

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Escuela Técnica Superior de Ingeniería Industrial

Diseño de hidrogeles de gelatina con rigidez controlada para modelar la fibrosis hepática.

Trabajo Fin de Máster

Máster Universitario en Ingeniería Biomédica

AUTOR/A: Panova, Ekaterina Tutor/a: Gallego Ferrer, Gloria Cotutor/a: Clara Trujillo, Sandra CURSO ACADÉMICO: 2022/2023

AGRADECIMIENTOS

En primer lugar, me gustaría agradecer la posibilidad de realizar el presente TFM a mi tutora, quién también lo fue de mi TFG y decidió confiar en mí para la realización de este proyecto. También a mi cotutora, por todo lo aprendido en el día a día en el laboratorio. Gracias a las dos de todo corazón por toda la ayuda, la paciencia, el apoyo y los ánimos a lo largo de estos meses de trabajo y sobre todo también durante la redacción del documento. No cambiaría esta experiencia por ninguna otra.

Y cómo puedo olvidarme de mis compañeras de equipo – de Lora, de Tanya y de Sandra – mil gracias por la ayuda, el compañerismo y todas las risas. Gracias también a todos los compañeros de laboratorio por el ambiente tan cálido y acogedor que se tiene en el CBIT. Y gracias en especial a Estela, porque sin lo aprendido con ella el año pasado, quién sabe si estaría aquí ahora.

Gracias a mi tutora en el programa Erasmus+ Prácticas realizado, por la cálida acogida, por todo lo aprendido, por todas las veces que se ha quedado hasta la noche a terminar los experimentos conmigo cuando hacía falta. Y a María, por estar ahí para ayudarme a adaptarme como alguien que ha pasado por lo mismo.

Gracias al Centro de Biomateriales e Ingeniería Tisular y a *Biomedical Center* en Plzen, República Checa, por hacer posible la realización de este proyecto en sus instalaciones. Agradecer también al proyecto PROMETEO y al proyecto COOPERATIO207043, *Charles University*, así como al programa Erasmus+ Prácticas y al equipo de la OPII de la UPV.

Gracias a mis amigxs y mi familia – sois un apoyo increíble y no puedo imaginar como hubiera sobrellevado todo el estrés, sobre todo de las redacciones nocturnas, sin vuestra ayuda y ánimos.

Y gracias a Aquél quien me dio fuerzas para sobrellevarlo todo y llegar hasta el final.

Esto ha sido posible gracias a vosotros.

RESUMEN

En la actualidad, la fibrosis hepática es una de las patologías que más prevalecen en la población y de la que no existen medicamentos efectivos para revertirla. Por ello, surge la necesidad de desarrollar fármacos antifibróticos que puedan ser testados en plataformas de pruebas preclínicas (in vitro) que sean robustas y reproduzcan las condiciones del hígado humano, para reducir la experimentación animal (que muchas veces no es ideal ya que se aleja del comportamiento humano). En los últimos años la ingeniería tisular se ha volcado a estas aplicaciones y posee numerosas investigaciones en esta línea. Concretamente, son interesantes los hidrogeles como mimetizadores muy cercanos a la matriz extracelular (ECM) hepática natural, tanto en condiciones sanas como patológicas. Las propiedades mecánicas de dicha ECM son clave para el desarrollo y la inhibición de la progresión de la fibrosis. Gracias a la posibilidad de variar la composición y las propiedades de estos materiales, es posible crear un entorno 3D para las células con las características de la ECM fibrótica, para luego suministrarles los fármacos en desarrollo y observar el efecto antifibrótico. La adición a los hidrogeles de moléculas clave promotoras de la fibrosis, como lo es la lisil oxidasa (LOx), proporciona unas condiciones idóneas para incrementar la rigidez del hidrogel para simular mejor el entorno del hígado fibrótico que las células sentirán en el hidrogel, tal y como ocurre en el organismo con la ECM, que es rígida en la fibrosis hepática.

En el presente trabajo final de Máster (TFM), se ha probado la estrategia del uso de la LOx para conseguir hidrogeles rígidos que imiten la ECM de hígado fibrótico. Como la estrategia no ha dado buenos resultados (no se ha conseguido rigidizar la matriz), se ha empleado el compuesto Glioxal (GlyO), con el que sí se han conseguido condiciones de hidrogel imitador de la fibrosis. La estrategia GlyO se ha realizado con *scaffolds* fabricados de gelatina, a los que se les ha sembrado células hepáticas y endoteliales (presentes en el hígado y con actividad alta durante la fibrosis), una vez liofilizados y rigidizados. Se han caracterizado los hidrogeles mecánicamente y se han realizado cultivos celulares para comprobar que la plataforma propuesta es un entorno adecuado para simular el hígado fibrótico in vitro. Los resultados han sido prometedores – un *scaffold* que mimetiza la fase 1 de la fibrosis (5 kPa de módulo elástico a cizalla) y en el que se ha visto supervivencia de los tipos celulares HepG2, HUVEC y hepatocitos primarios porcinos – y abren el camino hacia el desarrollo de entornos 3D de hidrogeles capaces de simular la fibrosis hepática.

Palabras clave: hidrogeles, *scaffolds*, propiedades mecánicas, modelos 3D de enfermedad hepática, fibrosis hepática, cultivo celular.

RESUM

En l'actualitat, la fibrosi hepàtica és una de les patologies que més prevalen en la població i de la qual no existeixen medicaments efectius per a revertir-la. Per això, sorgeix la necessitat de desenvolupar fàrmacs antifibròtics que puguen ser testats en plataformes de proves preclíniques (in vitro) que siguen robustes i reproduïsquen les condicions del fetge humà, per a reduir l'experimentació animal (que moltes vegades no és ideal ja que s'allunva del comportament humà). En els últims anys l'enginyeria tissular s'ha bolcat a aquestes aplicacions i posseeix nombroses investigacions en aquesta línia. Concretament, són interessants els hidrogels com mimetizadors molt pròxims a la matriu extracelul·lar (ECM) hepàtica natural, tant en condicions sanes com patològiques. Les propietats mecàniques d'aquesta ECM són clau per al desenvolupament i la inhibició de la progressió de la fibrosi. Gràcies a la possibilitat de variar la composició i les propietats d'aquests materials, és possible crear un entorn 3D per a les cèl·lules amb les característiques de la ECM fibròtica, per a després subministrar-los els fàrmacs en desenvolupament i observar l'efecte antifibròtic. L'addició als hidrogels de molècules clau promotores de la fibrosi, com ho és la lisil oxidasa (LOx), proporciona unes condicions idònies per a incrementar la rigidesa de l'hidrogel per a simular millor l'entorn del fetge fibròtic que les cèl·lules sentiran en l'hidrogel, tal com ocorre en l'organisme amb la ECM, que és rígida en la fibrosi hepàtica.

En el present treball final de Màster (TFM), s'ha provat l'estratègia de l'ús de la LOx per a aconseguir hidrogels rígids que imiten la ECM de fetge fibròtic. Com l'estratègia no ha donat bons resultats (no s'ha aconseguit rigiditzar la matriu), s'ha emprat el compost Glioxal (GlyO), amb el qual sí s'han aconseguit condicions d'hidrogel imitador de la fibrosi. L'estratègia GlyO s'ha realitzat amb *scaffolds* fabricats de gelatina, als quals se'ls ha sembrat cèl·lules hepàtiques i endotelials (presents en el fetge i amb activitat alta durant la fibrosi), una vegada liofilitzats i rigidizats. S'han caracteritzat els hidrogels mecànicament i s'han realitzat cultius cel·lulars per a comprovar que la plataforma proposada és un entorn adequat per a simular el fetge fibròtic in vitro. Els resultats han sigut prometedors – un *scaffold* que mimetitza la fase 1 de la fibrosi (5 kPa de mòdul elàstic a cisalla) i en el qual s'ha vist supervivència dels tipus cel·lulars HepG2, HUVEC i hepatòcits primaris porcins – i obrin el camí cap al desenvolupament d'entorns 3D d'hidrogels capaços de simular la fibrosi hepàtica.

Paraules clau: hidrogels, *scaffolds*, propietats mecàniques, models 3D de malaltia hepàtica, fibrosi hepàtica, cultiu cel·lular.

