developers can’t afford the time to

focus on them, they leave them as they are, provoking some technical debt. Technical debt, which

is explained in the work by W. Cunningham [11], can lead to an uncontrollable program and an

inflexible product, when in excess quantities.

Because of the number of resources that have to be used in order to find these poor programming

practices, researchers have studied about the possible implementation of an automated way of

finding code smells. To achieve this, several code smells detection tools have been developed,

that can automatically find smells in the code by using various techniques. In the paper published

by Eduardo Fernandes [12], a study was done about the main characteristics of 84 different tools.

According to this study, the techniques used to discover code smells in these tools are based on

metrics, abstract detection trees (AST), textual analysis, Program Dependence Graph (PDG) or

token analysis. Out of the 84 smell tools, 31 are metric-based, 15 based on ASTs, 6 on textual

analysis, 5 on PDGs and 3 on token analysis. In addition, 11 tools are based on machine learning

techniques and the remaining 17 tools did not provide any information about the technique they

used.

Research on the detection of test smells and flaky tests

20

Also, some other information was provided, such as the programming language of the projects

that the tools are able to analyze, the programming language that was used to develop the tools

and the type of code smells that can be detected by using the tools.

First of all, and as we can see in Figure 5, the top ten smells that can be detected by the tools are

shown. It can be observed that the smells Duplicated Code and Large class are the most common

ones among the tools, followed by Long Method and Feature Envy. This high percentage might

be because of the importance of these smells in order to write clean code.

Figure 5. Most Common Code Smells that the Tools Can Detect

In addition, Figure 6 shows the programming languages used to develop these tools. We can

observe that Java is by far the preferred language when thinking about developing a code smell

detection tool, followed by C and C++.

21

Figure 6. Programming Language Used to Develop the Tools

And in Figure 7 we can see the programming language of the projects these tools aim at finding

code smells. Java is again the predominant language, followed by C, C++, Python and C#. It is

clear that Java is the easiest way to develop these tools, and that the most predominant languages

are well-known ones.

Figure 7. Programming Language that the Tools Can Analyze

Research on the detection of test smells and flaky tests

22

Finally, and according to the paper by Thanis Paiva et al. [13], some of the code smell detection

tools more known and used by developers are JDeodorant [14], inFusion [15], JSpIRIT [16] and

PMD [15]. We can see some features of these tools in Figure 8. They can all detect test smells in

Java programs, are free to download and their output allows to calculate recall, precision and

agreement.

Figure 8. Common Code Smells Detection Tools

A possible option for this thesis was to develop a machine learning approach that could be

innovative in some way to exceed the results from already existing tools. However, there has been

a lot of research done about code smells detection tools based on machine learning [15], [17],

[18], and there is no way to know if the newly developed approach will improve the performance

of the existing tools until it is finished and tested. As a result, this path was discarded.

Another possible option was to develop a tool that could detect smells for a project written in a

different language than the ones existing tools can analyze. But at the same time, the programming

language should be known and used to some extent for the tool to be useful. After reading the

above papers and realizing that so many tools were done for detecting smells in Java programs,

C and its derivates, if the tool was at least for another language, it could be a good option, as there

is not much competence in other languages.

Then, I realized that none of these papers talked about the devices that we most use and carry with

us the whole day: mobile phones and its programming language, Android. The improvements in

mobile technology and the large number of applications developed for Android in the last years

are clear signs of the importance of software in these devices. These applications evolve faster

than regular software applications, as deadlines are marked to meet the new requirements from

the customers and rapidly fix possible bugs. This evolution may cause the introduction of bad

design practices, in particular code smells.

Because of the increasing popularity of software apps for Android, I decided to make some

research about the detection of code smells for this programming language. Although there is not

as much research done as for desktop programming languages, I could find papers related to the

detection of normal code smells in Android applications [19], [20]. In these cases, there is not

much innovation rather than changing the language where the smells are found to Android.

23

On the other hand, some approaches focus on detecting Android-specific code smells [21], [22],

[23], [24], [25], [26]. Although there is little knowledge on these types of smells, the tools just

mentioned were already able to achieve a pretty high performance, so I also decided not to focus

on this kind of smells for my study.

I also looked at some tools for detecting UI design smells. I read the paper by Bo Yang [27] about

this topic. They developed a tool, named UIS-Hunter, for Android applications that had a database

of guideline knowledge, processes the input UI, extracts the information from this UI and

highlights the violated guidelines and provides useful corrections. We can see its behavior in

Figure 9.

Figure 9. Behavior of the Tool UIS-Hunter

Nevertheless, even though I found this idea interesting, due to time constraints of this project and

the complexity of a UI smells detection tool, I decided not to develop this kind of tool as the result

of my thesis. Finally, I realized that there were only a few proposals regarding test smells, so I

wanted to research about them, as I will explain in section 3.2, and I finally chose them as the

topic of this thesis.

3.2 Test smells

It is known that good programming practices should be applied when coding but, as previously

said in section 3.1, in practice sometimes it is not possible. That is why the code is revisited to

look for errors and to be refactored. In the set of code smells proposed by Fowler [8], strategies

are explained to remove these smells and refactor the code. However, he does not mention

anything about the refactoring and application of good practices in test code.

Some papers talk about the importance of applying good programming practices to the test code

[28], [29], [30] and finally, code smells in the test cases were introduced. It was done in the work

of Arie van Deursen, called “Refactoring Test Code” [31]. According to him, refactoring test

cases is different from refactoring production code. Tests are organized and implemented in a

different way, and so a new set of test smells arise. The list of smells he proposed is the one shown

in Figure 10.

Research on the detection of test smells and flaky tests

24

Figure 10. List of Test Smells by A. Deursen

And the explanation for every one of them, as well as the strategy used for removing them:

• Test Smell 1. Mystery Guest: A test method containing object instances of external

resources such as files and databases classes. It is hard to understand the functionality of

the test and hence use it, because there is not information about these extra resources. In

addition, more dependences are added to the test, as modifying the external resources

(file deletion, location change, etc.) might produce problems in the test, causing failures.

Apply strategy 1 Inline Resource or strategy 2 Setup External Resource.

• Test Smell 2. Resource Optimism: A test method utilizes an instance of a File class

without calling the method “exists()”, “isFile()” or “notExists()”of the object. In this way,

it is assumed that some external resources like files, folders or databases are available (or

not). This might produce non-deterministic undesirable results, where the test succeeds

and fails in different reruns. Apply strategy 2 Setup External Resource.

• Test Smell 3. Test Run War: Even though the test works if a single developer runs it, if

multiple developers are running the test at the same time, it fails, mostly because there is

some interference in the resources used by the test. Apply strategy 3 Make Resource

Unique.

• Test Smell 4. General Fixture: When not all the fields instantiated within the “setup”

method of a test class are utilized by all test methods in the same test class. If this method

contains variables that are too generic and only some of them are used by the test cases,

it makes thinks more difficult to understand. In addition, extra instructions can slow the

performance of the tests. Use Fowler’s Extract Method, Inline Method or Extract Class.

• Test Smell 5. Eager Test: When a test case contains multiple calls to different production

methods. It lowers the readability and understandability, making documentation harder.

It also adds dependencies among tests, affecting the maintainability. Apply Fowler’s

Extract Method to solve this.

25

• Test Smell 6. Lazy Test: When multiple test cases call the same production method using

the same strategy to check it, even though they check different variables or resources.

Apply Fowler’s Inline Method.

• Test Smell 7. Assertion Roulette: It happens when a test case contains more than one

assertion statement without an explanation (meaning the parameter that acts like a

message in the assertion method). In case one of the assertions fails, there is no way to

know which one was. Use strategy 5 Add Assertion Explanation to solve it.

• Test Smell 8. Indirect Testing: When a test case is actually testing other methods rather

than the method it is supposed to be checking. It can be solved by applying Fowler’s

Extract Method and Move Method.

• Test Smell 9. For Testers Only: Observed when a production class has methods that do

not do any specific functionality, but they are only being tested by the test cases. This

means that these methods are useless and can be removed. One possible solution is to

apply Fowler’s Extract Subclass.

• Test Smell 10. Sensitive Equality: When a test method invokes the “toString()” method

of an object. Even though the check through the “toString()” strategy can be seen as a

simple solution, it causes problems when the method is changed, as it starts failing

because it depends on irrelevant things, such as spaces or commas. Apply the strategy 6

Introduce Equality Method in this case.

• Test Smell 11. Test Code Duplication: When programming, sometimes the strategy of

copy-pasting code is used. This can lead to undesirable situations and extra dependences

later on. A possible solution is to apply Fowler’s Extract Method.

In addition, van Deursen proposed a number of strategies to refactor test code without removing

test cases and making the code more readable and maintainable:

• Strategy 1. Inline Resource: A variable in the test code is added to hold some external

resource, so that the dependency between the test code and the external resource is

avoided. For example, a variable could hold the contents of a file that will be used later.

• Strategy 2. Setup External Resource: Fix the test so that it correctly allocates the

external resources that will be used (files, databases, etc.) and release them after using

them.

• Strategy 3. Make Resource Unique: Make sure that unique identifiers are used for the

different resources of the tests.

• Strategy 4. Reduce Data: Use only the essential data in the tests, which will improve

the maintainability and documentation.

Research on the detection of test smells and flaky tests

26

• Strategy 5. Add Assertion Explanation: Use the message in the optional first argument

of the tests to note the difference among the assertions in the same test.

• Strategy 6. Introduce Equality Method: Add an “equals” method to an object structure

that has to be checked in the tests, so that this method can be rewritten in the tests for its

specific purpose.

