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Abstract—The lunar mission market is experiencing significant
development and growth with increasing interest from govern-
ment agencies, private companies, and international collabora-
tions. Future lunar missions are driven by scientific exploration,
resource utilization, and the establishment of a sustainable human
presence. The first step in order to accomplish those goals is to
being able to observe and communicate with both, the Earth and
the Moon in a continuous and optimized way. The work aims
covering the lack of literature in practical applications for the
Butterfly family by proposing three different synodic resonant
butterfly orbits which could outperform the current reference
orbit for the cislunar architecture, known as a Near Rectilinear
Halo Orbit (NRHO), in terms of energy/time consumption.
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I. INTRODUCTION

In the near future, the lunar mission market is expected to
keep growing at an accelerated pace. The Artemis program,
led by NASA, is one of the primary driving forces behind this
expansion. Artemis aims to return humans to the Moon by
2024 and establish a sustainable lunar presence. This ambitious
program has garnered significant attention and investment,
aiming to not only land astronauts on the lunar surface but
also enable long-duration stays and foster scientific research
and exploration. Moreover, international collaborations are
also on the rise in the lunar mission market. Partnerships
such as the Artemis Accords aim to establish a common
vision via a practical set of principles and use of outer space
to advance the Artemis Program. These activities may take
place on the Moon, Mars, comets, and asteroids, as well as
in orbit of the Moon or Mars, in the Lagrangian points for
the Earth-Moon system [1]. These collaborations foster global
participation in lunar missions and provide opportunities for
scientific research, technology demonstrations, and knowledge
sharing.

This endeavor’s current orbit of interest is an L2 near
rectilinear halo orbit (NRHO). Near rectilinear halo orbits are
members of the broader set of L1 and L2 families of halo
orbits. These foundational structures exist in a dynamical envi-
ronment modeled in terms of multiple gravitational bodies, and
the motion also persists in a higher-fidelity model. This type
of trajectory was first identified in a simplified representation
of the gravitational effects in the Earth–Moon system, i.e.,
the circular restricted three-body problem (CR3BP). In the

CR3BP model, NRHOs are characterized by favorable stability
properties that facilitate low-cost maintenance of NRHO like
motion over long duration periods. Some NRHOs also possess
favorable resonance properties that can be exploited for mis-
sion design and are particularly useful for eclipse avoidance
[2].

In this investigation, the dynamical structure that bifurcates
from the first period-doubling bifurcation of the NRHO region
of the L2 halo family (butterfly orbits) [3] is explored to scru-
tinize the possible characteristics that would make a possible
candidate for future lunar missions out of this orbital family.

II. DYNAMICAL MODEL

The Circular Restricted Three-Body Problem (CR3BP) is
a simplified mathematical model used in celestial mechanics
to study the motion of a small object (such as a spacecraft)
in the gravitational fields of two larger bodies, referred to as
primaries, offering simplifications that facilitate easier con-
ceptual understanding. In this problem, the two larger bodies
are assumed to move in circular orbits around their center
of mass. The CR3BP hypothesis assumes that the mass of
the small object is negligible compared to the masses of the
larger bodies, meaning that the motion of the larger bodies is
unaffected by the presence of the small object. [4]

Fig. 1: Earth-Moon rotating reference frame [5]
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In a coordinate system centered around the barycenter and
rotating with the system (rotating or synodic frame, figure 1),
the position of the negligible-mass body is denoted by (x, y,
z). The x-axis points from the more extensive primary (m1) to
the smaller primary (m2), while the z-axis is perpendicular to
the orbital plane. The y-axis completes the set of orthogonal
coordinates. In the CR3BP, a convention is followed to make
quantities dimensionless. Normalized or nondimensional units
will be used for nearly all the discussions in this paper. When
appropriate, conversion to dimensional units (e.g., km, km/s,
seconds) can be done to scale a problem. The following choice
of units normalizes the system: the unit of mass is taken to
be m1 +m2; the unit of length is chosen to be the constant
separation between m1 and m2 (in our case the distance
between the centers of the earth and the moon; 3.850 ∗ 105

km); the unit of time is chosen such that the orbital period of
m1 and m2 around their center of mass is 2π. The universal
constant of gravitation then becomes G = 1. It then follows
that the primaries’ common mean motion, n, is also unity. [6]

As a result of this dimensionless representation, the dis-
tances from the Earth and Moon to the barycenter are ex-
pressed as µ and 1 - µ, respectively. Here, the parameter
µ represents the ratio of the Moon’s mass to the system’s
total mass (µ = m2/(m1 + m2)). In the specific case of the
Earth-Moon system, µ is equal to 0.01215. The larger and
smaller primaries are then located at (-µ, 0, 0) and (1-µ,0, 0),
respectively, and the equations of motion are given by:

x′′ = 2y′ + x− (1− µ)(x+ µ)r−3
1 − µ(x− 1−+µ)r−3

1

y′′ = −2x′ + y − (1− µ)yr−3
1 − µ ∗ yr−3

2 (1)

z′′ = −(1− µ)zr−3
1 − 1− µ ∗ zr−3

2

Where denotes derivative concerning time, and with r1 and r2
as:

r1 =
√

(x− µ)2 + y2 + z2

r2 =
√

(x− 1 + µ)2 + y2 + z2 (2)

The pseudo-potential function U is:

U =
1

2
(x2 + y2) +

1− µ

r1
+

µ

r2
(3)

The CR3BP has a notable quantity called the Jacobi con-
stant, denoted as JC. It is defined as JC = 2U - v2, where v
represents the magnitude of the spacecraft velocity in the rotat-
ing frame. The Jacobi constant is a parameter similar to energy
and remains constant along a ballistic arc. It provides insights
into the possible behavior of the system. For instance, a higher
Jacobi constant implies a lower orbital energy, resulting in
more restricted motion. In the six-dimensional phase space
described by (1), a subset of invariant planar orbits exists,
meaning their z-coordinate remains at zero. Additionally, there
are several symmetries within the system. If (x(t), y(t), z(t))
is a solution to 1, then its reflection about the x-y plane, (x(t),
y(t), -z(t)), is also a valid solution. Similarly, by reversing the
direction of time, the reflection about the x-z plane is another
valid solution, given by (x(-t), -y(-t), z(-t)). Furthermore, there

is a symmetry concerning µ if (x(t), y(t), z(t)) is a solution for
µ = µ0 then (-x(-t), y(-t), z(-t))is a solution for µ = 1 − µ0.
There is then a symmetric axis in µ = 1/2.

A. Libration points

It is a widely acknowledged fact that for any given value of
µ (where 0 < µ < 1), system 1 exhibits five equilibrium points
in the orbital plane of the primaries (z = 0), as shown in figure
2. These points are commonly referred to as Lagrange1 points
or libration points. Among the libration points, three of them,
named L1, L2, and L3, are positioned in a straight line with
the primary bodies. L1 is situated between the two primaries,
L2 is located beyond the smaller primary, and L3 is positioned
beyond the larger primary. The remaining two libration points,
L4 and L5, form an equilateral triangle with the primaries.
Specifically, L4 can be found at coordinates (x, y) = (1/2 - µ,
-
√

3/2), while L5 is located at (1/2 - µ,
√
3/2).It is important

to note that as µ approaches 0, L1 and L2 merge together, and
as µ approaches 1, L1 and L3 merge.Additionally, there is a
symmetry relationship with respect to µ = 1/2. 2

Fig. 2: Lagrange points on the CR3BP [7]

B. Periodic Orbits

When system 1 is expressed as a first-order system in R6,
the Jacobian matrix evaluated at the libration points L1, L2,
and L3 exhibits two pairs of purely imaginary eigenvalues.
These eigenvalues are responsible for well-known families of
periodic orbits, namely the planar Lyapunov orbits denoted as
L1, L2, and L3, as well as the Vertical orbits denoted as V1,
V2, and V3. Similarly, the Jacobian matrix at the libration
points L4 and L5 always possesses at least one pair of purely
imaginary eigenvalues for all values of µ. This gives rise to
the families V4 and V5 of Vertical orbits originating from L4
and L5, respectively. For values of µ below a critical threshold
µ2, approximately equal to 0.0385, the Jacobian matrix at the
libration points L4 and L5 exhibits an additional two pairs
of purely imaginary eigenvalues. These additional eigenvalues
generally lead to the emergence of two families of planar orbits
for both L4 and L5. [8]

1Despite being all named Lagrange points, the collinear equilibrium points
were found by Euler (1767) while the triangular equilibrium points were
worked out by Lagrange (1772)
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III. ORBITAL STABILITY AND BIFURCATIONS

Stability indices provide valuable information about the
stability of an orbit. This metric is defined as

ν =
1

2
(λWs + λWu) (4)

where λ represents the eigenvalues of the monodromy matrix,
ϕ(t + P, t), and P is the orbital period of the baseline orbit
in the CR3BP. [9] It is worth noting that the eigenvalues of
the monodromy matrix are observed as two sets of reciprocal
pairs and two trivial eigenvalues with a value of unity, which
arise from the periodic nature of the solution.

