
Journal of Object Technology | RESEARCH ARTICLE

Monitoring Cloud Services through Models at Runtime:
A Case in an Ambient Assisted Living Environment

Priscila Cedillo∗, Emilio Insfran†, and Silvia Abrahão†

∗Universidad de Cuenca, Ecuador
†Universitat Politècnica de València, Spain

ABSTRACT Ambient Assisted Living (AAL) has become an important domain that provides software systems and services to
support and improve people’s daily quality of life. Yet, it has not achieved large market penetration. Existing works suggest that
this is primarily due to not sufficiently addressing the quality requirements posed by healthcare organizations. In particular, there
is a lack of comprehensive frameworks that allow the assessment of the quality of AAL systems. In previous work, we introduced
a method for monitoring cloud services using models at runtime (MoS@RT), which allows the monitoring requirements or
the metric operationalizations of these requirements to be changed at runtime without the modification of the underlying
infrastructure. The method and its supporting infrastructure have been successfully applied in the monitoring of cloud services,
but further evaluation in other domains is needed. In this paper, we report a case study on the use of MoS@RT to monitor cloud
services in an AAL environment aimed at supporting the elderly’s well-being. The results suggest that relevant quality attributes
of AAL systems can be adequately monitored using MoS@RT and that the report generated by the monitoring infrastructure is
useful for service providers and customers to help them ensure that cloud services meet the required levels of quality.

KEYWORDS Software as a Service, Quality of Service, Services Monitoring, Ambient Assisted Living, Models at Runtime, Case Study

1. Introduction
Cloud Computing represents a fundamental shift in how cloud
applications should be built, deployed, executed, and monitored.
Aiming to be competitive in the current economy, organizations,
especially Small and Medium Enterprises (SMEs), should be
able to quickly offer cloud services ensuring a high-level of qual-
ity meanwhile satisfying the customers changing needs. How-
ever, new challenges have arisen that need to be addressed, the
most critical being the provision of adequate and high-quality
services that the provider must offer to its customers. These
quality requirements make those who contract services in the
cloud decide to negotiate with one or another provider that best
meets their needs (e.g., high levels of availability and perfor-
mance), which need to be conveniently measured (Guerron et

JOT reference format:
Priscila Cedillo, Emilio Insfran, and Silvia Abrahão. Monitoring Cloud
Services through Models at Runtime: A Case in an Ambient Assisted Living
Environment. Journal of Object Technology. Vol. 21, No. 04, 2022.
Licensed under Attribution - NonCommercial - No Derivatives 4.0
International (CC BY-NC-ND 4.0) http://dx.doi.org/10.5381/jot.2022.21.04.a1

al. 2020). The quality requirements of services deployed on the
cloud are reflected in Service Level Agreements (SLAs) that
describe both the commitments between the service provider
and its customers and the penalties to be applied in the event
of non-compliance with those agreements (Baset 2012). In
this context, it is necessary to know the service provisioning
behavior to check the cloud services quality (Singh et al. 2020).

Given the need to know such behavior, several methods and
tools have been proposed to monitor the way services are be-
ing provided to customers. However, many of these solutions
are not well suited to customer monitoring needs related to
high-level business goals and platform-specific resources. In
particular, these solutions have focused on some specific quality
characteristics (e.g., performance), the monitoring of low-level
quality attributes (e.g., CPU, memory, and disk usage), and
some of them lack mechanisms to aggregate multiple quality at-
tributes or parameters for a service consumer, which is a critical
aspect of monitoring. In addition, the deployment and execu-
tion of software systems in highly dynamic infrastructures (i.e.,
clouds) lead to a new set of challenges and requirements with

An AITO publication

http://dx.doi.org/10.5381/jot.2022.21.04.a1

regard to monitoring. A monitoring system should consequently
have the flexibility to be adapted or changed according to new
monitoring requirements and should keep up when a service
scales up or down dynamically (Katsaros et al. 2012).

Motivated by these limitations, in previous work, we pre-
sented a method for monitoring cloud services using models at
runtime (MoS@RT), which allows the monitoring requirements
or the metric operationalizations of these requirements to be
changed at runtime without the modification of the underlying
infrastructure (Cedillo et al. 2015, 2016). This is thanks to the
dynamic reflection mechanisms of models at runtime which
allows the measurement function of a metric to be changed in
order to satisfy quality requirements as well as to define new
quality requirements at runtime.

The method and its supporting infrastructure (Cloud
MoS@RT) have been successfully applied in the monitoring of
SaaS for supermarkets that have been deployed on the Microsoft
Azure (Cedillo et al. 2016) and Google App Engine (Abrahão
& Insfran 2017) platforms. We have also reported the results
of an empirical study aimed to evaluate the perceived efficacy
of 58 undergraduate students when using the infrastructure to
configure the monitoring of cloud services (Cedillo et al. 2021).
However, further evaluation of MoS@RT and its infrastructure
in other domains is needed.

In particular, cloud computing interacts with other technolo-
gies such as the Internet of Things (IoT), where "a network
of devices -each one embedded with sensors- are connected to
the Internet" (Liau et al. 2006). This infrastructure of services
and devices has allowed dealing with problems from various
domains in recent years, including the Ambient Assisted Living
(AAL) domain, which provides software systems and services
to support and improve people’s daily quality of life. However,
AAL has not yet achieved large market penetration. Exist-
ing works suggest that this is primarily due to not sufficiently
addressing the quality requirements posed by healthcare orga-
nizations (Garcés et al. 2017). In addition, there is a lack of a
comprehensive framework that allows assessing the quality of
AAL systems (Walderhaug et al. 2012).

In this paper, we, therefore, report the results of a case study
aimed at assessing the feasibility of Cloud MoS@RT to monitor
the quality of cloud services in an AAL environment. During the
execution of the case study, the collected data have been stored
in a private cloud, using a Fog Computing infrastructure (Iorga
et al. 2018). Next, data and applications interact with a public
cloud platform, which allows data storage and actions requiring
a high level of service quality. That platform triggers events that
enable adequate management of medical emergencies in AAL
environments and therefore improve the storage and utilization
of cloud resources.

This paper is structured as follows. Section 2 discusses ex-
isting methods and tools to monitor cloud services. Section 3
provides an overview of MoS@RT and its monitoring infras-
tructure. Section 4 describes the application of our monitoring
approach to an AAL environment. In particular, we describe the
design, execution and data analysis of the case study. Finally,
Section 5 presents our conclusions and further work.

2. Related Work
Cloud computing is considered a technological paradigm that
leverages technologies such as the Internet of Things (IoT). IoT
and hence cloud computing has been integrated into ambient
intelligence solutions and its sub-areas, including AAL. AAL’s
primary objective is to support people to achieve as independent
a life as possible through interconnected and integrated sensors
and devices in care environments (Cedillo et al. 2018). It is
aimed in most cases at people with disabilities and elderly.
Data scientists can further analyze the vast amount of data
generated within AALs and available to healthcare personnel.
In this context, the quality of services and data of these systems
are crucial to support the control of people’s health and well-
being. Therefore, over the last years several monitoring methods
and tools have been proposed to allow the most appropriate
corrective and preventive actions to be taken.

In the following subsections, we analyze these solutions and
their limitations. It is also necessary to reflect on the possible
existing challenges in monitoring cloud systems and how, ac-
cording to technological evolution, our proposed solution can
scale and be applied to different domains and emerging fields.
Therefore, we also discuss AAL challenges and emerging do-
mains in cloud environments that may affect the way cloud
services should be monitored.

2.1. Approaches for monitoring services on the cloud
Several approaches and tools to monitor cloud services have
been proposed over the last years. For example, Singh et al.
(Singh et al. 2020) proposed STAR as a solution to assess the
quality of cloud services. The approach focuses on reducing the
number of quality violations for efficient delivery of services.
This solution is based on the MAPE-K loop, and the service
quality is specified as part of the non-functional requirements
to be monitored. This information is collected through sensors
and then transferred for data analysis.

In other studies, the authors proposed an architecture for
monitoring cloud applications called CASViD (Emeakaroha
et al. 2012). This architecture monitors and detects defects
related to the quality of services and resource allocation and
deployment tools at the application level. However, it does
not allow changing the requirements and/or metrics at runtime.
Muller et al. (Muller et al. 2014) have designed and imple-
mented SALMonADA, which is a service-based system for
monitoring and analyzing the quality of services. The quality
requirements is described using a monitoring management doc-
ument (MMD) to be consumed by the monitoring infrastructure;
however, the approach do not help stakeholders in selecting
alternative measurement functions depending on the platform,
and require advanced users with knowledge about metrics and
specific platforms.

