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Abstract: The need for effective freight and human transportation systems has consistently increased
during the last decades, mainly due to factors such as globalization, e-commerce activities, and mo-
bility requirements. Traditionally, transportation systems have been designed with the main goal of
reducing their monetary cost while offering a specified quality of service. During the last decade,
however, sustainability concepts are also being considered as a critical component of transportation
systems, i.e., the environmental and social impact of transportation activities have to be taken into
account when managers and policy makers design and operate modern transportation systems,
whether these refer to long-distance carriers or to metropolitan areas. This paper reviews the existing
work on different scientific methodologies that are being used to promote Sustainable Transportation
Systems (STS), including simulation, optimization, machine learning, and fuzzy sets. This paper
discusses how each of these methodologies have been employed to design and efficiently operate
STS. In addition, the paper also provides a classification of common challenges, best practices, future
trends, and open research lines that might be useful for both researchers and practitioners.

Keywords: transportation systems; sustainability; simulation; optimization; machine learning

1. Introduction

The United Nations defines sustainable development as the development that meets
the needs of the present without compromising the ability of future generations to meet
their own needs [1]. To achieve sustainable development, we need to harmonize economic
growth, social inclusion and environmental protection. In fact, ensuring energy security,
mitigating climate change, and improving air quality in the most populated areas (urban ar-
eas) has become one of the main concerns of governments. One of the sectors that have
a significant impact on the above problems is the transportation sector [2,3]. The main
challenge for a transportation system to be sustainable is how to design it so that it is
economically viable, benefits all people—especially those whose livelihoods depend on a
good transportation system—and is environmentally friendly. Sustainable transportation
plays a fundamental role in the socio-economic development of a country and considers
three different dimensions: economic development, environmental preservation, and so-
cial development [4]. Obviously, these dimensions are not isolated, they are interrelated
with each other, which not only adds complexity to the system [5], but also forces the
decision-making process to be done in an integrative way, i.e., encompassing the three
aforementioned dimensions. More specifically, a sustainable transportation system is es-
sential to guarantee: (i) mobility and efficient access for all users, thus promoting equity
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among citizens; (ii) a safe and environmentally friendly mode of transportation; (iii) an
economically sustainable system; and (iv) public health, since high levels of pollution in
cities have been associated with serious health problems, i.e., cardio-respiratory morbidity,
mortality, and cancer [6,7].

This variety of dimensions can also be observed in the main group of stakeholders
(i.e., government, users, and the community). In this regard, Li et al. [8] consider that
the implementation of sustainable practices covers not only the social considerations of
the final users, but also the health and safety issues of the whole community. Further-
more, the implementation of good practices is promoted by the governments themselves,
who can see how the new paradigm can bring benefits to citizens, improving their quality
of life, and favoring the survival of companies.

The decisions related to sustainable transportation boosted by governments and legis-
lators are also diverse in their nature, and in recent years their focus has been on alleviating
traffic congestion in highly urbanized areas and on developing alternative transportation
systems to traditional ones that minimize the emission of pollutants, e.g., the implementa-
tion of policies that favor the use of bicycles or public transport. All these strategies and
decisions go through the identification of user preferences regarding communication routes,
transportation methods, and consumption habits, among others. That is why the use of
tools such as simulation, optimization, and machine learning, is a fundamental aid for the
decision-making process [9]. Figure 1 shows the time evolution, since 2010, of the number
of Scopus-indexed articles that contain in their title or abstract the combination of words
“sustainable transportation” (or “sustainable transportation”) and each of the following
combinations: “machine learning” or “artificial intelligence”, “optimization”, “simulation”,
or “fuzzy”. One can notice that both simulation and optimization are the most popular
and fast-growing methodologies when addressing sustainability transportation issues.
Still, the use of machine learning/artificial intelligence methods and fuzzy techniques is
also gaining popularity in recent years.

Figure 1. Evolution of Scopus-indexed articles on “sustainable transportation” by methodology.

Likewise, Figure 2 show the number of Scopus-indexed publications, per journal,
that contain the terms “sustainable transportation” in their title, abstract, or keywords
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(only journals with 20 or more articles have been considered in this figure). Notice that
the journal ‘Sustainability’ is clearly leading this ranking, followed by other three popular
journals in the area of transportation: ‘Transportation Policy’, ‘Journal of Transportation
Geography’, and ‘Transportation Research Procedia’.

Figure 2. Number of articles published in Scopus-indexed journals on “sustainable transport”.

This paper discusses how simulation, optimization, and machine learning could be
applied to support managers when making informed decisions while developing Sus-
tainable Transportation Systems. The paper also aims at identifying common challenges,
future trends, taxonomy, and insights. The rest of the paper is organized as follows:
Section 2 offers a review on Sustainable Transportation Systems (STS). Section 3 analyze
applications of optimization in STS. Sections 4–6 discuss how simulation, machine learning,
and fuzzy methods have been employed so far in the context of STS. Section 7 identify
common challenges, future trends, the taxonomy, and the insights regarding the use of
the aforementioned methods in STS. Finally, Section 8 depicts the main conclusions and
highlight future work opportunities.

