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Abstract

The performance assessment of companies in terms of sustainability requires to find a balance between multiple and
possibly conflicting criteria. We here rely on composite metrics to rank a set of companies within an industry considering
environmental, social and corporate governance criteria. To this end, we connect intuitionistic fuzzy sets and composite
programming to propose novel composite metrics. These metrics allow to integrate important environmental, social
and governance principles with the gradual membership functions of fuzzy set theory. The main result of this paper
is a sustainability assessment method to rank companies within a given industry. In addition to consider multiple
objectives, this method integrates two important social principles such as maximum utility and fairness. A real-world
example is provided to describe the application of our sustainability assessment method within the motor industry. A
further contribution of this paper is a multicriteria generalization of the concept of magnitude of a fuzzy number.
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1 Introduction

Performance is no longer a single objective problem. Sustainability has become the usual standard for measuring
performance in many industries. The concept of sustainability implies the consideration of environmental, social and
corporate governance criteria (ESG). These general criteria have been materialized by United Nations into a set of
Sustainable Development Goals as a blueprint to achieve a better and more sustainable future for all. They address
global challenges such as poverty, inequality, climate change, environmental degradation, peace and justice. It is likely
that the achievement of some of these criteria may intersect with one another to produce a win-win sustainable situation.
In other cases, conflict between criteria may require to find a compromise solution in the design of public policies
and individual decision-making. Furthermore, corporate claims about sustainability and greenwashing have increased
rapidly in recent years. An example in the automotive industry is the scandal of Wolkswagen in 2015. As a result,
there is a need for assessing sustainability performance. However, we also face some challenges because sustainability
is a multidimensional concept and, at the same time, we usually find problems of reliability in the information used to
measure multiple criteria.

Since the pioneering work by Zadeh [50], fuzzy set theory has been broadly employed in various research fields
involving uncertainty. In recent years, several authors have attempted to expand the classical fuzzy set theory by
developing alternative fuzzy sets (FS) such as: interval-valued fuzzy sets (IVFS) [42, 51], intuitionistic fuzzy sets (IFS)
[5], neutrosophic fuzzy sets (NFS) [40], hesitant fuzzy sets (HFS) [41], picture fuzzy sets (PFS) [16], Pythagorean fuzzy
sets (PFS) [48], hexagonal fuzzy sets (HFS) [35], interval-valued generalized hexagonal fuzzy numbers (IVGHFN) [24],
spherical fuzzy sets [22] or spherical fuzzy Nsoft expert sets [1].

In this paper, we deal with IFS within the context of multicriteria decision making (MCDM). To this end, we
use Intuitionistic Analytic Hierarchy Process (IAHP) combined with novel Intuitionistic Fuzzy Composite Metrics
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(IFCM). An IFS is characterized by a membership function (e.g., the percentage of people who voted for the current
government), but also by a non-membership function (e.g., the percentage of people who voted for other parties outside
the government). As a result, the definition of these two functions results in the consideration a third group of elements,
those not covered by the membership and non-membership functions, hence non-determined (e.g., the percentage of
people who did not vote at all). On the other hand, the Analytic Hierarchy Process (AHP) proposed by [39] provides
a comprehensive framework for solving complex decision problems. Furthermore, fuzzy extensions of AHP (F-AHP)
become an effective tool to sort out such complex situations.

A non-membership function in an IFS describes any fuzzy concept with more neutrality and realism [11]. The main
advantage of an IFS is that it may express more abundant and flexible information as compared with a conventional
fuzzy set. Many recent works used IFS to solve multicriteria fuzzy decision-making problems. [46] proposed an IF
programming method for group decision making, [15] integrated the intuitionistic fuzzy weighted averaging method
and the soft set with imprecise data in multicriteria supplier selection problems, [13] proposed a group decision-making
methodology combining AHP and VIKOR (VIsekriterijumska optimizacija i KOmpromisno Resenje) under an IF envi-
ronment for waste management, [34] developed an IF Additive Ratio Assessment (IF-ARAS) method for multicriteria
personnel selection, and [36] used F-AHP and F-VIKOR and triangular fuzzy numbers for multicriteria group decision
making to deal with the COVID 19 pandemic. The methodology, type of fuzzy sets used and applications of the previous
studies and other related works are summarized in Table 1. However, an important shortcoming of these papers is that,
after the application of fuzzy logic, decision makers are limited by usually rigid multicriteria methodologies that lack of
flexibility and explainability. Here explainability means the ability of parameters of decision-making models to support
the results according to the preferences of decision-makers.

In order to provide flexibility and explainability, we here rely on compromise programming (CP) as one of the
most widely used multiple criteria decision making (MCDM) techniques [8]. The presence of multiple objectives is
common in many areas of research and an equilibrium or compromise solution is sought. CP is based on the concept
of distance to the ideal point, usually infeasible, where the maximum for each criterion is attained [53, 49]. By giving
different values to a parameter in the Minkowski distance function, a number of appealing metrics can be devised to find
compromise solutions, hence offering a higher degree of flexibility and explainability. Moreover, a convex combination
of distances with different parameters [38, 19] leads to composite metrics used to solve MCDM problems by exploiting
the explainable features of different metrics. As an example, the linear metric represents the principle of maximum
utility and the infinite metric represents the principle of maximum fairness [19].

