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Abstract 

This thesis aim is to assess the performance and effectiveness of different deterministic 

tractography algorithms in comparison to probabilistic methods in generating tractograms 

from dMRI data of both control subjects and individuals with mild cognitive impairment 

(MCI), as well as examine the effects of tractogram filtering through spherical-deconvolution 

informed filtering of tractograms (SIFT). Subquestenly, connectivity matrices are constructed 

from the filtered tractograms and evaluated through graph theory measures and other metrics 

associated with brain connectivity. 

Motivated by the limitations observed in current methods for reconstructing brain 

fibers, which prevent their ability to accurately represent the anatomy of the brain, this 

research addresses the need for improved methodologies. To overcome this issue, researchers 

have proposed tractogram filtering algorithms that selectively remove streamlines that do not 

align well with the actual brain structure, improving the accuracy and reliability of the 

connectomes. 

The experimental results show that the deterministic algorithm chosen for the study 

yields satisfactory results with a relatively low number of generated streamlines. Nevertheless, 

the filtering technique significantly affects connectivity measures such as connection density, 

global efficiency, and clustering coefficients., resulting in values that may fall short when 

compared to those obtained through probabilistic methods. Furthermore, the filtering of 

tractograms impacts various graph measures for individual nodes, such as node strength, 

eigenvector centrality, and betweenness centrality. As a result, new connectomes are formed 

where specific nodes become more significant. However, it is important to consider the 

limitations of the study, including a small number of subjects, computation time constraints, 

and potential errors in image registration and tractography parameterization. 

Keywords: deterministic tractography, probabilistic tractography, SIFT, brain 

connectivity, graph metrics.  
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Sammanfattning 

Syftet med denna avhandling är att bedöma prestanda och effektivitet hos olika deterministiska 

traktografialgoritmer i jämförelse med probabilistiska metoder för att generera traktogram från 

dMRI-data från både kontrollpersoner och individer med mild kognitiv funktionsnedsättning 

(MCI), samt att undersöka effekterna av traktogramfiltrering genom sfärisk 

dekonvolutionsinformerad filtrering av traktogram (SIFT). Subquestenly, anslutningsmatriser 

konstrueras från de filtrerade traktogrammen och utvärderas genom grafteoretiska mått och 

andra mätvärden associerade med hjärnanslutning. 

Motiverad av de begränsningar som observeras i nuvarande metoder för att rekonstruera 

hjärnfibrer, som förhindrar deras förmåga att korrekt representera hjärnans anatomi, tar denna 

forskning upp behovet av förbättrade metoder. För att övervinna detta problem har forskare 

föreslagit traktogramfiltreringsalgoritmer som selektivt tar bort strömlinjer som inte passar bra 

med den faktiska hjärnstrukturen, vilket förbättrar noggrannheten och tillförlitligheten hos 

kopplingarna. 

De experimentella resultaten visar att den deterministiska algoritm som valts för studien 

ger tillfredsställande resultat med ett relativt lågt antal genererade effektiviseringar. Ändå 

påverkar filtreringstekniken avsevärt anslutningsmått såsom anslutningstäthet, global 

effektivitet och klustringskoefficienter, vilket resulterar i värden som kan falla kort jämfört med 

de som erhålls genom probabilistiska metoder. Dessutom påverkar filtreringen av traktogram 

olika grafmått för individuella noder, såsom nodstyrka, egenvektorcentralitet och centralitet 

mellan varandra. Som ett resultat bildas nya kopplingar där specifika noder blir mer 

betydelsefulla. Det är dock viktigt att överväga studiens begränsningar, inklusive ett litet antal 

ämnen, beräkningstidsbegränsningar och potentiella fel i bildregistrering och 

traktografiparameterisering. 

Nyckelord: deterministisk traktografi, probabilistisk traktografi, SIFT, hjärnanslutning, 

grafmetrik. 
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1 Introduction 

Diffusion magnetic resonance imaging (dMRI) is an imaging technique that captures the 

directional diffusion of water molecules in brain tissues, with a particular focus on the axons 

composing the white matter (WM). Through this process, dMRI enables the reconstruction of 

neural fiber pathways within the brain, commonly referred to as tractography, which produces 

tractograms (see Appendix B.4). There are various factors that can cause inaccuracies such as 

streamline seeding, selection of fiber orientation and white matter volume. To address these 

challenges, filtering techniques are applied to the generated tractograms, improving their 

accuracy (see Appendix B.5). By associating these reconstructed fiber connections with 

predefined brain regions, a connectome can be computed, representing the brain as a network 

of interconnected regions (see Appendix B.6).  

1.1 Aim 

This study seeks to assess the performance and effectiveness of deterministic tractography 

algorithms in generating tractograms from dMRI data of both Mild Cognitive Impairment 

(MCI) patients and healthy individuals, improving the specificity of the reconstructed fibers by 

applying SIFT, a spherical-deconvolution informed filtering technique, to the tractograms 

obtained. 

Moreover, the study strives to compare the outcomes and metrics derived from 

deterministic tractography with those obtained through probabilistic methods, providing 

insights into the advantages and limitations of using deterministic approaches. Finally, the study 

aims to investigate the impact of tractogram filtering on structural connectomes and derived 

graph metrics.  

1.2 Limitation 

The study is limited by the relatively small number of subjects available for analysis, which 

which may make it difficult to apply the findings to a larger group of people. Moreover, the 

tractography algorithms used in this study may have limitations in accurately representing the 

underlying anatomical connections in the brain, leading to reduced specificity and 

interpretability of the resulting connectomes. In regards to the proposed SIFT filtering 

approach, its performance and reliability may be influenced by various factors such as the 

quality of the dMRI data and choice of parameters. Finally, other factors that were not directly 

considered in this study, such as individual anatomical variability or clinical characteristics, 

could potentially influence the observed connectivity patterns and metrics. 
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2 Methods 

This chapter provides an overview of the methodology and methods applied to achieve the aims 

of the investigation. First, the dataset of structural and diffusion images including 72 subjects 

(Section 2.1) is implemented into the pipeline to produce complete brain tractograms (Section 

2.2). Subsequently, tractogram filtering is applied (Section 2.2.2). To examine the connectivity 

between brain regions along the fibers, the FSL Harvard-Oxford parcellation atlas, which is in 

the MNI152 Standard Space, is utilized. However, it is necessary to align the parcellation atlas 

with the diffusion space where the tractograms exist. This alignment is achieved through linear 

and non-linear registrations (Section 2.3). After the registration process, connectivity matrices 

are generated using various metrics and graph measures (Section 2.4). The schematic diagram 

illustrating the utilized pipeline can be found in Figure 2.1.  

The code for the pipeline applied in this final project is derived from the work carried 

out by Marvin Köpff in 2020 for his Master’s thesis project in the School of Engineering 

Sciences in Chemistry, Biotechnology and Health of the KTH Royal Institute of Technology 

(Stockholm, Sweden). 

Figure 2.1: Illustrates the processing pipeline employed in this study. Starting from the diffusion images 

(DWI), the pipeline involves the generation of whole brain tractograms through the Tractography and 

SIFT steps. The parcellation atlas is then registered into the diffusion space of the subject using PA-SS. 