2. Key Concepts on Sustainable Transportation Systems

The need for people and goods to be transported across the earth is as old as mankind.
Historically speaking, the use of animal thrust (horses, donkeys, etc.) has been associated
with the first transportation means. In a parallel way, the use of natural forces (wind, water,
etc.) were also implemented. Nevertheless, the industrial revolution, during the eighteenth
and nineteenth centuries, involved the development of transportation modes more sophisti-
cated and efficient, e.g., trains or bikes, which provided a more convenient and comfortable
way of traveling. Many of these new transportation modes required new technologies, e.g.,
water steam, to support their continuous development. More recently, the automobile was
developed in the twentieth century with the design of the combustion engine. These new
devices, built to produce energy which facilitates mobility, involve the release of pollutant
elements, smokes, and particles that damage the environment. This indirect effect of
releasing pollutant elements associated with mobility is a transportation externality. At the
beginning of the industrial revolution, transportation externalities had a low impact on the
environment. Nowadays, however, transportation pollutant emissions are the main cause
of environmental damage worldwide [10]. This huge industrial development produced by
the mankind during the last decades has been caused by the use of non renewable energies,
which have fossil origins and offer a limited source due to their exhausting nature. This
high impact of transportation activities over nature has urged to control and restrict those
emissions. This leads to the concept of sustainable transportation, defined as the transporta-
tion whose management, use, and development do not compromise or endanger the future
development of next human generations [11]. This way of controlling the transportation
is linked to the concept of sustainable development, which was firstly recognized by the
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United Nation’s Earth Summit in 1992. This meeting produced an outcome document,
called Agenda 21 [12], which highlights the need for designing STS. Existing work on STS
key topics are reviewed next.

• Transportation externalities: A first approach to sustainable transportation consist
in the selection and measurement of the externalities it generates. There are many
transportation externalities, being the release of pollutant particles the most common.
Other externalities caused by transportation are: noise, traffic congestion, infrastruc-
ture wear, accidents, etc. Thus, by knowing those externalities measurements it is
possible to assign them a penalty cost in order to limit the use of transportation
modes that have a higher impact on the environment. One of the most popular
procedures to estimating this penalty cost is via a proxy monetary value, e.g., the
willingness to pay for avoiding one specific transportation externality. This method,
called contingent valuation [13,14], searches to elicit the propensity of transporta-
tion users to avoid one specific transportation externality by making a payment.
This procedure of environmental cost procedure has been revealed very popular in
the last years [15,16]. Once this cost imputations –due to transportation externalities–
have been estimated, they can be used to: (i) define suitable objective functions in
optimization models; or (ii) build specific simulation procedures in order to make
decisions. Thus, Serrano-Hernández and Faulin [17] designed a protocol to internalize
the costs due to externalities in vehicle routing problems. Furthermore, this type of
transportation costs evaluated in willingness-to-pay surveys are extremely connected
to the considered geographical areas. Accordingly, Lera-López et al. [18] describes
how these estimations can be done in the road freight transportation which crosses
the Western Pyrenees, between Spain and France.

• Transportation and environmental issues: Once the environmental impact caused
by transportation has been estimated –using, for instance, the contingent valuation
method–, we can consider the methodologies that allow us to design the best poli-
cies concerning transportation management. Dekker et al. [19] and Bektaş et al. [20]
carried out specific literature reviews on the role of Operational Research methods
in green logistics and green freight transportation, respectively. Both works depicted
the most important problems related to sustainable supply chain management and
green mobility. They also shed light in the resolution of practical transportation prob-
lems. Applications of these techniques to STS will be reviewed in ulterior sections.
Another way to provide support for a more sustainable transportation is the use of
green corridors, which are defined as transportation routes that have acceptable envi-
ronmental characteristics, along with viable economic and logistical attributes [21].
The formal integration of the estimated environmental cost in mathematical models
associated with vehicle routing problem was initially performed by Erdoğan and
Miller-Hooks [22]. At the same time, Ubeda et al. [23] incorporated penalty costs
for emissions release in real-life case studies. After that formal definition of the
Green Vehicle Routing Problem (GVRP), many other similar models mushroomed
in the scientific literature, as it has been documented in the GVRP literature reviews
published by Lin et al. [24], Asghari et al. [25], Moghdani et al. [26], Ren et al. [27],
and Patella et al. [28]. The aforementioned literature reviews present the popularity
of the sustainable transportation theme in decision-making processes, highlighting an
exponential growth in the last five years. Moreover, Sawik et al. [29] made use of multi-
criteria analysis to face environmental transportation problems. New approaches
have been designed to enrich and diversify the ways of tackling the problem in rural
and urban road transportation: (i) sharing resources in freight and people mobility;
and (ii) design of new non-pollutant vehicles (mainly electric ones, among others).
Concerning freight transportation, the use of horizontal cooperation has generated
excellent results to mitigate pollutant emissions [30–32]. For instance, the consider-
ation of vehicle routing problems with efficient backhauling strategies can generate
important savings in carbon emissions [33,34], thus highlighting the relevance of
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offering alternative routing plans to decision makers [35]. Other type of collaboration
in goods distribution is crowd-shipping, which is defined by Archetti et al. [36] as the
“use of ordinary people, rather than delivery companies or company employed drivers,
to drop-off packages en-route to their destination”. Sampaio et al. [37] depicted the
dynamics in the crowd-shipping delivery and its imbrication in the urban logistics.
McKinnon [38] had already highlighted the benefits associated with this collaboration
protocol: it reduces the urban transportation demand, subsidizes the ordinary people
trips, and accelerates the delivery operations. Moreover, the collaboration in urban
distribution can consider the conjoint use of drones and vans, which can reduce the
distribution time improving the service quality [39]. Nevertheless, there is an open
debate about the suitability or not of this type of cooperation between air and ground
autonomous vehicles in order to mitigate carbon emissions. Kirschstein [40] advocates
that for a sustainable remodeling of the system, the most important thing is the pri-
mary energy that is used. Therefore, following this line of reasoning, the change to a
system with electric and autonomous vehicles can be much more eco-friendly, even if
the technology is less energy efficient (provided that the consumption of fossil fuels
can be reduced or even replaced by renewable energies). Figliozzi [41] points out that
these types of decisions require a general life cycle assessment, which also includes
the effects on the manufacture and maintenance of infrastructures. However, govern-
ments and legislators must take into account the important changes that may occur
specially within the social dimension (i.e., changes in the labor market), supply chains
realignments, and the growth of e-commerce centers and dark stores [42].