On the other hand, (Modi et al. 2018) presented an approach
to managing and monitoring cloud services based on ontologies.
In this study, the broker is the one who monitors compliance
with the quality requirements. An algorithm is further pro-
posed for provisioning services based on predictions. When a
quality requirement is not fulfilled, an alert is sent to service
providers and users, applying the algorithm based on the fore-

2 Cedillo et al.

cast. This algorithm finds the virtual machine with the most
negligible load and relocates the service to that virtual machine.
Although this approach monitors cloud services, this solution
is mainly oriented toward brokers. Therefore, this approach
is not flexible enough to include all stakeholders’ perspectives
on monitoring needs. (Shatnawi et al. 2018) proposed an ap-
proach called CloudHealth, which evaluates the health of cloud
services. This solution supports three main activities (i.e., con-
figuration, deployment, and operation) and allows evaluating
high-level monitoring goals by mapping quality characteristics,
metrics, and probes. However, its approach needs to repeat
the configuration and deployment for new monitoring goals or
changes.

There are some approaches that are based on agents. For ex-
ample, (Alhamazani et al. 2019) proposed a framework for qual-
ity monitoring of cloud applications distributed through cloud
layers (*-aaS) and distributed among multiple cloud providers.
The proposal provides the ability to monitor and benchmark the
quality of individual application components (e.g., databases,
web servers) deployed on heterogeneous public or private clouds.
However, the framework employs an agent-based approach to
monitor application components that collect and send specific
QoS values requested by a global handler. A particular mon-
itoring agent is defined for each cloud provider, which is not
flexible enough to include, remove or change monitoring re-
quirements at runtime. Similarly, (Lu et al. 2016) proposed a
monitoring system for cloud platforms based on agents. This
system, called JTangCMS, collects, delivers, and processes in-
formation from different entities. For data delivery, a framework
is implemented to transfer a large amount of information at run-
time. For data processing, a cloud platform is implemented to
support decision-making related to cloud management. How-
ever, agents are specifically implemented to extract low-level
information available from each cloud platform. The agents
must be redefined to access different counters or APIs from
external tools.

Furthermore, many cloud providers enable their consumers
to monitor cloud services using available monitoring tools for
CPU, storage, and network (Alhamazani et al. 2015). These
tools are often closely integrated with their platforms. For ex-
ample, CloudWatch (offered by Amazon) is a monitoring tool
that enables consumers to manage and monitor their applica-
tions that reside in AWS EC2 (CPU) services. However, this
monitoring tool does not have the ability to monitor a service
component that may reside in the infrastructure of other cloud
providers such as GoGrid and Azure. Moreover, certain tools
are unable to monitor QoS attributes and SLA requirements
at the application level (e.g., security, elasticity, performance)
because they mostly focus on monitoring hardware resources
(CPU, storage, and networks). Besides, most commercial tools
(e.g., CloudWatch, LogicMonitor) are not sufficiently flexible to
allow a service provider to extend the QoS attributes provided
to be monitored to assess SLAs’ fulfillment.

In summary, despite the number of approaches proposed to
monitor the quality of cloud services, there is still a need for
flexible solutions that allow monitoring parameters to be added
or modified at runtime. These requirements may occur due to

the need to measure values of specific quality attributes that
were not of interest when the conditions were initially estab-
lished. To address this problem, we proposed in previous works
a monitoring approach that uses models at runtime to monitor
quality requirements of cloud services. In addition, a monitoring
infrastructure was then proposed to support this approach. This
infrastructure integrates two main components, a monitoring
configurator and an analysis and monitoring middleware which
are briefly introduced in Section 3.

Although our preliminary results support the hypothesis that
MoS@RT can be considered as a promising approach to mon-
itor the quality of cloud services, further evaluations in other
domains are needed. This is exactly the objective of this paper
which intends to study the feasibility of applying MoS@RT to
an AAL environment.

2.2. Ambient Assisted Living Challenges

One of the most critical challenges worldwide is the efficient
delivery of healthcare services for the aging population (Na-
tional Academies Press 2001). Personal care and older people’s
relatives are concerned if they are alone in their homes and
several circumstances happen that affect their well being. Thus,
enabling technologies for independent living such as AAL sys-
tems can be an innovative way to enhance care cost-effectively.
However, these systems are critical since, in case of failure, they
may cause damage to human lives. Therefore, the assurance
of quality requirements is considered a key concern during the
development of this kind of systems.

The Internet of Things devices can be included in these
systems to collect relevant information from users (e.g., their
body) or environment (e.g., home, public spaces). Those devices
are highly heterogeneous and need to work together to provide
an effective solution (Vora et al. 2019; Yoo et al. 2019). The
data provided by those devices are stored in the cloud; therefore,
several data sources need to be considered. Information supplied
by monitoring solutions need to be provided in order to measure
the service quality, and there are several studies that address
this area. For example, (Cristescu et al. 2020) presented a set
of specific quality measures to evaluate the quality in use of
an AAL platform that monitors and supports elderly. These
authors emphasize the importance of specifying and evaluating
the relevant quality characteristics using validated and widely
accepted metrics.

On the other hand, the cloud, which interacts with the IoT
devices, needs to be monitored to assess the quality of cloud
services. It is essential because, with monitoring information, it
is possible to trigger alarms or take corrective actions concern-
ing the patients’ health. In this sense, several Home Monitoring
Systems (HMS) frameworks have emerged as an alternative
to classic healthcare services for the aging world population
(Achirei et al. 2020). However, most of the solutions are not
centered on cloud monitoring. Instead, they consider its particu-
lar characteristics and are mainly concerned with the capture of
data from the patients and the environment (Stavrotheodoros et
al. 2018).

Monitoring Cloud Services through Models at Runtime: A Case in an Ambient Assisted Living Environment 3

2.3. Emerging domains in cloud environments
Currently, emergent technologies have been leveraging new
challenges related to the quality of systems that manage or
control them. Thus, there is a need to provide services that ac-
complish the expectations of end-users. For example, wearables
and sensor nodes are integrated into IoT systems to monitor
patients, provide security and health services, and provide high-
quality demand systems. Those systems transmit data to cloud
servers via the gateway in real-time. In addition, the cloud plat-
form acts as a bridge between sensors and web browsers (Yang
et al. 2018).

There are several solutions where cloud computing acts as
part of the entire system; thus, it is essential to maintain a high
quality of the provided services; in this context, monitoring
is the first step toward that quality of service. Therefore, the
health is a domain in which cloud platforms work together with
devices. Here, (Yang et al. 2018) present a wearable device with
a bio sensing facial; this solution acts as a wireless sensor node,
which is integrated into an IoT system for remote pain moni-
toring. In the sensor node, up to eight channels of sEMG can
be sampled; therefore, data are transmitted to the cloud server
via the gateway in real-time. This solution needs scalability and
performance quality characteristics to receive, store and process
data.

Another example is the solution provided by (Forooghifar
et al. 2019), where authors aim to distribute the complex and
energy-consuming machine-learning computations between the
edge, fog, and cloud, based on the idea of self-awareness, which
needs to realize the system health. Another study that evidence
the need for monitoring systems related to cloud computing
is presented by (Wang et al. 2019), which proposes a frame-
work for environmental monitoring based on fog computing
that uses multi-source heterogeneous data gathered from IoT
sensors. They analyze the collected data and design a federated
learning mechanism for their solution. Finally, they evaluate the
framework by employing an experiment.

Consequently, the quality of services is a concern to accom-
plishing those solutions’ objectives. However, it is necessary to
include a variety of data sources. Therefore, a flexible monitor-
ing mechanism is needed to support and unify all data sources,
providing a unique solution that integrates any device or moni-
toring specialized solution.

3. Monitoring Infrastructure
Cloud MoS@RT is a technological service infrastructure de-
veloped to support the MoS@RT method for monitoring cloud
services. The main benefit of Cloud MoS@RT is that it pro-
vides a flexible and high-level monitoring service solution that
is independent of cloud providers. This service is based on
models at runtime and allows changing at runtime the moni-
toring requirements, or the metric operationalizations of these
requirements, without the modification of the underlying service
infrastructure. In addition, Cloud MoS@RT has been empir-
ically evaluated through controlled experiments to study the
users’ perceptions of ease of use, usefulness, and future use
intention with promising results (Cedillo et al. 2015, 2016).

Figure 1 shows an overall view of the Cloud MoS@RT func-
tionality, including their components, activities, and models
employed. There are three main components: Planner, Configu-
rator, and Monitor.

The Planner is in charge of Establish the Monitoring Re-
quirements. This activity is performed to collect those require-
ments to be monitored, which come from the SLA and addi-
tional quality requirements of interest, together with their corre-
sponding thresholds. This information is stored in a Monitoring
Requirements Model.

The Configurator uses the Monitoring Requirements Model
and a SaaS Quality Model (i.e., an ISO/IEC 25010-compliant
quality model for cloud services (Guerron et al. 2020)) to set
up the monitorization. The SaaS Quality Model contains SaaS
quality characteristics, attributes, and possibly several metric
operationalization alternatives that can be used for monitoring
the cloud services.