Connectivity matrix represents the process of generating connectivity maps based on the filtered 

tractograms and the parcellation atlas in the diffusion space of the subject. 

2.1 Dataset 

The dataset used in this study is a subset of structural (T1-weighted) and diffusion images 

obtained from the Swedish BioFINDER study conducted at Skåne University Hospital and 

Ängelholm's Hospital (http://biofinder.se/). The dataset includes images from elderly patients 

with a mean age of 72 years and a standard deviation of 4.35 years. The individuals included in 
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the dataset are classified as either having Mild Cognitive Impairment (MCI) or normal cognitive 

abilities (control group, denoted as CTL). 

The dataset consists of a total of 73 subjects, with 36 subjects belonging to the CTL class 

and 37 patients belonging to the MCI class. The T1-weighted images in the dataset contain 176 

slices with a voxel size of 0.97×0.97×1.2 mm³. The diffusion images comprise 65 axial slices 

with 64 diffusion-weighted directions acquired at a b-value of 2000 s/mm² and an isotropic 

voxel size of 2×2×2 mm³. 

The diffusion images in the dataset have already undergone preprocessing steps, 

including eddy-correction and motion distortion correction. Additionally, the dataset includes 

the parcellation atlas from FSL, which identifies 110 brain regions. This atlas corresponds to 

the Harvard-Oxford brain atlas (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). 

2.2 Tractography 

Tractography involves the reconstruction of the streamlines of axons from previously acquired 

DWI images and that way recollect data about the connection between brain regions. For the 

computation of the tractograms, there are mainly two types of algorithms available: 

deterministic and probabilistic. This study is focused on deterministic algorithms, a streamline-

based approach, where a single pathway is traced from a specific seed point. The direction of 

the pathway is determined by the primary eigenvector at each voxel location, and the tracing 

process is halted based on predefined criteria, such as the fractional anisotropy (FA) value and 

angle change.  

Additionally, deterministic tractography also allows the use of Anatomically 

Constrained Tractography (ACT), a technique that utilizes white matter (WM) and gray matter 

(GM) information to guide the seeding and determination of streamlines. Finally, tractogram 

reconstruction algorithms are not always able to identify false streamlines (see Appendix B.5), 

thus, tractogram filtering via the SIFT algorithm is applied to the tractograms computed. The 

deterministic algorithms and SIFT were applied to the data using the MRTrix3Tissue software 

package (https://3Tissue.github.io), a fork of MRtrix3. 

2.2.1 Tractography algorithm selection 

To determine the most suitable deterministic algorithm for the pipeline, a comparative analysis 

was conducted using the three available deterministic algorithms in the MRTrix3Tissue 

software package: FACT, SD_STREAM, and Tensor_Det (see Appendix B.4). The evaluation 

involved examining the remaining streamlines after applying SIFT filtering, as well as the 

connection density, for different streamline generation values. Based on the results, the FACT 

algorithm was selected as the preferred choice for generating the whole brain tractograms to be 

utilized in the subsequent stages of the pipeline. 

2.2.2 Tractogram generation 

To generate whole brain tractograms using the tckgen script from MRTrix3Tissue, several 

prerequisites need to be met. These include having five-tissue-type (5TT) images containing 

cortical grey matter (GM), sub-cortical GM, white matter (WM), cerebro-spinal-fluid (CSF), 
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and pathological tissue. Additionally, for the FACT algorithm specifically, diffusion images in 

the form of voxel images, providing spatially resolved information about fixel orientations in 

the voxel grid, are required. 

The 5TT images are generated from the structural image using the 5ttgen tool in 

combination with the ss3t_csd_beta1 script from MRTrix3Tissue, which estimates the fiber 

orientation distribution (FOD) images. Unlike the traditional multi-shell multi-tissue 

(msmt_csd) algorithm provided in the standard MRTrix3 software package, the ss3t_csd_beta1 

script is specifically designed for FOD estimation on single-shell images, making it the 

preferred choice for this study [1]. Even so, to perform FOD estimation, response functions for 

WM, GM, and CSF need to be extracted for each subject using the dwi2response script and the 

dhollander algorithm. Furthermore, to meet the input file requirements of the FACT algorithm, 

additional steps are performed. Specifically, the WM-FOD estimation results are subjected to 

the fod2fixel and fixel2voxel processes, converting it into voxel images, ensuring compatibility 

with the FACT algorithm. 

Having fulfilled the prerequisites for tckgen, the script requires specific inputs to initiate 

the process. These inputs include the generated voxel image, the estimated WM-FOD image 

serving as the seed_dynamic, the 5TT image, and the parameters outlined in table 2.1. The 

selection of minimum and maximum streamline length was based on several studies performing 

whole brain tractography. To balance efficiency and accuracy, the number of reconstructed 

streamlines was set to 1 million, due to the simplicity of the tracking algorithm and the 

computation time. 

Table 2.1: The parameters used for the computation of the whole brain tractograms with tckgen, -select 

is equal to the number of streamlines which are going to be reconstructed. Additional parameters were 

-act for the use of ACT, -crop_at_gmwmi, and -seed_dynamic. 

tckgen parameters 

-minlength -maxlength -step_size -select -cutoff 

25 350 0.6 1000000 0.03 

 

2.2.2. Tractogram Filtering 

In order to filter the generated whole brain tractograms, the SIFT algorithm was implemented, 

even though SIFT was succeeded by SIFT2. This is due to the fact that SIFT2 assigned lower 

weights in the central areas of the fiber bundles, where tractography typically generates a 

greater number of streamlines, leading to the premature elimination of crucial tracts and 

decreased accuracy (see Appendix B5). The SIFT algorithm was applied using the tcksift script 

from MRTrix3Tissue, utilizing the WM-FOD image obtained during the preprocessing stage. 

2.3 Registration 

To produce the connectivity matrices from the generated tractograms, these must be aligned 

with the parcellation atlas. This process is based on the approach that is described in [2]. To 

register the individual structural images to the standard space, we first align them to the 
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ICBM152 structural atlas, which is the standard space for the Harvard-Oxford parcellation atlas. 

After the affine registration, we account for the non-linear distortions by performing a non-

linear registration. By implementing the Fractional Anisotropy (FA) image derived from the 

raw diffusion image we co-register the diffusion image with the structural image. The previous 

transformations are performed using an affine transformation. Once the registrations are 

completed, the parcellation atlas can be transformed to the diffusion space. This is 

accomplished by applying the inverse transformation obtained from the registrations 

mentioned. The registrations and transformations are performed using FLIRT and FNIRT, 

which are tools provided with FSL (FMRIB Software Library) [3, 4, 5, 6]. 

By following these steps, the parcellation atlas is aligned with the diffusion space, 

enabling the computation of connectivity matrices. However, the registration process was 

unsuccessful for subject 19 in the dataset. As a result, the subsequent steps in the pipeline were 

only performed for the remaining 72 subjects. 