• City logistics and green logistics: Another important area in sustainable transporta-
tion is the design of urban STS both for people and goods. Both freight and people
transportation can cause the accumulation of heavy externalities, specially when this
activity affects city centers or downtowns. Dealing with these two mobility problems
constitutes a great challenge for urban policy makers, and it is closely related to the
connected design of smart cities [10]. Barceló [43] analyzes the urban design of future
cities. This design decentralizes the need for mobility. Thus, the transportation sus-
tainability could be reached by means of a reduction in demand. Still, other policies
are needed in the short run to face the current situation. Considering the problem of
urban people mobility, there are two ways to mitigate the impact generated by exter-
nalities: (i) the use of big data to transform mobility into smart mobility, rationalizing
the number of trips and promoting the use of shared vehicles via the information
generated in a smart city [44]; and (ii) making an extensive use of low environmental
impact vehicles, mainly electric ones [45]. Finally, Meyer [46] enumerated a long list
of actions to decarbonize road freight transportation, as the use of electric vehicles in
organized platoons of heavy-duty vehicles.

3. Applications of Optimization to Sustainable Transportation Systems

Transportation is one of the early applications of optimization modeling. Most text-
books in Operations Research have a chapter dedicated to transportation problems. The ob-
jective of the classical transportation problem is to deliver goods or people, from a set of
sources to a set of destinations, in such a way that the transportation cost is minimized.
In fact, Bravo and Vidal [47] showed that cost minimization was still dominant at the time
when they wrote their review. Since the Kyoto Protocol entered into force in 2005, the pres-
sure for companies to reduce the environmental impact has increased. Likewise, with the
adoption of the United Nation Sustainable Development Goals in 2015, the pressure for
organizations to be socially responsible has increased as well. These pressures also af-
fect the transportation sector. From the transportation optimization perspective, these
pressures are translated into a multi-objective optimization problem, in which the objec-
tive functions include environmental and social impact in addition to cost minimization
(or profit maximization). In their review, Pérez et al. [48] have observed that the number of
optimization studies that take into account environmental and social impact has increased
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in the last years. Optimization has been applied to STS in the form of multi-objective
optimization models, in which measures for environmental impact (e.g., greenhouse gas
emissions, distance, fuel consumption, vehicle loading, pollution, empty mile) and social
impact (e.g., accessibility, reliability, health and safety, congestion) are optimized together
with economic measures (e.g., cost and profit). The typical decisions include the use of
lower energy transportation modes (efficient energy), the use of inter-modal transporta-
tion (e.g., road-rail transportation services for reducing carbon emissions and improving
environmental performance), delivery time schedules, sharing delivery routes, improv-
ing driving behavior, route optimization, limiting driving speed, regular monitoring of
tire inflation, the outsourcing deliveries to third-party logistics, using closer suppliers,
and relocating production plants and warehouses. This section will provide an overview
of transportation optimization problems using the classification shown in Figure 3.

Figure 3. Types of transportation optimization problems.

Based on the size of the area, the application of optimization in STS can be divided
into urban transportation systems and regional/global transportation systems. For urban
transportation systems, the objective of sustainable transportation is to support the social
and economic activities in the city, while reducing the impact on city living conditions
(e.g., congestion, emissions, and pollution). For example, Crainic et al. [49] proposed
two new problem classes for city logistics and a methodology to address the associated
challenges. They argued that consolidation and coordination were the most promising
solution that could lead to less freight vehicles traveling within the city and better vehicle
loading. Another solution to reduce the number of vehicles traveling into the city is ride-
sharing initiatives that bring together travelers with similar itineraries and time schedules.
Several optimization models that support the matching of riders and drivers in real-time
have been proposed by Agatz et al. [50]. The typical objective functions include the total
distance, travel time, and number of participants. Vehicle sharing is another solution in
which people can rent a vehicle from a provider that offers a network of vehicles located at
various depots. The typical decision variables are depot location, allocation of vehicles in
each depot, and vehicle redistribution policy [51]. Ride sharing and car sharing services
should bring a positive impact to the environment (e.g., reduction in greenhouse gas
emission as well as energy consumption) and society (e.g., reduction in pollution and
congestion and increased mobility for areas not served by mass transportation system).

Freight transportation is one of the important national/international transportation
systems. For example, Liotta et al. [52] considered the environmental impact by developing
an optimization model that integrated the production location and freight transportation.
Long-haul freight transportation is often combined with other transportation mode (multi-
modal). The use of multi-modal transportation can reduce greenhouse gas emissions,
e.g., by using train for the long distance journey as it is more environmental friendly.
In their review, Sun et al. [53] noted that solving a stochastic multi-commodity multi-modal
freight routing problem was challenging. Another example of international transportation
is shipping. Optimization has also been used to balance between cost and environmental
impact of shipping. Ship speed is a key decision variable that affects the cost and the
environmental impact of maritime transportation. Hence, optimization has been applied
to find the optimum speed at various parts of the journey, as described in the survey by
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Christiansen et al. [54]. Given the high visibility of the airlines industry, the pressure for
airlines to reduce its carbon footprint has become stronger. Hence, it is expected that there
will be an increase in the application of optimization for sustainable airlines. For example,
Tian et al. [55] developed a model that optimizes the speed profile and cruising altitude of
a flight by taking into account the environmental impact.