The activities performed in the Configurator are:
i) Select the Quality Attributes, consisting on the selection of

the quality attributes from the SaaS Quality Model associated
to each monitoring requirements;

ii) Select the Metrics, consisting on the selection of the con-
crete metric operationalizations to be applied in order to assess
the quality of the service;

iii) Map the Metrics to Data Sources, consisting on the map-
ping between the metric definition and the corresponding data
source for the metric in a given platform (e.g., in Microsoft
Azure the data source will be the Azure Performance Counters,
which can be obtained by using the Microsoft Azure Diagnostics
Service) and,

iv) Runtime Quality Model Generation, which generates the
model at runtime. This model at runtime contains the structures
that reflect the set of specific quality requirements to be mon-
itored in terms of the Saas Quality Model, and it is causally
connected to the cloud service to be monitored, meaning that a
change in the runtime model will trigger a corresponding change
in the data source that is gathered for monitoring and/or vice
versa. This facility allows us to easily change at any time the
monitoring requirements model, the SaaS quality model, or any
aspect of the data sources for the metrics in the cloud platforms.

Finally, the Monitor is composed of a Measurement Engine
and an Analysis Engine. The Measurement Engine, which is
implemented as a service to interact with the cloud service to
be monitored, uses the Runtime Quality Model to gather the
raw data from the cloud service an is responsible to Perform
the Measurements. Then, the Analysis Engine uses the Runtime
Quality Model to Analyze the Results obtained by determining if
the data gathered from the monitored service violate the defined
thresholds for the metrics associated to the quality requirements.

3.1. The Monitoring Requirements Metamodel
This metamodel defines the structure of the Monitoring Require-
ments Model for the quality requirements to be monitored. It
is compliant with the WSLA Language Specification (Keller &
Ludwig 2003) to allow representing these quality requirements
in an standardized manner and to facilitate their evaluation.
Moreover, it is possible to include in this model not only quality

4 Cedillo et al.

Figure 1 Cloud MoS@RT Monitoring Activities

requirements from the SLA of the services to be monitored but
also additional requirements that may be of interest to stake-
holders.

Figure 2 shows the monitoring requirements metamodel,
which includes the main SLA sections. The SLA Document
specifies the parties, service definition and the obligations. The
parties are the signatory parties, namely the service provider
and the service customer, and the supporting parties that provide
the service measurements and audits. The Service Definition is
the abstraction of the service to be monitored, whose quality
characteristics and attributes are relevant as regards defining
the SLA’s terms. Characteristics and attributes are specified as
SLAParameters that can be measured by using Metrics.

Finally, the Obligation metaclass contains two types of obli-
gations: i) the Service Level Objective, which is a warranty of a
particular state of SLA parameters in a given time period (e.g.
the average response time must be 5 ms); and ii) The Action
Guarantee, which specifies the provider’s commitment to do-
ing something in a specific situation (e.g. if a violation of a
guarantee occurs, a notification is sent specifying a penalty). A
more detailed explanation of the use of WSLA for specifying
requirements can be found in (Keller & Ludwig 2003).

3.2. The SaaS Quality Metamodel

Figure 3 shows the SaaS Quality metamodel, which is aligned
with the ISO/IEC 25010 standard (ISO/IEC 25010 2011). It
allows the definition of characteristics, sub-characteristics, at-
tributes, impact, and metrics that specify how the quality require-
ments of cloud services can be measured. Also, it is possible to

define a set of operationalization alternatives for each metric.
These alternatives are useful since several quality requirements
(e.g., scalability, elasticity, security) need to be monitored at
different cloud service levels (i.e., SaaS, PaaS, IaaS) (Aceto
et al. 2013). The Direct Metric metaclass is used to represent
metrics that do not depend on any other metric and whose values
can be obtained directly from the raw counters of the cloud plat-
form, whereas the Indirect Metric metaclass is used to represent
metrics that are derived from others metrics and that need a
Measurement Function to calculate their corresponding values.

Finally, the Platform and the Measurement Method and Mea-
surements Function are used to to maintain a list of raw platform-
dependent data counters and the platform-specific algorithms,
respectively. The Unit metaclass includes the magnitude related
to a particular quantity, and the Scale metaclass represents a set
of values with continuous or discrete properties used to map the
operationalizations.

3.3. The Runtime Quality Metamodel

This metamodel defines the structure of the Runtime Quality
Model (model at runtime). This model specifies the monitoring
requirements, metrics, operationalizations, and configurations
that will be used during the monitoring of the services.

In (Lehmann et al. 2010) the following modeling constructs
for a model at runtime are defined: (a) a prescriptive part of
the model, which specifies what the system should be like; (b)
a descriptive part of the model, which shows what the system
is like; (c) the valid model modifications of the descriptive
parts, which are formulas or sentences that can be executable

Monitoring Cloud Services through Models at Runtime: A Case in an Ambient Assisted Living Environment 5

Figure 2 Monitoring Requirements Metamodel

at runtime; (d) the valid model modifications of the prescriptive
parts, which are formulas or sentences that can be executable at
runtime; and finally (e) the causal connection, which represents
the information flow between the model and the entity to be
observed (monitored).

Figure 4 shows the Runtime Quality Metamodel, which is
based on the SaaS Quality Metamodel and that also incorpo-
rates the following parts: i) a prescriptive part to represent
the quality requirements and relevant SLA terms with the cor-
responding thresholds; ii) a descriptive part to represent the
specific raw data and calculated metric values resulting from
the measures; and iii) a causal connection part to represent the
specific characteristics of the connection to the cloud platform
allowing the flow of information between the model and the
data obtained from the monitored service. The model modi-
fications (prescriptive and descriptive) are represented as the
measurement functions that calculate the corresponding metrics,
and the mappings that associate the raw data data source in a
given cloud platform to the metrics.

Specifically, the Cloud Service metaclass describes the ser-

vice to be monitored. The prescriptive part includes the Thresh-
olds obtained from the SLAs for the specific metrics associated
to the quality requirements. The descriptive part includes the
RawData Instance, which contains the values captured directly
from the cloud service, and the Calculated Metric, which con-
tains the measurement results of the calculated metrics. The
Configuration File contains specific information for each plat-
form that allows the interaction between the monitoring infras-
tructure and the cloud service. This interaction between the
model and the monitored service is a causal connection that
allows not only to continuously observe and interpret the row
data obtained from the monitored service but also to change
this interaction when the model changes (adding a new quality
requirement, changing a metric or the operationalization of a
metric, etc.).

4. Applying the Monitoring Infrastructure
An exploratory case study was performed by following the
guidelines presented in (Runeson et al. 2012) in order to study
the feasibility of applying MoS@RT to monitor the quality

6 Cedillo et al.

Figure 3 SaaS Quality Metamodel

Figure 4 Runtime Quality Metamodel

Monitoring Cloud Services through Models at Runtime: A Case in an Ambient Assisted Living Environment 7

of cloud services in an ALL environment. A case study is
an empirical inquiry that investigates a phenomena in real-life
contexts. The stages of which the case study was comprised
were: design, preparation, collection of data, and analysis of
data, each of which is explained below.

4.1. Design of the Case Study
The case study was designed by considering the five components
that are proposed in (Runeson et al. 2012): purpose of the
study, underlying conceptual framework, research question to
be addressed, sampling strategy, and methods employed.

The purpose of the case study is to show the feasibility of
applying the MoS@RT method, its infrastructure (Cedillo et al.
2016), and middleware (Cedillo et al. 2015) to monitor services
deployed in the cloud corresponding to an AAL environment.

The conceptual framework that links the phenomena to be
studied is the configuration and quality assessment of the de-
ployed services in the AAL environment according to the steps
established in MoS@RT. The AAL environment was selected
considering its heterogeneity and service-oriented character-
istics. In addition, in these environments, cloud computing
infrastructures are regarded as a critical solution for processing
and storing data provided by IoT devices. First, the monitoring
requirements were established. Then, the monitoring configura-
tion has been carried out to generate the runtime quality model.
Next, raw data were collected from the services distributed in
the environment to perform the measurements. Finally, the qual-
ity assessment were performed according to the runtime quality
model. It is worth noting that the quality assessment process
performed by our approach is compliant to the ISO/IEC 25040
standard (ISO/IEC 25040 2011).

4.1.1. Research question. We are interested to determine
whether Cloud MoS@RT is able to monitor a set of quality
attributes that are relevant for the AAL domain. Therefore, the
research question is stated as follows:

– RQ: Can relevant quality attributes of AAL systems be
properly specified by means of Cloud MoS@RT Configu-
rator?

4.1.2. The case and the unit of analysis. The sampling
strategy of the case study is based on an embedded single-
case design. We contacted a development company located
in Cuenca (Ecuador) in order to apply Cloud MoS@RT to a
real AAL environment from a project in progress, as shown in
Figure 5. The company provided us with access to a system that
exploits cloud services and IoT devices.