After the work of van Deursen, some other papers proposed additional test smells, increasing the

catalog of smells available [32], [33], [34], [35], [36], [37], [38]. Then, each researcher or

developer can select the set of test smells he is interested in studying or using for their research

or project/tool.

3.3 Test smells detection tools

Researchers all over the world have realized about the importance of avoiding these sub-optimal

design choices that are called test smells and hence some detection tools for the automatic

detection of test smells have been developed. In the work done by Wajdi Aljedaani et al. [39], a

list of 22 test smells detection tools was constructed by reviewing many papers related to this

topic. In this, list some aspects of the tools are analyzed, like the programming language, the

detection strategy or the number of smells they are able to detect.

The tools taken into account in his study can be seen in Figure 11:

Figure 11. Test Smells Detection Tools

From this list, I made a selection of tools that were able to detect test smells in Java

programs and were available online for download. In this selection, I included a total of

27

6 test smells detection tools: TsDetect [40], DARTS [41], TestHound [35], JNose [42],

[43], RAIDE [44] and TestQ [45].

The performance of these tools is normally evaluated using precision and recall. To

understand these, we first have to introduce the concepts of oracle, true positive, false

positive, true negative and false negative:

• Oracle: it is a list containing the “true” result (smelly/not smelly) of the Java

project instances. Normally, it is obtained by manually inspecting the code and

deciding if each instance contains smells or not.

• True positive: it is an instance of code smell reported by the tool and present in

the oracle.

• False positive: it is an instance of code smell reported by the tool but not present

in the oracle.

• True negative: it is an instance of code smell not reported by the tool and not

present in the oracle.

• False negative: it is an instance of code smell not reported by the tool but present

in the oracle.

The following chart, called Confusion Matrix (Figure 12), better shows these terms in a

graphical way:

Figure 12. Confusion Matrix

Research on the detection of test smells and flaky tests

28

With these concepts clear, we can now understand the definitions of precision and recall

used in the test smells detection tools:

• Precision: in the simplest terms, precision is the ratio between the True positives

and anything predicted as a positive. In this case, it would be the number of smells

reported by the tool that are actually true smells out of all the smells found (Figure

133).

Figure 13. Precision Formula

• Recall: the recall is the measure of our model correctly identifying True positives.

For our case, it is the number of smells reported by the tool that are actually true

smells out of all the true smells in the oracle (Figure 14).

Figure 14. Recall Formula

After understanding these terms, we can start analyzing the tools studied. Starting by

TsDetect, it is a standalone command line application without user interface developed

by Anthony Peruma et al. It can detect a total of 19 different types of test smells in Java programs.

It achieved a precision score of 96% and a recall score of 97% and it is available in Github for

free to download [46]. It calls the JavaParser library to parse the source code files. JavaParser

builds an Abstract Syntax Tree from the unit test file that is under analysis. Then the AST is

analyzed by each of the smell detection modules.

From the 19 test smells it is able to detect, 7 of them come from the work of van Deursen [31]:

Assertion Roulette, Eager Test, General Fixture, Lazy Test, Mystery Guest, Resource Optimism

and Sensitive Equality, whose definition was already explained in section 3.2. In addition, they

propose 12 new smells. Because of the importance of this tool in my thesis, the new proposed

smells will be explained as follows:

• Conditional Test Logic: When there are one or more control statements in a test case.

TsDetect rules take into account if, switch, conditional expression, for, foreach and while

as control statements. Test methods should not be complicated to understand, thus control

29

statements should be avoided, leaving them to the production method. These conditions

modify the functionality of the test and its expected output, causing some statements in

the test to not be executed and then affecting the performance of the test. An example of

this smell is provided in Figure 15.

Figure 15. Conditional Test Logic Example

• Constructor Initialization: When there is a constructor declaration in the test case.

Instructions related to initialization have to be coded in the “SetUp()” method and not in

a specific test case. An example of this smell is provided in Figure 16.

 Figure 16. Constructor Initialization Example

• Default Test: When the test case name is one of the following: “ExampleUnitTest” or

“ExampleInstrumentedTest”. These names are the ones created by default when a new

project is started, and hence should be removed, and tests placed in a more logic and tidy

way. An example of this smell is provided in Figure 17.

Figure 17. Default Test Example

Research on the detection of test smells and flaky tests

30

• Duplicate Assert: When there is more than one assertion with the same parameters in a

test case. This means that the same test is checking the same condition more than once,

when in this case separated test cases should be used. An example of this smell is provided

in Figure 18.

Figure 18. Duplicate Assert Example

• Empty Test: When there is not any executable statement in a test case. This might be

because it has been forgotten or the statements have been commented. In this case, the

test will pass even when there are no statements, so this can cause confusion later on for

developers. An example of this smell is provided in Figure 19.

Figure 19. Empty Test Example

• Exception Handling: When there is a throw statement or catch clause in the test case. If

the test result (pass or fail) depends on the production method throwing an exception, this

can be complicated to understand when testing and can lead to more problems. An

example of this smell is provided in Figure 20.

Figure 20. Exception Handling Example

• Ignored Test: When the is an @Ignore annotation in the test case. This means that the

test will not be run when executing the test suit, but it will still cause some problems,

such as overhead in compilation time and an increase in complexity of the code. An

example of this smell is provided in Figure 21.

31

Figure 21. Ignored Test Example

• Magic Number Test: When an assertion statement uses a numeric literal as an argument

in the test case. Even though the assert will work the same, these numbers do not provide

the developer any information about the meaning and purpose of the value, so it is harder

to understand and should be replaced by a variable with its corresponding name. An

example of this smell is provided in Figure 22.

Figure 22. Magic Number Test Example

• Redundant Print: When one of the following instructions is used in the test case: “print”,

“println”, “printf” or “write” method of the System class. Because the tests already

provide the result, these statements are redundant and can increase the execution time.

An example of this smell is provided in Figure 23.

Figure 23. Redundant Print Example

• Redundant Assertion: When an assertion statement with the same expected and actual

parameters is used in a test case. When the statements of the method are always true or

false regardless of the input, it is not useful and should be removed. An example of this

smell is provided in Figure 24.

Figure 24. Redundant Assertion Example

Research on the detection of test smells and flaky tests

32

• Sleepy Test: When the instruction Thread.sleep() is invoked in the test case. This is used

when the developer wants to stop the execution for a certain amount of time, but can lead

to unexpected results depending on external causes. An example of this smell is provided

in Figure 25.

Figure 25. Sleepy Test Example

• Unknown Test: When there is not any assertion statement or “@Test(expected)

annotation parameter in the test case. The assertion statement explains an expected

condition for a test method and if it is missing, it becomes harder to understand the

purpose of the test. An example of this smell is provided in Figure 26.

Figure 26. Unknown Test Example

To execute the TsDetect tool, a csv file is needed as input containing, for every class that wants

to be analyzed, the application name of the project, the path to the test file within the project and

the path to the production file that is being tested. In the case of Figure 27, the test class

WPUrlUtilsTest.java is being tested, so its path is provided, as well as the path of the production

file WPUrlUtils.java, both belonging to the app WordPress-Android-trunk.

Figure 27. Example of Csv File for TsDetect

To run TsDetect, as we can see in Figure 28, the command line is necessary. First, the application

is downloaded. Then, by writing the command “java -jar .\TestSmellDetector.jar Ts.csv”, we

execute the TsDetect smell detection over the classes specified in the csv file called Ts.csv, which

in this case is only the class WPUrlUtilsTest.java.

33

Figure 28. Example of TsDetect Execution

Finally, the result from the TsDetect test smell detection is saved into a new csv file. It contains,

for every test class analyzed, the name of the app, the name of the test class, the path to the test

class and to the production class (both absolute and relative), the number of methods in the test

class and the number of smells found in each class, ordered by type. As we can see in this other

example in Figure 29, four different test classes of the app commons-exec-main were analyzed.

For example, for the first class called CommandLineTest.java, 34 methods where found. In this

class, there were 21 Assertion Roulette smells, 0 Conditional Test Logic smells, 0 Construction

Initialization smells, and so on.

Figure 29. Example of TsDetect Detection Result

Following it, we have DARTS, an IntelliJ plugin developed by Stefano Lambiase et al. It can

detect three different types of smells: General Fixture, Eager Test, and Lack of Cohesion of Test

Methods. TASTE detection rules are used, so its precision and recall are the same as this tool. It

achieved a precision score of 76% and a recall score of 62% and it is available in Github for free

to download [47]. Figure 30 shows the plugin interface inside IntelliJ and how it works.

Research on the detection of test smells and flaky tests

34

Figure 30. DARTS tool working on IntelliJ

TestHound is a standalone desktop application developed by Michaela Greiler et al. It can detect

six different types of smells, all of them explained in [35]: General Fixture, Test Maverick, Dead

Fields, Lack of Cohesion of Test Methods, Obscure In-Line Setup, Vague Header Setup. Its

precision and recall scores and unknown and it is available in Github for free to download [48].

Although this tool could be opened (Figure 31), it had no documentation that explained how to

use it and I could not analyze any project with it.

Figure 31. TestHound Tool UI

Next, there is JNose, a desktop application with user interface developed by Tássio

Virgínio et al. It applies the TsDetect detection rules, so it achieves the same precision and recall,

35

being a precision score of 96% and a recall score of 97%. It can detect 21 different test smells:

the 19 smells that TsDetect could find plus two more that were added after. It is available in

Github for free to download [49]. It performs a static analysis of the test code through an Abstract

Syntax Tree generated by JavaParser. Then, it extracts information about the code structure to

apply the TsDetector rules for the test smells detection.

To use the JNose tool, the needed input is the github URL of the program that is going to be

analyzed for finding test smells. This URL is provided in the text field of the clone screen (Figure

32) and, by pressing the clone button, the project is downloaded into a local folder.