The nontrivial four eigenvalues consist of a pair associated
with the stable/unstable subspace and another pair representing
the center subspace. Since there is one stable and one unstable
mode, the stability indices are calculated by taking the average
of the (reciprocal) pair of multipliers related to the stable
subspace (|λs|< 1) and the unstable subspace (|λu| > 1).
These eigenvalues are also used to isolate intersections with
other families of orbits in the solution space. In this study, all
of the solutions examined possess six characteristic multipliers
in reciprocal pairs.

When the characteristic multipliers λs and λu associated
with the stable and unstable subspaces are equal to ±1, the
reference trajectory represents the precise intersection between
two distinct families of orbits. As a result, the orbit becomes
a subset of both families, indicating a bifurcation point where
the trajectory exhibits characteristics of both families simulta-
neously. Additionally, if the characteristic multipliers λc and
λ∗
c corresponding to the center subspace are such that λc = λ∗

c

= ±1, the solution or orbit also defines the intersection point
between two different families. In this case, when λs = λu = ±1
and λc = λ∗

c = ±1 occur simultaneously, the trajectory solution
belongs to three distinct families of orbits. As a consequence,
three families intersect at this point, leading to a phenomenon
known as trifurcation.

When examining the Lyapunov families, the first two bi-
furcations occur when exploring the solution space for all
three Lyapunov families. These bifurcations are specifically
associated with the condition where the center multipliers, λc

and λc*, are equal to ±1. Initially, the multipliers in the center
subspace for all three families (L1, L2, L3) are distributed
along the unit circle, which aligns with our expectations.
However, as the solution space is expanded, these families
exhibit bifurcations with the halo orbit families. During these
bifurcations, the center multipliers transition to real values
instead of remaining on the unit circle.

Apart from the previously mentioned bifurcation types,
there are additional types of bifurcations that should be con-
sidered. Specifically, in the context of studying and applying
Halo orbits, period-multiplying bifurcations play a significant
role.

A. Period-multiplying bifurcations

Can occur without any changes in the orbital stability. For
instance, when two nontrivial eigenvalues of the monodromy

matrix, λc = -1, are present, a period-doubling bifurcation
takes place. However, period-multiplying bifurcations (with a
multiplying factor m) occur when two nontrivial eigenvalues of
the monodromy matrix are expressed as λc = λ∗

c = cos(2π/m)
± i*sin(2π/m). These period-multiplying bifurcations give rise
to a set of new families of orbits originating from the NRHO
family. These bifurcations provide an avenue for exploring and
discovering new orbital configurations and behaviors within
the HALO orbit family.

For period-multiplying bifurcations (and the resulting
higher-period families) the naming format is defined:
‘Pm[originating family]n’, where ‘Pm’ refers to the order of
the period-multiplication (e.g., period-doubling is reflected in
m = 2), ‘[originating family]’ refers to the family from which
the bifurcating family has evolved (e.g., ‘HO’ refers to halo
orbits and ‘DRO’ refers to distant retrograde orbits), and ‘n’
denotes a sub-family identifier (i.e., for multiple bifurcations of
the same type, the first family, in order of increasing perilune
radius, is labelled n = 1, the second family is labelled n = 2,
etc.).

Regarding the period-doubling bifurcations, two families
emerge from the NRHO family: P2HO1 and P2HO2. With
respect to the period-quadrupling bifurcations, another two
families emerge: P4HO1 and P4HO2. The following sections
of this paper will focus on the P2HO1 family, commonly
known as the Butterfly family [3]. Butterfly orbits have been
of interest in space exploration and satellite missions for
several reasons. They offer stable orbits that require relatively
little propulsion or station-keeping maneuvers to maintain the
spacecraft’s position. They also provide continuous visibility
of both the larger bodies (such as the Earth and the Moon) and
allow for extended observation or communication coverage. In
figure 3 the Halo and Butterfly families are plotted together.

Fig. 3: Halo-Butterfly families transition

All the results presented in this work were carried out
in SEMpy [10], a simulation environment for the circular
restricted three-body problem, based on Python and developed
by SaCLaB at ISAE-SUPAERO.

IV. BUTTERFLY ORBITAL FAMILY

Employing a multiple-shooting pseudo-arclength continua-
tion scheme, the new families of periodic orbits originating at
each of these bifurcations are computed. The Butterfly family



STAGE DE RECHERCHE ISAE SUPAERO

originating from the NRHO bifurcation is plotted (and colored
by Jacobi constant) in figure 4. Note that in figures 4 and 5 the
southern orbits (or the segment of the family that possesses a
majority of motion in the negative z-direction) are plotted (a
northern analog also exists).

Fig. 4: 3D Butterfly Family

As can appreciated in figure 5, this family is characterized
by two lobes in a “figure-8” shape, one on the L1 side of the
Moon and one on the L2 side each having 5 to 7 day period
ranges. [11] A distinct advantage for periodic orbits in this
family is the ability to access both sides of the Moon using
natural ballistic motion.

Fig. 5: Butterfly Family 2D projections

A. Stability and Jacabi constant properties

The behavior of the butterfly family undergoes intricate
changes in terms of its geometry, period, energy, and stability
properties. The analysis of its stability evolution employs a
different approach to the stability index compared to the one
presented in Section III.

This study utilizes an alternative formulation of the stability
index to capture the full implications of complex eigenvalues
deviating from the unit circle. Referred to as ζ, it is defined
as:

ζ =
1

2
(||λi||+ ||λi||−1) (5)

for i = 1, 2. This alternative stability index is a real value
with a magnitude greater than or equal to 12.

2This alternative formulation sacrifices certain details, such as the sign of
the eigenvalues.

Figure 6 displays the alternative stability indices, ζ, for a
significant portion of the butterfly family. As a result, the range
of orbits depicted in the stability index plot is significantly
broader than the range of orbits presented in the visualization
of the halo-butterfly bifurcation in figure 3. The extended
coverage of the butterfly family reveals numerous stability
transitions throughout its evolution.

Fig. 6: Alternative orbital stability evolution [12]

Figure 6 illustrates the diverse eigenstructures present in
the butterfly family. These eigenstructures have significant
implications for mission design. The range of butterfly orbits
analyzed so far exhibits a variety of eigenstructures and sta-
bility properties, which directly impact the available manifold
structures. This is particularly relevant when considering low-
cost transfers. Additionally, the magnitude of the stability
indices is correlated with station-keeping and transfer costs,
with smaller stability indices typically resulting in lower
station-keeping costs [12].

The evolution of the Jacobi constant value, denoted as C, for
the butterfly family exhibits a less complex behavior compared
to its stability evolution. Figure 7 displays the evolution of
the Jacobi constant value for the butterfly family and the 9:2
NRHO orbit. It is evident that within this range of the butterfly
family, only one orbit shares the same Jacobi constant value
as the 9:2 NRHO orbit, suggesting a potential no-cost transfer
possibility at that specific point.