Table 1: Survey on recent works about fuzzy MCDM
Reference Methodology Application
[46] IF programming Electronic commerce
[4] IF-AHP and IF-MOORA Product selection
[18] MOLP and TOPSIS Project portfolio selection
[13] IF-AHP and IF-VIKOR Waste management
[15] IF-WAM-SSM Supplier selection
[3] IF-AHP and IF-VIKOR Logistics operations
[25] IF-AHP and IF-VIKOR Transport
[34] IF-ARAS Personnel selection
[36] F-AHP and F-VIKOR COVID 19
This paper IFCM Sustainability assessment

IF-MOORA: Intuitionistic fuzzy multibjective optimization based on ratio analysis
MOLP: Multiobjective linear programming
IF-WAM-SSM: Intuitionistic fuzzy weighted averaging and soft set method
IFCM: Intuitionistic fuzzy composite metrics

The combination of fuzzy set theory and CP led to the introduction of fuzzy CP [10, 18, 26, 33]. However, there
is a lack of research on the use of IF composite metrics. In this paper, we argue that there is a potential to develop
intuitionistic fuzzy composite metrics to cover a wider range of decisions making problems by combining the generality
of IFS and the explainability of composite programming metrics. More precisely, we here propose two IF composite
metrics as a natural extension of composite programming within an intuitionistic fuzzy environment. To this end, we
rely on the concept of magnitude of a fuzzy number proposed by [21] as a way to rank fuzzy numbers. However, the
notion of magnitude is clearly a bicriteria concept because it combines the mean and the standard deviation in the
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possibilistic context of fuzzy numbers. As a result, we generalize the definition of magnitude of a fuzzy number as a
multicriteria concept that enables us to consider a new way to represent and study fuzzy numbers.

Summarizing, this paper contributes to the development of intuitionistic fuzzy set theory and composite program-
ming by means of:

• A linear-infinite metric combining the principles of maximum utility and maximum fairness.

• A linear-quadratic metric combining the principles of maximum utility and minimum deviation.

• A multicriteria generalization of the concept of magnitude of a fuzzy number.

In addition to this introduction, Section 2 provides useful background on intuitionistic fuzzy set theory. Section 3
describes how to rank alternatives using intuitionistic fuzzy composite metrics. Section 4 illustrates our approach by
means of a case study ranking a set of motor companies. Finally, Section 5 concludes highlighting natural extensions
of this work.

2 Useful background on intuitionistic fuzzy sets

Intuitionistic fuzzy sets was proposed by [5, 6] as a generalization of fuzzy set theory by [50]. In this section, we provide
basic useful background on intuitionistic fuzzy sets that we later use in our proposal of fuzzy composite metrics.

Definition 2.1. Let X be a non-empty set, the intuitionistic fuzzy set Ã is expressed as:

Ã = {⟨x, µÃ(x), vÃ(x)⟩|x ∈ X}. (1)

In set X, µÃ(x) and vÃ(x) are, respectively, the degree of membership and non-membership of element x to Ã,
defined as follows:

µÃ : X → [0, 1] . (2)

vÃ : X → [0, 1] , (3)

which satisfy the condition:
0 ≤ µÃ + vÃ ≤ 1. (4)

As a result, an ordinary fuzzy set can be expressed as:

{⟨x, µÃ(x), 1− µÃ(x)⟩|x ∈ X}. (5)

Definition 2.2. Let Ã be an intuitionistic fuzzy set. The value πÃ(x) is called the degree of hesitancy (or uncertainty)

of element x belongs to Ã in X:
πÃ(x) = 1− µÃ(x)− vÃ(x). (6)

We can express the degree of membership and non-membership by means of triangular intuitionistic fuzzy numbers
(TIFN) as proposed by [27].

Definition 2.3. A TIFN Ã = ⟨(a, a, a), wÃ, uÃ⟩ is a special intuitionistic fuzzy set on a real number set R, whose
membership function µÃ and non-membership function vÃ are defined as follows:

µÃ =


x−a
a−awÃ if a ≤ x < a,

wÃ if x = a,
a−x
a−awÃ if a < x ≤ a,

0 if x < a or x > a.

(7)

vÃ =


a−x+(x−a)uÃ

a−a if a ≤ x < a,

uÃ if x = a,
x−a+(a−x)uÃ

a−a if a < x ≤ a,

1 if x < a or x > a.

(8)
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Values wÃ and uÃ represent the maximum degree of membership and the minimum degree of non-membership,
respectively, which satisfy the following inequalities:

0 ≤ wÃ ≤ 1. (9)

0 ≤ uÃ ≤ 1. (10)

0 ≤ wÃ + uÃ ≤ 1. (11)

A TIFN can express a higher degree of uncertainty than an ordinary triangular fuzzy number. Furthermore, the
usual arithmetical operations over triangular fuzzy numbers can be generalized to TIFNs. The definitions of possibilistic
mean M(Ã) and possibilistic standard deviation σ(Ã) of a TIFN are necessary for the understanding of our approach
[14, 21, 45].