Figure 32. JNose Project Clone Screen

In Figure 33, we can see the analyze screen of JNose where, once the project is

downloaded, you can run the test smell detector by pressing the analyze button. After

some time, that depends on the number of classes and methods that need to be analyzed,

the progress bar reaches 100% and the project is completely checked.

Figure 33. JNose Project Analyze Screen

After the analysis, the results of the test smell detection can be checked by pressing the

result button from the analyze screen. When doing so, a new screen will open (Figure 34),

showing for every test class, the app name, the file name, the production file path, the

lines of code, the number of methods and the number of smells found for all the different

types of smell.

Research on the detection of test smells and flaky tests

36

Figure 34. JNose Analysis Results Table

A chart showing the results from the detection in a graphical way is also generated after

the process has finished (Figure 35). In this graph, a bar shows the number of smells found

of each type.

Figure 35. JNose Analysis Results Chart

Finally, even though the results can be seen in the user interface of the JNose application,

the option for downloading them into a csv file is also available (Figure 36). This is really

helpful, as the results can be analyzed using other tools and used as input of other

programs, as will do in the implementation of my application.

37

Figure 36. JNose Analysis Results Csv File

RAIDE is an Eclipse plugin developed by Railana Santana et al. It was done to detect test

smells in Java programs and it can detect two different smells: Assertion Roulette and Duplicate

Assert. It is an Abstract Syntax Tree based tool that reuses rule-based components from tsDetect

to detect the test smells. Because of this, its precision and recall score are the same as the TsDetect

tool and it is available in Github for free to download [50]. Its functionality inside Eclipse is

shown in Figure 37.

Figure 37. RAIDE in Eclipse

For Assertion Roulette, we can see the results in Figure 38. For example, it found the

Assertion Roulette smell in the method called “testToString()” in lines 4473, 478 and 483 of the

test class CommandLineTest.java (with its respective path to the test file) and the refactoring

proposed is “Add Assertion Explanation”.

Research on the detection of test smells and flaky tests

38

Figure 38. RAIDE Results for Assertion Roulette

And for Duplicate Assert, the results are in Figure 39. For example, the smell Duplicate Assert

is found twice, in the lines 477 and 484 in the test method “testExecuteWithProcessDestroyer()”

of the test class DefaultExecutorTest.java, and the proposed refactoring type is “Method

Extraction”.

Figure 39. RAIDE Results for Duplicate Assert

Finally, TestQ is a desktop application aimed at Linux with a UI that allows to detect 12 different

types of test smells (Figure 40). It achieves a precision score of 89% and recall score of 52% and

it is available online to download [51].

39

Figure 40. Interface of the TestQ Tool

3.4 Flaky tests

Flakiness is also a big issue when implementing tests. Flaky tests are tests that can intermittently

pass or fail even when the source code has not been changed and the code version remains the

same. Flaky tests can lead to confusion and unreliable results because developers must waste time

debugging in order to find the problem, and then they realize that it did not occur because the

recent changes, but because of a flaky test. In addition, they are hard to reproduced because of

their randomness and they might hide other errors. As a result, people have researched about these

kinds of tests, their characteristics, their impact, and their possible causes [52], [53].

The most common sources of flakiness are the following ones:

• Asynchronous behaviors: when a function that is asynchronous is called but the

program is still able to execute other instructions before the result from the function is

obtained. If the following instructions use the result from the asynchronous function as

an input, the availability of this result may provoke the pass or fail of the test case

depending on how fast this result is obtained. In addition, asynchronous instructions such

as “Thread.sleep()” are the cause of unpredictable results.

• Network connections: connections to the network normally depend on waiting times,

which makes it a dependency hard to control. When the server does not respond in a

timely manner, because of thread scheduling or network delay, the result of the test can

be affected. Because of this reason, if the delays are not considered, some “pass” and

“fail” results can be obtained intermittently.

• Input/Output operations: when relying on external resources obtained via I/O, test

cases should be coded carefully. For example, if the application was expecting to find a

Research on the detection of test smells and flaky tests

40

file in a specific folder but it is not there, or the format is not the expected one. In these

cases, the test can produce different results based on the availability and format of the

expected resources.

• Time instructions: if the program relies on time instructions such as

“java.time.LocalDateTime” or “java.time.Clock”, the test depends on the time zone and

it can fail, for example, when the midnight changes or the precision of the obtained result

is not the expected one.

• Test order dependency: when implementing the test cases, we might think that they will

be executed in a specified order, but the truth is that there is no specific order, and they

are executed randomly. When the outcome of some tests is affected by other tests

because, for example, they share some common variables, the order of execution affects

the test results. This behavior should be avoided by isolating the different tests.

• Randomness: if the test cases make use of random numbers, there might be some cases

that were not considered and hence produce an unexpected result. It is the case of a

random number generator that, when obtaining exactly a zero and then dividing any

number by it, produces as a result NaN.

• Platform dependency: a project, together with its test cases, is normally developed in a

specific environment: a specific operating system (OS), computer hardware, screen size,

etc. If this is not taken into account, the result of the test can be affected, as different

platforms mean different delays and specification details.

3.5 Flaky tests detection tools

As we have explained in the previous section 3.4, flaky tests are a problem present in every real

software project, and they are difficult to detect and deal with (even more manually). The most

common way to find them is to rerun the tests that fail multiple times to check if they produce a

different result. However, this consumes a lot of resources and, even if you run a flaky test 10000

times, it might not give any sign of flakiness or different result, so you would need more reruns

to confirm that it is flaky. Because of that, there has been some research done on the automatic

detection of these type of tests, and tools have been developed to perform this task.

DeFlaker is a tool developed by Jonathan Bell et al. [54] that can detect flaky tests without the

need to rerun the failing tests multiple times, considerably reducing the spent resources. It is based

on a technique that keeps track of the changes done in the code. If a test that was always passing

and checks code that was not modified fails, then it is marked as flaky. It is a useful option that

reduces the overhead, as it instantly notifies if a test that failed is flaky, avoiding extra reruns.

However, as it only aims at test that were passing but suddenly failed, it is not covering all possible

flaky tests, are tests that still did not produce a different result are not checked. Nevertheless, even

41

in the case where the developer wants to rerun the test to personally check for different results

and address it as flaky, the test is already identified by the tool, so the developer only needs to

rerun that test and not the complete test suit.

This tool was made available for everyone on Github [55]. When downloaded and installed

through Maven, a.git directory has to be put in the same folder as the root POM of the build. Then,

by running the command “mvn test” or “mvn verify”, a file will be obtained as output with four

values: testClass, coveredClass, isCoverageClassLevel and lineNumber.

The tool FlakeFlagger is developed by Abdulrahman Alshammari et al. [56] and its based in a

technic that focuses on collecting behavioral features of the tests to then predict if they are flaky

or not. The tool can be downloaded from [57]. It provides a specific dataset that contains a total

of 24 projects with over 22,000 test methods. The tests of these projects were classified as flaky

or non-flaky by automatically executing them 10,000 times each. If a test method gave a different

result at least once, it was declared as flaky. In the end, a total of 811 test methods were marked

as flaky.

This dataset was used by the developers of FlakeFlagger to evaluate the tool. It contains the

following columns (Figure 41):

• Project: the name of the project that the test method belongs to.

• Test: the path to the test method.

• IsFlaky: if the method analyzed is flaky or not. It is set to 0 in case of non-flaky and to 1

in the case of flaky.

• NumFailingRuns: out of the 10000 runs, the number of times the test method resulted

in a failure.

• NumPassingRuns: out of the 10000 runs, the number of times the test method resulted

in passing.

• FirstFailingRunID: the number of the repetition that failed for the first time. For

example, if it failed three times and the first time failed in the repetition number 2386,

that is the number. In case it did not fail, it is set to -1.

• FirstPassingRunID: the number of the repetition that passed for the first time. In most

of the cases, as it passes more than fails, the first repetition is usually a pass, so that is

why it is set to 0. In case it did not pass, it is set to -1.

• UniqueFailingExceptionTypes: the different number of exceptions that were thrown in

case it failed multiple times. If it did not fail, it remains 0.

Research on the detection of test smells and flaky tests

42

Figure 41. Dataset of FlakeFlagger

iDFlakies is developed by Wing Lam et al. [58] and can detect flaky tests by reordering and

rerunning the test cases of a software system. The tool is also able to classify flaky tests as order-

dependent when the cause of flakiness is the order in which tests are executed and non-order-

dependent otherwise. For the order-dependent tests, they are flaky because the order in which

they are executed cannot be controlled. However, they can deterministically pass or fail if we take

the order into account. For the non-order-dependent tests, its causes are harder to control, such as

depending on external resources on asynchronism.

To run the tool, we first download the project, which is available in Github [59]. Then, we need

to create a csv file with, for every project we want to analyze, the Github URL and its SHA,

separated by a comma. Next, we move to scripts/docker/create_and_run_dockers.sh within the

iDFLakes project and run the following command: “bash create_and_run_dockers.sh <path to

csv> <round num> <timeout (seconds)>. After that, a folder is created for every project in the csv

file, containing a docker image. Inside, a csv file with the results of the flaky test analysis will be

obtained.

43

4. Analysis of the problem

4.1 Test smells detection tools comparison

A comparison among the test smell detection tools mention in section 3.3 was made. To

do that, the smells that the different tools were able to analyze were compiled into a table

in Figure 42, with a total of 34 smells combining all the tools.

Figure 42. List of Test Smells for the Six Tools

The tools selected can be seen in this table (Figure 42) represented as rows. The columns

are all the test smells mentioned in the previous list. If the tool is able to detect a specific

smell, it is marked with a green “Y”.