For the family’s remaining orbits, the Jacobi constant value
change is relatively small during the initial portion of the
curve. However, there is a noticeable drop in the Jacobi
constant value at an orbit period of approximately 50 days.
In general, the smaller the difference in Jacobi constant value
between two orbits, the lower the transfer cost. As a result, but-
terfly orbits with lower Jacobi constant values (corresponding
to higher energy levels) tend to have relatively higher transfer
costs.
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Fig. 7: Jacobi constant evolution

B. Resonance properties

Resonance in terms of the synodic period is defined as
the time between successive conjunctions of a celestial body
with the Sun, i.e., the time required for the Earth–Moon–Sun
orientation to repeat. In this case, a viewer fixed at the center
of the Earth would see the Moon return to the same location
with respect to the Sun after one synodic period of the Moon,
however, the Moon would not appear in the same location
to an observer in an inertial frame fixed at the center of the
Earth. The Moon’s synodic period is approximately 29.5 days,
slightly longer than its sidereal period (approximately 27.3
days). The synodic period is also denoted as a lunar month
since the full lunar cycle (i.e., time between successive full
Moon phases) requires one synodic period to complete.

Orbital resonance is defined in terms of a p:q ratio, where
p indicates the number of completed revolutions of a given
periodic orbit over q synodic periods of the Moon. The value
of p divided by q must be positive and rational, i.e., both p and
q can be written as positive integers. As an example of orbital
resonance, a 4:1 synodic resonant NRHO possesses a period
of approximately 7.375 days such that four revolutions of the
spacecraft in this orbit can be completed over the duration of
one synodic period of the Moon (7.375 days * 4 = 29.5 days).
[2]

1) Eclipse avoidance in the Butterfly orbits: Eclipse avoid-
ance in space missions is a crucial consideration for space
missions, especially those involving spacecraft that rely on
solar power. It helps maintain power supply, thermal stability,
data continuity, operational stability, and battery conservation,
thereby enabling the success and longevity of spacecraft
operations.

Specific resonant solutions from the P2HO1 family will
be investigated further due to their favorable long-duration
eclipse avoidance properties. In figure 8, it is apparent that
2:1, 1:1, and 3:2 (equivalently, 3/2:1) synodic resonant orbits
exist across the region of the P2HO1 family.

Fig. 8: p=1 synodic resonances in Butterfly orbits [2]

The 2:1 synodic resonant P2HO1 orbit is illustrated in fig-
ure 9 in Earth-Moon synodic reference frame. In the CR3BP,
this butterfly orbit is defined with a perilune radius of 13967
km and an orbital period of 14.76 days. It is the most stable
of the three orbits but still unstable. The maximum stability
index is ν = 12.31 (corresponding to a time constant of
τ = 0.0919 revolutions); unstable orbits potentially possess
useful manifold structures for transfer design.

Fig. 9: Butterfly 2:1 ephemeris model

In figure 9, the red orbit corresponds to the solution in the
CR3BP, while the blue trajectory corresponds to 15 revolutions
(221.3 days) of the orbit computed in the higher-fidelity
ephemeris 3 model.

3The ephemeris model takes into account the gravitational interactions
among celestial bodies, such as the Sun, planets, and moons, and factors in
other influences like perturbations from other bodies, relativistic effects, and
more. By considering these various forces, the model can calculate celestial
objects’ precise positions and velocities at a given time.
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Fig. 10: Butterfly 1:1 ephemeris model

Figure 10 illustrates the representation of the 1:1 synodic
resonant P2HO1 orbit in Earth-Moon rotating frame. The
orbit’s perilune radius is measured at 49986 km, and in
the context of the Circular Restricted Three-Body Problem
(CR3BP), its period corresponds to the synodic period of the
Moon, which is approximately 29.5 days.

Regarding the stability index, it is the most unstable with
ν = 33.55 or time constant of τ = 0.03499 revolutions.
The orbit exhibits both unstable and stable spiral manifold
structures, which have the potential to be useful in transfer
design within the specific region.

Fig. 11: Butterfly 3:2 ephemeris model

Figure 11 depicts the 3:2 synodic resonant P2HO1 orbit.
In the context of the CR3BP, this periodic solution has a
perilune radius of 34970 km and a period of 19.67 days. A
calculated ephemeris solution covering a duration of 295 days
successfully avoids both lunar and Earth eclipses.

The maximum stability index is ν = 19.94, indicating its
overall stability. Alternatively, the associated time constant for
this orbit is τ = 0.05988 revolutions. Notably, this specific
P2HO1 orbit exhibits both stable and unstable spiral manifold
structures, which hold the potential for facilitating transfer
design either into or out of the vicinity of the orbit.

To determine whether the three orbits avoid solar and lunar
eclipses, they need to be observed in the Sun-Earth and Sun-
Moon synodic reference systems. By examining the paths of

the shadow of the Earth and the Moon, it can be determined
whether or not these orbits intersect with the shadow regions.

If an orbit does not intersect with the shadow of the Earth
or the Moon, it can be considered to avoid solar and lunar
eclipses. Conversely, if the orbit passes through or intersects
with these shadow regions, it may be subject to solar and lunar
eclipses during its trajectory.

• Sun-Earth reference frame: To transform an orbit from
the Earth-Moon synodic reference frame to the Sun-Earth
synodic reference frame, the following steps can be taken:

1) Transformation to the Earth-Centered Inertial (ECI)
system:

– Use the appropriate rotation matrix that corresponds
to the dimensionless time of each position and
velocity vector. Apply this rotation matrix to convert
each vector from the Earth-Moon synodic reference
frame to the ECI system.

– Subtract the displacement of the center µ from the
xinertial coordinate. This accounts for the fact that
the center is displaced from the center of the Earth
in the ECI system.

2) Transformation from the ECI system to the Sun-Earth
synodic reference frame:

– In this transformation, the dimensional units need to
be adjusted to match the Sun-Earth system.

– Multiply each time value by the ratio of the synodic
periods or the ratio of the orbital periods in the two
systems.

– Scale the position vector by the ratio of the charac-
teristic lengths in the two systems.

– Scale the velocity vector by the ratio of the length
to the ratio of the time units.

– Use the inverse of the rotation matrix that was
used in the first transformation. Apply this inverse
rotation matrix to convert the position and veloc-
ity vectors from the ECI system to the Sun-Earth
synodic reference frame.

By following these steps, the orbit can be success-
fully transformed from the Earth-Moon synodic refer-
ence frame to the Sun-Earth synodic reference frame,
accounting for the rotation matrices, dimensional unit
conversions, and displacement of the center.
Figures 12, 13, and 14 depict the transformed orbits
in the Sun-Earth synodic reference frame. It is evident
from these figures, particularly from the z-y projections,
that the three orbits successfully avoid sun eclipses. The
visualization clearly shows that the orbit paths never
intersect with the Earth’s shadow (it would be projected
along the x axis), indicating that there is no interference
between the orbits and the Earth during their respective
trajectories.
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Fig. 12: Butterfly 2:1 Sun-Earth Synodic reference frame

Fig. 13: Butterfly 1:1 Sun-Earth Synodic reference frame

Fig. 14: Butterfly 3:2 Sun-Earth Synodic reference frame

• Sun-Moon reference frame: To transform an orbit from
the Earth-Moon synodic reference frame to the Sun-Moon
synodic reference frame, the following steps can be taken:

1) Transformation to the Moon-Centered Inertial (MCI)
system:
Following the same procedure that the one to convert
to the ECI, the corresponding rotation matrix will be
apply to convert each vector to the MCI system.
Then, unlike with the ECI system, the value 1−µ will
be add to the xinertial coordinate. Being displaced the
center to the center of the MCI system.

2) Transformation from the MCI system to the Sun-Moon
synodic reference frame:
– In this transformation, the dimensional units need to

be adjusted to match the Sun-Moon system.
– Multiply each time value by the ratio of the synodic

periods or the ratio of the orbital periods in the two
systems.

– Scale the position vector by the ratio of the major
axis of the second body in the two systems. In this
case, this value is equal to 1, due to the second body
is the same (Moon) for both reference frames.

– Scale the velocity vector by the ratio of the length
to the ratio of the time units.