2.4 Connectivity Matrix Generation 

The tck2connectome script is utilized to compute connectivity matrices from both the unfiltered 

and filtered tractograms, along with the individual parcellation atlases. This connectivity matrix 

represents the connections between all nodes (brain regions) in the network. The script locates 

the endpoints of each streamline and attempts to assign them to the nearest available brain 

regions. By default, this assignment is performed within a search radius of 4 mm, as specified 

by the -assignment_radial_search_radius parameter. The resulting connectivity matrices are 

represented as symmetric adjacency matrices (110x110), where each element corresponds to an 

edge connecting brain regions in the respective row and column. Moreover, self-connections of 

brain regions are excluded from the resulting matrix, to focus on the connections between 

different nodes and simplify the analysis of network properties.  

Furthermore, it is also possible to scale each streamline individually by weights in an 

external file. To compute the connectivity matrices based on these external weights, the 

tcksample script sampled the image intensities along the streamlines. Images to sample from 

are derivations of the raw diffusion image, these being fractional anisotropy (FA), mean 

diffusivity (MD) and radial diffusivity (RD). Since these weighted matrices consisted of values 

close to zero in the lower diagonal, the 50% quantile of the non-zero value ranges in the 

connectivity matrix was calculated. This quantile value was then used as a binary threshold, 

where any value above the threshold was set to 1, while any value below the threshold was set 

to 0. This binary representation emphasized meaningful connections and reduced noise. 

However, this technique was not applied to the raw connectomes since their values were already 

significant. 

To compute the connectivity matrices of the filtered and unfiltered tractograms, both 

raw streamline count, a straightforward count of the number of streamlines that connect two 

regions, and external weights are implemented. Hence, through the use of tcksample and 

tck2connectome, a total of eight connectivity matrices per subject were generated, two for the 

raw streamline count and six for the weighted matrices. These calculations were performed both 

before and after the implementation of SIFT filtering. 



6 

2.4.1 Metrics on the Connectivity Matrices 

There are several metrics that can be extracted from the connectivity matrices generated. The 

initial metric calculated is connection density (Equation 2.1), which is determined by the ratio 

of nonzero elements in matrix A compared to the total potential connections that could exist in 

the network [7]. Since the edges in a brain network generated by dMRI data are undirected, the 

following equation is applied, being M the number of edges and N the number of nodes. 

 𝑑 =
2𝑀

𝑁(𝑁−1)
 (2.1) 

The clustering coefficient measures the likelihood that two nodes, each connected to a 

third node, will also be directly connected to each other. It quantifies the fraction of a node's 

neighbors that are connected to each other. The average clustering coefficient of the network 

provides an indication of the overall presence of clustered connections around individual nodes. 

In essence, it reveals the extent to which nodes tend to form local clusters of connections within 

the network [8]. When there are many connections between regions that have similar functions, 

the clustering coefficient of the graph increases. This means that neighboring nodes within these 

regions tend to be interconnected [9]. 

The global efficiency is the average inverse shortest path length [8], focusing on the 

efficiency of communication between nodes, particularly emphasizing the impact of shorter 

paths rather than the influence of long paths. 

Connectivity matrices can be viewed as graphs, allowing for the assessment of various 

graph measures. These measures include node strength, degree centrality, eigenvector centrality 

and betweenness centrality. Node strength, represented as S (Equation 2.2), considers weighted 

connections and quantifies the sum of a node's connections to other nodes. High node strength 

indicates a node with a significant number or weight of connections compared to other nodes 

in the network, highlighting its potential as a network hub [10]. 

 𝑠𝑖 = ∑ 𝑤𝑖𝑗𝑗≠𝑖  (2.2) 

Degree centrality is the simplest measure of centrality, assuming that nodes with many 

connections exert more influence over network function and thus have higher topological 

centrality compared to nodes with fewer connections. To account for its limitations we compute 

eigenvector centrality, which captures the combined influence and significance of a node's 

connections, taking into account not only the node's own degree but also the degrees of its 

neighbors. In other words, it calculates a node's centrality based on the centrality of its 

neighbors. 

The betweenness centrality graph metric involves calculating the shortest paths between 

all pairs of nodes in the network. Subsequently, each node is assigned a score based on the 

number of shortest paths that pass through it [11]. Nodes with a greater number of shortest paths 

passing through them have higher betweenness centrality, indicating their significant role in 

transmitting information across the network [12]. Graph measures computations were 

performed using the networkX python library (https://networkx.github.io). 

https://networkx.github.io/
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3 Results 

3.1 Tractography algorithm selection 

The subsequent section presents the results obtained from comparing the three deterministic 

algorithms offered by MRTrix3: FACT, SD_STREAM, and Tensor_Det. This comparison 

involved computing the remaining streamlines after applying SIFT, as well as analyzing the 

connection density and the distribution of streamline lengths before and after filtering. 

3.1.1 Streamlines left after SIFT 

After performing SIFT on the complete brain tractograms generated using varying numbers of 

streamlines (100k, 1 million, 3 million, and 5 million), Figure 3.1 depicts the percentage of 

average streamlines preserved in the entire brain tractograms. Among the different methods 

employed, the use of FACT with 100k streamlines generated presented the highest retention 

percentage, whereas Tensor_Det with 5 million streamlines demonstrated the lowest retention 

percentage, quantifying 31.33% and 1.78%, respectively. 

Figure 3.1: Percentage of streamlines preserved after SIFT for the three deterministic algorithms 

computed. 

3.1.2 Connection Density 

The connection density, representing the proportion of actual connections (streamlines) existing 

between pairs of nodes in the network relative to the total number of possible connections, for 

each algorithm is represented in figure 3.2. In all cases, the connection density is lower after 

applying SIFT on the tractograms, with its value increasing as more streamlines are generated.  
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Figure 3.2: Connection density before and after SIFT for the three deterministic algorithms computed. 

3.1.3 Streamline lengths 

The distribution of streamline lengths before and after applying SIFT on the tractograms 

generated for 1 million streamlines is represented in figures 3.3, 3.4 and 3.5 in the form of 

histograms. In all cases the number of longer streamlines is drastically decreased, with FACT 

having a more uniform distribution before SIFT and having the greatest number of short 

streamlines after SIFT. 

Figure 3.3: Histogram representing the distribution of streamline lengths before and after SIFT for the 

deterministic algorithm FACT with 1 million streamlines generated. 
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Figure 3.4: Histogram representing the distribution of streamline lengths before and after SIFT for the 

deterministic algorithm SD_STREAM with 1 million streamlines generated. 

Figure 3.5: Histogram representing the distribution of streamline lengths before and after SIFT for the 

deterministic algorithm Tensor_Det with 1 million streamlines generated. 

3.2 Differences of SIFT on Connectivity Matrices 

The following sections describe the differences of connectograms generated without and with 

applying SIFT filtering to the tractograms. 

3.2.1 Connectivity metrics 

After applying SIFT to the whole brain tractograms generated with 1 million streamlines, the 

average streamlines left in the whole brain tractograms is of 92567, resulting in in an average 

filtering outcome of 9.26%. The connection density, clustering coefficient and global efficiency 

of the connectivity matrices generated is listed in table 3.1. All values decrease in a drastic 

manner after SIFT, with connection density having the greatest difference of 0.30.  
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Additionally, the same connectivity matrices evaluated for the weighted matrices based 

on FA, MD, and RD images are represented on table 3.1. Compared to the matrices generated 

with raw streamline count, the same tendency to decrease after applying SIFT can be visualized.  