ABSTRACT

Currently, liver fibrosis is one of the most prevalent pathologies in the population and there are no effective drugs to reverse it. Therefore, there is a need to develop anti-fibrotic drugs that can be tested in preclinical (in vitro) test platforms that are robust and reproduce human liver conditions, in order to reduce animal experimentation (which is often not ideal as it is far from human behaviour). In recent years, tissue engineering has turned to these applications and there is a great deal of research in this field. In particular, hydrogels are of interest as mimics of the natural liver extracellular matrix (ECM), both in healthy and pathological conditions. The mechanical properties of such ECM are key to the development and inhibition of fibrosis progression. By varying the composition and properties of these materials, it is possible to create a 3D environment for cells with the characteristics of the fibrotic ECM, then deliver the developing drugs to them and observe the anti-fibrotic effect. The addition of key fibrosis-promoting molecules such as lysyl oxidase (LOX) to the hydrogels provides ideal conditions for increasing the stiffness of the hydrogel to better simulate the fibrotic liver environment that the cells will feel in the hydrogel, as occurs in the body with the ECM, which is stiff in liver fibrosis.

In this Master's thesis, the strategy of using LOx to obtain rigid hydrogels that mimic the ECM of fibrotic liver has been tested. As the strategy did not give good results (it was not possible to stiffen the matrix), the compound Glyoxal (GlyO) was used, with which fibrosis-mimicking hydrogel conditions were achieved. The GlyO strategy was carried out using gelatin scaffolds, which were seeded with liver and endothelial cells (present in the liver and highly active during fibrosis), after freeze-drying and stiffening. The hydrogels have been mechanically characterised and cell cultures have been performed to verify that the proposed platform is a suitable environment to simulate fibrotic liver in vitro. The results are promising - a scaffold mimicking fibrosis stage 1 (5 kPa shear elastic modulus) and showing survival of HepG2, HUVEC and primary porcine hepatocytes - and pave the way towards the development of 3D hydrogel environments capable of simulating liver fibrosis.

Keywords: hydrogels, scaffolds, mechanical properties, 3D liver disease models, liver fibrosis, cell culture.

GLOSARIO

- BSA albúmina de suero bovino
- CFKRB calcium free Krebs ringer buffer
- DPBS tampón fosfato salino de Dulbecco sin calcio y magnesio
- ECM matriz extracelular
- EDC hidrocloruro N-3-dimetilaminopropil-N'-etilcarbodiimida
- Gel gelatina
- GF factor de crecimiento
- HCl ácido clorhídrico
- HEPES ácido 4-(2-hidroxietil)piperazin-1-iletanosulfónico
- HGF factor de crecimiento de hepatocitos
- KCl cloruro potásico
- LOx lisil oxidasa
- MES ácido 2-(N-morfolino)etanosulfónico
- NHS N-hidroxisuccinimida
- RGD arginina-glicina-ácido aspártico
- SBF suero bovino fetal
- Tyr tiramina
- VEGF factor de crecimiento de endotelio vascular

DOCUMENTO I: MEMORIA

Índice

N	NORMATIVA11				
OI	BJETIV	OS DE	DESARROLLO SOSTENIBLE (ODS)	12	
1. INTRODUCCIÓN			13		
1.1. Hígado: llosanatomía e histología			do: llosanatomía e histología	13	
	1.2.	Fibro	osis hepática	16	
	1.2.	1.	Definición, causas y síntomas	16	
	1.2.	2.	Mecanismos de acción	16	
	1.2.	3.	Efecto de la fibrosis en la ECM	19	
	1.2.	4.	Efecto de la fibrosis en los hepatocitos	19	
	1.3.	Мос	lelos de fibrosis <i>in vitro</i>	۱9	
	1.3.	1.	Tipos celulares	19	
	1.3.	2.	Modelos 3D vs. Monocapa	20	
	1.3.	3.	Modelos actuales	21	
	1.4.	Hidr	ogeles como ECM <i>in vitro</i>	21	
	1.5.	Prop	puesta de modelo	23	
2.	JUS	TIFICA	ACIÓN Y OBJETIVOS	27	
3.	MA	TERIA	LES	28	
	3.1.	Hidr	ogeles	28	
	3.2.	Culti	ivos celulares	28	
4.	MÉ	TODO	S	29	
	4.1.	SÍNT	ESIS DE GELATINA CON INJERTO DE TIRAMINA	29	
	4.2.	CÁL	CULO DEL GRADO DE INJERTO DE TIRAMINA EN LA GELATINA	30	
	4.3.	SINT	ESIS DE LOS HIDROGELES DE GEL-TYR	30	
	4.4.	SÍNT	ESIS DE HIDROGELES DE GEL-TYR CON ELEVADO GRADO DE ENTRECRUZAMIENTO	31	
	4.4.	1.	PREPARACIÓN DEL BUFFER CFKRB	31	
	4.4.	2.	PREPARACIÓN DE LAS DISOLUCIONES DE HRP Y H ₂ O ₂	32	
	4.4.	3.	PREPARACIÓN DE LA DISOLUCIÓN DE LOX	32	
	4.4.	4.	PREPARACIÓN DE LA DISOLUCIÓN DE GLYOXAL	32	
	4.5.	SÍNT	ESIS DE SCAFFOLDS DE GELATINA TIRAMINA	33	
	4.6.	MED	DICIÓN DE PROPIEDADES MECÁNICAS DE LOS HGS Y SCFF	34	
	4.7.	ESTE	RILIZACIÓN DE SCAFFOLDS DE GEL-TYR	35	
	4.8.	SIEN	1BRA DE CÉLULAS HEPG2 EN LOS SCAFFOLDS	35	
	4.8.	1.	HepG2	35	
	4.8.	2.	HUVECs	36	

	4.8.	3.	Hepatocitos primarios porcinos	36
	4.9.	VIAB	BILIDAD CELULAR (ANÁLISIS LIVE/DEAD)	36
	4.10.	FUN	CIONALIDAD CELULAR (ANÁLISIS DE INMUNOFLUORESCENCIA)	37
	4.11.	ANÁ	LISIS ESTADÍSTICO	38
5.	RES	ULTAD	DOS	39
	5.1.	Grad	do de injerto de Gel-Tyr	39
	5.2.	Reór	metro HGs. Incubación 3h/24h	40
	5.3.	Reór	metro HGs. Incubación 24h F12 vs PBS	41
	5.4.	Reór	metro Scff rehidratados	42
	5.5.	Reór	metro Scff rehidratados 24h con distintos ratios de GlyO	44
	5.6.	Reór	metro Scff rehidratados vs. Esterilizados	45
	5.7.	CULT	TIVO CELULAR	45
	5.7.	1.	Viabilidad celular (VIVAS/MUERTAS)	46
	5.7.	2.	INMUNOFLUORESCENCIA	51
6.	DIS	cusió	٥N	53
7.	CO	NCLUS	SIONES	56
8.	PER	SPECT	TIVAS DE FUTURO	56
9.). BIBLIOGRAFÍA			58
A١	NEXO			64

NORMATIVA

La parte experimental del TFM presente sigue la normativa dada por el Instituto Nacional de Seguridad y Salud en el Trabajo (INSST). Los experimentos realizados se rigen por aquellos Reales Decretos y leyes relacionadas con la manipulación y almacenamiento de sustancias químicas y biológicas, así como de la manipulación de los residuos correspondientes.

Real Decreto 833/1988, de 20 de julio, por el que se aprueba el Reglamento para la ejecución de la Ley 20/1986, básica de residuos tóxicos y peligrosos.

Real Decreto 485/1997, de 14 de abril, sobre disposiciones mínimas en materia de señalización de seguridad y salud en el trabajo (Anexo I.2; II.1; III.3).

Real Decreto 664/1997, de 12 de mayo, sobre la protección de los trabajadores contra los riesgos relacionados con la exposición a agentes biológicos durante el trabajo (BOE 124, 24 de mayo de 1997, págs. 16100-16115).

Real Decreto 374/2001, de 6 de abril, sobre la protección de la salud y seguridad de los trabajadores contra los riesgos relacionados con los agentes químicos durante el trabajo (Artículo 5.3).

Real Decreto 374/2001, de 6 de abril, sobre la protección de la salud y seguridad de los trabajadores contra los riesgos relacionados con los agentes químicos durante el trabajo.

Real Decreto 374/2001, de 6 de abril, sobre la protección de la salud y seguridad de los trabajadores contra los riesgos relacionados con los agentes químicos durante el trabajo (Artículos 5.2.c, 7.4.c).

Real Decreto 614/2001, de 8 de junio, sobre disposiciones mínimas para la protección de la salud y seguridad de los trabajadores frente al riesgo eléctrico.

Orden ESS/1451/2013, de 29 de julio, por la que se establecen disposiciones para la prevención de lesiones causadas por instrumentos cortantes y punzantes en el sector sanitario y hospitalario.