Figure 43. Test Smells Tools and its Detected Smells

In this other table (Figure 44), for every one of the tools, the number of different test smells

that can be detected is written in the second column, while the precision and recall can be

seen in the third and fourth column.

Research on the detection of test smells and flaky tests

44

Figure 44. Test Smells Tools Comparison

Some of these tools were too old or had no clear documentation for me to make them

work. It is the case of TestHound and TestQ. Others, such as DARTS and RAIDE, were

only able to detect a few smells and are only plugins, which makes it difficult to

incorporate them into a new project. Finally, TsDetect and JNose were the best choice to

detect test smells in Java programs, as they can detect the larger number of smells, as well

as being the easiest and most convenient to use. JNose uses TsDetect detection rules but

builds an interface on top of that and improves the way of providing the input: it only

needs the Github URL, in contrast to TsDetect, which needs a csv file with multiple fields.

Because of that, JNose was the test smell detection tool selected for my study.

4.2 Test smells as indicators of flakiness

Current approaches to combat flaky tests are rather unsatisfactory. The most common approach

is to run a flaky test multiple times, and if it passes in any run, declare it passing, even if it fails

in several other runs. But these approach wastes a lot of machine resources and reduces the test

suite effectiveness if the flaky test is excluded.

Some tools, like FlakeFlagger, DeFlaker and iDFlakies, propose different approaches that are not

based on rerunning tests a lot of times. However, these tools are more like a complement to other

techniques for finding flakiness and there is still a lot of work to do in this filed if flaky tests are

to be found in an efficient way.

On the other hand, there has been a lot of research done about the automatic detection of

test smells. In general, the results of the different detection tools are pretty accurate. If the

points mentioned before are considered, that test smell detection tools are efficient and accurate

and flaky test detection tools are rather unsatisfactory, then we can think of a possible next step.

In this line and following the objectives I stated in section 1.3, I decided to conduct an empirical

study to find out if there is a correlation between test smells and flaky tests and if test smell

detection tools can be used to find flaky tests.

45

5. Proposed solution

In this section, the proposed solution for this study will be explained, as well the design and

architecture of its system. As I mentioned in section 4.1, JNose was the tool selected for analyzing

the projects of this study. On the other hand, I also had to select the dataset with flaky tests that I

wanted to use as input of the JNose tool. FlakeFlagger already provides a dataset with the needed

information; that is, the tests classified as flaky or non-flaky. Because this dataset was very large

and contained a total of 24 projects with over 22,000 test methods, I decided to choose it for my

empirical study.

5.1 Architecture of the system

The empirical study was conducted by developing a tool that is able to run JNose for detecting

the test smells. This tool is developed using React, which means the use of Javascript, HTML and

CSS. It is called Smell Flaky Analyzer and it is available in Github [60]. In addition, some Python

scripts were implemented, that are necessary for running JNose and obtaining the parsed results

from JNose and the flaky dataset.

React applications are web applications, which means that because of browser security policies,

they cannot execute command line instructions. I needed to do that in order to execute the Python

scripts, so I decided to convert it into a desktop application by using Electron.

To start with, the dataset resulting from the test smell detection and the dataset containing the

flaky tests must be obtained. As we will be working with the projects from the FlakeFlagger study,

its dataset will be used. The instructions to be followed are explained in my tool and a button

directly sends you to the FlakeFlagger page where you can download the dataset csv file.

Moreover, the csv file has to be uploaded to the tool, which parses it so that is has the desired

format for combining in later with the JNose detection results.

Then, another button allows to open the JNose tool, which has been added to the project folder,

into a new window. By using JNose, the URL of the projects present in the flaky dataset are

provided, and then the JNose tool is used to analyze them for detecting test smells. When the

detection process is completed, the results are downloaded into another csv file.

After that, the test smells csv file obtained from JNose and the parsed csv file with the flaky

dataset are uploaded to the tool and merged into a single file. The results are shown in the tool

with a table and different graphs. This tool wrapped all the process I would have to make manually

into a single application, which made the process easier and more convenient to replicate, and it

Research on the detection of test smells and flaky tests

46

also provided a better way of inspecting the results rather than a raw csv file, so that I could reach

some conclusions.

An overview of the research process that was done can be seen in Figure 45:

1. The test smell detection tool and the flaky dataset had to be selected.

2. The dataset was used as input of the test smell tool.

3. The results of step 2 and the flaky dataset were mixed into one single file.

4. This file was analyzed to look for some correlation between test smells and flaky tests.

Figure 45. Architecture of Smell Flaky Analyzer Tool

5.2 Design of the system

5.2.1 Mock-ups

Mock-ups are a model of the graphical user interface of an application, in a partial and preliminary

version. They can be designed on paper, on a whiteboard or even using software tools that

facilitate their creation. They are said to be partial and preliminary because designing a mock-up

does not imply that its final version will be the same. On the contrary, mock-ups are conceived

with the aim of showing customers and other developers, using the prototyping technique, what

the initial design idea for an interface is.

By having graphical references and not just descriptions and text, users are able to better

understand how the application will work, and thus give feedback to the developers on which

functionalities they would like to introduce, and which ones will be left out for the time being.

Normally, the initial idea will undergo modifications and the final interface will end up being

different from the first version shown. The mock-up of the Smell Flaky Analyzer tool that was

created before its implementation is shown in Figure 46.

47

Figure 46. Mock-up Smell Flaky Analyzer Tool

5.2.2 Flowchart

A flowchart is a graphical representation that shows the logical sequence or steps to follow to

navigate between the different screens of the application. These are connected by arrows, which

indicate that the target window can be accessed from the source window. This type of diagrams

allows to show the whole application and helps to understand how it works and what possibilities

it offers. Additionally, it presents the style of the product as a whole, since you can see all the

windows and how they combine with each other.

Below, in Figure 47, the flowchart of the Smell Flaky Analyzer tool is shown, pointing out the

navigation between windows. Starting from the top-left corner, the first screen accessed is the

home menu. It shows basic information of the application and its development. If we use the

scrollbar, we can go down in the home menu and see the different screens. By clicking on a button

from the top bar, we can access the five different menus: home, instructions, analysis, results and

stats. Then, from each of the five screens, four arrows exit, showing the possible navigation to the

other four screens. Finally, from the instructions menu, we can also access the website of

FlakgeFlagger for downloading its dataset, as well as to the JNose tool to run the test smell

detection.

Research on the detection of test smells and flaky tests

48

Figure 47. Flowchart Smell Flaky Analyzer Tool

49

6. Used technologies

6.1 Git/Github

Figure 48. Git and GitHub logos, respectively

Git (Figure 48) [61], developed by Linus Torvalds, is undoubtedly the most widespread version

control software. This tool allows you to work on projects as a team and monitor changes to

source code files. GitHub, using Git, is a collaborative software development platform that allows

a team to work in parallel on a project, hosted in a cloud repository, which can be downloaded,

modified and updated by its members.

I have chosen to use Git and GitHub so that the development of the project can be done in a

comfortable, secure and stable way. This tool facilitates the saving of the project in a cloud

repository, allowing other people to see and use it if necessary. In addition, it offers the possibility

of controlling different versions of the code in case of any conflict or unforeseen event. Another

functionality is to create different branches to work on new and untested features without affecting

the code of the main branch, which is in a more stable and verified state.

6.2 React

Figure 49. React Logo

React (Figure 49) [62] is an open-source JavaScript library for building user interfaces that was

developed by Facebook and released in 2013. Its main focus is to create dynamic and interactive

Research on the detection of test smells and flaky tests

50

web applications by building reusable UI components. These components encapsulate the visual

and functional aspects of an application's user interface, allowing developers to create complex

UIs by composing these smaller building blocks together.

It was chosen for the development of this thesis’ application because it is a relatively simple way

for creating attractive user interfaces. I have already used it before and had some experience with

it, which made the implementation quicker, so that I could focus on other aspects of this project,

such as the smells detection, rather than in the application’s user interface.

6.3 Javascript

Figure 50. JavaScript Logo

JavaScript (Figure 50) [63] is a versatile and widely used programming language that powers the

interactive and dynamic elements of most modern websites and web applications, although its

versatility extends beyond the web browser, allowing developers to build a wide range of

applications across different platforms. It was initially created in the mid-1990s by Brendan Eich

while he was working at Netscape, and it has since evolved into a fundamental technology for

web development. JavaScript is the main programming language for this application, as it’s the

base language for the React library to work.

6.4 HTML

Figure 51. HTML Logo

51

HTML (Figure 51) [64] is a fundamental language for creating and structuring content on the

World Wide Web. It forms the backbone of web pages, defining the structure, layout, and

elements that make up the content you see when you visit a website. HTML works in conjunction

with other technologies like CSS (Cascading Style Sheets) and JavaScript to create visually

appealing and interactive web experiences. It is the language used for defining the structure and

components of the application of this thesis, as it works in conjunction with the React library.

6.5 CSS

Figure 52. CSS Logo

CSS (Figure 52) [65] is a crucial technology used in web development to control the presentation

and visual styling of HTML documents. While HTML defines the structure and content of web

pages, CSS focuses on how those elements should be displayed, including aspects like layout,

colors, fonts, and spacing. CSS allows developers to separate the structure of a webpage from its

design, making it easier to maintain and create consistent styles across a website.CSS is the

technology that brings visual appeal and design to web pages. It's an essential tool for web

developers, enabling them to create beautiful and responsive layouts, define typography, apply

colors, and create a consistent user experience across different devices and screen sizes. It is used

in this project because it works together with React and HTML to develop the appealing screens

of the application.