This system aims to provide elderly with the possibility of
improving their autonomy and safety through devices hosted
in their homes. Thus, the AAL solution includes IoT devices
that meet these objectives. This AAL system has been selected
because it needs to warranty high-quality services due to the
importance of the patient health and well-being. The cloud
is responsible for managing and process data collected from
different IoT edge sensors. Consequently, the need to monitor
aspects provided with technology that is responsible for, through
sensors and actuators, providing the environment that the person

needs have been determined. Furthermore, these systems must
have an analysis and assurance of the quality of the services that
manage the devices located in the AAL environment.

In addition, it must be considered that IoT devices are re-
quired within the environment. In these environments exist a
broad type of sensors and actuators located in the house, and
some of them are wearable used by the elderly. Still, there
must be information storage and data processing mechanisms in
addition to them. Therefore, there is a front-end part within the
system architecture deployed in a community cloud provided
by CEDIA (Ecuadorian Corporation for the Development of
Research and Academia). The back-end and the database were
deployed in Heroku (Salesforce Company 2020), as a private
cloud. This cloud application platform must be continuously
monitored to ensure that data and processes are safe and verify
if the SLAs are adequately met. This cloud platform allows
the provisioning of applications and data storage, and it also
provides specific metrics for monitoring cloud services.

Figure 5 shows the distribution of the sensors, actuators, and
other elements that send and receive data and actions to and from
the cloud. In particular, the AAL environment has three places
with different needs and priorities regarding the management
and use of information: i) living room, ii) kitchen, and iii)
bedroom. The system has three different layers depending on
the deployment infrastructure: edge, fog, and cloud.

At the edge computing layer, edge nodes (i.e., IoT devices
distributed in the environment) represent gateways and data
capturing services able to act on raw data, for example, aggre-
gating, filtering, and encoding the local data streams in real time.
Specifically, the IoT platform uses a temperature sensor in the
living room and a wearable with a heartbeat sensor located in
the bedroom and a carbon monoxide (CO) sensor in the kitchen.
This layer is where the cloud resources are being distributed and
moved near the end-users and end devices.

These sensors periodically collect data from home and send
them to the cloud or a fog computing node.

At the fog computing layer, the monitoring solution has been
installed and deployed in a private cloud located in the user’s
home. In this layer, data are processed and stored from the
sensors to reduce latency, network traffic, and timely control
of devices located at the edge of the IoT infrastructure. The
sensors and the server communicate asynchronously using a
wireless network (WiFi) with the support of the Message Queue
Telemetry Transport (MQTT) protocol.

Finally, at the cloud layer, there is a computing node for the
deployment of the AAL system presentation layer, which has
been deployed on the CEDIA cloud (CEDIA Web Page 2022).
It stores the data resulting from the aggregation operations exe-
cuted in the fog node. It also includes a public network where
certain aspects (e.g., reports with summarized data from the fog
node, critical information and certain massive data that require
immediacy due to its criticality) will be stored and processed.

In summary, the AAL environment contains a set of IoT
devices, which are made up of a series of sensors and actuators.
These devices use web services, store the generated data in the
Heroku public cloud, and monitor the environment through the
cloud MoS@RT infrastructure which was deployed in a privated

8 Cedillo et al.

Figure 5 AAL system infrastructure

cloud as a service monitoring system.

The unit of analysis are the three services deployed in the
cloud (i.e., a service to manage the temperature sensor, a ser-
vice to manage the carbon monoxide sensor, and the service to
manage a heartbeat sensor included into a wearable) as shown
in Figure 5 and the monitoring of the data gathered by them.

4.2. Preparation of the Case Study

Cloud MoS@RT was applied as follows: two domain experts
played the role of Monitoring Planner by providing us with
the monitoring requirements; then, the main author played the
role of Monitoring Configurator by selecting the appropriate
quality attributes and metrics to be monitored, establishing a
mapping between the metrics to specify how each metric will be
calculated in the Heroku platform, and generating the runtime
quality model. This model was then used by the monitoring
infrastructure to collect data in real-time from the services in
operation, apply the metrics and provide the monitoring data.
Finally, the infrastructure performed the data analysis and pre-
sented the monitoring results. These steps are further explained
in the following subsections.

4.2.1. Establishing the monitoring requirements. The
aim of this stage is to carefully examine the domain of interest,
establish the purpose of the evaluation, establish the require-
ments and delimit the scope of monitoring.

The goal of this evaluation is to assess the overall quality of
the AAL system (see Section 5) and decide on the acceptance
of the product. Two domain experts (i.e., a geriatrician and
a psychologist) and three software developers involved in the
development of the AAL system have been asked to propose
the relevant quality requirements for the system.

The requirements were defined during a workshop where we
discussed with these stakeholders the objectives of the AAL en-
vironment, the information needed, and the cloud infrastructure
characteristics and behavior. The SLA was defined by consid-
ering the provided non-functional requirements. Additionally,
the SLA was specified for the three services to be monitored;
consequently, the stakeholders selected those clauses that were
of interest to them. We noticed that the defined quality require-
ments are mainly related to the immediacy and criticality of the
information managed by the system (i.e., the heartbeat, carbon
monoxide, and temperature sensors to be monitored are criti-
cal for patient health and security), and the use of resources.
Specifically, the requirements to be monitored are the following:

Monitoring Cloud Services through Models at Runtime: A Case in an Ambient Assisted Living Environment 9

1. The capacity and memory use of the virtual or physical
machine in which the service is executed should have a
minimum of 512 MB.

2. The memory capacity used by an active service before load
balancing must be a maximum of 75% of the total assigned
memory to guarantee the proper functioning of the service.

3. The memory usage of a virtual machine before load bal-
ancing should be 80% to ensure client resources.

4. The delay in provisioning the service will be a maximum
of 550ms.

5. The service delay time and the resource request time should
have a maximum of 500 ms.

6. The service availability regarding access to the network
must be 24/7 with a maintenance time of 6 hours maximum
per year.

7. The latency of a user request must be a maximum of 50
ms.

8. Response time should not be more than 8000 ms.

9. The number of requests adequately served per second is
15 requests.

10. The incidence of accidents must be a maximum of 0.05
per 100 requests.

11. The number of correct operations must be at least 99.5%.

12. The memory capacity will be a minimum of 512 MB for
each virtual machine.

13. The negotiated time for service availability is 24/7, exclud-
ing the maintenance time of 6 hours maximum per year.
Therefore, the unavailability of the service cannot be more
significant than 0.001%.

14. In the event of any invalid connection attempt, a message
from the source IP will be sent to the administrator’s email
to proactively identify the dangers to the security of the
cloud service.

15. In addition, every time more than 500 requests are made
per minute, an alarm will be triggered to prevent denial of
service attacks.

16. A maximum loss of stored data corresponding to
0.000001% per month must be guaranteed.

17. A maximum of 10 requests for minor changes in the SaaS
will be allowed once the service has been deployed. These
changes will be free of charge and will not represent a dif-
ficulty that impacts the database. Additional changes will
be billed according to the difficulty in the implementation
and redeployment.

18. None of the contracted services will require payments or
the need for third-party operations, but only those agreed
with the customer, in this case, Google Maps, the only
interdependent service for geo-referencing patients.

In this AAL environment, quality attributes such as perfor-
mance, response time, usage of resources, and reliability are
essential to provide users with services that make good use of
resources and perform the specified functions under the stated
conditions as expected. Also, it is worth mentioning that we
focus on measuring internal and external quality attributes that
are currently supported by MoS@RT. During the workshop car-
ried out with the stakeholders, other quality attributes related
to the quality in use of the services (e.g., user experience, sat-
isfaction) were also of interest to the company, but these were
discarded because this type of attribute are not yet supported
by our monitoring approach. Moreover, in a home, it is chal-
lenging to include devices such as cameras, which can represent
privacy-invasive devices for users. After all, users might not
feel so comfortable with these devices.

These requirements have been specified in a Monitoring
Requirements Model which conforms to the monitoring require-
ments metamodel shown in Figure 2. This model contains the
detailed specification of each one of the requirements including
the thresholds from the SLA clauses. Figure 7 shows an excerpt
of the Monitoring Requirements Model for the AAL system.

4.2.2. Specifying the evaluation The aim of this stage
is to design how the monitoring will be performed and what
information will be collected during the services monitoring.
Specifically, the activities to be carried out correspond to those
of the MoS@RT Configurator. These activities are aligned with
the ISO standard (ISO/IEC 25040 2011) for the evaluation of
software product quality.

The first activity is to select the quality attributes to be mon-
itored. We selected a set of attributes from the SaaS Quality
Model which conforms to the SaaS quality metamodel shown
in Figure 3. This model is a subset of the Cloud Services Qual-
ity Model proposed by (Guerron et al. 2020) which represents
the decomposition of cloud services quality characteristics into
measurable quality attributes.