Definition 2.4. The possibilistic mean of a TIFN Ã = ⟨(a, a, a), wÃ, uÃ⟩ is given by:

M(Ã) =
Mµ(Ã) +Mv(Ã)

2
, (12)

where Mµ(Ã) is the possibilistic mean of the membership function and Mv(Ã) is the possibilistic mean of the non-
membership function computed as follows:

Mµ(Ã) =
1

6
(a+ 4a+ a)wÃ. (13)

Mv(Ã) =
1

6
(a+ 4a+ a)(1− uÃ). (14)

Definition 2.5. Given a TIFN Ã = ⟨(a, a, a), wÃ, uÃ⟩, the possibilistic standard deviation of a Ã is given by:

σ(Ã) =
σµ(Ã) + σv(Ã)

2
, (15)

where σµ(Ã) is the possibilistic standard deviation of the membership function and σv(Ã) is the possibilistic standard
deviation of the non-membership function computed as follows:

σµ(Ã) =
1√
24

(a− a)
√
wÃ. (16)

σv(Ã) =
1√
24

(a− a)
√
(1− uÃ). (17)

In order to establish direct comparisons between a pair of TIFNs, different distance functions can be applied [20].
In addition, [21] introduced the concept of magnitude Mag(Ã) of a fuzzy number that we here particularize for a TIFN:

Definition 2.6. Given a TIFN Ã = ⟨(a, a, a), wÃ, uÃ⟩, its magnitude Mag(Ã) is expressed by:

Mag(Ã) = M(Ã) + σ(Ã), (18)

where M(Ã) is the possibilistic mean and σ(Ã) is the standard deviation of Ã.

The use of a measure such as the magnitude of a fuzzy number presents some advantages such as integrity of ordering
relation, transitivity of ordering relation and independence of irrelevant fuzzy numbers [21]. The mean and the standard
deviation have the same dimension and the resulting scalar value can be used to rank fuzzy numbers. As a result, it is
a synthetic measure that allows direct comparisons to rank alternatives by means of TIFN.
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3 Ranking alternatives using intuitionistic fuzzy composite metrics

In this section, we first introduce basic concepts of compromise programming and we also describe how compromise
programming can be extended by means of different composite metrics derived from the crucial notion of distance. We
rely on distances between fuzzy numbers computed by means of the concept of magnitude, which we here generalize as
a multicriteria concept.

3.1 From compromise programming to composite metrics

Multiple criteria decision making (MCDM) techniques aim to solve the conflict among many different and possibly non-
commensurate objectives by finding an equilibrium solution. Compromise Programming (CP) is an MCDM technique
based on the concept of distance to the ideal point, usually infeasible, where the maximum for each criterion is attained
[49, 53].

By assuming that we want to maximize all criteria, we can use the following normalization for each criterion x:

yj =
gj(x)− gj,min

gj,max − gj,min
, (19)

where gj,max and gj,min are, respectively, the maximum and minimum value achievement as measured by gj(x) ob-
jective function. As a result, all criteria achievements are restricted to the interval [0, 1]. By combining all criteria
measurements, the ideal point in a bicriteria space is given by y∗ = (1, 1) and the anti-ideal point by y∗ = (0, 0).
Finally, the Zeleny’s axiom of choice stating that alternatives that are closer to the ideal point are preferred to those
that are further is used to select alternatives. To this end, the Minkowski distance function of order p from any point
y ∈ Rq to the ideal point is used as a loss function to be minimized:

Lp =

 q∑
j=1

ρpj |1− yj |p
1/p

, (20)

where q is the number of criteria under consideration and ρj is the weight attached to the j-th criterion.
By setting parameter p in the Minkowski distance function to different values, a number of appealing metrics can

be devised to find compromise solutions with a different degree of balance:

1. The linear metric (p = 1) implies full compensability among achievements for different criteria and tends to
produce more unbalanced solutions:

L1 =

q∑
j=1

ρj(1− yj). (21)

2. The quadratic metric (p = 2) considers the Euclidean distance the ideal point and compensability among criteria
is reduced because large deviations are squared:

L2 =

 q∑
j=1

ρ2j (1− yj)
2

1/2

. (22)

3. The infinite metric (p = ∞) only considers the weighted maximum deviation from the ideal:

L∞ = lim
p→∞

 q∑
j=1

ρpj (1− yj)
p

1/p

= max
j

[ρj(1− yj)] . (23)

By considering a convex combination of the linear and infinite metric, composite programming has been proposed
as a suitable way to include not only one metric but two in the selection of the best alternative [2, 19, 38]:

L1,∞ = λ

q∑
j=1

ρj(1− yj) + (1− λ)max
j

[ρj(1− yj)] , (24)
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where parameter λ ∈ [0, 1] controls the degree in which the linear term is more important than the infinite term.
Following a different approach, [7] proposed a linear quadratic composite metric for utility functions with non-null

second derivative such as the Cobb-Douglas utility function. Along the lines of equation (24), a straightforward way
to overcome this limitation is the use of a convex combination of the linear and quadratic losses encoded in equations
(21) and (22):

L1,2 = λ

q∑
j=1

ρj(1− yj) + (1− λ)

 q∑
j=1

ρ2j (1− yj)
2

1/2

. (25)

3.2 Generalized magnitude of fuzzy numbers

The notion of magnitude from Definition 2.6 is clearly a bicriteria concept including the possibilistic mean and the
standard deviation as critical dimensions. Furthermore, the possibilistic mean and standard deviation are also related
to the parameters of value and ambiguity in [17]. This fact motivates us to generalize its definition as a multicriteria
concept.