6.6 Electron

Figure 53. Electron Logo

Electron (Figure 53) [66] is an open-source framework developed by GitHub. It enables

developers to create desktop applications using web technologies such as HTML, CSS, and

Research on the detection of test smells and flaky tests

52

JavaScript. Electron packages your web application along with a custom browser engine and

exposes APIs that allow interaction with the underlying operating system. This way, you can

create applications that work on Windows, macOS, and Linux using the same codebase. It has

been chosen in this project because it allows to convert the web application developed using React

into a desktop application, needed to execute the Phyton scripts that will run command line

instructions.

6.7 Python

Figure 54. Python Logo

Python (Figure 54) [67] is a versatile, high-level programming language known for its simplicity,

readability, and broad range of applications. Created by Guido van Rossum and first released in

1991, Python has gained immense popularity among developers due to its clean syntax, ease of

use, and extensive standard library. It's used for web development, data analysis, scientific

computing, artificial intelligence, automation, scripting, and more. It has been chosen in this

project for executing some tasks, from creating the scripts for running command line instructions

that allow to open browser windows (for executing JNose or accessing the FlakeFlagger

webpage), to load and save csv files into local folders.

6.8 Visual Studio Code

Figure 55. Visual Studio Code Logo

53

Visual Studio Code (Figure 55) [68] is a widely used source code editor developed by Microsoft.

It has gained immense popularity among developers due to its versatility, efficiency, and a vast

ecosystem of extensions and features. Launched in 2015, VS Code has quickly become a go-to

choose for programmers working with various programming languages and technologies. It has

been chosen for this project because it provides a practical and useful way of programming using

React and it is the most used editor in this regard.

6.9 Photoshop

Figure 56. Photoshop Logo

Adobe Photoshop (Figure 566) [69] is an image and graphics editing and retouching tool

developed by Adobe Systems Incorporated. Photoshop has been chosen as the editor for the

images used in the application’s user interface, which have been specifically modified for the

purpose of this project.

Research on the detection of test smells and flaky tests

54

7. Implementation

7.1 Introduction

In the following chapter, the work done for the implementation of the solution of this project will

be explained, as well as the development of the application obtained as a result of it. The main

points of the development are the following ones:

• Implement a set of algorithms in the form of Python scripts that can use the output of a

test smell detection tool (JNose in this case) and a flaky tests detection tool (FlakeFlagger

in this case) as input for parsing them, merging them, and providing a csv file with the

combined results, to later analyze them.

• Combine the different aspects of the process in a single application: the use of the test

smell detection tool JNose for obtaining the test smells, the access to the FlakeFlagger

webpage for obtaining the flaky tests, the execution of the Python scripts, the loading of

input files and saving of output files, etc.

• Design and develop the user interface of the application for studying the relationship

between code smells and flaky tests. This means creating the screens of the application

that the user can interact with to access the set of functionalities that it offers and showing

the analyzed output in a graphical and easy to understand way to the user.

7.2 Algorithms for parsing and merging

The first thing that was done before the implementation of the actual React application with its

user interface was to do the parsing and merging of the results from JNose and FlakeFlagger by

developing some Python scripts.

On the one hand, the first script is the one in charge of reading the csv file obtained from the

FlakeFlagger project. This file, as it is obtained, contains a lot of unnecessary information when

combined with the smell detection results (the number of times the test passed and failed, the

exact run that failed for the first time, etc.), so some data is cut.

First, the script asks for the csv file from FlakeFlagger. We execute it and provide the file using

the following command: "python get_test_flakiness.py test_results.csv". By using the

csv.reader() function, each row of the file is read (which are the different tests of the dataset) and

the columns that are not necessary are removed. Then, a new csv file named

test_results_parsed.csv is saved into a local folder with the flaky tests information containing, for

55

every test, the project name it belongs to, the test name and if it is flaky (marked as a 1) or not

(marked as a 0).

On the other hand, a second script was created to parse the test smell results obtained from the

JNose tool and merge them with the csv file obtained in the first script. To do that, it asks for both

the smells csv file and the flaky tests csv file. It can be executed by writing the command: python

get_test_smells.py <test smells file> <flaky tests file>”.

This script creates an array of elements. Every element will contain the combined information for

every test case. This is, the project name it belongs to, the test name, if it is flaky or not and the

21 different smells (marked as 1 for smelly and 0 for non-smelly). To do that, the flaky

information from the previous step is obtained and added to the element and the file with the test

smells is traversed. When a smell is found, the name of the test where the smell is can be read and

the column of that test is updated to 1 in the new array. Finally, the result is saved in a file named

sfa_results.csv. The contents of this file can be seen in Figure 577.

Figure 57. Combined Results from Script

7.3 Smell Flaky Analyzer Tool

To combine all the steps done, from the use of JNose to run the test smell detection to the

execution of the scripts, a React tool with user interface named Smell Flaky Analyzer was

developed. It is made up by a central screen that changes depending on the menu selected and a

top bar menu with five buttons that allow the navigation among the different menus of the

application: home, instructions, analysis, results and stats. The color palette selected is a

combination of light blue, light grey and white, which combined form an appealing and easy to

understand interface.

The first of the menus is the “Home” screen (Figure 588), which provides basic information about

test smells, flaky tests, the application, and its developer, me. The different sections of the menu

can be seen by using the right scrollbar to move between them.

Research on the detection of test smells and flaky tests

56

Figure 58. Home Screen

The second menu is the “Instructions” screen (Figure 59), that shows all the steps that need to be

done prior to the final merging between flaky test and test smells results. It is divided in:

• Step 1: Obtention of the flaky tests results from the FlakeFlagger tool. A button can be

pressed to access the tool’s webpage, where the flaky dataset can be downloaded.

• Step 2: Parsing of the flaky results. The first of the python scripts is used in this step. To

do that, the “Upload file” button must be pressed to load the flaky dataset. Then, the

“Parse file” button is pressed to run the script through a command line instruction.

• Step 3: Obtention of the test smells detection results from JNose. When the”Run JNose”

button is pressed, the tool is opened in a new screen. The user has to follow the steps

explained in the screen to load projects and download the resulting csv file.

Figure 59. Instructions Screen

57

The third menu is the “Analysis” screen (Figure 60), where the results from the test smells

analysis and the flaky tests are combined. The “Upload file” button on the left asks for the csv

file that was obtained in step 3 of the instructions screen. And the “Upload file” button on the

right asks for the flaky tests csv file downloaded from the FlakeFlagger page. Then, by clicking

the “Analzye” button, both files are taken as input of the second Python script, which creates a

new file named “sfa_results.csv” with the combination of test smells and flaky tests and saves it

in a local folder.

Figure 60. Analysis Screen

The fourth menu is the “Results” screen (Figure 61), where the results of the previous step can

be seen. First, a button on the left will allow you to upload the csv file from a local folder to the

application. Then, this file will be read, and the results will be put in a table that is comprehensible

and straightforward. It shows, for every test case, the project name, the method name, if it is flaky

“1” or not “0” and for every test smell if, it was found in the test case “1” or not “0”. For the third

column and the remaining columns of test smells, the box is painted in red in case of a “1”, which

makes it easier to read and understand.

Figure 61. Results Screen

Research on the detection of test smells and flaky tests

58

When analyzing large projects, this table tends to become also very large, so a “Hide columns

without smells” button was added. When pressed, it will hide all the columns whose test smell

was not found in any method, so that it is easier to red and navigate through the table (Figure 62).

Figure 62. Results Screen with Hidden Columns

Finally, the fifth menu is the “Stats” screen (Figure 63), where some graphs are displayed to show

additional information about the results of the detection. The first graph shows the total number

of methods with test smells found (in red) in comparison to all the methods analyzed (in blue).

The second one shows the total number of flaky methods found (in red) in comparison to all the

methods analyzed (in blue).

Figure 63. Stats Screen 1

59

In the second part of this screen (Figure 64) the left graph shows the number of methods that were

flaky and had at least some test smells at the same time (in red) in comparison to the total number

of methods (in blue). The right graph shows the number of flaky methods with some test smells

(in red) in comparison to all the methods analyzed (in blue).

Figure 64. Stats Screen 2

And the third part of the menu shows the final two graphs (Figure 65). On the left, the different

number of smells found in all the test methods are shown in different colors. If the cursor is put

on one color, it shows which type of smell it is. On the right, the test smells found in the flaky

methods are shown, divided also by color.

Figure 65. Stats Screen 3

Research on the detection of test smells and flaky tests

60

When a slide of the graph is clicked, the details on which project and method are part of that slide

are shown. For example, in the first graph on the right, if the red slide is clicked, it will show the

name of all the flaky methods that were found (Figure 66).

Figure 66. Stats Screen Explanatory Menu

The development of the application was done using the Visual Studio Code editor, which allows

to organize the different folders and files of the project in a practical way (Figure 67):

• node_modules folder: stores all the Javascript and React libraries that are installed in

the project.

• public folder: contains basic files, such as index.html or main.js, which will be executed

at the beginning of the application start.

• src folder: contains all the elements necessaries to build the application:

-assets folder: the images used in the project, such as logos or icons.

-components folder: the Javascript and CSS component files that are used to

build the different screens of the application.

-csv folder: the csv files used as input in the application and the ones obtained

as output.

-reducers folder: the reducers files used by React Redux (explained after this

part).

-scripts folder: the Python scripts executed from the UI of the application.

-index.js and index.css files: the root files that start calling the other components

so that they are displayed on the screen.

-App.js and App.css: the main component of the application, called from

index.js, that starts having functionality and organizing the other components.

61

-reducer.js and store.js files: the Javascript files that allow the React Redux

store to work properly.

-logo.svg file: the image used as icon of the application.

• package.json file: contains the information of the project, such as the version, the

dependencies and the scripts that can be executed.