The selection of quality attributes has been performed to
cover the monitoring requirements established as part of the
workshop conducted with the system stakeholders. Table 1
shows the selected quality attributes.

The next activity is to select the metrics that will allow to
evaluate the selected quality attributes. The SaaS Quality Model
contains different metric operationalization alternatives for cer-
tain quality attributes that can be used during the service mon-
itoring process. The operationalization of a metric consists of
establishing a mapping between the generic specification of the
metric and the concepts that are represented in the software
artifacts to be measured. In this way, a quality attribute can be
measured using different measurement functions depending on
which artifact (e.g., cloud service specification, cloud architec-
ture, actual cloud service) is being assessed. The possibility of
having several operationalizations also allows the most appro-
priate measurement function to be selected (e.g., by considering

10 Cedillo et al.

Quality Attribute Definition

Memory capacity Represents the memory size of the cloud service

VM memory usage Represents the percentage of the memory resource occupied.

Delay Represents the delay that can be introduced by the network transport.

Internet access Represents the ability to attend to requests made to the service in response to a workload

Latency Refers to the time necessary for a user’s request to be dealt with by the competent service.

Response time Represents the response time for a request to be fulfilled or the amount of data generated by the cloud
service in a specific time interval. Synchronous and asynchronous treatment should be considered.

Performance Represents the volume of requests per unit of time. A request can be a job, task, operation. (WIPS
as web interactions per second, OPS as operations per second, TPS as transactions per second).

Accident incidence Represents the relationship between the number of accidents in the service and the number of
accidents allowed in the SLA.

Faulty operation Represents the ability of an item to perform a required function under stated conditions for a stated
period.

Availability time Represents the availability time to access the service, and customers can use it.

Operational availability Measures a ratio between total up time and the time the SaaS is available to be invoked.

Security risks Represents the ability to identify cloud service security threats proactively.

Monitored alarms Represents the effectiveness of the alarms monitored by Corporate Security.

Data integrity Represents the ability to verify that the service stores data correctly. Data integrity is a broad term
and includes data security, privacy, and accuracy.

Flexibility Represents the ability of the service provider to regulate changes in services according to customer
requests. Is the ability to adjust or change the cloud service in response to customer needs or changes
in technology.

Service modularity Indicates if the service is self-contained, its goal is to minimize the components’ external dependen-
cies.

Interoperability with dependent
services

Represents the level of efficient interactions between the service and its subordinate services in all
business processes in which the service participates.

Composability Indicates that services by incorporating other services are more easily and effectively customized to
meet the specific needs of users.

Table 1 Selected Quality Attributes from the Cloud Services Quality Model

Monitoring Cloud Services through Models at Runtime: A Case in an Ambient Assisted Living Environment 11

Figure 6 A SaaS Quality Model (Guerron et al. 2020)

the availability of raw data in a specific platform).
Table 2 shows the resulting quality attributes, metrics and

operationalizations that were selected from the SaaS Quality
Model. Additionally, Figure 6 shows the decomposition of
quality characteristics on subcaracteristics, quality attributes
and metrics for the AAL system. This selection indicates that
the quality characteristics most valued by the domain experts
were Performance, Reliability, and Security while the quality
characteristics most valued by the software developers were
Maintainability and Compatibility.

4.2.3. Designing the evaluation In this stage the evalua-
tion modules for the selected cloud platform and the decision
criteria for quality measures are specified. The activities to be
carried out correspond to the remaining activities of the Cloud
MoS@RT Configurator: map the metrics to data sources and
generate the Runtime Quality Model.

The first activity is to map the metrics to data sources. The
objective is to define how the metrics expressed in the SaaS
Quality Model (which are independent from cloud platforms)
can be calculated in a specific cloud platform. This is done con-
sidering the actual parameters and instructions that are inherent
to the selected cloud platform, which can be retrieved by using
different methods (e.g., agents, APIs, platform tools, libraries).

Therefore, the SaaS Quality Model also contains the mea-
surement functions that are used to calculate the metrics across

different cloud platforms (i.e., platform-specific metrics).
As an example, the SaaS Quality Model contains three op-

erationalizations (1) (2) (3) for the Defective operations Per
Million intents (DPM) metric, as shown in Table 2. These opera-
tionalizations are independent of cloud platforms. Also, Figure
7 shows the specification of these metrics.

DPM =
FailOperations

AttemptOperations
× 106 (1)

DPM =
AttemptOperations − SuccessOperations

AttemptOperations
× 106 (2)

DPM =
FailOperations

(SuccessOperations + FailOperations)
× 106 (3)

In order to calculate the operationalizations in the Heroku
platform for the DPM metric, which is an indirect metric, we
needed to implement a wrapper that uses an API to gather the
direct metrics associated to each IoT sensor. In particular, the
direct metrics used in these operationalizations are: Attempted-
Operations, FailedOperations, and SuccesfulOperations.

After defining the platform-specific operationalizations for
each metric, we defined decision criteria to help evaluators to
understand how to interpret the measurement results. Decision
criteria are numerical thresholds or targets used to determine
the need for action, or to describe the level of confidence in a
given result. These criteria can be defined using benchmarks,

12 Cedillo et al.

Quality Attribute Metric Operationalization

Memory capacity Total memory size Size of the service’s memory resource, in megabytes (Mb), giga-
bytes (Gb)

VM memory usage
VM memory usage Current occupied memory resource, in Mb, Gb

Memory usage percentage Current occupied memory resource / total memory resource * 100

Delay
Average delay time Average value of the delay, in milliseconds(ms), nanoseconds(ns).

Delay time TR: time to obtain the resources – request time for the resources

Internet Access Unanswered requests AI = Number of unanswered requests / Total number of requests to
the service. Percentage of unanswered requests.

Latency Latency per request Latency = average (request time-response time), in ms, ns

Response time

Maximum response time It is the maximum response time of attention to a request in the
cloud service in a specific time interval, in ms.

Response time standard deviation
(asynchronous task)

Standard deviation of the response time for an asynchronous task,
in ms, ns

Performance Service performance The number of service requests handled / total service time

Accident incidence Total accidents

Where, a=accidents number; b=accidents allowed in the SLA

When a<b, IoA=1-a/b;

When a>b, IoA=0

Defective operations Defective operations Per
Million intents (DPM)

DPM = (Fail Operations / Attempt Operations) * 10 ^6

DPM = ((Attempt Operations – Success Operations) / Attempt) *
10^6

DPM = (Fail Operations / (Success Operations + Fail Operations))
* 10 ^6.

Availability time

% Inactivity time SD = (SF(t)/AG(t)) x 100%

Where, SF (t) is the time of unavailability of the service during the
negotiated time, AG (t) is the negotiated time.

Uptime ratio
UT= ((total service time) - (total time during which the service was
not available)) / (total service time)

UT = Total Activity Time / Total Time

Operational availability Service robustness ROS = available time to invoke SaaS / total time to start operating
SaaS.

Security risks Number of safety hazards Number of safety hazards proactively identified

Monitored alarms Number of false alarms moni-
tored

Number of false alarms monitored by Corporate Security

Data integrity Resource data integrity Check if the resource correctly stores the data. Rk (DI) = Dk /
Ck Where, Ck denotes jobs successfully completed by resource
Rk. Dk denotes the number of jobs that preserved data integrity by
resource Rk during period T.

Flexibility Ease of change EoC = service updates / total time

Modularity Service modularity SM = Number of elements that do not depend on external services
/ Number of elements in a service

Interoperability with dependent
services

Interoperability dependency DI = Number of dependent services with successful interaction /
Total number of dependent services in the participating processes

Composability Service composability Composability = W.SM + W.DI Where, SM Service modularity,
DI interoperability dependency, W assigned weight based on im-
portance, the sum of the weights must be equal to 1

Table 2 Quality attributes, metrics and operationalizations from the SaaS Quality Model

Monitoring Cloud Services through Models at Runtime: A Case in an Ambient Assisted Living Environment 13

Figure 7 Monitoring Requirements Model Instance

historical data, customer requirements, etc. Since the decision
criteria depend on the specific system domain in which the
services are used, we defined these criteria with the stakeholders
of the AAL system. The column Threshold of Table 3 shows
the specified thresholds for the system under evaluation.

Once all these activities have been carried out, the MoS@RT
Configurator allows the generation of the Runtime Quality
Model. This is a model@runtime that specifies all of the moni-
toring requirements, metrics, measurement functions, and con-
figurations that are needed to access the services to be monitored
during their execution. This model corresponds to the Evalua-
tion Plan described in the ISO/IEC 25040.

4.3. Collection of data
Monitoring data were collected from the cloud services of the
Heroku cloud. This stage corresponds to the execution of the
evaluation activity described in the (ISO/IEC 25040 2011).