– Use the inverse of the rotation matrix that was
used in the first transformation. Apply this inverse
rotation matrix to convert the position and velocity
vectors from the MCI system to the Sun-Moon
synodic reference frame.
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By following the aforementioned steps, the orbit can be
effectively converted from the Earth-Moon synodic ref-
erence frame to the Sun-Moon synodic reference frame,
taking into account the rotation matrices, dimensional
unit conversions, and displacement of the center.
Figures 15, 18, and 20 illustrate the transformed orbits in
the Sun-Moon synodic reference frame. The 2D visualiza-
tions clearly demonstrate that all three orbits successfully
avoid solar eclipses, as the paths of the orbits do not
intersect with the Moon’s shadow. This observation holds
significant importance, as the avoidance of solar eclipses
is essential for the safe and efficient operation of space
missions.

Fig. 15: Butterfly 2:1 Sun-Moon Synodic reference frame

Fig. 16: Butterfly 2:1 Sun-Moon Synodic reference frame xy
projection

Fig. 17: Butterfly 2:1 Sun-Moon Synodic reference frame yz
projection

Fig. 18: Butterfly 1:1 Sun-Moon Synodic reference frame

Fig. 19: Butterfly 1:1 Sun-Moon Synodic reference frame yz
projection
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Fig. 20: Butterfly 3:2 Sun-Moon Synodic reference frame

Fig. 21: Butterfly 3:2 Sun-Moon Synodic reference frame xy
projection

Fig. 22: Butterfly 3:2 Sun-Moon Synodic reference frame yz
projection

C. Lunar coverage and station-keeping cost

There has been significant interest in exploring and inves-
tigating the lunar south pole in recent years, primarily due to
its potential for harboring frozen volatiles 4. [13] This region
has distinct scientific and strategic advantages, making it an
attractive target for space exploration missions. A key aspect
of lunar south pole coverage involves using two satellites, and
within the context of the three-body problem, there may be
viable architectures for achieving this. [14]

The selection of orbits plays a crucial role in determining
lunar south pole coverage. Two criteria are considered: the
time required to complete one full period and the feasibility
of achieving coverage. Once a specific architecture is chosen,
the orbit is discretized into a series of patch points. Using
a corrections scheme proposed by Wilson and Howell [15],
these patch points are then adjusted to meet the desired time-
of-flight and orbit periodicity requirements.

Considering the long-term station-keeping costs is also cru-
cial in assessing the feasibility of these systems. Minimizing
costs is advantageous in this regard. The study by D.J. Gregow
et al. [14] analyses the lunar coverage and station-keeping cost
of two satellites in the same or different orbits. The butterfly
family of orbits, characterized by a specific time to complete
one full period and feasibility for lunar south pole coverage, is
selected for further analysis. The HALO family is also selected
for analysis. A combination between the 14-day L2 butterfly
orbit and the 7-day L2 HALO orbit is realized, obtaining a
region of dual coverage of 50º- While taking into account
only the 14-day butterfly orbit, the region of dual coverage is
45º. 5

From that same study, the data shown in the table I are
presented:

Orbit type Period days Stability index Total ∆V [m/s]
NRHO L2 7.0 1 4.82
NRHO L1 8.0 1.25 5.54
HALO L1 12.0 60 66.33
Vertical L1 14.0 690 171.82
Butterfly L2 14.0 11.3 31.86

TABLE I: Station keeping result for one year [14]

A clear relationship between the stability index and the
station-keeping cost can be observed upon qualitative analysis
of the results. Orbits with higher stability indices, indicating
less stability, tend to require more fuel for station-keeping
compared to orbits with lower stability indices. This can be
exemplified by the vertical orbit, which exhibits a higher
stability index and thus would necessitate a greater amount
of fuel for maintaining its desired trajectory.

Additionally, it is interesting to note that despite the butterfly
orbit having a total period of 14 days, it exhibits a distinctive
pattern with two lobes, each situated on one side of the
moon. This configuration effectively creates a periodicity of

4Substances that have frozen or solidified due to extremely low temperatures
in certain regions of the lunar surface. These volatiles include compounds
such as water ice, carbon dioxide (CO2), methane (CH4), and other volatile
compounds.

5At least one spacecraft is always 45º above the horizon
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approximately 7 days, which can be considered when planning
and scheduling mission operations.

These qualitative observations highlight the importance of
stability and periodicity in orbital dynamics, as they directly
impact the operational costs and feasibility of maintaining
desired orbits for space missions.

Finally, the study identifies the butterfly family as a solution
to the challenges associated with lunar south pole coverage,
having good coverage and an affordable station-keeping cost
(thanks to their stability properties).

V. TRANSFER TO BUTTERFLY ORBITS

In this section, an analysis of transfer costs 6 associated
with Earth to Moon transfers for the lunar mission will be
made. Understanding these costs is crucial in selecting the
optimal target orbit for the mission. Various factors influence
the transfer costs, and by considering them, informed decisions
can be made to minimise energy requirements and maximise
mission efficiency.

In order to carry out this analysis, two main factors have
been taken into account:

• ∆V Requirements: ∆V, or change in velocity, is a
key parameter that determines the energy needed for a
spacecraft to transition from Earth’s orbit to the Moon’s
orbit. It encompasses both the departure from Earth’s
orbit and the arrival at the Moon’s orbit. Analyzing the
delta-V requirements for different transfer trajectories
allows us to assess the fuel consumption and propulsion
system capabilities needed for the mission.

• Trajectory Optimization: Trajectory Optimization: The
path taken by the spacecraft during the transfer can be
optimized to minimize energy consumption. This involves
careful analysis of various trajectory options, such as
direct transfers or complex multi-impulse trajectories.
Considering factors such as duration, fuel consumption,
and arrival-departure points, advanced optimization algo-
rithms will be employed to search for the most efficient
trajectory within the given constraints, for different kind
of missions.

By studying and quantifying these transfer costs, the overall
feasibility and efficiency of different target orbits for the lunar
mission can be assessed. At the end of this analysis, it will
be possible to compare the mission requirements for various
Butterfly and NRHO orbits, as was done for station-keeping
costs in Section IV.

To compute the transfer from a geocentric orbit to a lunar
orbit, the following steps can be taken:

1) Computation of an Earth parking orbit
First of all, our desired orbit’s characteristics must be
chosen. In this research, the parking orbit will be ini-
tialised through the desired Keplerian elements. In the
case concerning this paper, the parking orbit used to

6The transfer costs studied in this section are direct transfer costs based on
the Lambert Transfer, for better results, the use of manifold structures should
be taken into account.

calculate the transfer costs, is a circular7 LEO orbit with
a height of 500km over the Earth’s surface (it’s remaining
Keplerian elements are i = 0º, Ω = 125.08º, ω = 318.15º,
and ν = 139.87º). Once the orbit’s elements have been
chosen, translation to the Cartesian coordinates system by
using the function ”keplerian-to-cartesian-elementwise”
from the tudatpy module must be done before propagating
them on the J2000 reference frame 8, by the use of
a numerical simulator. In order to have useful results
from the propagation, the time and state vectors from
the simulation will be extracted.

Fig. 23: Earth’s parking orbit in the J2000 Frame

Fig. 24: Earth’s parking orbit in the J2000 Frame seen from
the zenith

2) Transformation from the Earth’s J2000 frame to the
Earth-Moon Synodic frame
Since SEMpy has been used for this study, the time
and state vectors of the J2000 reference frame will have
to be translated into the Earth-Moon synodic frame. In
contemplation of this goal, use of the ”j2000-to-synodic”

7Circular orbit implies e=0.
8The J2000 (aka EME2000) frame definition is based on the earth’s equator

and equinox, determined from observations of planetary motions, plus other
data. The name “J2000” is also used to refer to the zero epoch of the ephemeris
time system (ET, also known as TDB). [16]
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function will be taken, obtaining the parking orbit’s time
and state vectors in the desired frame.