Table 3.1: Difference in connection density, global efficiency and clustering coefficient between original 

and SIFT filtered connectomes. 

 Original SIFT  
Raw FA MD RD Raw FA MD RD 

Connection Density 0.68 0.32 0.32 0.32 0.38 0.19 0.17 0.17 

Global Efficiency 0.84 0.66 0.65 0.65 0.69 0.57 0.56 0.55 

Clustering Coefficient 0.82 0.42 0.49 0.56 0.66 0.33 0.40 0.48 

 

3.2.2 Graph metrics 

The importance of the nodes (equivalent to the specific names for the brain regions as seen in 

Appendix 1) is evaluated using the following graph metrics: node strength, eigenvector 

centrality and betweenness centrality. The boxplots visualizing the graph metrics in all sections 

show the mean value of the individual node’s graph metric (separating line between boxes), the 

lower and upper quartile (boxes) as well as the rest of the distribution (whiskers). 

Regarding the 10 most important nodes with respect to each metric, applying SIFT 

changes the order and introduces new more important nodes. For example, in the case of the 

node strength after SIFT, node 91 replaces node 61 and node 43 is deemed less important. 

The figure 3.6 showcases the individual node strength of each node class before and 

after applying a filtering technique. Observation of the data distribution reveals that prior to the 

application of SIFT, the distribution appears to be more uniformly spread compared to the 

distribution after SIFT. This difference is evident in the boxplots, where some exhibit increased 

length while others become shorter. Furthermore, after applying SIFT, there is a noticeable 

decrease in the number of nodes with exceptionally high nodal strength. This can be observed 

from the distribution, which shows a reduction in the occurrence of high node strength values. 

Just as with node strength, the centralities have fewer high values after applying SIFT 

(Figure 3.7). On the other hand, both the eigenvector centralities and the betweenness 

centralities (Figure 3.8) show a less drastic change in comparison to node strength, resulting in 

a more uniform distribution after SIFT was applied.  
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Figure 3.6: Nodestrength of the 10 strongest nodes (normalized) for connectomes based on unfiltered 

connectograms (left) and filtered connectograms (right). 

Figure 3.7: Eigenvector centrality of the 10 strongest nodes (normalized) for connectomes based on 

unfiltered connectograms (left) and filtered connectograms (right). 

Figure 3.8: Betweenness centrality of the 10 strongest nodes (normalized) for connectomes based on 

unfiltered connectograms (left) and filtered connectograms (right). 
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4 Discussion 

The following discussion tries to summarize, explain and set conclusions from the results into 

context. Furthermore, possible sources of error in the pipeline are mentioned. 

4.1. Tractography algorithm selection 

In terms of the percentage of preserved streamlines after applying SIFT (see Figure 3.1), FACT 

consistently had the highest percentage among all cases. When considering connection density 

(see Figure 3.2), both FACT and SD_STREAM exhibited good results. The connection density 

increased with a higher number of generated streamlines, indicating that more valid streamlines 

were being produced. However, FACT consistently had a slightly higher connection density 

across all cases. Moreover, regarding the distribution of streamline lengths before and after 

SIFT (see Figure 3.3), FACT had a higher number of shorter streamlines after filtering. This 

could be attributed to FACT's ability to retain a larger number of streamlines.  

Overall, all three algorithms showed a satisfactory response to filtering, effectively 

reducing the number of longer invalid streamlines. However, FACT consistently outperformed 

the other algorithms in terms of the percentage of preserved streamlines after filtering and the 

connection density before and after SIFT. Therefore, FACT was selected as the preferred 

algorithm to proceed with the study. 

Additionally, considering the minimal difference in values between a higher number of 

generated streamlines and 1 million streamlines, it was determined that 1 million streamlines 

would be sufficient for the scope of this project. 

4.2. Connectivity metrics 

After applying SIFT filtering to the initial whole brain tractograms, which originally consisted 

of 1 million streamlines, it was observed that the remaining streamlines accounted for 9.26% 

of the initial tractograms. This value was found to be significantly higher than the one reported 

in the previous study conducted [13]. It is worth noting that this difference could be attributed 

to the generation of a significantly larger number of streamlines in that particular study. 

Furthermore, the relatively low percentage of preserved streamlines can be attributed to 

the nature of the SIFT filtering process. SIFT focuses on optimizing the cost-function and 

achieving convergence, which takes precedence over retaining a higher percentage of 

streamlines.  

In addition, the application of SIFT also impacts the connection density (see Table 3.1), 

which is a metric reflecting the proportion of actual connections between pairs of nodes. In 

particular, there is a notable decrease in the connection density after employing SIFT. This 

decrease can be attributed to the removal of streamlines that may connect two nodes but fail to 

meet the filtering constraints, such as high curvature or loops. The decrease in clustering 

coefficient could suggest that streamlines contributing to local connections within specific brain 

regions have been affected. Meanwhile, the decrease in global efficiency may be a result of the 
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removal of streamlines, disrupting the connections between different brain regions. These 

changes indicate a potential reorganization or disruption of the brain's connectivity patterns due 

to the SIFT filtering process. 

The same decrease in connectivity metrics is seen in the weighted matrices evaluated 

(see Table 3.2). In all three external weights considered, connection density has similar values, 

indicating a relatively uniform distribution of connections in the matrices. Moreover, the 

clustering coefficient metric demonstrates greater variation in each weight considered. This 

variation can be attributed to its higher sensitivity to local connectivity patterns compared to 

the other two connectivity metrics analyzed.  

4.3. Graph metrics on Connectivity Matrices 

The graph metrics of eigenvector (see Figure 3.7) and betweenness centrality (see Figure 3.8) 

show the distribution of the most important nodes after SIFT filtering being more centralized 

around their mean. This effect could be due to the more uniform distribution of edge weights 

(streamline counts) across the subjects after applying SIFT. The graph metric of node strength 

(see Figure 3.6) for the most important nodes shows the behavior of having a lower mean after 

SIFT filtering.  

Compared to [13], the changes in node strength and betweenness centrality after filtering 

were less drastic in this analysis. This difference could be attributed to the use of a probabilistic 

algorithm for tractogram generation, which could be more sensitive to the filtering process. 

This sensitivity may be due to the inherent nature of probabilistic tractography, which involves 

generating multiple plausible streamlines between two regions. 

The main finding of this study is the significant alteration in the importance of nodes 

after applying SIFT filtering. In all cases, nodes were replaced and shifted in their importance 

ranking. This demonstrates the impact of SIFT on the graph properties of the generated 

networks. A similar result was observed in [13], however, despite the shared dataset, the top 10 

important nodes differed between the two algorithms. This discrepancy may be attributed to the 

choice of streamlines preserved after filtering, which can influence the ranking and 

identification of important nodes. 

The observed differences in the changes before and after filtering for the probabilistic 

and deterministic methods suggest that these two approaches handle the filtering of streamlines 

differently. In the case of probabilistic tractography, the algorithm explores a wider range of 

potential pathways between brain regions, which provides greater flexibility but also introduces 

more variability in the resulting tractograms. Consequently, when certain streamlines are 

removed during the filtering process, it can have a more pronounced effect on connectivity 

measures like node strength and betweenness centrality. This sensitivity to the removal of 

specific streamlines is a characteristic of the probabilistic method and should be taken into 

consideration when interpreting the results. 