Ley 31/1995, de 8 de noviembre, de Prevención de Riesgos Laborales.

OBJETIVOS DE DESARROLLO SOSTENIBLE (ODS)

El proyecto desarrollado en el presente TFM se puede relacionar con los siguientes ODS:

- ODS 3: Salud y Bienestar:
 - Meta 3.4: Para 2030, reducir en un tercio la mortalidad prematura por enfermedades no transmisibles mediante la prevención y el tratamiento y promover la salud mental y el bienestar.
 - Meta 3.8: Lograr la cobertura sanitaria universal, incluida la protección contra los riesgos financieros.
- ODS 9 Industria, Innovación e Infraestructura:
 - Meta 9.5: Fortalecer la investigación científica, mejorar la capacidad tecnológica de los sectores industriales de todos los países, en particular los países en desarrollo, y fomentar la innovación.
- ODS 12: Producción y consumo responsables:
 - Meta 12.2: Para 2030, lograr la gestión sostenible y el uso eficiente de los recursos naturales.
- ODS 17: Alianzas para lograr los objetivos:
 - Meta 17.16: Fomentar alianzas eficaces y con orientación mundial entre los sectores público y privado, y aprovechar la experiencia y las estrategias de obtención de recursos de las alianzas.

1. INTRODUCCIÓN

1.1. Hígado: anatomía e histología

"El hígado, responsable de la desintoxicación de la sangre, es el órgano más grande del cuerpo humano." Anatómicamente, el hígado está situado en el cuadrante superior derecho de la cavidad abdominal. Está salvaguardado por las costillas y asegurado por ligamentos, como señalan (Abdel-Misih y Bloomston, 2010). Desde una perspectiva macroscópica, su estructura puede dividirse en dos lóbulos, izquierdo y derecho, tal y como se representa en la Figura 1.

Figura 1. Lóbulos del hígado. Adaptado de (Sibulesky, 2013).

El hígado es el órgano responsable de recibir el mayor porcentaje de flujo sanguíneo, aproximadamente el 25% del volumen total de sangre bombeada por el corazón. De este volumen, entre el 25% y el 30% procede de la arteria hepática, mientras que el 75-70% restante deriva de la vena porta y suministra nutrientes al hígado. Antes de entrar en la circulación sistémica a través del sistema venoso intrahepático, ambas corrientes sanguíneas se fusionan dentro de los sinusoides hepáticos (capilares que forman parte integral de los lóbulos hepáticos, como se explica más adelante en esta sección). En cuanto al transporte de la bilis producida por los hepatocitos, los conductos biliares siguen la disposición de la vena porta. En el 80% de los casos, el transporte se produce tanto a través de los conductos del lóbulo izquierdo como del derecho, aunque también hay casos en los que el transporte se produce exclusivamente a través de los conductos de uno de los lóbulos (Abdel-Misih y Bloomston, 2010), (Carotti *et al.*, 2020).

A nivel microestructural, el hígado puede caracterizarse por distintos tipos celulares, incluidos los hepatocitos, las células sinusoidales, las células de Kupffer (que pertenecen a la familia de los macrófagos) y las células esteladas, responsables del almacenamiento de vitamina A y que además tienen un papel de vital importancia en la fibrosis, como se verá más adelante. Además, los conductos biliares están recubiertos por colangiocitos, células sensibles a las hormonas que responden a los factores de crecimiento y al daño hepático (Carotti *et al.*, 2020), (Nagy *et al.*, 2020).

Figura 2. esquema del acino hepático. Extraído de (Apunte: Fisiología del Hígado: Fisiología Animal y bioquímica fisiológica: Veterinaria (UBA):).

El acino hepático o lóbulo hepático representa la entidad funcional primordial del hígado. Es una estructura con una longitud de 1-2 mm y una configuración hexagonal. En su centro alberga la vena central, y en sus extremos, se encuentra la tríada compuesta por la vena porta, arteria hepática y canalículo biliar. Los hepatocitos se disponen en placas hepáticas radiales y están rodeados por los sinusoides, que son los conductos que permiten la circulación sanguínea desde los bordes hacia la vena central. Estos sinusoides están en comunicación con la membrana basal de los hepatocitos, posibilitando así el intercambio de sustancias (Lee *et al.*, 2013), (Lu *et al.*, 2021). Esta distribución del lóbulo hepático se puede apreciar detalladamente en la Figura 2.

Tal como se ha observado, entre todas las células presentes en el hígado, los hepatocitos, que constituyen alrededor del 60% de la totalidad celular (Tabernilla et al., 2021), asumen un papel primordial en las funciones fundamentales del órgano. Uno de los roles esenciales de estas células es el transporte de metabolitos de desecho desde la sangre hasta los conductos biliares (Lee et al., 2013). Para llevar a cabo esta función, los hepatocitos presentan polaridad, con una membrana basolateral que interactúa con la sangre a través de los sinusoides y una membrana apical que se conecta con los canalículos biliares. Estas membranas expresan proteínas de transporte específicas, según su función (captación de metabolitos desde la sangre o liberación hacia los canalículos que conducen al conducto biliar) (Lee et al., 2013), (Feher, 2017). El espacio de Disse, situado entre la membrana basolateral de los hepatocitos y las células endoteliales de los sinusoides (que carecen de membrana basal), es el sitio donde ocurre la liberación al torrente sanguíneo de proteínas y lipoproteínas producidas por los hepatocitos (Lee et al., 2013), (Feher, 2017). Además, los hepatocitos establecen comunicaciones intercelulares mediante uniones gap, para la transmisión de señales, y a través de uniones adherentes, que contribuyen a la formación de una estructura tridimensional (Lee et al., 2013).

Por otra parte, es relevante señalar la diversidad de funciones que desempeñan los hepatocitos en función de su ubicación en la placa hepática; esta heterogeneidad funcional es el resultado del flujo sanguíneo unidireccional a través del hígado, en particular, influenciado por los sinusoides (Krebs *et al.*, 2007). Aquellos hepatocitos cercanos a las vénulas y arteriolas reciben mayores niveles de oxígeno, ya que son los primeros en estar en contacto con el flujo sanguíneo. En contraste, los hepatocitos próximos a la vena central experimentan niveles menores de oxígeno debido al menor flujo sanguíneo que reciben. Estas células se dedican a la transformación de toxinas a través del sistema citocromo-oxidasa P450 (Krebs *et al.*, 2007). Además, los hepatocitos cumplen una función crucial en la producción continua de fibrinógeno, un componente esencial en los procesos de coagulación sanguínea, cuya síntesis es atribuida en su mayoría a este tipo celular (Zhou *et al.*, 2015).

Los hepatocitos desempeñan un rol esencial en el mantenimiento de la salud del organismo, también debido a su contribución en la generación de proteínas y en la metabolización de fármacos (Lee *et al.*, 2013), (Zhou *et al.*, 2015). En cuanto a su función en el sistema inmunológico, los hepatocitos generan diversas proteínas de la inmunidad innata, que tienen una importancia crucial debido a sus efectos bactericidas tanto directos como indirectos (como proteínas bactericidas, opsoninas, moléculas de señalización en rutas de activación de lipopolisacáridos y proteínas esenciales para el metabolismo de hierro) (Zhou *et al.*, 2015). Todas estas proteínas son secretadas por los hepatocitos a la sangre a través del espacio de Disse (Feher, 2017).

La matriz extracelular (ECM, por sus siglas en inglés, *extracellular matrix*) comprende un conjunto de moléculas insolubles sintetizadas por las células en sus bordes laterales (entre células del mismo tipo) y basales (entre células distintas). Específicamente, en el hígado, la ECM incluye moléculas de adhesión celular y proteoglicanos en los bordes laterales de las células, y en los bordes basales, se encuentran moléculas como la fibronectina (FN), laminina, colágenos, tinactina y tenascina, junto a moléculas de adhesión celular y proteoglicanos (Krebs *et al.*, 2007). Alrededor de los hepatocitos, la organización de la matriz es singular debido a la presencia del espacio de Disse. En este espacio, la ECM es limitada y está compuesta por FN, colágeno tipo I y, en menor proporción, colágenos tipo III, IV, V y VI (Martínez-Hernández y Amenta, 1993).