Based on the planning horizon, the application of optimization in STS can be divided
into short-term (operational), medium-term (tactical), and long-term (strategic) decisions.
For short-term decisions, we typically optimize the traffic flowing through the transporta-
tion network, which includes people and goods. The examples cover schedule optimization
in city logistics [49], redistribution policies in car sharing services [51], freight routing
planning [53] , the use of congestion control [56], or the use of personal mobility carbon al-
lowance [57]. As for the medium and long-term decisions, we typically optimize the design
of transportation infrastructure, which includes the design of the transportation network
and the location of transportation hubs (e.g., stations, terminals, and depots). Interestingly,
Pérez et al. [48] observed that most applications in urban passengers transportation system
belong to medium to long-term decisions. Farahani et al. [58] surveyed the application
of optimization in the transportation network design. The dominant decision is capacity
expansion and the dominant objective is to minimize cost and travel time—which implies
minimizing congestion. They noted the need to consider the environmental impact for
future studies in this area. In car sharing services, optimization has been used to determine
car park locations for pick-up and finish points, as well as their capacities, the charging
point locations for those with electric vehicle fleet, and the fleet optimal size [51]. An impor-
tant development in STS is the increasing support of green vehicles such electric vehicles or
hydrogen fuel vehicles by many governments. To promote the use of these vehicles, a good
location planning for the refueling or charging stations is important. It is not surprising
that optimization has been applied to solve the refueling/charging station location problem
(e.g., [59–61]).

Regarding the contents being transported, we have transportation of people, goods,
or both. The examples of an optimization model being applied to goods transportation
include the papers written by Crainic et al. [49], Sun et al. [53], and Abdullahi et al. [62].
The means to transportation people include public transportation modes (e.g., trains, trams,
and buses) as well as private vehicles (e.g., cars, motorcycles, or bikes). An effective public
transportation system should have a positive effect on environmental impact (e.g., less
fuel and less gas emissions) and social impact (e.g., less congestion and better accessibil-
ity). Optimization has been used to design efficient public transportation systems [63].
Recently, there has been an increase in the application of optimization in collaborative use
of vehicles. for example, car sharing services [48] and ride sharing services [50]. While the
main purpose of car sharing is to move people from one location to another, cars need to
be redistributed regularly to various car stations to meet the expected demands in various
locations at different times. Hence, in car sharing services, both people and goods are
transported. Table 1 summarizes the concepts and examples discussed in this section.

Modern infrastructure for transportation systems support real-time communication
systems (e.g., vehicle-to-vehicle and vehicle-infrastructure) and generate real-time data on
congestion, accidents, traffic light malfunction, etc. As more modern transportation infrastruc-
ture are being developed and used, the application of a real time simulation-optimization
method such as the one introduced in Onggo et al. [64] will become more prevalent.
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Table 1. Sustainable Transportation Systems (STS) optimization concepts and their examples.

Concept Examples

Urban transportation—city logistics Crainic et al. [49]
Urban transportation—ride share Agatz et al. [50]
Urban transportation—car share Ferrero et al. [51]

National/international transportation—freight Liotta et al. [52], Sun et al. [53]
National/international transportation—maritime Christiansen et al. [54]
National/international transportation—airlines Tian et al. [55]

Short-term decision Crainic et al. [49], Ferrero et al. [51], Sun et al. [53],
Yin and Lawphongpanich [56], Aziz et al. [57]

Medium-long term decision Pérez et al. [48], Farahani et al. [58], Ferrero et al. [51],
Miralinaghi et al. [59], Cavadas et al. [60], Kim and Kuby [61]

Passengers transportation Yang et al. [63], Pérez et al. [48], Agatz et al. [50]
Goods transportation Crainic et al. [49], Sun et al. [53], Abdullahi et al. [62]

4. Applications of Simulation to Sustainable Transportation Systems

Simulation is an invaluable tool for modeling stochastic and/or systems that evolve
over time. Because of its ability to represent real-life scenarios, simulation has been used to
support decision making in transportation systems. Simulation is a powerful technique
since it allows us to make changes in the system and test their impact without making those
changes in the real system. This flexibility further allows one to include the three dimen-
sions of sustainability (i.e., economic, environmental, and social) into the decision making
process and evaluate how some actions may impact those dimensions. The economical
dimension focuses on the cost and it has been the main focus of many simulation studies
dealing with STS. The environmental dimension concerns issues including pollution, cli-
mate changes, and energy consumption. The social dimension includes labor psychology
and aging workforce. Simulation studies with sustainability concerns in transportation
and logistics have mostly focused on the economic and environmental dimensions with
the goal of reducing energy consumption [65]. Table 2 classifies the papers covered in this
section according to their focus on sustainability pillars. While many of the studies focus
on sustainability explicitly (for example, by reducing the CO2 emissions), there are studies
that achieve sustainability implicitly (by timing the traffic lights so that the wait time is
reduced and hence the greenhouse gas emissions).

Table 2. Sustainability pillars studied in STS simulation papers.

Sustainability Pillars Examples

Environmental Benzaman et al. [66], Pruckner and German [67],
Doluweera et al. [68], Fagnant and Kockelman [69], Dlugosch et al. [70]

Economical Jordan [71]

Both Danloup et al. [72], Hoffa-Dabrowska and Grzybowska [73], Rabe et al. [74],
Van Der Vorst et al. [75], Lokhandwala and Cai [76]

Several simulation technologies have been applied for decision making in STS.
Karakikes and Nathanail [77] provide a review of simulation methods used for sustain-
able urban transportation. Among the methods that we would like to emphasize are
Monte-Carlo simulation, discrete-event simulation, system dynamics, and agent-based
simulation. Monte-Carlo simulation, which is the simplest simulation technique, is used
when there is randomness in the system but no change over time. Discrete-event simu-
lation is used when the system evolves over time. The system changes its status based
on the events that happen at certain times. Zhou and Kuhl [78] develop a sustainability
toolkit for discrete-event simulations that could produce sustainability related performance
measures. System dynamics focus on longer time horizons where the dynamics of the
system is described in a quasicontinuous way [79]. Finally, agent-based simulation models
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simulate the interactions of autonomous agents to understand their impacts on the entire
process. These models have been particularly used in the sustainable dynamic transporta-
tion systems, where agents may take the form of dynamic transportation vehicles, drivers,
passengers, or dispatchers [80].