 

 



14 

4.5. Sources of error 

An area of concern lies in the process of translating the parcellation atlas into individual 

diffusion spaces, which can potentially introduce errors. The diffusion space possesses a voxel 

spacing of 2mm, whereas the parcellation atlas in MNI152 space utilizes 1mm spacing. In order 

to obtain integer labels, nearest-neighbor interpolation becomes necessary. However, this 

interpolation technique may give rise to interpolation artifacts and lead to the loss of small 

regions. For instance, region 47, being notably diminutive, tended to be absent following the 

transformation of the parcellation atlas into the diffusion space. 
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5 Conclusion 

In this work, the effects performance and effectiveness of deterministic tractography algorithms 

in generating tractograms and connectomes were studied. Additionally, this work investigated 

whether tractogram filtering improves the accuracy of the tractograms generated. Moreover, 

the outcomes and metrics on the structural connectomes were studied. This was achieved with 

a pipeline consisting of libraries and tools such as MRTrix and FSL, where filtering was 

performed using SIFT. 

The difference between the connectivity metrics resulted from both deterministic and 

probabilistic methods give rise to the conclusion that the deterministic algorithm offers the 

advantage of simplicity compared to its probabilistic counterpart. It yields satisfactory results 

even with a relatively low number of generated streamlines, thereby reducing computation time. 

In order to make a decision about which type of algorithm to use, researchers should take into 

account the specific objectives of their study, the nature of the data at hand, and the desired 

balance between flexibility and robustness. 

In terms of filtering performance, measured with graph and connectivity metrics, it was 

concluded that filtering alters the network structure of the tractograms produced, varying the 

importance of different nodes. This was observed in the three graph metrics of node strength, 

eigenvector centrality and betweenness centrality since all of them undergo changes in their 

scores. 

Therefore, these findings contribute to our understanding of the strengths and limitations 

of deterministic tractography algorithms, as well as the effects of filtering on connectivity 

measures. 
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Appendix 1: Parcellation Labels 

Node ID Label 

1 Frontal Pole_L 

2 Frontal Pole_R 

3 Insular Cortex_L 

4 Insular Cortex_R 

5 Superior Frontal Gyrus_L 

6 Superior Frontal Gyrus_R 

7 Middle Frontal Gyrus_L 

8 Middle Frontal Gyrus_R 

9 Inferior Frontal Gyrus, pars triangularis_L 

10 Inferior Frontal Gyrus, pars triangularis_R 

11 Inferior Frontal Gyrus, pars opercularis_L 

12 Inferior Frontal Gyrus, pars opercularis_R 

13 Precentral Gyrus_L 

14 Precentral Gyrus_R 

15 Temporal Pole_L 

16 Temporal Pole_R 

17 Superior Temporal Gyrus, anterior division_L 

18 Superior Temporal Gyrus, anterior division_R 

19 Superior Temporal Gyrus, posterior division_L 

20 Superior Temporal Gyrus, posterior division_R 

21 Middle Temporal Gyrus, anterior division_L 

22 Middle Temporal Gyrus, anterior division_R 

23 Middle Temporal Gyrus, posterior division_L 

24 Middle Temporal Gyrus, posterior division_R 

25 Middle Temporal Gyrus, temporooccipital part_L 

26 Middle Temporal Gyrus, temporooccipital part_R 

27 Inferior Temporal Gyrus, anterior division_L 

28 Inferior Temporal Gyrus, anterior division_R 

29 Inferior Temporal Gyrus, posterior division_L 

30 Inferior Temporal Gyrus, posterior division_R 

31 Inferior Temporal Gyrus, temporooccipital part_L 

32 Inferior Temporal Gyrus, temporooccipital part_R 

33 Postcentral Gyrus_L 

34 Postcentral Gyrus_R 

35 Superior Parietal Lobule_L 

36 Superior Parietal Lobule_R 

37 Supramarginal Gyrus, anterior division_L 

38 Supramarginal Gyrus, anterior division_R 

39 Supramarginal Gyrus, posterior division_L 

40 Supramarginal Gyrus, posterior division_R 

41 Angular Gyrus_L 

42 Angular Gyrus_R 

43 Lateral Occipital Cortex, superior division_L 
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Node ID Label 

44 Lateral Occipital Cortex, superior division_R 

45 Lateral Occipital Cortex, inferior division_L 

46 Lateral Occipital Cortex, inferior division_R 

47 Intracalcarine Cortex_L 

48 Intracalcarine Cortex_R 

49 Frontal Medial Cortex_L 

50 Frontal Medial Cortex_R 

51 Juxtapositional Lobule Cortex_L(formerly Supplementary Motor Cortex) 

52 Juxtapositional Lobule Cortex_R(formerly Supplementary Motor Cortex) 

53 Subcallosal Cortex_L 

54 Subcallosal Cortex_R 

55 Paracingulate Gyrus_L 

56 Paracingulate Gyrus_R 

57 Cingulate Gyrus, anterior division_L 

58 Cingulate Gyrus, anterior division_R 

59 Cingulate Gyrus, posterior division_L 

60 Cingulate Gyrus, posterior division_R 

61 Precuneous Cortex_L 

62 Precuneous Cortex_R 

63 Cuneal Cortex_L 

64 Cuneal Cortex_R 

65 Frontal Orbital Cortex_L 

66 Frontal Orbital Cortex_R 

67 Parahippocampal Gyrus, anterior division_L 

68 Parahippocampal Gyrus, anterior division_R 

69 Parahippocampal Gyrus, posterior division_L 

70 Parahippocampal Gyrus, posterior division_R 

71 Lingual Gyrus_L 

72 Lingual Gyrus_R 

73 Temporal Fusiform Cortex, anterior division_L 

74 Temporal Fusiform Cortex, anterior division_R 

75 Temporal Fusiform Cortex, posterior division_L 

76 Temporal Fusiform Cortex, posterior division_R 

77 Temporal Occipital Fusiform Cortex_L 

78 Temporal Occipital Fusiform Cortex_R 

79 Occipital Fusiform Gyrus_L 

80 Occipital Fusiform Gyrus_R 

81 Frontal Operculum Cortex_L 

82 Frontal Operculum Cortex_R 

83 Central Opercular Cortex_L 

84 Central Opercular Cortex_R 

85 Parietal Operculum Cortex_L 

86 Parietal Operculum Cortex_R 

87 Planum Polare_L 

88 Planum Polare_R 

89 Heschl’s Gyrus_L (includes H1 and H2) 
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Node ID Label 

90 Heschl’s Gyrus_R (includes H1 and H2) 

91 Planum Temporale_L 

92 Planum Temporale_R 

93 Supracalcarine Cortex_L 

94 Supracalcarine Cortex_R 

95 Occipital Pole_L 

96 Occipital Pole_R 

97 Thalamus_L 

98 Thalamus_R 

99 Caudate_L 

100 Caudate_R 

101 Putamen_L 

102 Putamen_R 

103 Pallidum_L 

104 Pallidum_R 

105 Hippocampus_L 

106 Hippocampus_R 

107 Amygdala_L 

108 Amygdala_R 

109 Accumbens_L 

110 Accumbens_R 
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Appendix 2: State of the Art 

B.1 Anatomy  

The human brain is the most complex organ of the human body, making up the central nervous 

system (CNS) together with the spinal cord. Its functions vary from controlling the body to 

processing the information it continuously receives from every sense organ. The largest part of 

it is the cerebrum, formed by two cerebral hemispheres, each containing an inner core made of 

white matter and an outer surface made of grey matter. Grey matter acts in regions involved in 

muscle control as well as sensory perception and is mostly made of unmyelinated neurons, 

whereas white matter facilities the transport of information throughout the nervous system and 

is composed of axons covered in myelin. 