Desde un punto de vista funcional, la ECM cumple la tarea de mantener la estructura tridimensional para el crecimiento celular y, además, desempeña la función de estabilizar, retener y liberar biomoléculas señalizadoras. Adicionalmente, la composición previamente mencionada facilita un rápido intercambio de macromoléculas entre el plasma (espacio de Disse) y la superficie basal de los hepatocitos (Martinez-Hernandez y Amenta, 1993). Este intercambio es esencial para el mantenimiento de la homeostasis y el adecuado funcionamiento hepático, siendo cualquier alteración capaz de inducir la pérdida de funciones del órgano (Krebs *et al.*, 2007), (Martinez-Hernandez y Amenta, 1993). Por otro lado, la interacción entre los hepatocitos y la ECM resulta vital para conservar el fenotipo y la funcionalidad. En concreto, la unión física de las integrinas (moléculas transmembrana presentes en las células que actúan como receptores de adhesión celular) con la matriz asegura la supervivencia de las células, siendo esencial para que ingresen a la fase S del ciclo celular (Sawicka *et al.*, 2015). Además, la presencia

en la ECM de proteínas de la membrana basal promueve la polarización, lo cual es crítico para la función de los hepatocitos (Martinez-Hernandez y Amenta, 1993).

En el diseño de modelos in vitro, también se debe prestar atención a las propiedades mecánicas del entorno celular, ya que deben ser comparables a las del órgano. Asimismo, se debe asegurar que las células respondan adecuadamente a las fuerzas presentes y a la mecanotransducción, de manera que conserven su fenotipo y funcionalidad. La literatura sugiere que los niveles normales de rigidez en la ECM hepática humana están en el rango de 400 Pa a 1500 Pa de módulo elástico de cizalla, siendo los más bajos observados en la periferia de los hepatocitos (Agarwal *et al.*, 2019), (Li *et al.*, 2021).

1.2. Fibrosis hepática

1.2.1. Definición, causas y síntomas

La fibrosis hepática es una patología del hígado que se manifiesta en una deposición excesiva de la ECM en el tejido del órgano, resultando en cambios estructurales y funcionales en el mismo. Esta deposición excesiva se debe a un desequilibrio entre fibrogénesis y fibrólisis (síntesis y degradación del colágeno, respectivamente) causado por daño hepático inducido por enfermedades crónicas como algunas infecciones virales, enfermedades autoinmunes o del sistema inmune, consumo de alcohol, enfermedades hereditarias o aquellas inducidas por fármacos. En los estadios avanzados, la fibrosis evoluciona a la cirrosis hepática – irreversible y con complicaciones como hipertensión de la vena porta, carcinoma hepático y finalmente el fallo del hígado. Cabe destacar que la fibrosis se desarrolla pasados los 15-20 años desde el comienzo de la lesión (Šmíd, V., 2020), (Shan *et al.*, 2023).

A continuación, se detallarán los mecanismos de acción de la fibrosis, así como los cambios producidos en la matriz extracelular durante las distintas fases de la patología.

1.2.2. Mecanismos de acción

A nivel celular y molecular, los cambios predecesores de la fibrosis se dan cuando los hepatocitos dañados empiezan a secretar moléculas de señalización, las citoquinas como factor de necrosis tumoral (TNF), factor de crecimiento derivado de plaquetas (PDGF) o la interleukina 1 (IL-1). La acción conjunta de dichas citoquinas actúa activando las células clave de la fibrosis hepática: las células esteladas (HSC, del inglés *hepatic stellate cells*). Éstas, al ser activadas, cambian de fenotipo para transformarse en miofibroblastos, que a su vez comienzan a secretar muy activamente la ECM, concretamente el colágeno, dando lugar a una acumulación anormalmente alta del mismo, en especial de los tipos I y III (Henderson e Iredale, 2007). Los cambios en la ECM fibrótica se verán más adelante en mayor detalle.

Por otro lado, ocurre el anteriormente mencionado desequilibrio entre la fibrogénesis y la fibrolisis. Estos procesos en condiciones fisiológicas se regulan por dos grupos de moléculas: las metaloproteinasas de matriz (MMPs) y los inhibidores tisulares de las metaloproteinasas (TIMPs, del inglés *tissue inhibitors of metalloproteinases*). Las más relevantes de cada grupo pueden verse en la Figura 3. Como se observa en ella, las MMPs son las encargadas de los procesos de hidrólisis de los distintos colágenos que se encuentran en la ECM hepática, mientras que los TIMPs contrarrestan su acción mediante

su inhibición; cabe hacer especial énfasis en las TIMP1 y TIMP2, cuyo papel en la promoción de la fibrosis es el más conocido hasta ahora (Shan, L. *et al.*, 2023).

Figura 3. Esquema de los mecanismos de la interacción de MMPs y TIMPs. Flecha roja – inhibición, flecha azul – promoción. Adaptado de (Shan, L. et al., 2023).

Así, en condiciones fisiológicas las MMPs degradan los excesos de colágeno que se pueden producir y las TIMPs inhiben estas moléculas para que no se dañe el tejido y se mantenga la homeostasis del ambiente en el que las células hepáticas desarrollan correctamente su función.

Este es, por lo tanto, otro de los procesos clave que se ve alterado durante la fibrosis. Los miofibroblastos resultantes de la activación de las HSC, además de la producción excesiva de colágenos, también expresan TIMPs. Con lo cual, provocan una inhibición descontrolada de las MMPs (concretamente, se ha visto que la MMP-1 es la enzima diana de las TIMP-1 y TIMP-2 secretadas por las HSCs activadas, resultando en una acumulación de Col I, II y III) (Shan *et al.*, 2023), (Acharya *et al.*, 2021).

Otro factor clave a tener en cuenta y que motiva el incremento de la rigidez de la ECM es el grado de entrecruzamiento de la matriz. Este entrecruzamiento se da gracias a la acción de enzimas, mayoritariamente de la familia de las lisil-oxidasas (LOx) (Tabla 1). Esta familia de enzimas incluye la LOx y otras cuatro proteínas semejantes (LOXL1-4), tratándose de amino-oxidasas dependientes del cobre. Se secretan, por tanto, en forma de proenzima inactiva (proLOx) y, una vez activadas, actúan como catalizadoras de la desaminación oxidativa de los grupos amino primarios a aldehído reactivo condensado con otros aldehídos o grupos ε -amino de residuos seleccionados de lisina e hidroxilisina para formar enlaces covalentes intra e intermoleculares (Guo, t. *et al.*, 2023), (Saneyasu *et al.*, 2016). Esta reacción se ha visto que es inducida por el agente profibrogénico citokina TGF- β e induce este mencionado entrecruzamiento covalente en colágenos fibrilares (sobre todo de Tipo I) y elastinas, lo cual genera, a su vez, la insolubilización y la estabilización de las proteínas de la ECM, la LOx (Saneyasu *et al.*, 2016).

Molóculas	Funcionos biológicos	
Moleculas	Funciones biologicas	
LOx	Cataliza el entrecruzamiento del colágeno	
	y la elastina	
LOxL 1-4	Cataliza el entrecruzamiento del colágeno	
	y la elastina	
Transglutaminasa	Cataliza el entrecruzamiento de proteínas	
	de la ECM	
Fibronectina	Disminuye la expresión de la familia LOX	
TGF-β	Aumenta la expresión de colágeno y de	
	LOX	
PDGF	Aumenta la expresión de LOX	
IL-1β	Aumenta la expresión de LOX	
TNF-α	Disminuye la expresión de LOX (1-5	
	ng/mL)	
	Aumenta la expresión de LOX (10-30	
	ng/mL)	
Prostaglandina E	Disminuye la expresión de LOX	
IFN-γ	Disminuye la expresión de LOX	

Tabla 1. Rol de la familia de LOx y de moléculas relacionadas en la regulación de la rigidez de la ECM.Adaptado de (Saneyasu et al., 2016).

Se ha visto que la expresión de LOx, LOXL1 y LOXL2 aumenta en aquellos pacientes con fibrosis hepática, y que la supresión de la LOx atenúa la fibrosis hepática inducida por CCl4 (Liu *et al.*, 2016). Además, las HSCs y los fibroblastos portales han demostrado ser la fuente más abundante de dicha familia de enzimas en otro modelo de fibrosis inducida, y se ha visto el aumento del módulo elástico de la ECM al aumentar la actividad de la enzima (Perepelyuk *et al.*, 2013). En la Figura 4 se presenta la estructura química de la LOx.

Figura 4. Estructura de la LOx (Vallet et al., 2019).