Figure 67. Project Folders and Files

React uses “states” to store and keep track of the current state of the application. In this way, when

the variables that are stored in the state of React are modified, the components are updated and

the user interface is reloaded, so that the user is able to see the changes to the state. For example,

the state can store a boolean variable called “buttonPressed” that controls if a button has been

pressed or not. This variable is initialized in the state to false, meaning that it still has not been

pressed. In addition, a popup menu component conditionally renders based on the

“buttonPressed” variable: when the button is clicked, the menu activates. Then, if we click the

button, the handler method associated to it will modify the state of the component, updating the

variable to “true” and rendering the component again so that the popup menu is now shown.

This procedure, although a bit hard to get familiar with at the beginning, becomes really useful

when a bit of experience on React is acquired. However, when large applications are developed

and a lot of components are created, it becomes trickier. This is because each component has its

state, so if multiple components want to communicate to change someone else’s state, a lot of

code has to be added, and it becomes harder to understand.

Research on the detection of test smells and flaky tests

62

To solve this problem, many people choose to use React Redux instead of the default React state

mechanism. Redux allows to encapsulate your application inside a “store” which will manage the

state of the application (Figure 68).

Figure 68. Store Class

This store allows the use of “reducers” which will contain the information of the global state of

the application. By default, a single reducer is created, but “combineReducers” can be used, which

is a technique that permits to split the global state into different slices, allowing the developer to

organize the different variables of the project depending on the purpose they serve (Figure 69).

Figure 69. Reducers Classes

63

The variables that are part of these global state in the reducers can be accessed from any of the

components of the application, by using the React Hooks “useSelector” and “useDispatch”

(Figure 70).

Figure 70. Use of useSelector and useDispatch

Finally, the execution of the Python scripts has been possible thanks to the introduction of

Electron to this project, which allows the execution of the React application as a desktop

application instead of a web one. To run it, it is enough to navigate to the project’s folder and

write the command “npm run electron:serve”, which will cancel the launch of the app in the

navigator and will instead lunch it as a desktop app on port 3000 (Figure 71).

Figure 71. Electron Scripts

Research on the detection of test smells and flaky tests

64

8. Validation

At the end of the implementation, we must verify the utility of the application and the work done,

as well as the obtained results. A total of 24 projects with over 22,000 test methods were used as

input for obtaining the results. First, the obtained results from the execution of the python scripts

will be explained, followed by the results shown once the application was finished. Finally, some

findings obtained during the validation regarding sources of flakiness will be explained.

8.1 Obtained results

By executing the Python scripts developed and explained before, a csv file is obtained, where the

results from the analysis of the test smells and flaky tests can be studied. This file was opened in

an excel sheet and some data was obtained. First of all, Figure 72 shows the number of methods

and flaky methods that had a specific amount of test smells, and its percentage. For example, 1368

methods had one test smell. From these number of methods, 17 of them were flaky, which means

only the 1,24% of the 1368 methods were flaky. As another example, 542 methods had 4 test

smells. Of these methods, only 16 were flaky, which means the 2,95% of the total amount of tests.

We can observe that the number of methods decrease when more smells are found in the same

method. This is expected, as it might be common to find one, two or a few smells in a test case,

but finding many smells in the same method is more complicated.

Figure 72. Methods and Flaky Methods

In Figure 73, we can see that there are 16906 methods that did not have any test smell. From

these, only 675 were flaky which means the 3,99% of them. On the other hand, 5339 methods had

at least one or more test smells. From this amount, 136 were flaky. That is 2,54% of the methods

with test smells. It can be observed that the percentages of flaky methods with test smells is pretty

low (2,54%). It is even less than the percentage of flaky methods without any test smell, which is

65

3,99%. In this first analysis, it looks like there is no clear correlation between a method been flaky

and having smells.

Figure 73. Methods with and without Smells

Next, the numbers were split depending on the different 21 smells (Figure 74). For every test

smell, the number of methods that were found with that specific smell are shown in the “#Smells”

row and from that number, the amount of flaky methods are shown in the “#Smells in flaky test”

row. And in the third row, the percentage of that smell being in a flaky test is displayed. Some

smells score higher percentages than others, but in general, they are still very low.

Figure 74. Test Smells in Flaky Tests by Type

Finally, the rank of smells in flaky tests was created (Figure 76). Here, we can more clearly see

that all the percentages are below 8%, which means that test smells do not seem to strongly affect

the creation of flaky tests. For a given smell, the percentage means the number of times that smells

appears in a flaky test divided by the number of times it appears in total (Figure 75). For the smell

with highest presence Verbose Test, only 7,28% of the smells were in a flaky test. Most of them

(17/21) were below 5%.

Figure 75. Test Smells Percentage Formula

Research on the detection of test smells and flaky tests

66

Figure 76. Rank of Test Smells in Flaky Tests

8.2 Application results

After developing the application, the results of analyzing more than 22000 methods can be better

displayed and studied. From the “Stats” screen, we can see if test smells and flaky tests are

common in software projects. For test smells yes, as 24.00% of the test methods had at least one

test smell (Figure 77).

Figure 77. Test Smells in Test Methods

For flaky tests not so much, as only 3.64% of the test methods were flaky (Figure 78).

67

Figure 78. Flakiness in Test Methods

From the next two graphs, we can see which test smells are the most common in software projects

(Figure 79). For the 24 projects analyzed, these smells are Assertion Roulette with a percentage

of 24.91%, Eager Test with a percentage of 14.76%, Magic Number Test with a percentage of

9.62% and Ignored Test with a percentage of 9.48%.

Figure 79. Test Smell Types in Software Projects

Research on the detection of test smells and flaky tests

68

And which test smells are the most common in flaky tests (Figure 80). These are Verbose Test in

7.28% of the flaky tests, Exception Catching Throwing in 5.99% of the tests, Conditional Logic

Test in 5.83% of the tests and Sleepy Test in 5.14% of the tests.

Figure 80. Test Smell Types in Flaky Tests

And from the last two graphs, we can observe if test smells are good indicators of flakiness in the

test methods. Only 136 flaky methods had test smells, which is the 16,76% of the 811 flaky

methods (Figure 82), in contrast with 24% of the total 22245 methods (Figure 81). In addition,

and as we could see in Figure 76, all the percentages are below 10%. Therefore, there is not

enough evidence to support a strong correlation between test smells and flaky tests.

Figure 81. Test Smells in Flaky Methods 1

69

Figure 82. Test Smells in Flaky Methods 2

8.3 Manual inspections and findings

After the previous step, I decided to manually inspect some of the methods marked as flaky to

look for some common indicators of flakiness. A lot of the reviewed flaky tests (Figure 83)

contained one or more of the first four smells in the Figure 76.

Figure 83. Tests with Most Common Smells

Some examples of the smells found are:

• Verbose test: a method containing a large number of statements (JNose establishes the

threshold in 30 statements per method), found in 7.28% of the flaky tests (Figure 84).

Research on the detection of test smells and flaky tests

70

Figure 84. Verbose Test Smell Found Example

• Exception catching throwing: a test method that contains either a throw statement or a

catch clause, found in 5.99% of the flaky tests (Figure 85).

Figure 85. Exception Catching Throwing Smell Found Example

• Conditional logic test: a test method containing one or more control statements, found

in 5.83% of the flaky tests (Figure 86).

Figure 86. Conditional Logic Test Found Example

71

• Sleepy test: a method that invokes the “Thread.sleep()” instruction, found in 5.14% of

the flaky tests (Figure 87).

Figure 87. Sleepy Test Found Example

In addition, some sources of flakiness mentioned in section 3.4 were also predominant in the test

cases marked as flaky:

• REST connections; that is, relying on external resources (Figure 88).

Figure 88. REST Connections Found Example

• Database queries, which is also relying on external resources (Figure 89).

Figure 89. Database Queries Found Example

Research on the detection of test smells and flaky tests

72

• The Date class, with its time dependent instructions (Figure 90).

Figure 90. Date Class Found Example

• SMTP connections, that means relying on network connections (Figure 91).

Figure 91. SMTP Connections Found Example

• File read/write, which is again relying on external resources (Figure 92).

Figure 92. File Read/Write Found Example

73

9. Conclusions

The accomplishment of this project has allowed me to fulfill successfully the objectives stablished

in section 1.3 for the reasons explained as follows. The first objective consisted in studying about

the definition, types and presence of test smells. This has been done by researching and Reading

state of the art papers about test smells, as explained in section 3, as well as by implementing my

tool and obtaining the results over a set of projects. As a result, it can be affirmed that this

objective has been met. The second objective was focused on the detection of test smells. This

has also been fulfilled, by researching about it and studying and executing current tools with

different approaches for the automatic detection of smells in software projects.

Moreover, the third and fourth objectives focused on flaky tests. The study of papers related to

flaky tests allowed me to better understand the importance of avoiding and correcting them. I

learned about what problems they can cause, how they can be detected and how to properly

refactor the code to correct them. In addition, some tools that could automatically detect flaky

tests were also studied, and its results were examined. This allowed me to achieve the third and

fourth objectives successfully.

The fifth objective is related to find if there is any correlation between test smells and flaky tests.

Because flaky tests are hard to find, I wanted to know if test smells were a good indicator to find

flaky tests. In the end, I conclude that test smells might not be the source of flakiness themselves,

so that is why the percentages are so low. However, some of them might be related to other

flakiness indicators. It is the case for example of the Sleepy test smell, exception catching

throwing and conditional test logic. I manually inspected some of the tests where these smells are

present, and I could find other indicators of flakiness. For example, a sleepy test smell combined

with asynchronous behavior can cause flakiness and a conditional statement or a try catch clause

that depends on network connection or input/output operations can also cause flakiness. Because

of that, even if the result was not the desired one, I could study the relation between them and

hence complete the fifth objective.