Simulation is an indispensable tool for “what-if” analysis. However, it cannot be
used as an optimization technique. As discussed in Section 3, optimization techniques play
an important role in the management of transportation systems. Therefore, combining
simulation and optimization has been a growing research area. Different approaches have
been proposed to combine simulation and optimization [65]. Among them, simheuristic
approaches, which integrate simulation within metaheuristics, have been found to be
promising [81]. The success of simheuristics has been boosted by computational advance-
ments and extensive research on how to speed up those procedures [82]. In the remainder
of this section, we review some exemplary studies that use various simulation techniques
and possibly simulation-optimization as a tool to design and operate STS. Figure 4 pro-
vides an overview of the three application areas discussed in this section along with their
objectives and simulation methodologies used.

Figure 4. Applications of Simulation Techniques to STS.

• Logistics operations in sustainable food supply chains: Research in this area has mainly
focused on how cooperation among supply chain members and how the supply chain
network structure help sustainability efforts. For example, Danloup et al. [72] study
the environmental impact of collaborative food distribution in food retail services.
Through a case study that simulates the logistics network of a British distributor
of fruits and vegetables, authors show that sharing trucks between retailers help
sustainability efforts in terms of reducing CO2 emissions and transportation costs.
Recently, Hoffa-Dabrowska and Grzybowska [73] develop a simulation model of a
supply chain to show how consolidation of transportation orders help the economical
and environmental pillars of sustainability. In another study, Rabe et al. [74] use a
supply chain simulation tool called SimChain [83] to compare two different supply
chain network structures in terms of their costs and CO2 emissions. In the context of
food supply chains, Van Der Vorst et al. [75] introduce a new discrete-event simulation
tool, which takes into account food quality change and logistics related to it as well as
sustainability indicators into the simulation study.

• Traffic Congestion: Traffic congestion is one of the main challenges faced by large
metropolitan areas and it has numerous impacts on sustainability pillars including
contributing to CO2 emissions. Therefore, it is important to decrease vehicles’ travel
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time on the roads and hence decrease environmental pollution. Below we review
studies that aim to decrease vehicles’ travel time by developing a centralized route
management system and by the appropriate timing of traffic lights:

– Centralized Route Management: Simulation is a very useful tool to model and
analyze traffic conditions in a city. One of the inputs to the simulation is the
traffic patterns and flows that are fed to the simulation in the form of O-D
(origin-destination) matrix. Obtaining the O-D matrix in some cities could be a
challenge. Focusing on Valencia, Spain, Zambrano et al. [84] generate an O-D
matrix as an approximation to the real traffic distribution in this area. Authors
rely on DFROUTER tool [85] to achieve the desired O-D matrix. DFROUTER is
a package included in SUMO [86], which is a simulation platform that allows
one to perform traffic simulation by microscopic modeling of cities and vehicles.
Building on this work, Zambrano-Martinez et al. [87] developed a centralized
route manager for autonomous vehicles that can optimize traffic flows while
taking into account the present and future traffic conditions. With the increasing
popularity of autonomous vehicles, congestion problems might be more common
in the near future. The focus on autonomous vehicles also allows for more
predictive behavior on the road. Authors showed that their proposed model was
able to improve travel times and average travel speed in Valencia, Spain by 5%.
In more congested areas, this improvement was about 8%.

– Traffic light timing: The problem of timing of traffic lights has been studied with
simulation for a long time. This is one of the areas where sustainability benefits
are offered implicitly. Because strategic timing of lights reduce traffic as well as
waiting time—and hence gas emissions–, two sustainability pillars (cost reduction
and gas emission reduction) are achieved automatically. Patel et al. [88] study
the problem of signal control for pre-timed junctions, and propose a simulation-
optimization approach that identifies the optimal green times in order to min-
imize the average delay per vehicle. Using an agent-based simulation model,
Li et al. [89] investigate how the information from connected vehicles could
be used so that optimal traffic signal control can be obtained at intersections.
These authors show that potential system average time savings and traffic queue
length reduction can be achieved. Through a discrete-event simulation model,
Benzaman et al. [66] show that factors like synchronization of traffic lights, route
configuration, or dispatch time and pattern of vehicles can have significant impact
on CO2 emissions. Vehicle-to-vehicle and vehicle-to-infrastructure communi-
cation are two approaches that was shown to work well for eliminating traffic
congestion. Benzaman and Sharma [90] develop a discrete-event simulation
model that integrates these two approaches. Results show that the vehicle-to-
infrastructure model enjoyed benefits including reduced waiting time and system
time.

• Dynamic, demand-based transportation services: Bischoff and Maciejewski [80]
present an excellent review on the emerging dynamic, on-demand transportation
modes, and their impact on sustainability efforts. These new transportation modes
can help enhance overall sustainability efforts by reducing private car use and through
more efficient dispatch strategies. Among the most popular services are carpooling
and ride sharing. Thus, for instance, Fikar et al. [91] propose a simulation-based
heuristic to reduce the number of vehicles employed during home healthcare services.
With fewer cars on the road, less empty seats, and less vehicle ownership, these ser-
vices could contribute to sustainability efforts. The use of simulation to study the
impact of car sharing goes back to the 1970s. Lokhandwala and Cai [76] develop an
agent-based simulation model in the context of taxi ride-sharing problem in New
York City with the objectives of decreasing the fleet size, increasing the occupancy
rate, decreasing the total travel distance, and reducing the carbon emissions. Au-
thors find that ride sharing reduces carbon emissions up to 866 metric tonnes per