1.2.3. Efecto de la fibrosis en la ECM

Todos los cambios descritos en la composición de la ECM durante la fibrosis generan, a su vez, cambios en la rigidez de dicha matriz, así como en la orientación de las fibras de colágeno. En las fases avanzadas de la fibrosis se detecta hasta 6 veces más ECM que en el hígado sano, con predominancia de los colágenos tipo I, III y IV, fibronectina, udulina, elastina, laminina, ácido hialurónico y proteoglicanos (Chen, G. et al., 2019), (Guo, t. et al., 2023). Un ejemplo es el cambio en la membrana basal del espacio de Disse, compuesta en su mayoría por colágenos Tipo IV y VI y que tras la lesión fibrótica se encuentra compuesta por los colágenos Tipo I y III (Chen, G. et al., 2019). Es el colágeno Tipo I el que se ha demostrado como el más influyente en las propiedades mecánicas de la ECM, por lo que su acumulación anormal es un factor clave en el aumento de la rigidez local de distintas zonas del órgano. Así, en las distintas fases de la fibrosis (F1 – fibrosis hepática suave, F2 – fibrosis hepática moderada, F3 – fibrosis hepática severa y F4 - cirrosis) se tienen los siguientes módulos elásticos a cizalla de la ECM: 6,5±1,0 kPa (F1), 8,1±0,7 kPa (F2), 10,8±2,3 kPa (F3) y 13,7±1,7 kPa (F4) (Chen, G. et al., 2019). Además, las fibras de colágeno se someten a cambios en la orientación de las mismas resultando en unas fibras más alineadas, conduciendo también a una mayor rigidez de la ECM (Guo, t. et al., 2023).

En estudios recientes también se le otorga un rol especial a la elastina, que además tiene alta correlación con el carcinoma hepático, que se encuentra directamente relacionado con la fibrosis (Yasui, Y. *et al.*, 2016). Aunque esta proteína se califica normalmente como la más estable de todos los componentes de la ECM, se ha visto que la inhibición de su entrecruzamiento puede frenar de forma efectiva el progreso de la fibrosis. Concretamente, se acumula entrelazada con el colágeno Tipo I en las áreas interlobulares y en las áreas portales alargadas en la última fase de la fibrosis (Chen, W. *et al.*, 2019), (Hall, A. *et al.*, 2021). Sin embargo, quedan todavía por investigar en profundidad los mecanismos relacionados con esta proteína (Chen, W. *et al.*, 2019).

1.2.4. Efecto de la fibrosis en los hepatocitos

Como ya se ha mencionado, los hepatocitos contribuyen al inicio del proceso de fibrosis mediante las citoquinas activadoras de las HSCs. Ahora bien, son de especial interés los cambios que se producen en el fenotipo y la funcionalidad de las células más abundantes en el hígado durante el progreso de la patología. Se encuentra que ocurre una disminución de las características epiteliales, así como de la polaridad baso-apical característica descrita anteriormente. Las propiedades de adhesión intercelular también son negativamente afectadas, y los hepatocitos adquieren propiedades migratorias y de fenotipos mesenquimales que permiten la síntesis de compuestos de la ECM, contribuyendo al desarrollo de la fibrosis (Acharya *et al.*, 2021). Además, existen estudios que establecen la posibilidad de los hepatocitos de cambiar el fenotipo hasta adquirir propiedades de miofibroblasto mediante el proceso de transición epitelial-a-mesenquimal. Sin embargo, esta transición es todavía objeto de discusiones (Zeisberg *et al.*, 2007), (Scholten y Weiskirchen, 2011), (Chen *et al.*, 2020).

1.3. Modelos de fibrosis in vitro

1.3.1. Tipos celulares

En el ámbito biológico, como se mencionó anteriormente, los hepatocitos desempeñan diversas funciones, siendo una de las más cruciales el metabolismo de fármacos. La

utilización de hepatocitos primarios posee una ventaja evidente en vista del papel crucial que presentan en las vías de iniciación de los procesos de fibrosis, aunque claramente las células promotoras de los mismos son las HSCs, también empleadas en el contexto de mimetización de la fibrosis (Lee y Seki, 2023).

Los hepatocitos primarios, lamentablemente, representan un recurso limitado debido a su origen en pacientes, su rápida pérdida de funcionalidad y su escaso potencial de crecimiento *in vitro*, lo que restringe su empleo en investigaciones (Nanjappan *et al.*, 2018). Por ello, se han buscado otras fuentes, como líneas celulares inmortalizadas (como HepG2, HepaRG, Upcytes, etc.) (Krebs *et al.*, 2007). En estas líneas celulares, los hepatocitos son modificados genéticamente para mantener una capacidad de proliferación *in vitro* prácticamente ilimitada, al tiempo que conservan la función hepática sin generar oncogénesis. No obstante, la conservación de la funcionalidad no siempre es exitosa y en ocasiones se logra solo parcialmente. A pesar de ello, son reproducibles, ilimitadas y fáciles de manipular, lo que las convierte en herramientas útiles para afinar sistemas, como se ejemplifica en este estudio con el uso de la línea HepG2 (Krebs *et al.*, 2007).

Además, se han encontrado modelos que emplean las células HUVECs (*human umbilical endothelial cells*) en co-cultivo con las HepG2 (Guzzardi *et al.*, 2009). Si se toma en cuenta la observada neoangiogénesis que se da en el hígado fibrótico (Iredale, 2013), (Campana, 2014), no es de extrañar que las células endoteliales son también de interés para el uso en estos sistemas.

Por último, es relevante destacar que en investigaciones más recientes se está optando por utilizar células madre pluripotentes inducidas (iPSCs) que luego se diferencian a hepatocitos, aunque aún no se ha logrado una diferenciación completa (Krebs *et al.*, 2007), (Nanjappan *et al.*, 2018).

1.3.2. Modelos 3D vs. Monocapa

A lo largo de los últimos años, se están empleando cada vez más las estructuras 3D para el modelado de entornos biológicos in vitro, permitiendo una mejor imitación de lo que ocurre en el ambiente fisiológico en el cuerpo. Concretamente en el hígado, como ya se ha mencionado, las células se distribuyen en un espacio 3D en la ECM en forma de lobulillos hepáticos a lo largo de los sinusoides. De esta forma, se ve fomentada la expansión, migración, diferenciación, proliferación y la interacción con otros elementos del entorno de las mismas. Estas características no son posibles de imitar en un cultivo celular 2D (la Tabla 2 muestra varias desventajas de estos modelos frente a los cultivos 3D), aunque estos son más simples y menos costosos de realizar (Brooks, A. et al., 2021), (Zhao et al., 2020). Recientemente se ha visto que hepatocitos cultivados en 2D, aunque muestran características de células bien adheridas (morfología extendida y plana, índices elevados de proliferación y de proteínas del citoesqueleto), disminuyen de manera significativa la expresión de genes específicos de este tipo celular, así como su funcionalidad (Agarwal et al., 2019). En cambio, en los estudios realizados con modelos 3D, al mimetizar la estructura fisiológica y la funcionalidad de la ECM natural, los hepatocitos han podido tener el acceso a la interacción con el entorno y la recepción de estímulos, lo cual a su vez ha permitido la conservación del fenotipo y de su función (Brooks, A. et al., 2021), (Agarwal *et al.*, 2019), (Zhao *et al.*, 2020). Esto, además, es de gran importancia para la simulación *in vitro* de condiciones como las de la fibrosis, puesto que los cambios al estado patológico dependen del microentorno y de la distribución espacial de la ECM (Brooks, A. *et al.*, 2021).

Células esteladas en entorno 2D	Células esteladas en entorno natural (3D)	
Forma estirada, no característica	Mantienen forma estelada natural	
Gran parte de la célula cubierta por plástico	Gran parte de la célula en contacto con el	
	microambiente	
Ausencia de gradientes de señales externas	Presencia de gradientes de señales externas	
Rigidez del material mayor a 2 GPa	Rigidez del material entre 1-20 kPa	
Falta de biomoléculas activas de la ECM	Presencia de biomoléculas activas de la ECM	
Pérdida de gotas de grasa y retinoides	Numerosas gotas de grasa perinucleares	
intracelulares		
Interacciones célula-célula solo en el plano X-Y	Interacciones célula-célula en todos los planos	

Tabla 2. Ejemplo del comportamiento de las HSCs en 2D vs. 3D. Adaptado de (Mazza, G., et al., 2017).