Fig. 25: Earth’s parking orbit in the Earth-Moon Synodic
Frame

3) Computation of the target lunar orbit
The computation of the target lunar orbit will be carried
out in the CR3BP model, as will the Lambert’s transfer
in the next step. This solution will be obtained with
the same method as have been previously done in this
paper, via the interpolation of the orbit given the desired
orbital period. As studied throughout the article, the three
resonant butterfly orbits studied above will be computed,
in addition to a 4:1 synodic resonant NRHO, with the
purpose of comparing the direct transfer costs from Earth
to both families.

4) Computation of the Lambert Transfer
Once computed the departure and arrival orbits, with
their respective dimensionless state and time vectors,
to perform the direct transfer, the Lambert problem for
one revolution must be solved, taking use of the class
”Cr3bpLambertPbm” from SEMpy. To obtain the solution
to this problem, the departure point of the transfer (state
of the parking orbit), the arrival point (state of the
corresponding lunar orbit) and the time of flight (TOF)
will have to be chosen, among other parameters.
By definition, the Lambert transfer seeks an orbit arc in
the two-body problem that connects two points in space
guaranteeing continuity of velocity and position. By using
this method in this study, only an approximated value
of the desired transfer cost between the Earth’s parking
orbit and the lunar orbit in question can be given, since
at small changes in the time of flight, or in the departure
and arrival positions and velocities, large difference in the
∆V values will be obtained as a solution to the problem.

5) Optimization of the computed transfer trajectory
Although the study carried out in this section is quali-
tative, for the reasons previously discussed, the obtained
results can be optimized in a rather rudimentary way by
choosing the departure and arrival points so that at the
departure the velocity vector is as tangent as possible to

the trajectory to be followed, and at the arrival, points
with velocities in the same direction or the same plane.
In this way, a better result can be obtained when choosing
as arrival points the periapsis of the butterfly orbits whose
velocity is tangent to the Lambert’s transfer trajectory.
To further refine the optimisation results, use will be made
of the ”Trajectory” class [17], which employs the Primer
Vector theory to assess optimality and provide a criterion
to decrease the transfer cost by inserting intermediate
impulsive manoeuvres along the trajectory.

A. Comparison of Earth-to-lunar orbit transfer costs

In the following, the results obtained by using the procedure
previously described in the section will be shown. Differenti-
ation will be made between four different transfers, with the
previously described parking orbit being the departure orbit
used at all times, varying the arrival orbit. In addition, the
best results obtained for times of flight (TOF) of 4, 7, 10 and
12 days will be shown, differentiating the transfer to three
types of arrival points (lunar periapsis with velocity in favour,
with velocity against and one of the four states contained in
the ecliptic plane), for a better analysis of the data. Despite
only showing the best result obtained, more than two hundred
trajectories have been simulated, these data can be consulted
in Appendix A.

Time of Flight [days] Arrival point Number of impulses Total ∆V [m/s]
4 Periapsis 3 4812
7 Periapsis 3 4700

10 Periapsis 3 4578
12 Periapsis 3 4630

TABLE II: Transfer costs from parking orbit to Butterfly 1:1

Time of Flight [days] Arrival point Number of impulses Total ∆V [m/s]
4 Periapsis 3 5031
7 Ecliptic plane 4 5013

10 Periapsis 3 4708
12 Periapsis 3 4705

TABLE III: Transfer costs from parking orbit to Butterfly 3:2

Time of Flight [days] Arrival point Number of impulses Total ∆V [m/s]
4 Periapsis 3 5041
7 Ecliptic plane 4 5090

10 Ecliptic plane 4 4964
12 Ecliptic plane 4 4824

TABLE IV: Transfer costs from parking orbit to Butterfly 2:1

Time of Flight [days] Arrival point Number of impulses Total ∆V [m/s]
4 Periapsis 3 5084
7 Apoapsis 3 5265

10 Periapsis 3 4908
12 Apoapsis 3 4545

TABLE V: Transfer costs from parking orbit to NRHO 4:1
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B. Comparison of Earth-to-lunar orbit transfer trajectories

Fig. 26: Transfer trajectory to Butterfly 1:1 for TOF = 4
days and 2 impulses

Fig. 27: Transfer trajectory to Butterfly 1:1 for TOF = 4
days and 3 impulses

Fig. 28: Transfer trajectory to Butterfly 1:1 for TOF = 7
days and 2 impulses

Fig. 29: Transfer trajectory to Butterfly 1:1 for TOF = 7
days and 3 impulses

Fig. 30: Transfer trajectory to Butterfly 1:1 for TOF = 10
days and 2 impulses

Fig. 31: Transfer trajectory to Butterfly 1:1 for TOF = 10
days and 3 impulses
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Fig. 32: Transfer trajectory to Butterfly 1:1 for TOF = 12
days and 2 impulses

Fig. 33: Transfer trajectory to Butterfly 1:1 for TOF = 12
days and 3 impulses

Fig. 34: Transfer trajectory to Butterfly 3:2 for TOF = 4
days and 2 impulses

Fig. 35: Transfer trajectory to Butterfly 3:2 for TOF = 4
days and 3 impulses

Fig. 36: Transfer trajectory to Butterfly 3:2 for TOF = 7
days and 2 impulses

Fig. 37: Transfer trajectory to Butterfly 3:2 for TOF = 7
days and 3 impulses
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Fig. 38: Transfer trajectory to Butterfly 3:2 for TOF = 7
days and 4 impulses

Fig. 39: Transfer trajectory to Butterfly 3:2 for TOF = 10
days and 2 impulses

Fig. 40: Transfer trajectory to Butterfly 3:2 for TOF = 10
days and 3 impulses

Fig. 41: Transfer trajectory to Butterfly 3:2 for TOF = 12
days and 2 impulses

Fig. 42: Transfer trajectory to Butterfly 3:2 for TOF = 12
days and 3 impulses

Fig. 43: Transfer trajectory to Butterfly 2:1 for TOF = 4
days and 2 impulses
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Fig. 44: Transfer trajectory to Butterfly 2:1 for TOF = 4
days and 3 impulses

Fig. 45: Transfer trajectory to Butterfly 2:1 for TOF = 7
days and 2 impulses

Fig. 46: Transfer trajectory to Butterfly 2:1 for TOF = 7
days and 3 impulses

Fig. 47: Transfer trajectory to Butterfly 2:1 for TOF = 7
days and 4 impulses

Fig. 48: Transfer trajectory to Butterfly 2:1 for TOF = 10
days and 2 impulses

Fig. 49: Transfer trajectory to Butterfly 2:1 for TOF = 10
days and 3 impulses

Fig. 50: Transfer trajectory to Butterfly 2:1 for TOF = 10
days and 4 impulses
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Fig. 51: Transfer trajectory to Butterfly 2:1 for TOF = 12
days and 2 impulses

Fig. 52: Transfer trajectory to Butterfly 2:1 for TOF = 12
days and 3 impulses

Fig. 53: Transfer trajectory to Butterfly 2:1 for TOF = 12
days and 4 impulses

Fig. 54: Transfer trajectory to NRHO 4:1 for TOF = 4 days
and 2 impulses

Fig. 55: Transfer trajectory to NRHO 4:1 for TOF = 4 days
and 3 impulses

Fig. 56: Transfer trajectory to NRHO 4:1 for TOF = 7 days
and 2 impulses

Fig. 57: Transfer trajectory to NRHO 4:1 for TOF = 7 days
and 3 impulses

Fig. 58: Transfer trajectory to NRHO 4:1 for TOF = 10 days
and 2 impulses
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Fig. 59: Transfer trajectory to NRHO 4:1 for TOF = 10 days
and 3 impulses

Fig. 60: Transfer trajectory to NRHO 4:1 for TOF = 12 days
and 2 impulses

Fig. 61: Transfer trajectory to NRHO 4:1 for TOF = 12 days
and 3 impulses

As can be gathered from table II and figures 26 to 33, for the
transfer up to the 1:1 Butterfly, the total cost of the manoeuvre
is reduced when increasing the TOF up to 10 days. In addition,
the y-component of the trajectory increases from 100,000 km
in the case of 4 days of flight to 400,000 km in the case of
12 days of flight. On the other hand, it can be noticed that the
best transfers to this orbit are those towards the periapsis.