Definition 3.1. Given a generalized fuzzy number Ã, its multicriteria magnitude MMag(Ã) is expressed by:

MMag(Ã) = f(x1(Ã), x2(Ã), . . . , xm(Ã)), (26)

where f(x1(Ã), x2(Ã), . . . , xm(Ã)) is a function f : Rm → R considering an m-dimensional set of features of Ã, denoted
by x1(Ã), x2(Ã), ..., xm(Ã).

Note that when x1(Ã) is the possibilistic mean of Ã, x2(Ã) is the possibilistic standard deviation of Ã, and the rest
of features up to m are null, the multicriteria magnitude corresponds to the initial definition of magnitude proposed in
[21] if f(·) is an additive function. Two features are often enough to describe a fuzzy number [17], but the concept of
multicriteria magnitude is able to include as many other features as required to a thorough description. Some examples
of these other features are the maximum and minimum support values of membership functions. Other examples are
measures of kurtosis or skewness of fuzzy numbers in a similar way as in probability distributions. Finally, the concept of
multicriteria magnitude in Definition 3.1 allows users to attach a different weight to each of the parameters or aspects
included in its mathematical expression. There is no need to assume that the possibilistic mean and the standard
deviation have the same importance in all cases. On the contrary, a decision maker may consider that the mean value
is twice more important than the spread of a fuzzy number.

3.3 Intuitionistic fuzzy composite metrics

In this section, we propose to build the intuitionistic fuzzy counterparts of equations (24) and (25). To this end, we
use distances or deviations computed based on the concept of generalized magnitude of a fuzzy number. The rationale
behind our approach is that composite metrics described in Section 3.1 are indeed deviations from an ideal point.

Let us first assume that the ideal point can be represented as the following TIFN:

γ+ = ((1, 1, 1), 1, 0). (27)

Next, we define a distance function d(γ+, ỹj) measuring the deviation from the ideal (γ+) to any fuzzy achievement
(ỹj) based on the concept of magnitude from equation (18) as particular case of Definition 3.1:

d(γ+, ỹj) = |Mag(γ+)−Mag(ỹj)| = |M(γ+) + σ(γ+)−M(ỹj)− σ(ỹj)|. (28)

From Definitions 2.4 and 2.5 and equation (28), we next derive the triangular intuitionistic fuzzy counterparts of
the linear-infinite and linear-quadratic composite metrics. First, we compute the the possibilistic mean and standard
deviation of ỹj = ((y

j
, yj , yj), wỹj , uỹj ):

M(ỹj) =
1

12
(y

j
+ 4yj + yj)(1− uỹj + wỹj ), (29)

σ(ỹj) =
(yj − y

j
)

2
√
24

(
√
wỹj +

√
1− uỹj ). (30)
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Since Mag(γ+) = M(γ+) + σ(γ+) = 1 + 0 = 1, we can compute the distance from the ideal γ+ to any TIFN ỹj by
means of the following expression:

d(γ+, ỹj) = 1− 1

12
(y

j
+ 4yj + yj)(1− uỹj

+ wỹj
)−

(yj − y
j
)

2
√
24

(
√
wỹj

+
√
1− uỹj

). (31)

As a result, if the achievement for each goal is measured by a TIFN ỹj , the composite linear-infinite loss function
described in equation (24) can be expressed as follows:

L1,∞ = λ

q∑
j=1

ρjd(γ
+, ỹj) + (1− λ)max

j

[
ρjd(γ

+, ỹj)
]
. (32)

The intuitionistic fuzzy linear-infinite composite metric presents the advantage of integrating two important social
principles such as maximum utility and fairness as suggested by [19]. Furthermore, by incorporating fuzzy set theory,
we benefit from the the ability of gradual membership and non-membership functions to support multiple criteria
decision-making with sufficient generality.

Similarly, the composite linear-quadratic loss function described in equation (25) can be expressed as:

L1,2 = λ

q∑
j=1

ρjd(γ
+, ỹj) + (1− λ)

 q∑
j=1

ρ2jd(γ
+, ỹj)

2

1/2

. (33)

The intuitionistic fuzzy linear-quadratic composite metric combines the notion of maximum utility and minimum
deviation by relying on a convex combination of intuitionistic fuzzy distance functions to a multidimensional ideal point.

Assuming that we know the priorities for each indicator, we are in a position to rank alternatives by means of the
intuitionistic fuzzy composite metrics. To this end, we propose the following steps:

Step 1 Quantification. We first obtain a set of crisp indicators representing criteria and subcriteria in either a flat or
a hierarchical structure. Each indicator is a quantitative measure assessing the degree in which a particular attribute
is fulfilled. For instance, the environmental performance of a given company.