1.3.3. Modelos actuales

En la actualidad se encuentran numerosos modelos 3D *in vitro* de la fibrosis hepática. Ente las estructuras más comunes y relevantes se tienen estructuras fabricadas por bioimpresión, cultivos en fragmwntos *Precision-cut* del hígado, modelos *organ-on-a-chip*, scaffolds y estructuras basadas en la ECM (Brooks, A. *et al.*, 2021), (Lee y Seki, 2023). Entre los modelos en desarrollo se encuentra uno que emplea la biofabricacion fotolitográfica (Maharajan *et al.*, 2021) y otro de co-cultivo de HepaRG con HSCs en organoides (Liu *et al.*, 2022), si bien no se han conseguido encontrar modelos actualmente comercializados. Los modelos actuales, como todos los que intentan la mimetización de los tejidos naturales *in vitro*, presentan varias limitaciones en cuanto a la completa mimetización del entorno celular hepático tanto fisiológico como fibrótico (Brooks *et al.*, 2021).

1.4. Hidrogeles como ECM in vitro

Una de las formas de imitar esta estructura tridimensional de la ECM hepática es mediante el uso de hidrogeles 3D. Estas estructuras son polímeros hidrofílicos de redes tridimensionales que, gracias a la presencia de grupos funcionales hidrofílicos como -OH, -COOH, -SO3H, -NH2 o -CONH2, son capaces de retener cantidades de agua múltiples del valor de su peso en seco y, por lo tanto, hincharse en ambientes fisiológicos (Almawash *et al.*, 2022). Gracias a esta y a otras características ventajosas, como ahora la posibilidad de adaptación de las propiedades mecánicas a las necesidades de cada modelo en concreto según el propósito del mismo, el control de la flexibilidad y de la degradación, la capacidad de encapsulación de moléculas y macromoléculas, etc., los hidrogeles ofrecen una versatilidad idónea para la imitación de ambientes fisiológicos complejos como es la ECM. Ésta, de hecho, se puede considerar de por sí un hidrogel de elevada complejidad: estructuras fibrosas de colágeno y otras proteínas se hallan embebidas en matrices de polisacáridos y glicoproteínas blandas, con biomoléculas ancladas, y que permiten la interacción de la célula con este entorno por medio de la presentación de otras biomoléculas (Zhao *et al.*, 2020).

En términos de la fabricación de los hidrogeles se debe tener en cuenta que interaccionan directamente con las células, por lo que estas deben poder adherirse, proliferar, migrar y llevar a cabo su función sin desdiferenciarse o, en el caso de imitación de entornos patológicos como la fibrosis, comportarse de la manera esperada. Todo ello depende de la química del hidrogel, su tamaño de poros e interconectividad, y de la ausencia de citotoxicidad. Los materiales utilizados para poder imitar máximamente la ECM son variados y se distinguen tres grupos: materiales sintéticos, biológicos e híbridos (una combinación de los anteriores). Los sintéticos tienen como ventaja la facilidad a la hora de controlar las propiedades mecánicas y la velocidad de degradación del polímero, pero a su vez carecen de bioactividad. Los materiales biológicos, al contrario, son biológicamente activos de forma natural, si bien sus propiedades mecánicas son difícilmente controlables (Dubey y Mequanint, 2011), (Almawash et al., 2022). Los hidrogeles de materiales híbridos son una solución que permite fusionar las propiedades más ventajosas de ambos tipos de polímeros, de modo que se consigue una matriz similar a la ECM, biológicamente activa y con propiedades mecánicas controlables (Krebs et al., 2007).

Los hidrogeles inyectables merecen ser destacados entre la gran variedad de hidrogeles debido a sus propiedades excepcionales de encapsulación celular en el momento de la formación del hidrogel y de adaptación a la geometría de la lesión. Su habilidad de cambiar de estado líquido a sólido de manera rápida promueve la captura de biomoléculas en su estructura sin ser perjudicial para las células (Almawash et al., 2022). Estos hidrogeles se forman mediante la polimerización *in situ* de materiales base, permitiendo la inclusión de células y sustancias bioactivas, lo que les dota de esas ventajas. Así, se parte de una solución acuosa del material precursor del hidrogel, al cual se le añade el polímero entrecruzador, provocando la rápida gelificación del compuesto, y esto permite la adición en el momento del entrecruzamiento de biomoléculas o células, mientras la velocidad de la reacción impide la sedimentación de las mismas antes de la formación del hidrogel (Dubey y Mequanint, 2011), (Yu y Ding, 2008). Este proceso se ilustra en la Figura 5.

Figura 5. Esquema de la fabricación de un hidrogel inyectable. Elaboración propia con BioRender.

Los hidrogeles inyectables pueden ser generados a través de entrecruzamiento físico o químico (Hu *et al.*, 2022). La formación de enlaces ocurre en ambos casos en una fase de transición líquido-gel conocida como la transición sol-gel. En el caso de los hidrogeles con entrecruzamiento físico, la transición al estado de gel ocurre debido a fuerzas moleculares (como enlaces iónicos, puentes de hidrógeno y reacciones hidrofóbicas) que

resultan de interacciones entre los polímeros o de estímulos externos como temperatura, pH, presión o luz. Aunque estos hidrogeles físicos poseen un tiempo de solidificación, degradación mecánica y características mecánicas específicas, sus enlaces tienden a ser frágiles, especialmente si las condiciones ambientales cambian después de su formación (Almawash *et al.*, 2022). Por otro lado, los hidrogeles con entrecruzamiento químico solidifican a través de la formación de enlaces covalentes en su estructura polimérica a través de reacciones químicas. Como resultado, requieren más tiempo para solidificarse (lo cual es ventajoso en aplicaciones que involucran la encapsulación de células o biomoléculas en comparación con los hidrogeles físicos). Una vez formados, los hidrogeles con entrecruzamiento químico tienen una reacción irreversible, lo que los hace más estables que los hidrogeles físicos. Sus propiedades mecánicas, no obstante, deben ser determinadas experimentalmente (Almawash *et al.*, 2022).

En la síntesis de hidrogeles inyectables, los materiales más comunes incluyen colágeno, gelatina, alginatos y polímeros sintéticos (Krebs *et al.*, 2007). Sin embargo, a pesar de su potencial, estos hidrogeles presentan desafíos como la supervivencia celular a largo plazo y propiedades mecánicas (Krebs *et al.*, 2007), (Sarrigiannidis *et al.*, 2021), lo que aún debe abordarse en la ingeniería de tejidos en general y hepáticos en particular.

1.5. Propuesta de modelo

En el presente Trabajo Fin de Máster (TFM) se propone un modelo in vitro para pruebas de eficacia de fármacos antifibróticos realizado mediante un hidrogel de origen natural. El material principal es la gelatina (Gel), representante del colágeno de la ECM del hígado. En ella se injerta la tiramina (Tyr) para permitir el entrecruzamiento enzimático por medio de la enzima peroxidasa de rábano (HRP, del inglés horseradish peroxidase). De esta forma, se tiene un entrecruzamiento químico rápido y biocompatible (Poveda-Reves et al., 2016) del hidrogel in situ. Una vez obtenido el hidrogel, se propone incrementar su módulo elástico progresivamente desde el fisiológico hasta el fibrótico mediante la incubación en medio con concentraciones variables de la LOx (cuyo papel en la fibrosis se ha explicado en apartados anteriores) y mediante la variación del tiempo de incubación. Esta estrategia con el uso de la LOx como agente que aumenta la rigidez se ha aplicado exitosamente en estudios previos como en (Tirella et al., 2020). Así, se pretende conseguir un modelo en el que los cambios en la funcionalidad de las células en el hidrogel ocurren progresivamente a partir de células sanas, para posteriormente comprobar la reversibilidad de estos cambios al suministrar fármacos antifibróticos. A continuación, se describen en mayor detalle las características de los materiales empleados, así como la química de los enlaces que se van a formar entre éstos durante la síntesis y la rigidización del hidrogel.

La Gelatina es una proteína resultante de la desnaturalización e hidrólisis ácida del colágeno, mayoritariamente del Tipo I, que es particularmente relevante para los sistemas que emulan las condiciones fisiológicas hepáticas, dado que el colágeno Tipo I es preeminente en su matriz extracelular (ECM). La estructura química de esta proteína se puede visualizar en la Figura 6. Tras su proceso de obtención, la Gel mantiene ciertos aspectos funcionales del colágeno, como secuencias específicas para la adhesión celular a través de integrinas y sitios susceptibles a la acción de metaloproteinasas (MMPs), las cuales permiten la degradación enzimática de la ECM por parte de las células, facilitando

así su remodelación (Klotz *et al.*, 2016), (Carthew *et al.*, 2018). Simultáneamente, la desnaturalización inducida por calor resuelve la problemática de la respuesta antigénica que suele asociarse al uso del colágeno, lo que conlleva que la Gel no desencadene reacciones inmunológicas y sea considerada no antigénica y no citotóxica (Klotz *et al.*, 2016). Es importante resaltar también que la Gel es una sustancia económicamente viable y de manipulación sencilla (Klotz *et al.*, 2016), (Carthew *et al.*, 2018).