Furthermore, from table III and figures 34 to 42, for the
transfer up to the 3:2 Butterfly, the total cost of the manoeuvre
is reduced when increasing the TOF up to 12 days. In addition,
the y-component of the trajectory increases from 100,000 km
in the case of 4 days of flight to 400,000 km in the case of
12 days of flight. However, this component is reduced when
inserting the third impulse, being drastically reduced for low
TOF and slightly reduced for longer periods.

On the other hand, from table IV and figures 43 to 53, it can
be noted that the Butterfly 2:1 has a very similar behaviour to
the Butterfly 3:2, both in terms of cost and trajectory shape
(y and z components).

When moving to the 4:1 NRHO transfer, from table V
and figures 54 to 61, the total cost of the manoeuvre is also
generally reduced when increasing the TOF. It is remarkable
that the optimal transfers for the times of flight studied in
this article occur indistinctly towards the apsides of the orbit
in consideration. In this case, there is hardly any variation in
the y-component of the transfer trajectory when adding a third
impulse, which contrasts with the results obtained for the most
of the Butterfly family.

From the data obtained in this section, it could be concluded
that for short transfer missions, ideal for manned missions, the
cost of direct transfer would be reduced by increasing the flight
time from 1 up to 2 weeks. However, the results show that the
difference would not be excessive, and that it would therefore
be feasible to study a direct mission with a flight time of
around one week. Furthermore, the transfer costs to a Butterfly
or an NRHO are almost identical, which makes sense since
the arrival states are very similar. Therefore, to benefit from
the Butterfly family’s instability in terms of transfer costs, a
mission with a much longer time of flight (and therefore only
unmanned missions)should be considered, by making use of
the arrival manifold structures, which will be detailed in the
next section.

VI. POSSIBLE PRACTICAL APPLICATIONS FOR BUTTERFLY
ORBITS

In the following section, the implementation of Butterfly
orbits in practical applications will be explored, considering
their unique characteristics and the advantages they offer over
other orbit types. Various renowned missions will be selected,
and a comparison will be made between the initial orbit
employed in each mission and the corresponding Butterfly
orbit. This analysis will shed light on the benefits and potential
applications of Butterfly orbits in real-world scenarios.

Taking into account the common characteristics of NRHO
and Butterfly orbits, our attention will be directed towards
missions that specifically employ NRHOs. As attributes such
as resonance properties, eclipse avoidance and lunar coverage
of the South Pole are inherent to both types of orbits, they will
not be discussed in detail. Nevertheless, it is worth highlighting
that these characteristics still offer advantages compared to the
majority of other orbit types such as lunar orbits.

A. NRHO practical applications

1) Artemis mission: The Artemis mission, a joint endeavor
between European Space Agency (ESA) and NASA, aims to
facilitate the return of humans to the Moon [18]. A key to this
mission is the lunar gateway, a small space station intended to
orbit the Moon. The lunar gateway serves as a staging point
for lunar surface missions and offers a platform for scientific
research. To achieve this, the lunar gateway will be placed
in a NRHO around the Moon [19]. Additionally, a transfer
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from a parking Earth orbit to the NRHO configuration will be
executed9.

The Gateway orbit is planned to be a highly-elliptical seven-
day NRHO around the Moon, which would bring the small
space station within 3,000 km of the lunar north pole at closest
approach and as far away as 70,000 km over the lunar south
pole [20] [21] [22]. Among the advantages of the NRHO
orbit, which have made it the orbit of choice to host the lunar
gateway, the following can be highlighted:

• Long-Term Stability: NRHO orbits exhibit better long-
term stability, requiring minimal station-keeping maneu-
vers to maintain the desired position of the gateway.

• Mission Experience: NRHO orbits have been extensively
studied and utilized in previous lunar missions, particu-
larly within the Apollo program. The experience gained
from these missions can inform decision-making and
operations.

• Targeted Coverage of Points of Interest: NRHO orbits can
be optimized to provide better coverage of specific points
of interest on the lunar surface, aligning with mission
objectives and scientific priorities.

2) Lunar Reconnaissance Orbiter mission: Launched in
2009 by NASA, the Lunar Reconnaissance Orbiter (LRO) is
a robotic spacecraft specifically designed to collect data about
the lunar environment and create high-resolution maps of the
Moon’s surface [23].

To fulfill its mission objectives, the LRO spacecraft was
placed into a Near Rectilinear Halo Orbit (NRHO) around
the EM-L1 with a perilune radius of about 50 kilometers
above the lunar surface. It was launched the 18th of June
of 2009 and inserted into the orbit 5 days later. This orbit
was carefully selected to ensure that the spacecraft maintained
a nearly constant view of the lunar surface, which proved
advantageous for conducting detailed observations and precise
mapping activities. [24]

The utilization of the NRHO for the LRO mission offered
several notable benefits. Firstly, it provided a stable and
predictable orbit, reducing the frequency of orbital corrections
required. As a result, the spacecraft could primarily focus on
its scientific goals without significant interruptions or exces-
sive fuel consumption. Additionally, the NRHO allowed for
improved coverage of the lunar surface, enabling the LRO to
capture high-resolution images and acquire valuable scientific
data.

B. Possible Butterfly practical applications

Throughout this article, the most important characteristics
of the Butterfly orbital family have been discussed. In the fol-
lowing, a recapitulation of the attributes that make the butterfly
orbits great candidates for hosting future lunar missions will
be given:

9It’s important to note that the Artemis mission is a multi-phase endeavor
with multiple missions planned, each with its own specific orbital require-
ments. The orbits used can vary depending on mission objectives, spacecraft
capabilities, and operational considerations.

• Enhanced Flexibility: Due to their lower stability, but-
terfly orbits offer greater flexibility in terms of station
keeping and maneuverability. This allows for easier re-
configuration of the satellite’s position and orientation as
required.

• Improved Lunar Surface Coverage: Butterfly orbits al-
low for better coverage of the lunar surface, facilitating
comprehensive observation and exploration of various
regions.

• Transfer Costs: As have been seen in the previous section,
the direct transfer cost (based on the Lambert transfer) to
butterfly orbits and NRHOs is practically identical, so
there would be no clear advantage to propose the use of
one over the other simply on this basis.

However, in terms of cost reduction, the employment of
stable and unstable manifolds is an additional advantage
offered by Butterfly orbits, which has not been explored in
this study. In the CR3BP, some periodic orbits are unstable
and, therefore, possess both stable and unstable invariant
manifolds. [6] In this application, invariant manifolds are
six-dimensional structures that govern the flow toward and
away from an unstable periodic orbit; leveraging this natural
dynamical structure allows transfers to and from the orbit
for relatively minor maneuver cost. Manifold structures are,
therefore, often a basis for transfer design techniques. Orbit
stability, as determined from the eigenvalues of the mon-
odromy matrix determines the types of manifold structures that
an orbit possesses. Unstable eigenvalues (|λi| > 1) correspond
to unstable manifold structures that depart a periodic orbit,
likewise, stable eigenvalues (|λi| < 1) correspond to stable
manifold structures that flow into a periodic orbit [25] [26].

Manifolds offer pathways for arrival at and departure from
unstable periodic orbits. One of the challenges associated with
transferring to/from NRHOs (as well as other stable or nearly-
stable periodic orbits like DROs) is their lack of useful arrival-
s/departures structures, which evolve too slowly for practical
application. Butterfly orbits characterized by higher stability
indices can effectively utilize stable and unstable manifolds,
thereby facilitating fuel-saving strategies and enabling low-
energy transfer possibilities.