Neurones are the primary cells of the brain, they transmit nerve impulses and consist of 

the cell body (referred to as the soma), the dendrites and one single axon. The soma contains 

the nucleus and cytoplasm, the dendrites are branches where the neurons receive input signals 

from other cells, and these allow the electrical signal transmitted by neurons (the action 

potential) to be conducted down the axon and away from the soma. This axon is a thin structure 

coated in a myelin sheath, with a thickness proportional to its propagation velocity, that 

transmits the signal to other neuron’s dendrites via synapses. In these synapses, information is 

transported in the form of chemical substances called neurotransmitters [14]. 

In essence, the human brain is constituted of around 86 billion neurons interconnected 

by axons. Moreover, we can study the connectivity pattern of the brain by following the 

distribution of these neuronal fibers. 

B.2 Magnetic resonance imaging 

Magnetic resonance imaging (MRI) is a non-invasive medical imaging technique used to 

acquire information regarding the function and structure of several sections of the human body. 

Its fundaments are based on nuclear magnetic resonance (NMR), a physical phenomenon where 

an applied magnetic field interacts with primarily hydrogen nuclei in a strong magnetic field to 

generate an electromagnetic signal. 

Nuclei present an intrinsic spin angular momentum, always rotating about their own axis 

at a constant rate, perpendicular to the direction of the rotation. In the case of an absence of a 

magnetic field, these spin vectors will follow a random distribution, cancelling all magnetic 

fields and resulting in no net magnetization. Furthermore, when subjecting the atoms to a 

magnetic field 𝐵0 generated by the MRI scanner, these will start to precess around it, reorienting 

their axis to its direction. The angular frequency of this precession, commonly referred to as the 

Larmor frequency (equation B.1), will depend on the gyromagnetic ratio 𝛾, a constant specific 

to the atom in question.  

 

 𝜔0 = 𝛾𝐵0 (B.1) 
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As a result of all nuclei being aligned with 𝐵0 there will be a resulting net magnetization 

𝑀0, invariant with time in the direction parallel to 𝐵0 and null in its perpendicular direction 

since all spin vectors will still have a random distribution. This magnetization can be 

manipulated by exciting the nuclei with a radiofrequency (RF) pulse with the same frequency 

as the previous Larmor frequency. This will cause the nuclei to absorb energy at this frequency, 

change their spin direction and conclude in a rotation of the magnetization vector into the 

perpendicular direction of 𝐵0. This process defines the excitation phase [15]. 

The moment the pulse is removed, the relaxation phase is set in motion and the nuclei 

start to return to their original orientation. As this happens, the nuclei will emit energy at 𝜔0 

and 𝑀0 will begin to precess about 𝐵0. Two relaxation times can be considered: T1 and T2. T1 

is the longitudinal relaxation time constant that corresponds to the time necessary for the nuclei 

to go from a high energy to a low energy state. Its value will vary depending on the type of 

tissue being examined and will depend on the strength of the magnetic field. The magnetization 

vector will recover 63% of its original value, following an exponential growth process described 

by T1, where a lower value of T1 will mean a lower strength of the magnetic field and a faster 

relaxation. On the contrary, T2 is the transverse relaxation time constant that corresponds to the 

transverse component of the magnetization vector losing 63% of its initial value as a result of 

the dephasing of the nuclei. Its value will be shorter than T1 and won’t vary with the strength 

of the magnetic field [15]. 

During the scan, gradients can be applied to make the magnetic field spatially dependent, 

acting as small perturbations that produce linear variations in any of the three orthogonal 

directions. They have three main functions when used in MRI: slice selection, image encoding 

and diffusion weighting [16]. 

B.3 Diffusion MRI 

Diffusion describes the displacement of molecules due to the difference in concentration 

between two regions and is explained by Fick’s first law, following the molecules from a high 

to a low concentration area.  

Water diffusion can be either hindered or restricted, depending on its position, outside 

or inside the axon respectively. If the water is trapped inside myelinated axons, as it’s the case 

in most of the white matter, its displacement will be confined by the diameter of the axon and 

the water molecules will be restricted, resulting in anisotropic diffusion. Contrary to grey 

matter, where water is free to move in any direction in somas, resulting in isotropic diffusion. 

Anisotropic water diffusion can infer a substantial amount of information when using the image 

acquisition technique of diffusion weighted imaging, a form of MRI.  

Diffusion MRI measures the dispersion of water molecules within tissue over a time 

interval following the pulsed gradient spin echo (PGSE) sequence. This sequence is formed by 

a first 90º RF pulse, causing a dephasing of the spins, followed by a 180º RF pulse that inverts 

those spins and causes them to begin rephasing. Additionally, a pair of pulsed gradients are 

applied before and after the second pulse to make the spins completely rephase. If the spins do 

not change their position during the time interval between the pulsed gradients, they all produce 
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the echo signal, however, water molecules are in constant motion and the phase they gain during 

the first pulse won't completely cancel the phase they lose in the second pulse, resulting in phase 

dispersion and an attenuation of the signal [17]. 

To quantify this attenuation in white matter, diffusion tensor imaging (DTI) is used, a 

special kind of DWI that describes the fiber orientations using a Gaussian distribution. This 

way we use the signal intensity of the sequence with (𝑆) and without (𝑆0) the application of the 

gradients, being D the diffusion coefficient [18]. 

 
𝑆

𝑆0
= 𝑒−𝑏𝐷 (B.2) 

Diffusion weight can be increased in images by increasing the following b factor, 

 𝑏 = 𝛾2𝐺2𝛿2(∆ −
𝛿

3
) (B.3) 

with G being the gradient amplitude, 𝛿 the duration of the gradient and ∆ the interval between 

the pulse gradients. Therefore, larger b values can be acquired by increasing the values of the 

parameters listed. 

Apparent diffusion coefficient (ADC) is the parameter used to quantify diffusion. In 

grey matter we can describe the diffusion characteristics with a singular ADC. However, in 

white matter, as a result of anisotropic diffusion, ADC will vary depending on its direction, 

making a single value not enough to describe water diffusion. Therefore, its value is replaced 

by the diffusion tensor D. [19] 

 𝐴𝐷𝐶 = −
ln(

𝑆

𝑆0
)

𝑏
 (B.4) 

 𝐷 = [

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

]  (B.5) 

When the off-diagonal elements are zero, there will be no correlation between the 

displacements in orthogonal directions and the tensor will be aligned with the principal axes. 