Figura 6. Estructura química de la Gel (Biswal, 2021). Se puede ver que los grupos terminales son grupos amino (NH2).

En solución acuosa o en un entorno fisiológico, la Gelatina experimenta una transición a estado gel a una temperatura de 24ºC (Klotz *et al.*, 2016). No obstante, esta proteína es inestable a la temperatura corporal de 37ºC, lo que ocasiona la reversión del estado gel al líquido (Carthew *et al.*, 2018). Por lo tanto, para lograr la gelificación, se recurre a la formación de enlaces químicos covalentes mediante el entrecruzamiento de la proteína.

La tiramina (Tyr) es un aminoácido ampliamente utilizado como injerto en biomateriales principales de hidrogeles inyectables para permitir un rápido entrecruzamiento de las cadenas poliméricas en presencia de HRP y H₂O₂ como agentes entrecruzadores (Sakai *et al.*, 2009). Gracias a su estructura química, en el caso concreto de la Gel, la Tyr se une a los grupos terminales -COOH de la Gel a través de sus grupos terminales -NH₂, tal y como se ilustra en la Figura 7. El grupo terminal fenol de la Tyr se queda por tanto libre, y reacciona con la HRP una vez esta es añadida y activada por la adición de H₂O₂, resultando así en el entrecruzamiento de las cadenas de Gel-Gel y formando el hidrogel.

Figura 7. Reacción de GelTyr en presencia de agentes catalizadores. Adaptado de (Sakai et al., 2009).

La LOx, como ya se ha explicado en detalle en el apartado de la fibrosis, tiene un papel fundamental en el proceso del cambio de la densidad de entrecruzamiento de la ECM durante la fibrosis, durante la cual sus niveles se elevan progresivamente. En el modelo propuesto, la molécula reacciona con los grupos -NH₂ libres de la Gel aumentando el grado de entrecruzamiento del hidrogel.

Como se ha visto, el objetivo del modelo propuesto en el presente TFM es rigidizar progresivamente el hidrogel con las células encapsuladas, cosa que permite el entrecruzamiento por LOx al ser esta una enzima. De este modo, partiendo de células sanas se les inducirán progresivamente los cambios de fenotipo típicos de la fibrosis. No obstante, para tener un control positivo del aumento de las propiedades mecánicas y como estrategia alternativa en el caso del fallo de la propuesta con la enzima, se propone utilizar como entrecruzador el compuesto químico Glioxal - un alfa-oxoaldehído reactivo, metabolito fisiológico formado por la peroxidación lipídica, la autooxidación del ascorbato, la degradación oxidativa de la glucosa y la degradación de las proteínas glicosiladas (Shangari y O'Brien, 2004). Se usará en la etapa de la incubación para incrementar el grado de entrecruzamiento del hidrogel mediante la interacción con las aminas libres de la Gel, de la misma forma que la LOx (Tsai *et al.*, 2021). (Utiye *et al.*, 2017). Esta forma de entrecruzamiento (Figura 8) es más fácil y económica; sin embargo, el compuesto resulta citotóxico (Shangari y O'Brien, 2004), con lo cual imposibilitará el rigidizar el hidrogel con las células encapsuladas, como se pretende en la propuesta con la LOx.

Figura 8. Entrecruzamiento de la Gel por medio de Glyoxal. Adaptado de (Utiye et al., 2017).

En la Figura 9 se puede observar un esquema de ambas estrategias propuestas.

2.2. ESTRATEGIA 2: Incubación de los hidrogeles en medio con Glioxal, variando tiempos y concentraciones para determinar si influyen en la rigidez del hidrogel. Adición de células a posteriori.

Figura 9. Esquema de la fabricación de los modelos propuestos. Elaboración propia con BioRender.

2. JUSTIFICACIÓN Y OBJETIVOS

Del apartado de introducción se puede deducir que existe una gran necesidad de desarrollar plataformas 3D para ensayos de fármacos antifibróticos *in vitro*. Este desafío de conseguir mimetizar no solamente la ECM fisiológica, sino los cambios que experimenta en el proceso de la progresión de la patología, lo afronta hoy en día la ingeniería tisular. Enfoques diferentes de la realización de dichas plataformas permiten descubrir las ventajas y las desventajas, y por tanto nuevas vías de desarrollo de este tipo de modelos.

El incremento en el grado de entrecruzamiento de un hidrogel (y por tanto la rigidización del mismo) por medio de enzimas, tal y como ocurriría de forma natural en el organismo, en condiciones no citotóxicas es de especial interés, pudiendo llevar el entrecruzamiento a niveles de fibrosis progresivamente para poder partir de células sanas que pasen al estado patológico y estudiar si este cambio es reversible con los fármacos.

Por todo ello, el objeto global del presente TFM ha sido diseñar un modelo de la progresión de fibrosis hepática in vitro que tiene como base un hidrogel de Gel-Tyr entrecruzado por HRP y cuya rigidez se incrementará de forma progresiva empleando LOx para mimetizar el desarrollo *in vivo* del proceso fibrótico de la ECM.

Para ello, se establecen los siguientes objetivos específicos:

- Síntesis de la GelTyr según el protocolo previamente establecido en el grupo de investigación.
- Evaluación de la síntesis correcta del material.
- Síntesis de hidrogeles con rigidez variable mediante la adición de los diferentes entrecruzadores empleados (LOx o GlyO) y de los tiempos de incubación.
- Evaluación de las propiedades mecánicas de los hidrogeles resultantes.
- Evaluación del efecto de la rigidez del hidrogel en los distintos tipos celulares encapsulados (HepG2, HUVECs, hepatocitos porcinos primarios).

3. MATERIALES

A continuación, se listan los materiales utilizados en la elaboración de este TFM. Si no se indica lo contrario, provienen de la casa comercial de Sigma-Aldrich, Alemania.

3.1. Hidrogeles

Para la síntesis de la Gel con injerto de tiramina (Gel-Tyr) se utilizaron los reactivos siguientes: gelatina de piel de cerdo (polvo, tipo A), HCl-Tyr (hidrocloruro de tiramina, Tyr-HCl, \geq 98%), hidrocloruro N-3-dimetilaminopropil-N'-etilcarbodiimida (EDC, Iris Biotech GmbH, Alemania), N-hidroxisuccinimida (NHS, \geq 98%) y el ácido 2-(N-morfolino)etanosulfónico (MES, , \geq 98%), así como las membranas de diálisis para la gelatina (12400 MWCO, del inglés *Molecular Weight Cut-Off*).

Para la preparación del tampón *calcium free Krebs ringer buffer* (CFKRB), se emplearon: cloruro de sodio (NaCl), fosfato dipotásico (KH₂PO₄), cloruro potásico (KCl) y ácido 4-(2-hidroxietil)piperazin-1-iletanosulfónico (HEPES).

Para la síntesis de los hidrogeles, se utilizaron: peroxidasa de rábano (HRP, del inglés *horseradish peroxidase*, tipo IV), peróxido de hidrógeno (30% p/p en H₂O₂), Lisil-oxidasa (LOx), Glyoxal (40% wt), medio de cultivo F12, buffer DPBS (-/-) (tampón fosfato salino de Dulbecco sin calcio y magnesio, líquido).

3.2. Cultivos celulares

Para los cultivos celulares de la línea inmortalizada HepG2, cultivadas en medio completo Ham's F12/Leibovitz L15 con suplemento de L-glutamina (2 mM), 7% de suero bovino fetal (SBF), glucosa (0.01 M) BSA (1 mg/mL), bicarbonato (0.01 M) y penicilina/streptomicina. Para los cultivos de las HUVECs se utilizó medio ECM (*endothelial cell medium* 2, de Promocell) suplementado con el mix de suplementos de Promocell (ECM *Supplement Mix* 2) y penicilina/streptomicina. Para el cultivo de hepatocitos porcinos primarios se empleó el medio de cultivo E de William (Sigma Aldrich, Alemania) suplementado con 5% FBS (Biosera), 1% penicilina/streptomicina y 1% de L-glutamina (Bio Concept).

Para las tinciones de viabilidad celular se utilizó el kit para ensayos de viabilidad de células vivas y muertas de Invitrogen (*LIVE-DEAD Cell Viability assay*). Para la tinción de inmunofluorescencia, se utilizaron los anticuerpos primarios de Abcam Conejo anti-Humano (SLC22A3) y Ratón anti-Humano (ABCC2, en este TFM denominado con la alternativa MRP-2), anticuerpos secundarios de Abcam Cabra anti-Ratón AF568 y Gallina anti-Conejo AF647, así como las tinciones DAPI y faloidina (*Flash Phalloidin* AF488, de BioLegend), albúmina de sérum bovino (BSA) y Tween-20.