And for the sixth objective, I developed a tool that provides an easy way of inspecting test smells

and flaky tests, with all the steps explained. State of the art tools requires to spend time learning

how to use them and what kind of input is needed. Some of these tools provide the results in an

unclean and difficult way to understand. With my tool, test smells and flakiness are brought

together to the same table, for analyzing if the test smells of the project under test are in flaky

methods, and graphs are also provided to get a better idea of the situation of the projects. Then, I

can say that this objective has also been successfully achieved.

Research on the detection of test smells and flaky tests

74

As a conclusion, I conducted an empirical study concerning test smells and flaky tests. I learned

a lot about code smells, test smells, flaky tests and its detection and I came up with an application

capable of showing results in a clear and user-friendly way. I think that this research will provide

a new path for thinking about the best way of detecting flakiness, by using flakiness indicators

mentioned previously or test smells in combination with other techniques.

75

10. Future work

The final project resulted in an application completely finished, with the basic functionality

necessary for combining test smell detection results with flaky tests detection results and then

studying the combination of both in a convenient and straightforward way. Starting from this

point, we can divide the future work in three different sections.

First, if the application was to be used by other developers to find test smells and flaky tests, the

offered features would be extended. The application would be improved so that it can detect the

exact point in the methods were test smells have been found. This would be shown to the user in

a new screen, maybe similar to a code editor, with remarks and recommendations on how to

refactor it so that the user could see the smell and correct them when appropriate.

Secondly, a flaky tests detection tool could be developed. This tool would use the flakiness

indicators mentioned in step 3.4 to look for flakiness in the tests. These indicators seem to be a

better way of finding flaky tests than test smells, so a tool that used them would seem to achieve

higher performance than existing approaches. Test smells could also be used to find flakiness

indicators, and then find flaky tests, if considered a good idea.

Finally, more research could be done on the detection of flaky tests. It is still a considerably new

field, and there is still room to improve and new approaches to be discovered. These bad

programming practice, as explained before, is something to take into account and developers

should avoid introducing them in their code and, if this has already happened, use an efficient

way for detecting and refactoring them.

Research on the detection of test smells and flaky tests

76

11. Acknowledgments

I would like to thank professor Takada for his help throughout the year. It has not been an easy

year for me as an exchange student in a completely different country, but professor Takada has

always been willing to evaluate the work I have done, give me constructive feedback all the weeks

and propose possible ideas I could look into. His support during my year at Keio University was

one of the main reasons this project has been completed.

In addition, I would also like to thank professor Manuela Albert. Being a thesis advisor from the

other side of the planet is not an easy thing to do, but she always responded to by messages and

doubts, and did not have any problems in arranging meetings with me to check my progress and

help me with the project.

77

12. Bibliographical references

[1] Daniel Perez Morales et al., "Coverage-Guided Fairness Testing", International Conference

on Intelligence Science (ICIS) 2021 <https://link.springer.com/chapter/10.1007/978-3-030-

79474-3_13>

[2] Sakshi Udeshi et al., "Automated Directed Fairness Testing", International Conference on

Automated Software Engineering (ASE) 2018

<https://dl.acm.org/doi/10.1145/3238147.3238165>

[3] Shinya Sano et al., "An efficient discrimination discovery method for fairness testing",

International Conference on Software Engineering and Knowledge Engineering (SEKE) 2022

<https://ksiresearch.org/seke/seke22paper/paper064.pdf>

[4] Francesco Leone et al., "Overcoming Type Limitations in Semantic Clone Detection",

International Workshop on Software Clones (IWSC) 2022

<https://ieeexplore.ieee.org/document/9978229>

[5] Yu-Liang Hung et al., " CPPCD: A Token-Based Approach to Detecting Potential Clones”,

International Workshop on Software Clones (IWSC) 2020

<https://ieeexplore.ieee.org/document/9047636>

[6] Muhammad Waseem Anwar et al., "A Systematic Review on Code Clone Detection",

Emerging Technologies in Data Mining and Information Security 2020

<https://ieeexplore.ieee.org/abstract/document/8719895>

[7] José Amancio M. Santos et al., "A Systematic Review on the Code Smell Effect", The

Journal of Systems and Software 2018

<https://www.sciencedirect.com/science/article/abs/pii/S0164121218301444?via%3Dihub>

[8] Martin Fowler et al., "Refactoring: Improving the Desing of Existing Code", Object

Techonology Series. Addison-Wesley, 1999

<https://books.google.co.jp/books?hl=es&lr=&id=2H1_DwAAQBAJ&oi=fnd&pg=PT14&ots=

NgFqvho2OV&sig=AIX0x40WQXm93L7-

BMRHT0ShOng&redir_esc=y#v=onepage&q&f=false>

[9] Refactoring.com, a webpage about refactoring

<https://refactoring.com/#:~:text=Refactoring%20is%20a%20disciplined%20technique,of%20s

mall%20behavior%20preserving%20transformations.>

https://link.springer.com/chapter/10.1007/978-3-030-79474-3_13
https://link.springer.com/chapter/10.1007/978-3-030-79474-3_13
https://dl.acm.org/doi/10.1145/3238147.3238165

Research on the detection of test smells and flaky tests

78

[10] M. M. Lehman, "Programs, life cycles, and laws of software evolution”, International in

Proceedings of the IEEE, vol. 68, no. 9, 1980 <https://ieeexplore.ieee.org/document/1456074>

[11] W. Cunningham, "The WyCash portfolio management system" OOPS Messenger, vol. 4,

no. 2, 1993 <https://dl.acm.org/doi/pdf/10.1145/157710.157715>

[12] Eduardo Fernandes et al., "A Review-based Comparative Study of Bad Smell Detection

Tools" International Conference on Evaluation and Assessment in Software Engineering

(EASE) 2016 <https://dl.acm.org/doi/10.1145/2915970.2915984>

[13] Thanis Paiva et al., "On the evaluation of code smells and detection tools" International

Journal of Software Engineering Research and Development 2017

<https://jserd.springeropen.com/articles/10.1186/s40411-017-0041-1>

[14] Nikolaos Tsantalis et al., "JDeodorant: Identification and Removal of Type-checking Bad

Smells" European Conference on Software Maintenance and Reengineering (CSMR) 2008

<https://ieeexplore.ieee.org/document/4493342>

[15] F. A. Fontana et al., "Code Smell Detection: Towards a Machine Learning-Based

Approach" International Conference on Software Maintenance 2013

<https://ieeexplore.ieee.org/document/6676916>

[16] Santiago A. Vidal et al., "An Approach to Prioritize Code Smells for Refactoring"

Automated Software Engineering 2014 <https://dl.acm.org/doi/10.1007/s10515-014-0175-x>

[17] Dario Di Nucci et al., "Detecting code smells using machine learning techniques: Are we

there yet?" International Conference on Software Analysis, Evolution and Reengineering

(SANER) 2018 <https://ieeexplore.ieee.org/abstract/document/8330266>

[18] Seema Dewangan et al., "A Novel Approach for Code Smell Detection: An Empirical

Study" IEEE Access 2021 <https://ieeexplore.ieee.org/document/9641807>

[19] Oumayma Hamdi et al., "An Empirical Study on Code Smells Co-occurrences in Android

Applications" ACM International Conference on Automated Software Engineering Workshops

(ASEW) 2021 <https://ieeexplore.ieee.org/document/9680287>

[20] Dustin Lim, "Detecting Code Smells in Android Applications" Master’s Thesis 2018

<http://resolver.tudelft.nl/uuid:bab69ac3-07b7-4dae-8b80-670443af2faa>

[21] Geoffrey Hecht et al., "Tracking the Software Quality of Android Applications Along Their

Evolution (T)" ACM International Conference on Automated Software Engineering (ASE) 2015

<https://ieeexplore.ieee.org/document/7372012>

79

[22] Fabio Palomba et al., "Lightweight detection of Android-specific code smells: The aDoctor

project" International Conference on Software Analysis, Evolution and Reengineering

(SANER) 2017 <https://ieeexplore.ieee.org/document/7884659>

[23] Marouane Kessentini et al., "Detecting Android Smells Using Multi-Objective Genetic

Programming" International Conference on Mobile Software Engineering and Systems

(MOBILESoft) 2017 <https://ieeexplore.ieee.org/document/7972726>

[24] Jehan Rubin et al., "Sniffing Android code smells: an association rules mining-based

approach" International Conference on Mobile Software Engineering and Systems

(MOBILESoft) 2019 <https://dl.acm.org/doi/10.5555/3340730.3340753>

[25] Chenguang Mao et al., "Droidlens: Robust and Fine-Grained Detection for Android Code

Smells" International Symposium on Theoretical Aspects of Software Engineering (TASE)

2020 <https://ieeexplore.ieee.org/document/9405264>

[26] Jing Yu et al., "A Novel Tree-based Neural Network for Android Code Smells Detection"

International Conference on Software Quality, Reliability and Security (QRS) 2021

<https://ieeexplore.ieee.org/document/9724832>

[27] Bo Yang et al., "Don’t Do That! Hunting Down Visual Design Smells in Complex UIs

Against Design Guidelines" International Conference on Software Engineering (ICSE) 2021

<https://ieeexplore.ieee.org/document/9402139>

[28] Kent Beck, "Test Driven Development: By Example" Addison-Wesley Longman

Publishing Co. 2002 <https://github.com/clarabez/SoftwareTestingBooks/blob/master/Test-