In this case, the diagonal elements will be referred to as eigenvalues (𝜆1, 𝜆2 and 𝜆3) and the 

orientation of the principal axes will be given by three eigenvectors (𝜀1, 𝜀2 and 𝜀3). Furthermore, 

the principal eigenvector will be determined by the largest eigenvalue and will be parallel to 

the orientation of the tensor. This vector will represent the direction of the diffusion of the water 

molecules [20]. 

Implementing this diffusion tensor we can determine various parameters, one of these 

being fractional anisotropy (FA), which will quantify the fraction of the tensor attributed to 

anisotropic diffusion, with a high value (FA = 1) representing total anisotropic diffusion and a 

lower value (FA = 0) total isotropic diffusion [18]. 
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 𝐹𝐴 =  √
1

2
√

(𝜆1−𝜆2)2+(𝜆2−𝜆3)2+(𝜆3−𝜆1)2

𝜆1
2+𝜆2

2+𝜆3
2   (B.6) 

 

As a result of FA, DTI measures diffusion anisotropy and determines an estimate of the 

principal direction of axon fibers, which will later enable tractography. However, DTI is limited 

due to its inability to recover more than one fiber orientation per voxel, producing wrong 

estimations in zones with crossing fibers and reducing its accuracy in its estimation of fiber 

pathways. The imperfections regarding the tensor model are considered and rectified in the 

model described by [21], high angular resolution diffusion imaging (HARDI), since it considers 

various fiber orientations in a single voxel. 

We can also estimate the fiber distributions in a voxel from HARDI data with the fiber 

orientation density (FOD) model proposed by [22]. This model assumes that the diffusion 

profiles of two fiber populations are identical and can be distinguished by representing their 

DW signal attenuation with an axially symmetric response function R(𝜃), being 𝜃 the elevation 

angle in spherical coordinates. Therefore, every fiber group in a singular voxel of white matter 

causes an identical but rotated response function in the direction (𝜃, 𝜙). Hence the signal from 

a sample containing several distinct fiber populations can be measured by the sum of the signals 

multiplied by their individual volume fractions, being this equivalent to the spherical 

convolution of the FOD F(𝜃, 𝜙) with the response function R(𝜃) [22]. 

 𝑆(𝜃, 𝜙) =  F(𝜃, 𝜙) ⊗ R(𝜃)  (B.7) 

Thus, we can directly estimate the FOD from the given signal by implementing the 

spherical deconvolution of the acquired signal with the response function. This can be 

represented by simple matrix multiplications of the spherical harmonics of the FOD and the 

response function [22]. 

 𝑆𝑛 = 𝑅𝑛𝐹𝑛 (B.8) 

Being the parameters of Equation B.8 the nth order spherical harmonics of the signal, 

the response function and the FOD, accordingly. The biggest advantage of this model is that it 

does not rely on any model of diffusion and the streamlines from the FODs can be obtained 

with both deterministic and probabilistic algorithms. 

B.4 Tractography 

The main objective of tractography is to reconstruct the streamlines of the axons from 

previously acquired DWI images and that way recollect data about the connexion between brain 

regions. As explained previously, due to the limitations surrounding DTI, more complex 

tractography models and algorithms like HARDI and FOD have been developed.  

To produce the streamlines of a tractogram we can use two different algorithmic 

approaches: deterministic and probabilistic tractography. Deterministic tractography follows a 

streamline approach, following a singular pathway starting from a determined seed point. The 
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direction is determined by the main eigenvector at each voxel position and the tracing is stopped 

following a certain set of criteria, such as FA value and angle change. Typically, the fractional 

anisotropy in gray matter is in the range of 0.1-0.2. To address these issues, a straightforward 

approach is to set the tracking termination threshold at 0.2, allowing for a more reliable 

termination point and reducing the impact of noise on the tracking process [23]. The angle 

change between pixels is another critical factor in tractography accuracy, due to large errors 

occurring if the angle transition is significant. Hence, it is advisable to impose a threshold that 

prevents a sharp turn during line propagation. The impact of this angle-transition threshold 

depends on the tracts of interest and the image resolution [23].  

Furthermore, another source of uncertainty in this algorithm is caused by region 

definition since defining regions in this process can introduce variability in the outcome. The 

definition is often done manually, which can introduce an implicit user bias. Even a minor 

variation in the definition can lead to substantially different pathways. This leads to the 

algorithm being sensitive to what initial seed point is chosen and what estimated principal 

directions are produced [24]. 

Alternatively, probabilistic tractography is a variant of streamline tractography, with the 

key difference being that at each step, instead of following the most probable principal diffusion 

direction, a direction is sampled from the posterior distribution on principal diffusion directions 

and followed instead. This sampling process generates a set of streamlines that collectively 

represent the distribution of possible connectivity pathways. The multiple samples generated 

by this method account for the uncertainty in local fiber orientation, as two streamlines arriving 

at the same voxel will follow different directions based on their individual samples from the 

posterior distribution on local orientation [25]. 

The MRtrix3 software provides us with three deterministic algorithms. First, the 

SD_STREAM algorithm is based on Spherical Deconvolution (SD) and uses the FOD, and a 

peak-finding procedure based on the Newton-Raphson gradient ascent algorithm to estimate 

the local fiber orientation, and then tracks the fiber pathways by stepping along the estimated 

orientations [26]. Secondly, the Tensor_Det algorithm takes local diffusion data, fitting a 

diffusion tensor, and determining the principal eigenvector. By following the principal 

eigenvector direction, it enables the estimation of white matter fiber pathways within the brain 

based on the diffusion properties of water molecules.  

Finally, the deterministic algorithm Fiber Assigned by Continuous Tracking (FACT) 

proposed by [27], tracks a continuous vector field, rather than a discrete one, removing the issue 

of limited angle ranges. This algorithm starts from the centre of the voxel and continues 

depending on the vector direction, determining the endpoint of the fiber projection as sudden 

changes in fiber orientation are used as a criterion. These abrupt changes are quantified using a 

parameter, denoted as R, which is calculated as the sum of inner products of neighbouring data 

points, being large when there is a strong alignment between adjacent fibers and small when 

there is no continuity in fiber direction. 

 𝑅 = ∑ ∑
𝑎𝑏𝑠(𝑣𝜆1𝑖

∗𝑣𝜆1𝑗
)

𝑠(𝑠−1)

𝑠
𝑗

𝑠
𝑖  (B.9) 
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Being 𝑣𝜆1
 the unit vector indicating the longest principal diffusion axis (𝜆1) and s the 

number of data points applied. Thus, the neuronal connections are mapped by inputting an 

arbitrary point in 3D space. The algorithm then traces the extent of axonal projections in both 

the forward (orthograde) and backward (retrograde) directions to determine their connections 

with functional regions [27]. 

However, MRI provides information on the average axonal orientation within a voxel, 

which is resolution-dependent and cannot differentiate between very small projections that are 

near each other. Furthermore, it is also unable to discern afferent from efferent fibers and issues 

may arise when two pathways are in close proximity to each other, as the program may 

mistakenly switch pathways [27]. 