Step 2 Normalization. In order to avoid meaningless comparison among indicators, we normalize the set of indica-
tors. Several normalization techniques in a multiple criteria decision making context can be found in [52] and [43]

Step 3 Construction of the decision matrix. We construct a normalized fuzzy decision matrix by setting each
element of the matrix to a fuzzy number. In the case of TIFN, values wỹj and uỹj are estimated according to the degree
of reliability introduced by the quality of information provided by each indicator.

Step 4 Ranking. Finally, we use a intuitionistic fuzzy composite metric to derive a ranking of alternatives.
In what follows, we take advantage of these composite metrics to illustrate our intuitionistic fuzzy approach to rank

alternatives.

4 Case study: sustainability performance assessment of motor companies

In this case study, we aim to rank the performance of the main motor companies worldwide. To this end, we select
firms with more than USD 100,000 million in 2019 revenues as summarized in Tables 4, 5, 6 and 7.

4.1 Motivation, criteria, structure and priorities

As mentioned in the introduction, sustainability has become the usual standard for measuring performance in many
industries. The concept of sustainability implies the consideration not only of economic aspects but also the con-
sideration of environmental, social and corporate governance criteria. Then, we are dealing with a multiple criteria
decision-making problem in which we must find a balance among the different criteria under consideration when seeking
a compromise solution.

On the other hand, the motor industry is one of the most relevant industries around the world [23, 31]. In addition,
the motor industry is a key player in the environmental impact due to global warming emissions. As a result, the
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main reason to select the motor industry in our sustainability performance assessment method is that we consider this
industrial sector a big influencer in the sustainability of the global economic system.

In this study, we consider both financial and non-financial criteria to represent the multidimensional concept of
sustainability. Financial criteria include aspects such as solvency, profitability, cash-flow and liquidity. These indicators
provide useful information about critical aspects to assess the financial situation of a company and are commonly
used in the corporate finance and financial analysis literature [9, 12, 32, 37]. We obtain data from the public financial
statements of the selected motor companies. On the other hand, we obtain non-financial criteria from EIKON-Thomson
Reuters database. Along the lines of the selection of the financial criteria, the set of non-financial criteria are assumed
to faithfully represent the environmental, social and government performance for assessment and comparative purposes.
The full list of criteria, subcriteria and 26 indicators is as follows:

1. Non-financial

(a) Environmental (E)

i. Resource Use (E1)

ii. Emissions (E2)

iii. Environmental innovation (E3)

(b) Social (S)

i. Workforce (S1)

ii. Human rights (S2)

iii. Community (S3)

iv. Product responsibility (S4)

(c) Governance (G)

i. Management (G1)

ii. Shareholders (G2)

iii. CSR strategy (G3)

2. Financial

(a) Solvency (SO)

i. Liability to assets ratio (SO1)

ii. Debt to equity ratio (SO2)

iii. Net debt to EBITDA ratio (SO3)

iv. Interest expense to revenue ratio (SO4)

(b) Profitability (P)

i. ROA (P1)

ii. ROE (P2)

iii. Assets turnover (P3)

iv. Operating margin (P4)

(c) Cash-flow (CF)

i. Net income to cash operating activities (CF1)

ii. Debt to cash operating activities (CF2)

iii. Liabilities to cash operating activities (CF3)

(d) Liquidity (L)

i. Current ratio (L1)

ii. Quick ratio (L2)

iii. Average inventory days (L3)

iv. Average receivables days (L4)

v. Average payable days (L5)
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In order to establish the priorities for criteria and subcriteria we follow the next steps:

Step 1: Representation of expert opinions. We ask three experts to express their opinions about the importance
of criteria and subcriteria following an Intuitionistic Fuzzy Analytic Hierarchy Process Approach (IF-AHP) as described
in [47]. These opinions are represented as an intuitionistic fuzzy evaluation value r̃ijk = (µrijk , vrijk) according to the
linguistic scale summarized in Table 2. Other values between 0 and 1 can be used to express any intermediate preference
between two consecutive linguistic scales. In words, r̃ijk = (µrijk , vrijk) represents the judgment about the preference
of criterion i over criterion j as expressed by expert k.

Step 2: Aggregation of priorities. The information provided by the experts is aggregated according to the following
expression:

r̃ij = (
1

3

3∑
k=1

µrijk ,
1

3

3∑
k=1

vrijk). (34)

Table 2: IF-AHP semantics
Scale Linguistic scales
0.1 Extremely not preferred
0.2 Very strongly not preferred
0.3 Strongly not preferred
0.4 Moderately not preferred
0.5 Equally preferred
0.6 Moderately preferred
0.7 Strongly preferred
0.8 Very strongly preferred
0.9 Extremely preferred

Step 3: Priority calculation. In order to compute priority vector ω = (ω1, ω2, . . . , ωn), we use the linear programming
model Optima Priority Optimization (OPO) described in [28]. This model elicits exact priorities from the matrix of
intuitionistic fuzzy preferences relations (IFPR).

max τ

1− [(0.42− 1)ω1 + 0.42ω2] ≥ τ

1− [(0.67− 1)ω1 + 0.67ω3] ≥ τ

1− [(0.67− 1)ω2 + 0.67ω3] ≥ τ

1− [0.55ω1 + (0.55− 1)ω2] ≥ τ

1− [0.30ω1 + (0.30− 1)ω3] ≥ τ

1− [0.32ω2 + (0.32− 1)ω3] ≥ τ

0 ≤ ωi ≤ 1 i = 1, 2, 3.