VII. FINAL REMARKS

Butterfly orbits are identified as viable candidate orbits for
a habitat spacecraft in cis-lunar space. In this investigation,
properties of the Butterflies that lead to their desirable charac-
teristics are explored. They posses favorable eclipse avoidance
and lunar coverage properties. In terms of transfer costs,
preliminary transfer studies indicate that the butterflies are
accessible from LEO for a relatively low-cost and short time
of flight, they present the same direct transfer cost as a NRHO,
and would therefore be equally well suited to host a crewed
mission. Additionally, for longer duration unmanned missions,
the use of manifold structures could be studied, which would
differentiate the transfer cost to an NRHO and a Butterfly,
since the latter, being more unstable, would present manifolds
that could be used for practical application, which is not the
case with NRHOs.
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Therefore, for future work on butterfly orbits, the natural
continuation of this study would be to compute stable and
unstable manifold structures, or, more specifically, trajectories
that lie along these manifold surfaces, in butterfly orbits. In
this way, an overall comparison of the total mission cost could
be made, weighing station keeping costs against the transfer
cost in order to optimise the total mission cost.
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APPENDIX

A. Earth-Butterfly transfer cost
In this list, all the attempts that have been made in order to

find the best result for the transfer, are shown. They are ordered
by arrival orbit and time of flight (TOF). The numbers inside
() represent the departure or arrival state in our code. On the
right, the results show the number of impulses and the total
transfer cost in m/s.

Butterfly 2:1

TOF= 4 days
Park(300)-But(467): 3 imp - 5148
Park(350)-But(467): 3 imp - 5041
Park(350)-But(1533): NO RESULT (time limit)
Park(350)-But(430): 3 imp - 5083
Park(370)-But(467): 3 imp - 5075
Park(370)-But(1533): 3 imp - 5329
Park(370)-But(430): 3 imp - 5119
Park(400)-But(467): 3 imp - 5313
Park(400)-But(1533): 3 imp - 5497
Park(400)-But(430): 3 imp - 5362
Park(430)-But(467): 3 imp - 5784
Park(430)-But(1533): 3 imp - 5918
Park(430)-But(430): 3 imp - 5829
Park(470)-But(467): 3 imp- 7139
Park(470)-But(1533): 3 imp - 7436
Park(470)-But(430): 3 imp - 6849
Park(500)-But(467): 3 imp - 7746
Park(500)-But(1533): 3imp - 8079
Park(500)-But(430): 3 imp - 7453
Park(530)-But(467): 3 imp - 8264
Park(530)-But(1533): 3 imp - 8697
Park(530)-But(430): 3 imp - 7979
Park(560)-But(467): 3 imp - 8590
Park(560)-But(1533): 3 imp - 9202
Park(560)-But(430): 3 imp - 8329
TOF= 7 days
Park(300)-But(467): NO RESULT (derivative at interior

impulse in non zero nor continuous)
Park(350)-But(467): NO RESULT (derivative at interior

impulse in non zero nor continuous)
Park(350)-But(1533): 4 imp - 5096
Park(350)-But(430): 4 imp - 5094
Park(370)-But(467): NO RESULT (time limit)
Park(370)-But(1533):NO RESULT (time limit)
Park(370)-But(430): 4 imp - 5090
Park(400)-But(467): 3 imp - 5928
Park(400)-But(1533): NO RESULT (time limit)
Park(400)-But(430): 4 imp - 5122
Park(430)-But(467): 3 imp - 5959
Park(430)-But(1533): 3 imp - 5521
Park(430)-But(430): 4 imp - 5250
Park(470)-But(467): 3 imp - 6279
Park(470)-But(1533): 3 imp - 5827
Park(470)-But(430): 4 imp - 5631
Park(500)-But(467): 3 imp - 6677

Park(500)-But(1533): 3 imp - 6254
Park(500)-But(430): 4 imp - 6043
Park(530)-But(467): 3 imp - 7093
Park(530)-But(1533): 3 imp - 6742
Park(530)-But(430): NO RESULT (derivative at interior

impulse in non zero nor continuous)
Park(560)-But(467): 3 imp - 7462
Park(560)-But(1533): 3 imp - 7229
Park(560)-But(430): NO RESULT (derivative at interior

impulse in non zero nor continuous)
TOF= 10 days
Park(470)-But(467): 3 imp - 5967
Park(470)-But(1533): 3 imp - 5166
Park(470)-But(430): 4 imp - 4964
Park(500)-But(467): 3 imp - 6021
Park(500)-But(1533): 3 imp - 5215
Park(500)-But(430): 4 imp - 5145
Park(530)-But(467): 3 imp - 6353
Park(530)-But(1533): 3 imp - 5569
Park(530)-But(430): 4 imp - 5488
Park(560)-But(467): 3 imp - 6720
Park(560)-But(1533): 3 imp - 6004
Park(560)-But(430): 4 imp - 5886
TOF= 12 days
Park(470)-But(467): 3 imp - 6954
Park(470)-But(1533): 4 imp - 4954
Park(470)-But(430): 4 imp - 4824
Park(500)-But(467): 3 imp - 6055
Park(500)-But(1533): 4 imp - 4903
Park(500)-But(430): 4 imp - 4828
Park(530)-But(467): 3 imp - 6068
Park(530)-But(1533): 3 imp - 5103
Park(530)-But(430): NO RESULT (time limit)
Park(560)-But(467): 3 imp - 6329
Park(560)-But(1533): 3 imp - 5404
Park(560)-But(430): 4 imp - 5326

Butterfly 3:2

TOF= 4 days
Park(300)-But(480): NO RESULT (derivative at interior

impulse in non zero nor continuous)
Park(350)-But(480): 3 imp - 5031
Park(350)-But(1520): NO RESULT (derivative at interior

impulse in non zero nor continuous)
Park(350)-But(339): 3 imp - 5157
Park(370)-But(480): 3 imp - 5065
Park(370)-But(1520): 3 imp - 5360
Park(370)-But(339): 3 imp - 5211
Park(400)-But(480): 3 imp - 5302
Park(400)-But(1520): 3 imp - 5523
Park(400)-But(339): 3 imp - 5462
Park(420)-But(480): 3 imp - 5593
Park(420)-But(1520): 3 imp - 5776
Park(420)-But(339): 3 imp - 5741
Park(450)-But(480): 3 imp - 6178
Park(450)-But(1520): 3 imp - 6322
Park(450)-But(339): 3 imp - 6284
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Park(470)-But(480): 3 imp - 6621
Park(470)-But(1520): 3 imp - 6753
Park(470)-But(339): 3 imp - 6690
Park(500)-But(480): 3 imp - 7293
Park(500)-But(1520): 3 imp - 7431
Park(500)-But(339): 3 imp - 7303
Park(530)-But(480): 3 imp - 7893
Park(530)-But(1520): 3 imp - 8078
Park(530)-But(339): 3 imp - 7844
Park(560)-But(480): 3 imp - 8322
Park(560)-But(1520): 3 imp - 8601
Park(560)-But(339): 3 imp - 8223
TOF= 7 days
Park(350)-But(480): 3 imp - 5140
Park(350)-But(1520): NO RESULT (time limit)
Park(350)-But(339): 4 imp - 5013
Park(370)-But(480): 3 imp - 5140
Park(370)-But(1520): NO RESULT (time limit)
Park(370)-But(339): 4 imp - 5019
Park(400)-But(480): 3 imp - 5153
Park(400)-But(1520): 3 imp - 4942
Park(400)-But(339): 4 imp - 5071
Park(430)-But(480): 3 imp - 5194
Park(430)-But(1520): 3 imp - 4933
Park(430)-But(339): 3 imp - 5200
Park(470)-But(480): 3 imp - 5566
Park(470)-But(1520): 3 imp - 5277
Park(470)-But(339): 3 imp - 5537
Park(500)-But(480): 3 imp - 6015
Park(500)-But(1520): 3 imp - 5739
Park(500)-But(339): 3 imp - 5942
Park(530)-But(480): 3 imp - 6483
Park(530)-But(1520): 3 imp - 6250
Park(530)-But(339): 3 imp - 6373
Park(560)-But(480): 3 imp - 6910
Park(560)-But(1520): 3 imp - 6746
Park(560)-But(339): 3 imp - 6771
TOF= 10 days
Park(470)-But(480): 3 imp - 5303
Park(470)-But(1520): 3 imp - 4708
Park(470)-But(339): NO RESULT (derivative at interior

impulse in non zero nor continuous)
Park(500)-But(480): 3 imp - 5256
Park(500)-But(1520): 3 imp - 4772
Park(500)-But(339): NO RESULT (derivative at interior

impulse in non zero nor continuous)
Park(530)-But(480): 3 imp - 5644
Park(530)-But(1520): 3 imp - 5175
Park(530)-But(339): 3 imp - 5486
Park(560)-But(480): 3 imp - 6046
Park(560)-But(1520): 3 imp - 5622
Park(560)-But(339): 3 imp - 5858
TOF= 12 days
Park(470)-But(480): 3 imp - 5270
Park(470)-But(1520): 3 imp - 4705
Park(470)-But(339): 4 imp - 4738
Park(500)-But(480): 3 imp - 5257