In situations where there are complex fiber structures such as crossing fibers, or partial 

volume contamination between adjacent fiber populations, the diffusion tensor, which can only 

represent a single fiber orientation per voxel, is insufficient to accurately represent the 

underlying structure. This limitation can result in errors in the estimation of fiber orientations, 

ultimately leading to errors in the reconstruction of the underlying fiber pathways. To improve 

the results of the reconstruction and regardless of the algorithm used to produce the streamlines 

of the tractograms, [28] proposed the application of anatomically constrained tractography 

(ACT). This addition to streamlines tractography incorporates biologically realistic priors 

obtained from the segmentation of an anatomical contrast image. Rather than relying solely on 

a binary mask to restrict streamline propagation, we consider the properties of the brain tissue 

and fluid as well as the axons of the white matter being reconstructed to tailor the streamline 

criteria. Through the use of random streamline seeding, this algorithm was able to generate 5 

million streamlines that satisfied all relevant streamline acceptance criteria until the target 

number of streamlines was achieved [28]. 

B.5 SIFT 

The tractogram generated by both a probabilistic or deterministic approach may have attributes 

that are caused by the reconstruction approach and are not accurate to the actual biology of the 

brain. There are various factors that can cause these inaccuracies such as streamline seeding, 

selection of fibre orientation and white matter volume. Various methods have been developed 

to address these reconstruction issues, one of them being SIFT, an acronym for spherical-

deconvolution informed filtering of tractograms, a novel algorithm submitted by [29] that 

reconstructs the fiber orientation distribution function (fODF) in each voxel without the need 

to utilize the original dMRI image, showing a reduction in known reconstruction biases, as well 

as an improvement in plausibility in terms of reconstructing the underlying biology.  

To begin with, it obtains the fODF through constrained spherical deconvolution (CSD), 

continuing by assessing the contribution of every streamline to the fODF and using them to 

decide whether a streamline is dismissed. The contributions are sorted to dismiss the less 

relevant streamlines and the last two steps are iterated until a specific number of streamlines is 

achieved or a certain residual level is reached. The accuracy of the reconstructions is evaluated 

with the coefficient 𝜇 (Equation B.10), which correlates the streamline density assigned to each 

FOD lobe by attributing a value with the integral of that lobe [29]. 
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 𝜇 =
∑ (𝑃𝑀𝑉 ∑ 𝐹𝑂𝐷𝑉,𝑙)

𝐿𝑉
𝑙=1𝑉

∑ (𝑃𝑀𝑉 ∑ 𝑇𝐷𝑉,𝑙)
𝐿𝑉
𝑙=1𝑉

 (B.10) 

Being 𝐹𝑂𝐷𝑉,𝑙 the FOD integral of lobe number l in voxel V, 𝑇𝐷𝑉,𝑙 the track density 

associated to that specific lobe, 𝐿𝑉 the entire number of FOD lobes in voxel V, and 𝑃𝑀𝑉 the 

value of the processing mask in voxel V. To consider any possible biases during the process of 

reconstruction, the cost function f (Equation B.11) is defined, measuring the accuracy of the 

reconstruction containing the underlying diffusion data. 

 𝑓 = ∑ (𝑃𝑀𝑉 ∑ (𝜇 ∗ 𝑇𝐷𝑉,𝑙 − 𝐹𝑂𝐷𝑉,𝑙)
2)

𝐿𝑉
𝑙=1𝑉  (B.11) 

Thus, removing inefficient streamlines improves the model by reducing the cost function 

but it also affects it in two ways, reducing 𝑇𝐷𝑉,𝑙 and increasing 𝜇. Consequently, this will alter 

the way all the FOD lobes within the processing mask contribute to the cost function. This is 

one the reasons why the SIFT2 method was developed, assigning weights to streamlines with a 

high contribution to the reconstructed FODs. Regardless, it has been proven [30] that although 

SIFT2 can provide valuable information on how streamlines contribute to acquired data, its 

direct application for filtering tractograms is not as straightforward as SIFT. It was shown 

SIFT2 assigned lower weights in the central areas of the fiber bundles, where tractography 

typically generates a greater number of streamlines, leading to the premature elimination of 

crucial tracts. This caused some noisy streamlines to be classified as acceptable simply because 

they reached distant regions. This problem arises because the weights in SIFT2 are intended for 

fitting the acquired data and not for filtering. 

In general, SIFT is used because streamline tractography often produces wrong 

pathways that do not represent actual white matter fibers. These incorrect pathways can arise 

due to several factors, such as noise in the data, partial volume effects, and errors in the tracking 

algorithm. They produce a negative impact on later analysis, such as connectivity-based 

analyses, as they can introduce false connections or distort the estimated properties of the white 

matter pathways. Therefore, SIFT is used to remove them by filtering out streamlines that do 

not have sufficient evidence in the data. This helps to improve their accuracy and specificity, 

and thus leads to more reliable and interpretable results. Overall, the statistical framework used 

in SIFT allows for a more robust and accurate reconstruction of the underlying fiber pathways 

in the brain [29]. 

B.6 Connectivity matrices  

Brain networks can be described as complex systems composed of nodes and edges, where the 

nodes represent regions of the brain and the edges represent the structural or functional 

connections between them. The edges may be weighted to represent the strength of the 

connections, and the networks can be represented as graphs or matrices. The networks can be 

analyzed using graph theory measures to gain insights into their organization and function, and 

to compare differences between healthy and diseased states [8]. 

In general, edge weights in brain networks can be organized in an adjacency matrix, 

which is a square matrix that represents the connections between all nodes (brain regions) in 
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the network. The diagonal of the matrix represents the self-connections of each node, while the 

off-diagonal elements represent the connections between nodes. The value of each element in 

the matrix corresponds to the strength of the connection between the two nodes it connects, 

according to a chosen connectivity measure, such as the number of streamlines connecting two 

regions in a tractography-based network. In some cases, the adjacency matrix may be 

symmetrical, indicating that the connections between two nodes are undirected, while in other 

cases, it may be asymmetrical, indicating that the connections are directed, and therefore, have 

a specific source and target region [9]. 

Various network measures can be computed using the adjacency matrix, such as degree 

centrality, clustering coefficient, and betweenness centrality. These measures can characterize 

different aspects of brain connectivity and identify changes in connectivity patterns associated 

with various neurological and psychiatric disorders. Specifically, betweenness centrality can be 

used to identify hubs or highly connected regions in the brain, while measures such as clustering 

coefficient and modularity can be used to identify communities or groups of regions that are 

densely connected to each other. Other measures such as efficiency and small-worldness can 

be used to characterize the overall efficiency and organization of the brain network [8]. 

Moreover, network measures can be used to identify alterations in brain connectivity in 

disorders such as Alzheimer's disease, schizophrenia, and multiple sclerosis, arguing that graph 

theoretical analysis can provide valuable insights into the underlying pathophysiology of these 

disorders and can be used to identify biomarkers for early diagnosis and prognosis [9]. 

Overall, structural and functional networks are typically obtained from histological 

techniques like tract tracing or neuroimaging techniques like diffusion MRI and fMRI, 

respectively. In order to facilitate computational analysis, these networks are often represented 

as connectivity matrices with nodes represented by rows and columns, and links represented by 

matrix entries, with networks being transformed into a sparse binary undirected form through 

thresholding, binarizing, and symmetrizing [8]. 
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