In this stage, the Runtime Quality Model was used by the
MoS@RT Monitor (Measurement Engine) to perform the mea-
surements by gathering data from the cloud services of the AAL
system and calculating the metrics, resulting in values on the
measurement scales. The column Result of Table 3 shows the
obtained value for each metric.

4.4. Analysis of Data
In this stage, the Runtime Quality Model was used by the
MoS@RT Monitor (Analysis Engine) to analyze the results
by applying the decision criteria to the value obtained for each
metric obtained from the monitored services (i.e., service to
manage the temperature sensor, service to manage the carbon
monoxide sensor, and service to manage the heartbeat sensor).
Thus, it was possible to determine that there are metrics that
meet the established threshold and others that do not.

For example, Figure 8 shows the graphical representation
of the measurement results performed during seven periods of
time for some specific metrics. In (a) VM memory usage, we
can see that the maximum and average values obtained are very
close to the Memory capacity (512 Mb), exceeding 80% of
this capacity in both cases. In (b) Performance, represents the

number of attended requests in relation to the total number of
requests. The average attended requests (reqs) was 9629 and the
average unattended requests was 16 (calculated as the difference
between the total number of requests and the attended requests),
representing an average success rate of 99.83%. In addition,
we have calculated the (c) Delay time for the three sensors
interacting with its corresponding service. The fluctuation in
time is shown in a time interval, where the minimum value is
4.94 ms, the maximum value is 128.12 ms, and the median is
12.16 ms. These values indicate that the requests could have
different priorities to be attended or that server was overloaded
by the number of requests. Finally, in (d) Response time, we
have represented the 99th and 95th percentile, where it can be
seen that the upper end is 117.75 ms and 92.15 ms, the median is
67.62 ms and 50.96 ms, and the lower end is 19.19 ms and 14.07
ms respectively, indicating that the largest number of requests
has been attended to in the shortest time.

Finally, the column Satisfies? of Table 3 shows the analysis
results. Those metrics that do not meet the threshold represent
possible violations of the negotiated SLA or quality require-
ments that are not satisfied. Thus, the service provider may
establish mechanisms for adjusting the service to meet the re-
quirements, while the consumer may request the corresponding
compensations established in the SLA clauses.

4.5. Answering the Research Question
The results show that all the monitoring requirements estab-
lished for the AAL system could be monitored. The Cloud
MoS@RT method and infrastructure provided the necessary
guidelines and tools to select the appropriate quality attributes,
metrics and operationalizations for this particular domain. We
have instantiated our monitoring solution in the Heroku plat-
form in order to be able to monitor any cloud service running
in Heroku. Some existing data gathering mechanisms (wrap-
pers) that we have previously defined for other cloud platforms
(Azure and Google App Engine) could be adapted and used to
this platform, but it was necessary to extend the Runtime Quality
Model with new mechanisms (wrappers) to gather raw data to
calculate some specific metrics in the Heroku platform. These

14 Cedillo et al.

Metrics Threshold Result Unit Satisfies?

Total Memory Enabled ≥ 512 512 Mb Yes

JVM Capability: Heap Memory Usage ≥ 512 512 Mb Yes

VM Used Memory

-Max Total ≤ 410 437 Mb No

-Avg. Total ≤ 410 419 Mb No

-Max Swap 0 0 Mb Yes

-Max RSS ≤ 410 437 Mb No

-Use JVM: Heap Memory ≤ 410 144 Mb Yes

-Use JVM: No Heap Memory ≤ 410 136 Mb Yes

Memory Usage Percentage

-Max Total ≤ 80 85 % No

-Avg. Total ≤ 80 82 % No

-Max Swap 0 0 % Yes

-JVM Use: Heap Memory ≤ 80 28 % Yes

-JVM Use: No Heap Memory ≤ 80 27 % Yes

Average Time Delay ≤ 5, 5x108 Aprox 1x108 ns Yes

Delay Time ≤ 5x108 Aprox 6x107 ns Yes

Unanswered Requests ≤ 0.05 0.021 ms Yes

Total Response Latency Per Request ≤ 500 8,000.54 ms No

Response Time

Maximum Response Time ≤ 8, 000 13,311 ms No

-99Th Perc ≤ 8, 000 6,761.67 ms Yes

-95TH Perc ≤ 8, 000 5,096 ms Yes

-50th Perc ≤ 8, 000 748.33 ms Yes

Response Time Standard Deviation height 38.09198 ms

Accomplishment Over Time ≤ 8x109 8.37 x 10 9 ns No

Defective Operations Per Million Attempts
(DPM)

≤ 5x10−9 1,9x10−8 No

% Inactivity Time ≤ 0.001 0 % Yes

Uptime Ratio ≥ 0.99999 1 Yes

Service Robustness ≥ 0.99999 1 Yes

Number of Safety Hazards Informative 8

Number of False Alarms Monitored Informative 10

Resource Data Integrity ≥ 0.999999 1 Yes

Ease of Change Informative 1

Service Modularity ≤ 0.80 0.67 Yes

Interoperability Dependency 1 1 Yes

Service Composability ≤ 0.90 0.83 Yes

Table 3 Monitoring Results.

Monitoring Cloud Services through Models at Runtime: A Case in an Ambient Assisted Living Environment 15

Figure 8 Selected Monitoring Results for the AAL system

wrappers support the gathering of customized information to
calculate high-level metrics (e.g.,service robustness, resource
data integrity, composability) that cannot be directly measured
using the counters provided by the Heroku or other Heroku
monitoring tools (e.g., Hosted Graphite Heroku monitoring).

There are diverse monitoring tools available that provide IT
administrators with all the information they need to figure out
whether there are any issues that are negatively impacting the
quality of their service or not. However, most of these tools
focus on the monitoring of performance by means of gathering
low-level measurements by using performance counters pro-
vided by cloud platforms. Differently, our solution allow the
monitoring of any quality characteristic because it is based on
a quality model that decomposes these characteristics into sub-
characteristics and quality attributes, which are then measured
using existing metrics collected through a systematic literature

review (Guerron et al. 2020). In addition, the application of
models@runtime provides our solution with a high level of
flexibility and maintainability because changes essentially af-
fect the runtime quality model rather than the entire monitoring
infrastructure.

4.6. Threats to Validity
Despite the fact that a systematic case study was carried out,
it is possible that this work was affected by some threats to its
validity. In this section, we shall, therefore, review the main
threats and the actions taken to mitigate them.

4.6.1. Threats to Data Extraction and Analysis Results
With regard to the data extraction, we used well-known mech-
anisms to gather data and calculate the metrics (e.g., APIs,
specific counters provided by the platform). These methods
ensured a certain amount of consistency in the data gathering
and analysis. However, it should be noted that in some cases,
we had difficulties in extracting and interpreting the data ow-
ing to the fact that the information available about the selected
metrics was not sufficiently clear or complete for us to be able
to calculate the metrics. Note that these metrics were selected
from an existing Quality Model for Cloud services that were
defined by means of a systematic literature review (Guerron
et al. 2020). The interpretation bias was, therefore, mitigated
as far as possible by involving multiple researchers, having a
unified scheme with which to gather the data and piloting the
data extraction process with an external researcher. However,
this study still has some limitations related to how data were
obtained from different sources. We defined some wrappers to
collect low-level information from the services that allowed us
to collect data to calculate the selected metrics, but it is still
required to extend the infrastructure with other mechanisms
(e.g., plug-ins to existing cloud platform monitoring services,
agents) to collect data for calculating other metrics of interest.

4.6.2. Threats to External Validity This case study
presents some limitations, such as the fact that only one AAL
system was considered since the company imposed certain re-
strictions. Although the quality requirements to be evaluated
were selected through the consensus of the five stakeholders
involved in the system development and the evaluation designer,
they might not have been very representative for all types of
AAL systems. In order to overcome such limitation the study
of (Garcés et al. 2017) can be used as a starting point in further
studies since it determines which quality characteristics are crit-
ical for AAL systems and which ones are most relevant to some
AAL sub-domains.

4.7. Lessons Learned
Our study reveals several findings that can serve as practical
guidelines for both industry and academic communities to im-
prove practices to monitor cloud services, in particular services
used by AAL systems.

During the execution of this case study, several problems
were identified. These problems occurred due to the time of
deployment and configuration of the monitoring. First, it is

16 Cedillo et al.

essential to consider that some metrics are difficult to measure.
In this case, it is necessary to bear in mind that the data sources
are varied and that it is necessary to select the most appropriate
in each case. For this study, considering the established moni-
toring requirements, quality attributes and the metrics selected,
it was necessary to create wrappers on many occasions, which
requires additional development effort.