Driven%20Development%20By%20Example%20(Kent%20Beck).pdf>

[29] A. Schneider et al., "JUnit best practices" Java World 2000

<https://www.infoworld.com/article/2076265/junit-best-practices.html>

[30] Abdallah Qusef et al., "SCOTCH: Test-to-code traceability using slicing and conceptual

coupling" International Conference on Software Maintenance (ICSM) 2011

<https://ieeexplore.ieee.org/document/6080773>

[31] Arie van Deursen et al., "Refactoring test code" Technical Report CWI Centre for

Mathematics and Computer Science 2001 <https://dl.acm.org/doi/10.5555/869201>

[32] Gerard Meszaros, "xUnit Test Patterns: Refactoring Test Code" Addison-Wesley 2007

<https://github.com/ahmedfarhat/software-development-ebooks-

1/blob/master/%5BxUnit%20Test%20Patterns%20Refactoring%20Test%20Code%20(Addison-

Research on the detection of test smells and flaky tests

80

Wesley%20Signature%20Series%20(Fowler))%20Kindle%20Edition%20by%20Gerard%20Me

szaros%20-%202007%5D.pdf>

[33] Helmut Neukirchen et al., "Utilising code smells to detect quality problems in ttcn-3 test

suites" International Conference on Testing of Communicating Systems and International

Workshop on Formal Approaches to Testing of Software (TestCom/FATES) 2007

<https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16>

[34] Bart Van Rompaey et al., "Characterizing the relative significance of a test smell"

International Conference on Software Maintenance (ICSM) 2006

<https://ieeexplore.ieee.org/document/4021366>

[35] Michaela Greiler et al., "Automated Detection of Test Fixture Strategies and Smells"

International Conference on Software Testing, Verification and Validation 2013

<https://ieeexplore.ieee.org/document/6569744>

[36] Davide Spadini et al., "On the Relation of Test Smells to Software Code Quality"

International Conference on Software Maintenance and Evolution (ICSME) 2018

<https://ieeexplore.ieee.org/document/8529832>

[37] Michele Tufano et al., "An empirical investigation into the nature of test smells"

International Conference on Automated Software Engineering (ASE) 2016

<https://dl.acm.org/doi/abs/10.1145/2970276.2970340>

[38] Manuel Breugelmans et al., "TestQ: Exploring Structural and Maintenance Characteristics

of Unit Test Suites" 2008 <https://api.semanticscholar.org/CorpusID:9839569>

[39] Wajdi Aljedaani et al., "Test Smell Detection Tools: A Systematic Mapping Study"

International Conference on Evaluation and Assessment in Software Engineering (EASE) 2021

<https://dl.acm.org/doi/10.1145/3463274.3463335>

[40] Anthony Peruma et al., "TsDetect: an open source test smells detection tool" ACM Joint

Meeting on ESEC/FSE 2020 < https://dl.acm.org/doi/10.1145/3368089.3417921 >

[41] Stefano Lambiase et al., "Just-In-Time Test Smell Detection and Refactoring: The DARTS

Project" International Conference on Program Comprehension 2020

<https://dl.acm.org/doi/10.1145/3387904.3389296 >

[42] Tássio Virgínio et al., "On the influence of Test Smells on Test Coverage" Brazilian

Symposium on Software Engineering (SBES) 2019

<https://dl.acm.org/doi/10.1145/3350768.3350775>

81

[43] Tássio Virgínio et al., "JNose: Java Test Smell Detector" Brazilian Symposium on

Software Engineering (SBES) 2020 < https://dl.acm.org/doi/10.1145/3422392.3422499>

[44] Railana Santana et al., "RAIDE: A Tool for Assertion Roulette and Duplicate Assert

Identification and Refactoring" Brazilian Symposium on Software Engineering 2020

<https://dl.acm.org/doi/abs/10.1145/3422392.3422510>

[45] Manuel Breugelmans et al., "TestQ: Exploring Structural and Maintenance Characteristics

of Unit Test Suites" International Workshop on Advanced Software Development Tools and

Techniques (WASDeTT) 2008 <https://api.semanticscholar.org/CorpusID:9839569>

[46] Github repository to download the test smell detection tool TsDetect

<https://github.com/TestSmells/TestSmellDetector>

[47] Github repository to download the test smell detection tool DARTS

<https://github.com/StefanoLambiase/DARTS>

[48] Github repository to download the test smell detection tool TestHound

<https://github.com/SERG-Delft/TestHound>

[49] Github repository to download the test smell detection tool JNose

<https://github.com/arieslab/jnose>

[50] Github repository to download the test smell detection tool RAIDE

<https://github.com/arieslab/raide>

[51] Webpage link to download the test smell detection tool TestQ

<https://code.google.com/archive/p/tsmells/downloads>

[52] Moritz Eck et al., "Understanding flaky tests: the developer’s perspective" ACM Joint

Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering (ESEC/FSE) 2019 <https://dl.acm.org/doi/10.1145/3338906.3338945>

[53] Qingzhou Luo et al., "An empirical analysis of flaky tests" ACM SIGSOFT International

Symposium on Foundations of Software Engineering (FSE) 2014

<https://dl.acm.org/doi/10.1145/2635868.2635920>

[54] Jonathan Bell et al., "DeFlaker: Automatically Detecting Flaky Tests" International

Conference on Software Engineering (ICSE) 2018

<https://ieeexplore.ieee.org/document/8453104>

Research on the detection of test smells and flaky tests

82

[55] Github repository to download the flaky tests detection tool DeFlaker

<https://github.com/gmu-swe/deflaker>

[56] Abdulrahman Alshammari et al., "FlakeFlagger: Predicting Flakiness Without Rerunning

Tests" International Conference on Software Engineering (ICSE) 2021

<https://ieeexplore.ieee.org/document/9402098>

[57] Github repository to download the flaky tests detection tool FlakeFlagger

<https://github.com/AlshammariA/FlakeFlagger>

[58] Wing Lam et al., "iDFlakies: A Framework for Detecting and Partially Classifying Flaky

Tests" Conference on Software Testing, Validation and Verification (ICST) 2019

<https://ieeexplore.ieee.org/document/8730188>

[59] Github repository to download the flaky tests detection tool iDFlakies

<https://github.com/iDFlakies/iDFlakies>

[60] Github repository to download the tool of this project, Smell Flaky Analyzer

<https://github.com/TheAlexet/smell-flaky-analyzer>

[61] Git webpage <https://git-scm.com>

[62] React webpage <https://react.dev>

[63] Javascript <https://developer.mozilla.org/en-US/docs/Web/JavaScript>

[64] HTML <https://developer.mozilla.org/en-US/docs/Web/HTML>

[65] CSS <https://developer.mozilla.org/en-US/docs/Web/CSS>

[66] Electron webpage <https://www.electronjs.org>

[67] Python webpage <https://www.python.org>

[68] Visual Studio Code webpage <https://code.visualstudio.com>

[69] Photoshop webpage <https://www.adobe.com/es/products/photoshop.html>

83

13. Appendices

13.1 List of abbreviations and acronyms

AI: Artificial Intelligence

UPV: Universitat Politècnica de València

PHD: Philosophy Doctorate

AST: Abstract Detection Trees

PDG: Program Dependance Graph

UI: User Interface

CSV: Comma-Separated Values

URL: Uniform Resource Locator

I/O: Input and Output

NaN: Not a Number

OS: Operating System

SHA: Secure Hashing Algorithm

HTML: Hypertext Markup Language

CSS: Cascading Style Sheets

REST: Representational State Transfer

SMTP: Simple Mail Transfer Protocol

Research on the detection of test smells and flaky tests

84

13.2 Slides used for the final presentation

Figure 93. Slide 1: Title

85

Figure 94. Slide 2: Motivation Software Testing

Research on the detection of test smells and flaky tests

86

Figure 95. Slide 3: Motivation Test Smells

87

Figure 96. Slide 4: Motivation Flaky Tests

Research on the detection of test smells and flaky tests

88

Figure 97. Slide 5: Motivation Detection

89

Figure 98. Slide 6: State of the Art Smell Selection Tools

Research on the detection of test smells and flaky tests

90

Figure 99. Slide 7: State of the Art Citations to Test Smells

91

Figure 100. Slide 8: State of the Art Flakiness Detection Tools

Research on the detection of test smells and flaky tests

92

Figure 101. Slide 9: State of the Art Summary

93

Figure 102. Slide 10: Research Questions

Research on the detection of test smells and flaky tests

94

Figure 103. Slide 11: Research Process Overview

95

Figure 104. Slide 12: Research Test Smell Detection Tool

Research on the detection of test smells and flaky tests

96

Figure 105. Slide 13: Research Flaky Dataset

97

Figure 106. Slide 14: Research Empirical Study

Research on the detection of test smells and flaky tests

98

Figure 107. Slide 15: Research Analysis of Results

99

Figure 108. Slide 16: Analysis of Results

Research on the detection of test smells and flaky tests

100

Figure 109. Slide 17: Analysis of Results

101

Figure 110. Slide 18: Analysis of Results

Research on the detection of test smells and flaky tests

102

Figure 111. Slide 19: Analysis of Results

103

Figure 112. Slide 20: Analysis of Results

Research on the detection of test smells and flaky tests

104

Figure 113. Slide 21: Discussion

105

Figure 114. Slide 22: Conclusions

Research on the detection of test smells and flaky tests

106

Figure 115. Slide 23: Analysis of Results

107

Figure 116. Slide 24: Analysis of Results

Research on the detection of test smells and flaky tests

108

Figure 117. Slide 25: Test Smells Examples

109

Figure 118. Slide 26: Flakiness Indicators Examples

Research on the detection of test smells and flaky tests

110

Figure 119. Slide 27: Correlation Smells and Flakiness Indicators