3∑
i=1

ωi = 1.

(35)

The optimal solution for program (35) is ω∗ = (0.37, 0.44, 0.19) with objective function value τ∗ = 0.9938 ≈ 1. This
result implies complete consistency for the non-financial criteria.

Step 4: Consistency checking. In pairwise comparisons, inconsistent preference relations can generate misleading
results. In case of values of τ∗ far below one, experts should be asked again in order to repair the inconsistency of
the preferences until an acceptable value is obtained. However, it is possible that experts refuse to be re-checked and
inconsistency can be repaired automatically following the algorithm proposed by [47].

Step 5: Global priority vector. In our case study, the optimal priority vector for categories is given by:

ω∗ = (ω∗
F , ω

∗
NF ), (36)
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ω∗
NF = (ω∗

E , ω
∗
S , ω

∗
G), (37)

ω∗
F = (ω∗

SO, ω
∗
P , ω

∗
CF , ω

∗
L). (38)

In addition, each indicator Ij has local priority vector ωjIj for each subcriteria j ∈ {E,S,G, SO, P,CF,L}:

ω∗
j = (ω∗

j1, ω
∗
j2, . . . , ω

∗
jIj ). (39)

We obtain the global weight of indicator Ij for subcriteria j by multiplying priorities for each criteria, subcriteria
and indicator:

ω∗ = (ω∗
1, ω

∗
2, . . . , ω

∗
26), (40)

with:
26∑
c=1

ω∗
c = 1. (41)

As an example, global priority value for indicator Workforce (S1) is computed as follows:

ω∗
S1 = ω∗

NF · ω∗
S · ω∗

S1 = 0.358 · 0.437 · 0.254 = 0.040. (42)

Summarizing, local and global weights and consistency indexes are shown in Table 3. Consistency indexes are not
shown for economy of space but all values are above 0.98.

Table 3: Local and global weights.
Criteria ω∗ Subcriteria ω∗

j Indicator ω∗
jIj

ω∗
c

NF 0.358

E 0.369
E1 0.248 0.033
E2 0.261 0.035
E3 0.491 0.065

S 0.437
S1 0.254 0.040
S2 0.357 0.056
S3 0.180 0.028
S4 0.209 0.033

G 0.194
G1 0.619 0.043
G2 0.232 0.016
G3 0.149 0.010

F 0.642

SO 0.417

SO1 0.366 0.098
SO2 0.240 0.064
SO3 0.201 0.054
SO4 0.192 0.052

P 0.289

P1 0.355 0.066
P2 0.329 0.061
P3 0.164 0.030
P4 0.152 0.028

CF 0.119
CF1 0.489 0.037
CF2 0.232 0.018
CF3 0.279 0.021

L 0.174
L1 0.327 0.037
L2 0.237 0.027
L3 0.173 0.019
L4 0.151 0.017
L5 0.112 0.013
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4.2 Ranking alternatives

Once we know the priorities for each indicator, we are in a position to derive a ranking for motor companies by means
of the intuitionistic fuzzy composite metrics proposed in Section 3.3. To this end, we use the following steps:

Step 1: Quantification. The set of crisp indicators is obtained and denoted by igct where g = 1, 2, . . . , 9 indexes the
set of firms, c = 1, 2, . . . , 26 indexes the set of indicators, and t = 1, 2, 3 indexes the years under consideration, namely,
2017, 2018 and 2019.

Step 2: Normalization. The set of crisp indicators is normalized by means of equation (19) to obtain normalized
indicators ngct.

Step 3: Construction of the decision matrix. A normalized fuzzy decision matrix Ñ is built by setting element
ñgc to the following TIFN:

ñgc = ((min
t

ngct,
1

3

3∑
t=1

ngct,max
t

ngct), wñgc , uñgc). (43)

Values wñgc and uñgc are estimated according to the degree of reliability of each indicator. In our case study, we
obtain the set of non-financial indicators from EIKON database provided by Thomson Reuters. These indicators are not
verified by any third party institution. There is no commonly accepted method of measuring sustainability. In addition
to lack of transparency, corporate social responsibility evaluations present weaknesses such as full compensability of high
scores for one domain with low scores in another domain [44]. Concerns about reliability of the information provided
due to eventual greenwashing practices add more difficulties. As a result, it seems reasonable to set wñgc = 0.7 and
uñgc = 0.2 in the case of non-financial indicators (c = 1, 2, . . . , 10).

On the other hand, financial indicators have been retrieved from accounting public information under the control
of supervising authorities or, more specifically, of the stock market regulator in the case of listed companies such as
Volkswagen and Ford. As a result, it seems reasonable to set wñgc = 0.9 and uñgc = 0.05 in the case of financial
indicators (c = 11, 12, . . . , 26).