Sustainability 2021, 13, 1551 11 of 21

day. Alonso-Mora et al. [92] present a general framework for real-time high-capacity
ride sharing with sustainability considerations. Simulation is utilized to represent
scenarios with dynamic demand and vehicle locations. The use of electric vehicles in
taxi fleets presents another opportunity to reduce local emissions in urban transport.
There are several studies conducted in different cities and regions to study the impact
of electric cars. For example, Pruckner and German [67] use a simulation model to
study the impact of electric vehicles on the energy system of Germany. Authors find
that electric vehicles play a role in the reduction of CO2 emissions. Building on the
simulation model designed by Pruckner and German [67], Doluweera et al. [68] de-
velop a hybrid simulation model (combining system dynamics with discrete-event
simulation) to investigate the benefits of electric vehicles in Alberta, Canada. The re-
sults show that electric vehicles can decrease the Alberta greenhouse gas emissions
significantly. Similarly, Longo et al. [93] show that the usage of electric cars in Italy
provide approximately 30% reduction in CO2 emissions. Another emerging area that
would help with sustainability efforts in urban areas is the use of shared autonomous
electric vehicles. Narayanan et al. [94] provide a comprehensive review of shared
autonomous vehicles and their uses. Jordan [71] develop an agent-based simulation
model to study the cost impact of shared autonomous vehicles. Fagnant and Kockel-
man [69] focus on the environmental benefits of shared autonomous vehicles and find
that reductions in energy consumption, gas emissions, and air pollutants emissions
are possible. Recently, Dlugosch et al. [70] show that autonomous electric vehicles can
enable zero-emission urban mobility by reducing the fleet size.

5. Applications of Machine Learning to Sustainable Transportation Systems

An overview of machine learning and data science concepts in the context of trans-
portation analytics and STS can be found in Antoniou et al. [95]. This manuscript also
contains different examples of applications, among others: traffic simulation models to
identify mobility patterns, human mobility patterns across cities, and transit data analytics.

In the context of machine learning applications in urban mobility research, Zhou et al. [96]
make use of a random forest model to investigate citizens’ patterns when choosing between
a bike-sharing transportation system or a taxi transportation system. In order to do so,
they analyze data from the city of Chicago. Their results show the existence of a seasonal
component in the demand for bike-sharing transportation and a declining trend in the use
of taxi services. Also in the context of urban mobility, Yang et al. [97] propose the utilization
of graph-based features and deep neural networks to forecast demand patterns in the short
term, thus supporting a more efficient organization of bike-sharing systems. Yet related to
bike-sharing systems, Zhou et al. [98] propose the use of random forest classification to
support managers’ decision making on the appropriate number of bicycles in each city area.
Based on data from Singapore, Basu and Ferreira [99] study the variables that conditionate
the private ownership of vehicles. They used a combination of neural networks and logit
regression to identify the factors that influence citizens’ decision about vehicle ownership,
including: existence of an efficient public transportation system, age, gender, income and
job sector, taxi services, etc. In the context of the Palermo city, Migliore et al. [100] propose
a demand-based optimization model, and a solving heuristic, for efficient parking pricing.
The model aims at balancing the different transportation modes in the city, from private
cars to public buses. Ali Khalil et al. [101] make use of different machine learning methods
to predict noise levels in roadways. These methods included decision trees, support vector
machine, ensembles, and neural network. According to the authors, some of these machine
learning models were able to outperform a regression model that was previously devel-
oped for predicting traffic noise in a United Arab Emirates city. Tang et al. [102] propose
a machine learning method, based on the gradient boosting decision tree algorithm, to
predict the unboarding stops of city bus passengers from data recorded in passengers’
smart cards, which typically contain the boarding stop alone. Having a better knowledge
of the estimated passengers’ flows is relevant to improve the planning and operations of
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the bus system and, therefore, its long-term sustainability. In the context of sustainable
smart cities, Majumdar et al. [103] combine data provided by internet of things devices
and machine learning methods (long short-term memory networks and other multivari-
ate predictive models) to forecast the evolution of traffic congestion during the next few
minutes. Based on data collected in Milan, Liang et al. [104] utilize multinomial logit,
random forest, and support vector machine models to study household travel mode choice
based on factors such as vehicle ownership, travel distance, travel time, etc. With their
crowdsourcing concept, Giret et al. [105] propose to use the ‘regular’ trips performed by
citizens to support last mile delivery. In that way, when citizens move following their own
needs, they also become ad hoc deliverers. For that purpose, they make use of multi-agent
system techniques and network-based algorithms designed to optimize delivery routes.

According to Hasan et al. [106], the use of autonomous vehicles using ‘green’ energy
sources, and employing artificial intelligence algorithms, could reduce pollutant emissions
in about 80% or more. From their review of the recent literature, these authors also con-
clude that an efficient combination of environmentally friendly public transportation and
ride-sharing practices can contribute to a significant reduction in both traffic congestion
and environmental impact. Nandal et al. [107] study how neural networks can be used
in transportation engineering, including a discussion on both benefits and disadvantages.
The authors also highlight the role of neural networks in planning maintenance activi-
ties that contribute to limit the deterioration of the public road infrastructure. In order
to contribute to identify challenges in the growing use of electric vehicles in the USA,
Asensio et al. [108] use supervised machine learning methods to analyze text reviews pro-
vided by users of over 12,000 charging stations. Their findings suggest that private and
public charging locations offer a similar quality to users, and that there are still some
issues that need to be improved in order to expand this mode of sustainable transport.
Finally, Consilvio et al. [109] discuss the utilization of machine learning methods in railway
asset management.

Figure 5 shows, in a visual manner, how the different machine learning techniques
have been applied in STS. One can notice that neural networks and decision trees have been
repeatedly employed for predicting purposes, that heuristics are mainly used to achieve
efficient performance in the design of routing plans involving autonomous vehicles as well
as in pricing, and that analyzing citizens’ patterns and transportation modes have been the
target of different machine learning methods.