Park(500)-But(1520): NO RESULT (derivative at interior
impulse in non zero nor continuous)

Park(500)-But(339): 4 imp - 4760
Park(530)-But(480): 3 imp - 5337
Park(530)-But(1520): 3 imp - 4785
Park(530)-But(339): NO RESULT (time limit)
Park(560)-But(480): 3 imp - 5619
Park(560)-But(1520): 3 imp - 5087
Park(560)-But(339): 4 imp - 5304

Butterfly 1:1

TOF= 4 days
Park(350)-But(504): NO RESULT (time limit)
Park(350)-But(1499): NO RESULT (derivative at interior

impulse in non zero nor continuous)
Park(350)-But(255): 3 imp - 5214
Park(370)-But(504): 3 imp - 4812
Park(370)-But(1499): 3 imp - 4985
Park(370)-But(255): 3 imp - 5294
Park(400)-But(504): 3 imp - 4977
Park(400)-But(1499): 3 imp - 5230
Park(400)-But(255): 3 imp - 5589
Park(430)-But(504): 3 imp - 5430
Park(430)-But(1499): 3 imp - 5753
Park(430)-But(255): 3 imp - 6071
Park(470)-But(504): 3 imp - 6312
Park(470)-But(1499): 3 imp - 6665
Park(470)-But(255): 3 imp - 6874
TOF= 7 days
Park(350)-But(504): 3 imp - 4912
Park(350)-But(1499): NO RESULT (derivative at interior

impulse in non zero nor continuous)
Park(350)-But(255): 4 imp - 5011
Park(370)-But(504): 3 imp - 4886
Park(370)-But(1499): NO RESULT (time limit)
Park(370)-But(255): 4 imp - 4991
Park(400)-But(504): 3 imp -4845
Park(400)-But(1499): 3 imp - 4700
Park(400)-But(255): 3 imp - 5146
Park(430)-But(504): 3 imp - 4845
Park(430)-But(1499): 3 imp - 4745
Park(430)-But(255): 3 imp - 5221
Park(470)-But(504): 3 imp - 5210
Park(470)-But(1499): 3 imp - 5218
Park(470)-But(255): 3 imp - 5605
TOF= 10 days
Park(400)-But(504): 3 imp - 4969
Park(400)-But(1499): NO RESULT (derivative at interior

impulse in non zero nor continuous)
Park(400)-But(255): NO RESULT (derivative at interior

impulse in non zero nor continuous)
Park(430)-But(504): 3 imp - 4933
Park(430)-But(1499): 3 imp - 4648
Park(430)-But(255): 4 imp - 4742
Park(470)-But(504): 3 imp - 4905
Park(470)-But(1499): 3 imp - 4578
Park(470)-But(255): NO RESULT (time limit)



STAGE DE RECHERCHE ISAE SUPAERO

Park(500)-But(504): 3 imp - 5010
Park(500)-But(1499): 3 imp - 4813
Park(500)-But(255): 4 imp - 5024
TOF= 12 days
Park(400)-But(504): 3 imp - 5011
Park(400)-But(1499): NO RESULT (derivative at interior

impulse in non zero nor continuous)
Park(400)-But(255): 4 imp - 4813
Park(430)-But(504): 3 imp - 4972
Park(430)-But(1499): NO RESULT (derivative at interior

impulse in non zero nor continuous)
Park(430)-But(255): 4 imp - 4753
Park(470)-But(504): 3 imp - 4962
Park(470)-But(1499): NO RESULT (derivative at interior

impulse in non zero nor continuous)
Park(470)-But(255): 4 imp - 4679
Park(500)-But(504): 3 imp - 5001
Park(500)-But(1499): 3 imp - 4630
Park(500)-But(255): 4 imp - 4674

NRHO

TOF= 4 days
Park(400)-But(989): 3 imp - 5130
Park(430)-But(500): NO RESULT
Park(430)-But(0): 3 imp - 5084
Park(430)-But(11): 3 imp -5086
Park(430)-But(989): 3 imp - 5187
Park(470)-But(500): 3 imp - 7513
Park(470)-But(0): 3 imp - 6591
Park(470)-But(11): 3 imp - 6595
Park(470)-But(989): 3 imp - 6903
Park(500)-But(500): 3 imp - 7513
Park(500)-But(0): 3 imp - 7167
Park(500)-But(11): 3 imp - 7170
Park(500)-But(989): 3 imp - 7515
Park(530)-But(500): 3 imp - 8104
Park(530)-But(0): 3 imp - 7698
Park(530)-But(11): 3 imp - 7701
Park(530)-But(989): 3 imp - 8096
Park(560)-But(500): NO RESULT (derivative at interior

impulse in non zero nor continuous)
Park(560)-But(0): 3 imp - 8132
Park(560)-But(11): 3 imp - 8133
Park(560)-But(989): 3 imp - 8495
TOF= 7 days
Park(470)-But(500): 3 imp - 5265
Park(470)-But(0): 3 imp - 5387
Park(470)-But(11): 3 imp - 5388
Park(470)-But(989): 3 imp - 5476
Park(500)-But(500): NO RESULT (derivative at interior

impulse in non zero nor continuous)
Park(500)-But(0): 3 imp - 5749
Park(500)-But(11): 3 imp - 5751
Park(500)-But(989): 3 imp - 5849
Park(530)-But(500): 3 imp - 6768
Park(530)-But(0): 3 imp - 6166
Park(530)-But(11): 3 imp - 6167

Park(530)-But(989): 3 imp - 6290
Park(560)-But(500): 3 imp - 7210
Park(560)-But(0): 3 imp - 6576
Park(560)-But(11): 3 imp - 6576
Park(560)-But(989): 3 imp - 6733
TOF= 10 days
Park(470)-But(500): 3 imp - 5481
Park(470)-But(0): 3 imp - 4908
Park(470)-But(11): 3 imp - 4909
Park(470)-But(989): 3 imp - 4950
Park(500)-But(500): 3 imp - 5562
Park(500)-But(0): 3 imp - 4999
Park(500)-But(11): 3 imp - 4999
Park(500)-But(989): 3 imp - 5029
Park(530)-But(500): 3 imp - 5898
Park(530)-But(0): 3 imp - 5256
Park(530)-But(11): 3 imp - 5256
Park(530)-But(989): 3 imp - 5288
Park(560)-But(500): 3 imp - 6310
Park(560)-But(0): 3 imp - 5617
Park(560)-But(11): 3 imp - 5617
Park(560)-But(989): 3 imp - 5670
TOF= 12 days
Park(400)-But(500): 3 imp - 5194
Park(400)-But(0): 4 imp - 4600
Park(400)-But(11): 4 imp - 4597
Park(400)-But(989): 4 imp - 4980
Park(470)-But(500): NO RESULT (too close to the moon)
Park(470)-But(0): 3 imp - 4845
Park(470)-But(11): 3 imp - 4846
Park(470)-But(989): 3 imp - 4860
Park(500)-But(500): 3 imp - 5545
Park(500)-But(0): 3 imp - 4831
Park(500)-But(11): 3 imp - 4831
Park(500)-But(989): 3 imp - 4846
Park(530)-But(500): 3 imp - 5571
Park(530)-But(0): 3 imp - 4864
Park(530)-But(11): 3 imp - 4863
Park(530)-But(989): 3 imp - 4872
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