Step 4: Ranking. By means of the intuitionistic fuzzy composite metrics introduced in Section 3.3, a ranking of
motor companies is derived. More precisely, we use the linear-infinite composite metric encoded in equation (32) and
the linear-quadratic metric encoded in equation (33). In addition, we use different values of parameter λ to analyze its
impact in the final ranking. We also control the impact of degree of reliability about the quality of the information by
considering cases: a) full reliability wñgc = 1 and uñgc = 0; and b) some degree of reliability expressed by wñgc ̸= 1 and
uñgc

̸= 0.
In Table 4, we present the ranking results when using the linear-infinite composite metric for different values of

parameter λ and in the case of full reliability (wñgc
= 1 and uñgc

= 0). In general, we observe a correlation between
the rankings for different values of λ. However, we must highlight that when we overweight utility and underweight
fairness (λ = 0.75), Honda is no longer the first in the ranking but Stellantis is.

Table 4: Linear-infinite composite metric ranking with full reliability
Company L1,∞ Rank L1,∞ Rank L1,∞ Rank

(λ = 0.25) (λ = 0.5) (λ = 0.75)
Volkswagen 0.255 6 0.370 7 0.484 7
Toyota 0.200 3 0.293 3 0.386 3
Daimler 0.237 5 0.341 5 0.444 4
Ford 0.270 9 0.379 9 0.487 8
Honda 0.179 1 0.261 1 0.343 2
GM 0.256 7 0.363 6 0.470 6
Stellantis 0.188 2 0.265 2 0.342 1
SAIC 0.258 8 0.375 8 0.493 9
BMW 0.236 4 0.340 4 0.444 5

In Table 5, we present the ranking results when using the linear-infinite composite metric for different values of
parameter λ and in the case of a given degree of reliability (wñgc ̸= 1 and uñgc ̸= 0). Again, we observe a strong cor-
relation between the rankings for different values of λ. However, when we overweight utility and underweight fairness
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Table 5: Linear-infinite composite metric ranking with a degree of reliability
Company L1,∞ Rank L1,∞ Rank L1,∞ Rank

(λ = 0.25) (λ = 0.5) (λ = 0.75)
Volkswagen 0.196 7 0.330 6 0.464 7
Toyota 0.154 3 0.262 3 0.370 3
Daimler 0.186 5 0.307 5 0.427 5
Ford 0.221 9 0.346 9 0.471 8
Honda 0.141 1 0.236 1 0.330 2
GM 0.209 8 0.332 7 0.454 6
Stellantis 0.152 2 0.241 2 0.330 1
SAIC 0.192 6 0.332 8 0.471 9
BMW 0.182 4 0.304 4 0.426 4

(λ = 0.75), the differences between the first and the second position in the ranking reduces to a minimum.

By comparing Tables and 4 and 5, we observe a different ranking for the three values of parameter λ. These results
show that the introduction of some degree of reliability in the quality of the information expressed by a TIFN has
an impact in the ranking. Changes are not radical but remarkable, specially for those companies whose positions in
the ranking changed. In the case of a limited number of companies applying for public funds, this change may be relevant.

In Table 6, we present the ranking results when using the linear-quadratic composite metric for different values of
parameter λ in the case of full reliability (wñgc = 1 and uñgc = 0). We find no difference in the first two companies of the
ranking (Honda and Stellantis) with respect to the linear-infinite composite metric. However, we observe differences in
the case of the worst companies of the ranking (Ford and SAIC). When using the linear-quadratic metric, Ford improves
its ranking when utility is overweighed.

Table 6: Linear-quadratic composite metric ranking with full reliability
Company L1,2 Rank L1,2 Rank L1,2 Rank

(λ = 0.25) (λ = 0.5) (λ = 0.75)
Volkswagen 0.224 6 0.317 7 0.410 7
Toyota 0.164 3 0.235 3 0.306 3
Daimler 0.204 5 0.282 4 0.361 4
Ford 0.242 9 0.328 8 0.415 8
Honda 0.141 1 0.199 1 0.257 2
GM 0.225 7 0.309 6 0.394 6
Stellantis 0.151 2 0.200 2 0.250 1
SAIC 0.241 8 0.350 9 0.458 9
BMW 0.203 4 0.283 5 0.364 5

In Table 7, we present the ranking results when using the linear-quadratic composite metric for different values
of parameter λ in the case of presence some degree of reliability (wñgc ̸= 1 and uñgc ̸= 0). When using the linear-
quadratic metric with reliability, Stellantis is the best company in the ranking when utility has the same importance
as deviation (λ = 0.5) and when utility is overweighed (λ = 0.75). On the contrary, Honda loses the first position.
Again, the introduction of a degree of reliability results in a different ranking with the exception of the case for λ = 0.75.