Figure 5. Applications of machine learning techniques to STS.
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6. Applications of Fuzzy Sets to Sustainable Transportation Systems

In the context of the oil transportation industry, Dimić et al. [110] propose a fuzzy-
based methodology that allows managers to promote sustainable transportation strategies
based on objective criteria. Their methodology combines the fuzzy Delphi method with
a typical strengths-weaknesses-opportunities-threats analysis. Mohagheghi et al. [111]
apply fuzzy sets to tackle the problem of selecting a portfolio of sustainable transportation
projects. In particular, these authors develop a case study in which they use interval-valued
fuzzy sets to model the uncertainty associated with the investment process, and combine
both the opinion of experts with the considerations made by decision makers. In the context
of the transportation sector, Ülengin et al. [112] utilize a fuzzy cognitive map analysis,
which relies upon expert opinions and a survey, to identify the main factors influencing
on the environment and their inter-dependencies. According to de Paula and Marins [113],
algorithms based on fuzzy logic have not been show their full potential yet when address-
ing sustainability problems in transportation systems. These authors consider that fuzzy
logic models can support policy makers worldwide to design city transportation systems
with a lower level of emissions. In order to contribute to reduce traffic congestion in high-
ways, Zhang et al. [114] propose a traffic prediction system based on a hierarchical fuzzy
rule-based system. The fuzzy system is optimized by means of a genetic algorithm. The pro-
posed approach is then tested using several benchmarks, and compared with other existing
algorithms. With the goal of evaluating several efficiency and sustainability indicators in
urban bus transportation systems, Jasti and Ram [115] employ fuzzy logic to deal with the
uncertainties that arise in real-life applications. In a road-rail multimodal transportation
network, Sun et al. [116] study the vehicle routing problem with hazardous materials.
Here, the goal is to minimize the total risk of all transportation actions. These authors
employ fuzzy programming to model the uncertainty in the number of citizens exposed to
the risk. Tadić et al. [117] proposes a fuzzy-based methodology that allows for prioritizing
the characteristics of new inter modal terminals. Among these characteristics, sustainability
dimensions as well as the needs of different stakeholders are considered. A case study in
Serbia contributes to illustrate the concepts. Similarly, Haider et al. [118] make use of a
methodology based on fuzzy set to identify and analyze barriers to the adoption of electric
vehicles in India. According to their findings, the main barriers are due to: limited power
availability, driving-range constraints due to a limited battery life, and lack of a charging
infrastructure. Thus, Kaya and Erginel [119] proposed a hybrid fuzzy method that, ac-
cording to the authors, allow to enhance the sustainable level of airports while taking into
account dimensions such as passengers’ and managers’ sustainability requirements. In the
context of travel chains, Kisgyörgy and Tóth [120] introduce a method that allows policy
makers to study and optimize the service quality. Their method uses several dimensions to
measure the travel comfort, and then employs a fuzzy-based approach to provide a global
score of the comfort conditions along the travel chain. A case study in Budapest is utilized
to illustrate the proposed concepts.

At this manner, based on a case study involving electric bikes, Shekhovtsov et al. [121]
propose two methods to study how some decision criteria might impact on STS. Their anal-
ysis is based on fuzzy-related multi criteria decision analysis methods. Zagorskas and
Turskis [122] proposes a fuzzy-based methodology that allows policy makers to rank the
priorities for development and renewal of bicycle pathway segments. Based on a case
study in a large Indian city, Singh et al. [123] introduce a framework for the selection of
sustainable transport. Different transportation alternatives are considered: state-run bus,
pooled car, and private buses. Among the criteria employed to select the transportation
mode, the authors highlight the following ones: CO2 emissions, cost of fuel, energy effi-
ciency, cost of maintenance, number of accidents, congestion, number of injuries, and road
noise. In order to prioritize the criteria, a fuzzy version of the analytic hierarchy process is
employed. Moreover, Wątróbski et al. [124] make use of different multi-criteria analysis
methods, some of which employ fuzzy techniques to account for uncertainty elements,
in order to study how the use of electric vehicles can contribute to enhance the sustainability
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level of urban last-mile delivery actions. In the context of electric vehicles, Tsang et al. [125]
propose a fuzzy-based method to predict the battery life-cycle, thus promoting the effective
use of this sustainable transportation mode.

To model the perceived utility of transportation systems, Cantarella and Fedele [126]
employs fuzzy numbers instead of the more traditional random variables. In a similar
line, Ramazani et al. [127] discuss the idea that drivers’ perception of travel times vary
even for the same route. Hence, they make use of fuzzy set theory to model drivers’
perceptions and present a traffic assignment algorithm that employs these perceptions on
travel times. Their algorithm is used then to estimate traffic flows, showing promising
results when compared with already existing approaches. Likewise, Miralinaghi et al. [128]
introduce a fuzzy-based traffic assignment model. The model is tested in small-, medium-,
and large-sized networks. According to the authors, their model can provide a more
accurate estimate of the traffic volume in cities. Finally, Miralinaghi et al. [129] proposes to
model users’ perceptions of travel times as fuzzy sets. The authors show that their model
can be efficiently solved even when considering large-scale transportation systems.

Figure 6 illustrates the main applications of fuzzy techniques in the field of STS. No-
tice that these applications are quite diverse. While some of them focus on different aspects
related to the use of electric vehicles, others are more centered towards infrastructure de-
sign and maintenance. Yet, other applications aim at supporting travelers’ while selecting
a customized, comfortable, and environmentally friendly transportation mode.

Figure 6. Applications of Machine Learning Techniques to STS.