Second, companies require high-level indicators to help them
make decisions about the tools that boost their profits. In this
sense, monitoring services that retrieve raw data and low-level
metrics are not enough. Our monitoring infrastructure bridge
the gap between low-level measurements and high-level indi-
cators. This is a crucial feature that was most valuable to the
stakeholders in the company where this case study was con-
ducted, and we believe that this solution represents a valuable
tool for other companies.

On the other hand, many platforms bring closely linked so-
lutions to them. However, it is essential to note that the broker
or any actors who require SLA verification must know, deploy
and maintain some monitoring solutions. Therefore, it implies
that the management and maintenance of the cloud are very
complicated, given its quality management and knowledge of
SLA compliance. Thus, this type of cloud-agnostic tool they
seek to monitor extensively facilitates work. It is also essential
to know that companies’ technological expansion and digital
transformation have made cloud services highly demanded and
used, so knowing how they work and their quality status is vital.
Finally, emerging technologies work in highly heterogeneous
environments, where data exchange is generally carried out
through services. Results are stored in the cloud; this entails
high number of transactions, requiring precision, security, and
other essential quality characteristics to meet customer require-
ments. These technologies are related to the Internet of Things,
intelligent environments, ambient assisted living, and smart
cities. Therefore, the proposed monitoring infrastructure still
needs to be evaluated in other domains.

5. Conclusions and Future Work
This paper has reported the results of a case study aimed at using
a monitoring method and infrastructure (Cloud MoS@RT) to
monitor the quality of cloud services in an AAL environment
that has been deployed on the Heroku platform. We have in-
stantiated our monitoring solution in this platform in order to
be able to monitor any cloud service running in Heroku.

The goal of the case study was to assess the overall quality
of a real-life AAL system aimed at increasing the quality of
life of independently living elderly persons. The system runs
in a heterogeneous environment that contains three layers (i.e.,
edge, fog and cloud). Two domain experts and three developers
involved in the development of this system provided us with
several quality requirements to be monitored.

The results suggest that relevant quality attributes of AAL
systems can be adequately monitored using MoS@RT and that
the report generated by the monitoring infrastructure is useful
for service providers and customers to help them ensure that
cloud services meet the required levels of quality. Those metrics

that do not meet the threshold may represent possible viola-
tions of the negotiated SLA or quality requirements that are not
satisfied. Therefore, the service provider may establish mecha-
nisms for adjusting the service to meet the requirements, while
the consumer may request the corresponding compensations
established in the SLA clauses.

The use of models at runtime provides flexibility and eases
maintainability because changes (e.g., adding a new quality
requirement, changing the measurement function of a metric)
essentially affect the runtime quality model rather than the entire
infrastructure, as is the case with most existing monitoring
solutions.

Current monitoring tools are focused on obtaining low-level
data from the platforms and deployed services. Although this is
necessary, this work goes one step further by creating a layer
between the raw data and their interpreters (i.e., the decom-
position of quality characteristics into subcharacteristics and
quality attributes). This layer is useful as regard managing the
huge amount of low-level data obtained from the platform and
aggregating them to obtain high-level quality characteristics
and attributes, which helps to make more informed decisions to
improve the quality of services.

As future work, we plan to design and execute other case
studies that involve the assessment of other quality characteris-
tics and attributes relevant to the AAL domain. We also envision
several ways to improve our monitoring solution.

Regarding the Configurator, we plan to improve its user inter-
face to provide more guidance to navigate among the different
models. For example, providing means to match the selected re-
quirements from the Monitoring Requirements Model with the
quality attributes and metrics from the SaaS Quality Model. In
addition, since the cloud platform can provide a huge amount of
raw data (and it is rarely well-documented), means are needed
to help evaluators to select the appropriate parameters (e.g.,
performance counters) to define the platform-specific metric.

Regarding the monitoring infrastructure, we plan to study
the self-adaptation capabilities of both the Runtime Quality
Model and the cloud service being monitored due to their causal
connection. When a quality requirement is not fulfilled, the
cloud service could adapt itself instead of simply reporting
the violation. Conversely, if the cloud service is changed, the
Runtime Quality Model could identify the changes and adapt
itself accordingly.

Finally, regarding the Analysis Engine, we plan to develop
an interactive dashboard to support users to choose different
mechanisms to visualize the monitoring results.

6. Acknowledgments
We thank to Fundación Carolina, Universidad de Cuenca, and
Universitat Politècnica de València for their support. This re-
search is supported by the project Fog Computing applied to
monitoring devices used in AAL environments: platform for the
elderly (Research Projects DIUC XVII).

References
Abrahão, S., & Insfran, E. (2017). Models@runtime for

Monitoring Cloud Services through Models at Runtime: A Case in an Ambient Assisted Living Environment 17

monitoring cloud services in google app engine. 2017
IEEE World Congress on Services (SERVICES), 30-35. doi:
10.1109/SERVICES.2017.14

Aceto, G., Botta, A., de Donato, W., & Pescapè, A. (2013).
Cloud monitoring: A survey. Computer Networks, 57(9),
2093-2115. Retrieved from https://www.sciencedirect.com/
science/article/pii/S1389128613001084 doi: https://doi.org/
10.1016/j.comnet.2013.04.001

Achirei, S. D., Zvoristeanu, O., Alexandrescu, A., Botezatu,
N. A., Stan, A., Rotariu, C., . . . Caraiman, S. (2020). Smart-
care: On the design of an iot based solution for assisted living.
2020 International Conference on e-Health and Bioengineer-
ing, 1-4. doi: 10.1109/EHB50910.2020.9280185

Alhamazani, K., Ranjan, R., Jayaraman, P. P., Mitra, K., Liu,
C., Rabhi, F., . . . Wang, L. (2019). Cross-Layer Multi-Cloud
Real-Time Application QoS Monitoring and Benchmarking
As-a-Service Framework. IEEE Transactions on Cloud Com-
puting, 7(1), 48–61. doi: 10.1109/TCC.2015.2441715

Alhamazani, K., Ranjan, R., Mitra, K., Rabhi, F., Jayaraman,
P. P., Khan, S. U., . . . Bhatnagar, V. (2015). An overview of
the commercial cloud monitoring tools: research dimensions,
design issues, and state-of-the-art. Computing, 97(4), 357–
377. doi: 10.1007/s00607-014-0398-5

Baset, S. A. (2012, jul). Cloud slas: Present and future. SIGOPS
Oper. Syst. Rev., 46(2), 57–66. Retrieved from https://doi.org/
10.1145/2331576.2331586 doi: 10.1145/2331576.2331586

CEDIA Web Page. (2022). Retrieved 2022-02-10, from https://
www.cedia.edu.ec/es/

Cedillo, P., Gonzalez-Huerta, J., Abrahao, S., & Insfrán, E.
(2016). A Monitoring Infrastructure for the Quality of Cloud
Services. Harbin, China. doi: 10.1007/978-3-319-30133-4_2

Cedillo, P., Insfran, E., Abrahão, S., & Vanderdonckt, J. (2021).
Empirical evaluation of a method for monitoring cloud ser-
vices based on models at runtime. IEEE Access, 9, 55898-
55919. doi: 10.1109/ACCESS.2021.3071417

Cedillo, P., Jimenez-Gomez, J., Abrahao, S., & Insfran, E.
(2015). Towards a monitoring middleware for cloud services.
2015 IEEE International Conference on Services Computing,
451-458. doi: 10.1109/SCC.2015.68

Cedillo, P., Sanchez, C., Campos, K., & Bermeo, A. (2018). A
systematic literature review on devices and systems for ambi-
ent assisted living: Solutions and trends from different user
perspectives. 2018 International Conference on eDemocracy
eGovernment, 59-66. doi: 10.1109/ICEDEG.2018.8372367

Cristescu, I., Balog, A., & Băjenaru, L. (2020). Quality in use
measures for an aal system for older adults. 12th Interna-
tional Conference on Electronics, Computers and Artificial
Intelligence, 1-4. doi: 10.1109/ECAI50035.2020.9223192

Emeakaroha, V. C., Ferreto, T. C., Netto, M. A. S., Brandic, I.,
& De Rose, C. A. F. (2012). CASViD: Application Level
Monitoring for SLA Violation Detection in Clouds. 36th
Computer Software and Applications Conference, 499–508.
doi: 10.1109/COMPSAC.2012.68

Forooghifar, F., Aminifar, A., & Atienza, D. (2019). Resource-
aware distributed epilepsy monitoring using self-awareness
from edge to cloud. IEEE Transactions on Biomedical
Circuits and Systems, 13(6), 1338-1350. doi: 10.1109/

TBCAS.2019.2951222
Garcés, L., Ampatzoglou, A., Avgeriou, P., & Nakagawa,

E. Y. (2017). Quality attributes and quality models for
ambient assisted living software systems: A systematic
mapping. Information and Software Technology, 82, 121-
138. Retrieved from https://www.sciencedirect.com/science/
article/pii/S0950584916302932 doi: https://doi.org/10.1016/
j.infsof.2016.10.005

Guerron, X., Abrahão, S., Insfran, E., Fernández-Diego, M., &
González-Ladrón-De-Guevara, F. (2020). A taxonomy of
quality metrics for cloud services. IEEE Access, 8, 131461-
131498. doi: 10.1109/ACCESS.2020.3009079

Iorga, M., Feldman, L., Barton, R., Martin, M. J., Goren, N., &
Mahmoudi, C. (2018). Fog Computing Conceptual Model:
Recommendations of the National Institute of Standards and
Technology (Tech. Rep.). USA. Retrieved from https://doi
.org/10.6028/NIST.SP.500-325 doi: 10.6028/NIST.SP.500
-325

ISO/IEC 25010. (2011). ISO/IEC 25010:2011, systems and
software engineering — systems and software quality require-
ments and evaluation (square) — system and software quality
models.

