

UNIVERSITAT POLITÈCNICA DE VALÈNCIA Instituto Universitario Mixto de Tecnología Química (UPV-CSIC)

TESIS DOCTORAL

APROVECHAMIENTO Y MEJORA DE CRUDOS EXTRAPESADOS

Presentada por:

Elena Corresa Mateu

Dirigida por:

Prof. Avelino Corma Canós

Valencia, Septiembre 2023

Índice general

Capítulo 1. Introducción general 1	1
1.1. El petróleo	1
1.1.1. El origen del petróleo	1
1.1.2. La formación del petróleo	4
1.1.3. La creación de los yacimientos petrolíferos	6
1.2. Composición y clasificación del petróleo crudo	8
1.2.1. Evaluación y clasificación del petróleo crudo	3
1.2.2. Propiedades de los crudos pesados u extrapesados 1	γ

1.3. El transporte de los crudos pesados y extrapesados 18
1.3.1. Métodos de transporte sin modificar la composición de los
crudos
1.3.1.1. Métodos para reducir la viscosidad 19
1.3.1.1.1 Dilución
1.3.1.1.2. $Calefacci\'on$
1.3.1.1.3. Formación de emulsiones crudo-agua 21
1.3.1.1.4. Disminución del punto de fluidez
1.3.1.2. Métodos de reducción de la fricción 22
1.3.1.2.1. Aditivos reductores de fricción
1.3.1.2.2. Transporte en flujo núcleo anular
1.3.2. Procesos de mejora in-situ de crudos no convencionales 24
1.3.2.1. Procesos de mejora in-situ
1.3.2.2. Procesos de mejora in-situ en superficie 20
1.3.2.2.1. Procesos de adición de hidrógeno 27
1.3.2.2.2. Procesos de eliminación de carbono
Bibliografía33
Capítulo 2. Objetivos y alcance de la tesis45
Capítulo 3. Procedimiento experimental47
3.1. Caracterización de los sólidos de intercambio de calor y catalíticos
3.1.1. Difracción de rayos X (DRX)
3.1.2. Adsorción volumétrica de nitrógeno

3.1.3. Infrarrojo con piridina como molécula sonda	49
3.1.4. Análisis termogravimétrico (ATG)	51
3.1.5. Análisis químico mediante espectroscopía de emisión ató- mica de plasma acoplado por inducción (ICP-AES)	51
3.1.6. Test de Microactividad (MAT)	52
3.2. El equipo de lecho transportado descendente (MDU)	53
3.2.1. Análisis de productos y balance de materia	56
3.2.1.1. Análisis de los gases	56
3.2.1.2. Análisis de la gasolina en gases	57
3.2.1.3. Análisis de los líquidos	59
3.2.1.4. Análisis del coque sobre el catalizador	<i>60</i>
3.2.1.5. Balance de materia	<i>60</i>
3.3. Caracterización de los productos líquidos	61
3.3.1. Medida de la densidad. ASTM D5002	61
3.3.2. Medida de la viscosidad. ASTM D445	62
3.3.3. Número de Bromo. ASTM D1159	63
3.3.4. Valor de dieno. Método UOP 326-82	65
3.3.5. Insolubles en n-heptano. ASTM D3279	66
3.3.6. Residuo de carbón de Conradson. ASTM D4530	66
3.3.7. Medida de la estabilidad. ASTM D7157	66
3.3.8. Contenido en metales (Ni y V) y Azufre. ED-XRF	67
3.4. Destilación a vacío. ASTM D1160	68

3.5. Prop	oiedades del crudo extrapesado
	diciones de operación para llevar a cabo el proceso de merudo extrapesado
Bibliog	rafía75
-	lo 4. Sólidos para llevar a cabo el craqueo do extrapesado79
4.1. Sólic	lo inerte
4.1.1.	Introducción
4.1.2.	Obtención y caracterización del sólido inerte
•	Estudio preliminar sobre la influencia del fraccionamiento udo extrapesado
4.1.4.	Rendimientos de reacción
4.1.5.	Propiedades del crudo sintético producido
4.2. Mat	riz de un catalizador de craqueo catalítico. El caolín 97
4.2.1.	Introducción
4.2.2.	Caracterización del caolín
	Estudio de la reacción de craqueo del crudo en presencia olín activado
4.2.4.	Propiedades de los crudos sintéticos103
4.3. Com	parativa solido inerte y caolín106

4.4. Caolín: Mejora de las condiciones de reacción
4.5. Conclusiones del capítulo
Bibliografía119
Capítulo 5. Mejora de la estabilidad del crudo sin- tético
5.1. Introducción
5.1.1. Los asfaltenos
5.1.2. Estabilidad y conversión de los asfaltenos
5.2. Caracterización del aditivo con actividad para el craqueo de fondo
5.3. Matriz con actividad para el craqueo de fondo como aditivo en el sólido de intercambio de calor
5.4. Aditivo con actividad para el craqueo de fondo a varios niveles de desactivación
5.5. Matriz con actividad para el craqueo de fondo como sólido de intercambio de calor
5.6. Estudio de la estabilidad tras el fraccionamiento del crudo extrapesado procesado

5.	7. Conclusiones del capítulo				
В	ibliografía149				
	Capítulo 6. Desarrollo del proceso de mejora superficial $in\text{-}situ$ de un crudo extrapesado				
6.	1. Introducción				
6.3	2. Diferentes estrategias de procesos de mejora <i>in-situ</i>				
	6.2.1. Craqueo de la fracción de líquidos procesados con puntos de ebullición superior a 537°C				
	6.2.2. Esquema de proceso de mejora in-situ en dos reactores en serie sin reciclado165				
	6.2.3. Esquema de proceso de mejora in-situ que consta de dos reactores en serie con reciclado172				
	6.2.4. Esquema de proceso de mejora in-situ que consta de un solo reactor con reciclado				
	6.2.5. Comparativa de los resultados teóricos obtenidos para los diferentes esquemas de proceso de mejora in-situ182				
	3. Comprobación experimental de los resultados estimados para proceso de mejora in-situ				
	6.3.1. Obtención de la fracción pesada a reciclar tras el procesado del crudo extrapesado a 530°C185				
	6.3.2. Rendimientos experimentales obtenidos tras el procesado de la nueva fracción pesada187				

6.3.3. Cálculo de la fracción pesada a reciclar utilizando los nuevos rendimientos experimentales
6.3.4. Obtención de la nueva mezcla de líquidos representativa del nuevo estado estacionario
6.3.5. Procesado de la nueva mezcla de líquidos representativa del nuevo estado estacionario
6.3.6. Obtención del crudo sintético final
6.3.7. Balance de materia del proceso de mejora in-situ195
6.3.8. Propiedades del crudo sintético producido
6.3.9. Comparación entre el proceso de craqueo en lecho trans- portado descendente y el delayed coking
6.4. Conclusiones del capítulo
Bibliografía203
Capítulo 7. Conclusiones207
Anexos213
Índice de figuras217
Índice de tablas223