In sum, these results show that different composite metrics reflecting different social principles (utility, fairness and
deviation) and the introduction of degree of reliability may have an impact in the ranking results. As a result, we argue
that the definition of an intuitionistic fuzzy composite metric must consider all the aspects described in this paper when
ranking alternatives.
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Table 7: Linear-quadratic composite metric ranking with a degree of reliability
Company L1,2 Rank L1,2 Rank L1,2 Rank

(λ = 0.25) (λ = 0.5) (λ = 0.75)
Volkswagen 0.170 6 0.281 6 0.392 7
Toyota 0.129 3 0.212 3 0.295 3
Daimler 0.158 5 0.252 5 0.345 4
Ford 0.197 9 0.299 8 0.400 8
Honda 0.113 1 0.180 2 0.247 2
GM 0.184 8 0.282 7 0.380 6
Stellantis 0.120 2 0.180 1 0.240 1
SAIC 0.180 7 0.309 9 0.438 9
BMW 0.153 4 0.250 4 0.348 5

4.3 Discussion and insights

From the results of this case study, we find that fuzzy composite metrics represent a suitable option to introduce
flexibility and to enhance explainability and meaning in fuzzy MCDM. By ranking alternatives using a distance function
to the ideal point in a multidimensional space, we need to define a particular function. For instance, the TOPSIS method
is based on the relative closeness to the ideal solution using the Euclidean distance function (p = 2) in equation (20)).
Similarly, the VIKOR method is based on a weighted average of the Manhattan distance (p = 1 in equation (20)) and the
Tchebychev distance (p = ∞ in equation (20)). However, previous works such as [13] and [36] used intuitionistic fuzzy
methods to solve multiple criteria decision-making problems restricted to a given metric and without considering critical
principles that support the whole decision-making process. As a result, the set of intuitionistic fuzzy composite metrics
used in this paper are an extension of TOPSIS and VIKOR [30] approaches that provide flexibility and explainability
to the decision-making process within a fuzzy environment.

On the flexibility side, we allow practitioners not only to select among any possible combination of p = 1 and
p = ∞ using the linear-infinite composite metric, but also among any possible combination of p = 1 and p = 2 using
the linear-quadratic composite metric. Other possible combination of particular values of p would lead to alternative
composite metrics. As a result, the water resource planning problem described in [29], the waste management case
study in [13], or the prioritizing of pandemic prevention strategies in [36] could be enhanced by considering alternative
composite metrics according to the decision-making principles integrated in these metrics. This reasoning leads us to
the explainability advantages introduced by our composite metrics.

On the explainability perspective, the selection of any particular combination of the metrics proposed in this paper
implies the use of different decision-making principles. According to [38] and [19], by using the linear-infinite metric,
decisions will cover the whole range starting from the principle of maximum utility (p = 1) and ending in the maximum
fairness principle (p = ∞). On the other hand, by using the linear-quadratic metric, decisions will be made on the
vicinity of maximum utility because parameter p is restricted to values 1 and 2. However, the linear term pursues
achievement while the quadratic one pursues more balanced solutions [7], by minimizing the squared deviation to the
ideal point. These principles support decision-makers in the sense that they are allowed to integrate critical aspects such
as achievement or utility (p = 1), deviation or imbalance (p = 2), fairness or maximum regret minimization (p = ∞).

As a result, by providing an expression of these composite metrics within an IF environment, we move one step
further in generality to cover a wider range of decision-making situations. In addition, decision-makers have now
the possibility to add meaning to the selection of alternatives by integrating critical principles in the decision-making
process.

5 Concluding remarks

In this paper, we have introduced intuitionistic fuzzy composite metrics as a natural way to combine the generality
of fuzzy set theory and the explainability of composite metrics derived from compromise programming. Most of the
existing compromise programming methods rank alternatives based on crisp numbers and a single distance function.
To develop more general decision-making tools, we propose a composite metric by integrating the linguistic features
expressed in the form of an intuitionistic fuzzy number and compromise programming.

This paper contributes to enhance existing knowledge in two different ways. On the one hand, we describe a method
on how to rank alternatives by means of intuitionistic fuzzy composite metrics. By means of an illustrative case study
about the motor industry, we show how analysts and practitioners can use this method in practice. With respect to
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other ranking methods, fuzzy composite metrics result in two main advantages. On the one hand, we can express basic
principles such as maximum utility and fairness, and minimum absolute deviations by a convex combination of distance
functions to a multidimensional ideal point. On the other hand, by proposing the intuitionistic fuzzy counterpart of usual
composite metrics, we allow to control for the degree of reliability of the information included in common sustainability
reports. In order to allow the application of our proposal, we describe the main steps to follow. For simplicity, we
here consider control parameter λ in an intuitionistic fuzzy composite metric as a crisp number. However, the analysis
described in this paper can be easily extended to consider parameter λ as an intuitionistic fuzzy number.

Summarizing, we here propose the connection of intuitionistic fuzzy numbers with compromise programming by
means of two composite metrics: a linear-infinite metric combining the principles of maximum utility and maximum
fairness; and a linear-quadratic metric combining the principles of maximum utility and minimum deviation. We then
use these metrics as a key element for a new method to rank alternatives in terms of sustainability considering multiple
criteria such as environmental, social and corporate governance criteria.

A further contribution of this paper is a multicriteria generalization of the concept of magnitude of a fuzzy number.
This general concept is applicable to each type of fuzzy number (ordinary, Pythagorean, neutrosophic, spherical, ...)
and allows researchers and practitioners to design new features to better represent fuzzy numbers in a synthetic but
informative way. Finally, we consider that engineering new expressions of the concept of magnitude to adapt the
representation of a fuzzy number in a specific context is an interesting future line of research.
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