ISO/IEC 25040. (2011). ISO/IEC 25040:2011, systems and
software engineering — systems and software quality require-
ments and evaluation (square) — evaluation process.

Katsaros, G., Kousiouris, G., Gogouvitis, S. V., Kyriazis,
D., Menychtas, A., & Varvarigou, T. (2012). A self-
adaptive hierarchical monitoring mechanism for clouds.
Journal of Systems and Software, 85(5), 1029-1041. Re-
trieved from https://www.sciencedirect.com/science/article/
pii/S0164121211002998 doi: https://doi.org/10.1016/j.jss
.2011.11.1043

Keller, A., & Ludwig, H. (2003). The WSLA framework: Spec-
ifying and monitoring service level agreements for web ser-
vices. Journal of Network and Systems Management, 11(1),
57–81. Retrieved from http://www.springerlink.com/index/
M111304202683828.pdf doi: 10.1023/A:1022445108617

Lehmann, G., Blumendorf, M., Trollmann, F., & Albayrak, S.
(2010). Meta-modeling runtime models. Proceedings of
the 2010 International Conference on Models in Software
Engineering, 209–223.

Liau, C. H., Shen, W. W., & Su, K. P. (2006). Towards a
definition of the Internet of Things (IoT) (Vol. 60; Tech. Rep.
No. 1). IEEE.

Lu, X., Yin, J., Xiong, N. N., Deng, S., He, G., & Yu, H.
(2016). JTangCMS: An efficient monitoring system for cloud
platforms. Information Sciences Journal, 370-371, 402–423.
doi: 10.1016/j.ins.2016.06.009

Modi, K. J., Chowdhury, D. P., & Garg, S. (2018). Automatic
cloud service monitoring and management with prediction-
based service provisioning. International Journal of Cloud
Computing, 7(1), 65–82. doi: 10.1504/IJCC.2018.091684

Muller, C., Oriol, M., Franch, X., Marco, J., Resinas, M., Ruiz-
Cortes, A., & Rodriguez, M. (2014). Comprehensive Explana-
tion of SLA Violations at Runtime. IEEE Transactions on Ser-
vice Computing, 7(2), 168–183. doi: 10.1109/TSC.2013.45

National Academies Press. (2001). The Health of Aging Popu-

18 Cedillo et al.

https://www.sciencedirect.com/science/article/pii/S1389128613001084
https://www.sciencedirect.com/science/article/pii/S1389128613001084
https://doi.org/10.1145/2331576.2331586
https://doi.org/10.1145/2331576.2331586
https://www.cedia.edu.ec/es/
https://www.cedia.edu.ec/es/
https://www.sciencedirect.com/science/article/pii/S0950584916302932
https://www.sciencedirect.com/science/article/pii/S0950584916302932
https://doi.org/10.6028/NIST.SP.500-325
https://doi.org/10.6028/NIST.SP.500-325
https://www.sciencedirect.com/science/article/pii/S0164121211002998
https://www.sciencedirect.com/science/article/pii/S0164121211002998
http://www.springerlink.com/index/M111304202683828.pdf
http://www.springerlink.com/index/M111304202683828.pdf

lations. Retrieved from https://www.ncbi.nlm.nih.gov/books/
NBK98373/

Runeson, P., Höst, M., Rainer, A., & Regnell, B. (2012). Case
Study Research in Software Engineering: Guidelines and
Examples.

Salesforce Company. (2020). Heroku. Retrieved from https://
www.heroku.com/

Shatnawi, A., Orrù, M., Mobilio, M., Riganelli, O., & Mariani,
L. (2018). Cloudhealth: A model-driven approach to watch
the health of cloud services. 1st International Workshop on
Software Health, 40–47. doi: 10.1145/3194124.3194130

Singh, S., Chana, I., & Buyya, R. (2020). STAR: SLA-
aware Autonomic Management of Cloud Resources. IEEE
Transactions on Cloud Computing, 8(4), 1040–1053. doi:
10.1109/TCC.2017.2648788

Stavrotheodoros, S., Kaklanis, N., Votis, K., & Tzovaras, D.
(2018). A smart-home iot infrastructure for the support of
independent living of older adults. Artificial Intelligence
Applications and Innovations, 238–249.

Vora, J., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. J.
(2019). Hridaay: Ballistocardiogram-based heart rate mon-
itoring using fog computing. 2019 IEEE Global Commu-
nications Conference (GLOBECOM), 1-6. doi: 10.1109/
GLOBECOM38437.2019.9013774

Walderhaug, S., Mikalsen, M., Salvi, D., Svagard, I., Ausen, D.,
& Kofod-Petersen, A. (2012). Towards Quality Assurance of
AAL Services. Stud Health Technol Inform, 177, 296–303.

Wang, W., Feng, C., Zhang, B., & Gao, H. (2019). Environ-
mental monitoring based on fog computing paradigm and
internet of things. IEEE Access, 7, 127154-127165. doi:
10.1109/ACCESS.2019.2939017

Yang, G., Jiang, M., Ouyang, W., Ji, G., Xie, H., Rahmani,
A. M., . . . Tenhunen, H. (2018). Iot-based remote pain
monitoring system: From device to cloud platform. IEEE
Journal of Biomedical and Health Informatics, 22(6), 1711-
1719. doi: 10.1109/JBHI.2017.2776351

Yoo, B., Muralidharan, S., Lee, C., Lee, J., & Ko, H. (2019).
Klog-home: A holistic approach of in-situ monitoring in
elderly-care home. 2019 IEEE International Conference
on Computational Science and Engineering (CSE) and
IEEE International Conference on Embedded and Ubiq-
uitous Computing (EUC), 390-396. doi: 10.1109/CSE/
EUC.2019.00080

About the authors
Priscila Cedillo is an Associate Professor at the University of
Cuenca-Ecuador, since 2009. She received a Ph.D. in Computer
Science from the Universitat Politècnica de València (UPV)
in 2017. She obtained research grants from the Senescyt for
her doctoral studies and from the Fundación Carolina for a
postdoctoral research stay at the UPV. She received two mas-
ter’s degrees, the former in Telematics from the Universidad
de Cuenca, and the second in Software Engineering, Informa-
tion Systems, and Formal Methods from the UPV. Her main
research interests include model-driven engineering, cloud com-
puting, software quality, and the Internet of Things (IoT). You

can contact the author at priscila.cedillo@ucuenca.edu.ec.

Silvia Abrahão is an Associate Professor (accredited to Full
Professor) at the Universitat Politècnica de València, Spain. She
has (co)authored over 150 peer-reviewed publications. Her main
research interests include quality assurance in model-driven
engineering, the empirical assessment of software modeling
approaches, software quality, the integration of usability/UX
into software development, and cloud services monitoring and
adaptation. You can contact the author at sabrahao@dsic.upv.es.

Emilio Insfran is an Associate Professor in the Department of
Computer Systems and Computation at the Universitat Politèc-
nica de València, Spain. His research interests are cloud ser-
vice architectures, DevOps, model-driven development, require-
ments engineering, and software quality. He has published more
than 150 journal and conference papers. He has contributed to
more than 20 national and international research and technology
transfer projects, often as principal investigator or project lead.
You can contact the author at einsfran@dsic.upv.es.

Monitoring Cloud Services through Models at Runtime: A Case in an Ambient Assisted Living Environment 19

https://www.ncbi.nlm.nih.gov/books/NBK98373/
https://www.ncbi.nlm.nih.gov/books/NBK98373/
https://www.heroku.com/
https://www.heroku.com/
mailto:priscila.cedillo@ucuenca.edu.ec?subject=Your paper "Monitoring Cloud Services through Models at Runtime: A Case in an Ambient Assisted Living Environment"
mailto:sabrahao@dsic.upv.es?subject=Your paper "Monitoring Cloud Services through Models at Runtime: A Case in an Ambient Assisted Living Environment"
mailto:einsfran@dsic.upv.es?subject=Your paper "Monitoring Cloud Services through Models at Runtime: A Case in an Ambient Assisted Living Environment"