7. Common Challenges and Future Trends

The complex sustainability problems that arise today demand a paradigm shift in the
way of doing business. Hence, they require an expansion of criteria considering not only
economic aspects, but also environmental and social criteria. The methodologies and tech-
niques analyzed in Sections 2–6 demonstrate the prioritization of sustainability-oriented
innovation initiatives. Their conception and design is intended to serve as a support in the
decision-making process in order to meet the economic competitive advantage required
in modern transportation systems, while meeting several social and environmental goals.
However, it is necessary to overcome a series of technical difficulties and to change so-
cial consumption habits [130,131]. It is in this context where the differentiation of the
problems and techniques/methodologies used according to a time horizon makes more
sense. Thus, this section aims to collect and classify, from a management perspective,
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the different decisions that can be made, as well as the problems associated to each level of
the decision pyramid.

The strategic level is where the activities of top managers are developed. This includes
the strategic objectives that will have a long-term influence. Among them, sustainabil-
ity, impact, and environmental objectives, which serve as a framework for lower-level
planning [132,133]. These refer to the development of the basic framework that serves to
create awareness about sustainability, risks, and opportunities for improvement, consid-
ering the level of technology and the degree of knowledge and population involvement.
Among them, the following stand out: the design of evaluation protocols as described
in Serrano-Hernández and Faulin [17], the design and optimization of infrastructures
(these can be new or an adaptation of the existing ones) [48], demand forecasting with
machine learning methods [95], or population behavior analysis with simulation methods
in order to evaluate future changes [79]. Hence, governments and companies will be able
to use these methodologies to assess the scope and viability of their objectives. How-
ever, and to the best of our knowledge, the possibilities of exploitation and applicability of
the methodologies described in this paper have not yet reached their maximum potential
in this decision level. Many of the changes, adaptations and improvements that have been
established are limited to lower levels, when it is at this level that changes in sustainability
would imply a substantial impact.

More importantly, as governments and companies begin to considerate and integrate
in their strategies global competition for resources and promulgate and face more environ-
mental regulations, the focus has moved beyond the consideration of whether or not it pays
off to be environmentally friendly to focus on how to address environmental challenges
while maintaining competitiveness and social awareness [134]. Here is where tactical
decisions take on increasing importance. In this medium-term level, the available resources
are assigned and optimized (for example, costs, human resources, or vehicle fleets) to
achieve the strategic objectives set in the previous stage. In addition, guidelines for the
lower decision level are included for operations managers. Examples of the applicability of
the studied methodologies would be the analysis of cost and time reduction derived from
the use of inter-modal transportation models, or the optimization of existing transportation
infrastructure and chains [58]. It is also possible to investigate the benefits of changing the
vehicle fleet by simulation techniques [72,80,106]. However, it is necessary for governments
and companies to know and recognize the benefits of quantitative changes [135], and to
promote the use of these methodologies as support tools that can help establish a new
framework towards total sustainability.

In the operational level is where decisions with a short-term effect take place. It is at
this level that most of the analyzed works of all the methodologies presented are developed,
since it allows implementing improvement, change, and optimization actions of quick
impact with the available resources. Sustainability generates new business and improve-
ment opportunities through innovation that enables competitive improvements [72,88].
Thanks to these improvements at the operational level, many companies will obtain the
ultimate benefits of market opportunities and efficient business operations, some of them
with a lower investment than the expected one. Furthermore, these methodologies can
allow for discovering, specifying and systematizing appropriate areas of action [136]. How-
ever, many of the companies that want to work in a sustainable environment need a holistic
vision to achieve it. This requires a comprehensive framework that shows the perspective of
sustainability, which is not always available to everyone [135]. Thus, one of the challenges
to overcome is the dispersion of the optimization and improvement resources and the
knowledge necessary to be able to apply them properly.

8. Conclusions and Future Work

In the context of Sustainable Transportation Systems (STS), this paper has reviewed
some of the most popular methods for their analysis and enhancement. Among these,
we have discussed the use of optimization and simulation models, machine learning
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methods, and fuzzy techniques. Optimization and simulation have been around longer
than machine learning and fuzzy method. Hence, it is not surprising that simulation and
optimization models are the more dominant methods in STS research. However, in recent
years,machine learning and fuzzy methods are gaining popularity in STS research.

Given the complexity of STS that take into consideration economic, social and envi-
ronmental sustainability factors, it is unlikely that a single method is sufficient to meet the
challenge in STS. Hence, a hybrid model is needed [137]. For example, we can combine
simulation with fuzzy and optimization methods (e.g., simheuristics [138]), optimization
and machine learning methods (e.g., learnheuristics [139], etc., to efficiently tackle many of
the challenges raised by STS. Some of these challenges refer to the effective introduction of
zero-emission transportation methods, which include autonomous electric vehicles and
bikes, as well as the increasing popularity of the more sustainable transportation modes
that minimize the energy consumption and environmental impact caused by single-user
trips and empty backhauling practices. In the case of the former, the increasing incor-
poration of ride-sharing, car-pooling, and car-sharing mobility policies can lead to more
efficient and STS, specially in urban contexts. For the latter, the incorporation of horizontal
cooperation strategies [30] might be a key factor in long-distance transportation practices.

Modern infrastructure for transportation systems support real-time communication
systems and generate real-time data using Internet of Things. This enables the applica-
tion of a real time simulation-optimization method. Onggo et al. [64] have proposed a
hybrid model that support real-time decision making. As future research lines, we would
like to extend the work done by Onggo et al. [64] to: (i) fully integrate the Internet of
Things concept with STS, specially in urban areas, where a large amount of data might be
provided in real time by different sensors and recording devices; (ii) develop the digital
twins (e.g., real-time simulators) that allow policy makers to make data-driven strategic,
tactical, and operational decisions; and (iii) develop hybrid methods that allow us to define
strategic and tactical decisions, and ‘agile’ methods that allow us to process data in real
time and make fast, yet efficient, operational decisions in a dynamic and complex urban
environments.
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