4. MÉTODOS

4.1. SÍNTESIS DE GELATINA CON INJERTO DE TIRAMINA

Para la síntesis del material principal utilizado para la fabricación del modelo propuesto, el protocolo a seguir fue el realizado por (Poveda-Reyes et al., 2016), con los correspondientes ratios molares empleados en la síntesis de Gel-Tyr (Tabla 3). En la Tabla 4 se recogen los materiales empleados para la síntesis de la Gel con injerto de Tyr con sus correspondientes cantidades y la función de cada uno en el proceso.

Tyr:COOH	EDC:COOH	EDC:Tyr	NHS:EDC
2:1	2:1	1:1	1:10

Tabla 3. Ratios molares empleados en la síntesis de Gel-Tyr.

I YF:COUH	EDC:COOH	EDC:Tyr	NH5:EDC
2:1	2:1	1:1	1:10

Reactivo	Cantidad para obtener 20 mL de Gel-Tyr	Función
Buffer MES 50 mM	20 mL (195.24 mg MES/20 mL de agua miliQ)	Medio de trabajo
Gel	0.4 g	Material base para el injerto
HCl-Tyr	111.13 mg	Componente a injertar en la Gel
EDC	122.68 mg	Agente activador de la reacción entre la Gel y la Tyr
NHS	7.36 mg	Catalizador y estabilizador de la reacción

Tabla 4. Reactivos para la síntesis de Gel-Tyr.

Se disolvió la gelatina en polvo en el buffer MES con agua miliQ y se dejó en agitación a 60°C durante 30 minutos, tras lo cual se dejó enfriar la disolución y a continuación se le añadió la tiramina. La nueva disolución se mantuvo en agitación durante otros 20 minutos, a temperatura ambiente (RT, del inglés room temperature). Tras la incubación, se procedió al ajuste del pH de la disolución mediante la adición de NaOH a 0.1M. El pH se ajustó hasta llegar a 6, siendo el pH inicial de la disolución cercano a 4 debido a la posible liberación de protones del MES y de HCl-Tyr. Seguidamente, se procedió a la adición de NHS y EDC. Se añadió primero NHS, se agitó la disolución 10 minutos a RT y se añadió la EDC. La disolución final se dejó en agitación durante 24 horas incubando a 37ºC.

Tras la incubación, durante la cual ocurrió la reacción de inserción de tiramina en las cadenas de gelatina, se dializó la disolución en agua destilada durante 48 horas a RT, realizando cambios de agua tres veces al día. Tras el proceso de diálisis, se congeló la muestra a -80°C durante 24 horas, para luego ser liofilizada durante otros cuatro días. Se comprobó que la liofilización se había completado y se almacenó el material obtenido a RT preservado contra la humedad.

4.2. CÁLCULO DEL GRADO DE INJERTO DE TIRAMINA EN LA GELATINA

Para comprobar que el porcentaje establecido en el protocolo original se mantenía en el material sintetizado para este TFM, se realizó una prueba de medición de absorbancia con el NanoDrop. La Gel-Tyr se disolvió en agua miliQ a una concentración de 0.1 g/100 mL. Se obtuvo primero una curva patrón de la Tyr empleando las concentraciones sugeridas en (Poveda-Reyes et al., 2016), y a continuación se calculó el porcentaje de la Tyr injertada en los grupos terminales NH₂ de la Gel a partir de dicha absorbancia y de los pesos moleculares de la Tyr y la Gel por medio de la conversión de unidades detallada en el ANEXO I.

SÍNTESIS DE LOS HIDROGELES DE GEL-TYR 4.3.

La composición en porcentaje de cada hidrogel (HG) base de los experimentos fue la que se indica en la Tabla 5:

Tabla 5. Composición de un HG (% e	<u>n volumen)</u>
Gel-Tyr	80
HRP	10
H2O2	10
Total	100

La síntesis de los HGs de Gel-Tyr se llevó a cabo siguiendo el siguiente protocolo: se pesó la cantidad necesaria de la Gel-Tyr liofilizada, se añadió a un tubo Falcon de 50 mL y se cubrió con el volumen de trabajo del solvente. Se mantuvo durante 30 minutos a 37°C en el baño de agua para disolver la Gel-Tyr. En este tiempo, se prepararon las disoluciones de HRP, H₂O₂, GlyO y LOx. Las disoluciones se guardaron a 4^oC hasta su uso. Una vez disuelta la GelTyr, se retiró del baño de agua y se añadió al Falcon la HRP, se resuspendió bien la mezcla y se añadió el volumen de trabajo a los moldes. Seguidamente se añadió el H₂O₂ dando comienzo al proceso de entrecruzamiento, tras lo cual los HGs se incubaron 5 minutos a RT y 15 minutos en la estufa, a 37ºC para la simulación de condiciones fisiológicas. Consultar ANEXO II.

Al finalizar este período de incubación corto, se situaron los HGs recién gelificados en placas multipocillos y se cubrieron en una proporción 3:1 volumen de medio-volumen de HG con el medio correspondiente a cada experimento (preparación de las disoluciones descrita en los apartados siguientes). Se incubaron a 37ºC hasta el tiempo de análisis.

4.4. SÍNTESIS DE HIDROGELES DE GEL-TYR CON ELEVADO GRADO DE ENTRECRUZAMIENTO

Antes de proceder con la descripción de la preparación de las disoluciones empleadas para aumentar las propiedades mecánicas, en la Tabla 6 se recogen las distintas concentraciones de los entrecruzadores y los solventes utilizados en cada experimento.

EXPERIMENTO	Concentración de LOx	Concentración de GlyO	Solvente
E1 (propiedades mecánicas)	0.1 U/mL 0.2 U/mL	5:1 mmol de GlyO- mmol de NH ₂	F12
E2 (propiedades mecánicas)	1 U/mL 5 U/mL	5:1 mmol de GlyO- mmol de NH ₂ 20:1 mmol de GlyO- mmol de NH ₂	F12/PBS
E3 (propiedades mecánicas)	0.8 U/mL	50:1 mmol de GlyO- mmol de NH ₂	CFKRB (síntesis de HGs), PBS (incubación con LOx/GlyO)
E4 (propiedades mecánicas)	No aplica	100:1 mmol de GlyO- mmol de NH ₂ 500:1 mmol de GlyO- mmol de NH ₂ 1000:1 mmol de GlyO- mmol de NH ₂	CFKRB (síntesis de HGs), PBS (incubación con GlyO)
E5 (propiedades mecánicas)	No aplica	50:1 mmol de GlyO- mmol de NH ₂	CFKRB (síntesis de HGs), PBS (incubación con GlyO)
E6 y sucesivos (cultivo celular)	No aplica	50:1 mmol de GlyO- mmol de NH2	CFKRB (síntesis de HGs), PBS (incubación con GlyO), medios característicos de los tipos celulares empleados

Tabla 6. Concentraciones de entrecruzadores y solventes empleados.

Para el Experimento 1, los tiempos de incubación fueron de 3 h y de 24 h directamente con el medio F12 con los entrecruzadores (LOx y GlyO). Para el Experimento 2, se incubaron primero durante 24 h en F12 o en PBS, tras lo cual se procedió a la incubación con los medios con entrecruzadores durante otras 24 h. En los experimentos sucesivos la incubación fue durante 24 h con PBS. Consultar ANEXO II.

4.4.1. PREPARACIÓN DEL BUFFER CFKRB

Para la elaboración de 1 L del buffer CFKRB, se disolvieron en 1 L de agua miliQ las siguientes cantidades de sales: 6.72 g de NaCl, 0.14 g de KH_2PO_4 , 0.37 g de KCl y 5.96 g de HEPES (ácido 4-(2-hidroxietil)piperazin-1-iletanosulfónico). Se ajustó el pH de la disolución a 7.4 y se guardó en nevera a 4^oC hasta su uso.

4.4.2. PREPARACIÓN DE LAS DISOLUCIONES DE HRP Y H₂O₂

La preparación de las alícuotas para la primera reacción de entrecruzamiento se realizó en dos pasos partiendo de las disoluciones en stock de HRP (1000 U/mL) y de H_2O_2 (9794 mM):

En primer lugar, se preparó una alícuota común en agua miliQ como paso intermedio, debido a que las concentraciones de las disoluciones stock eran muy elevadas y complicaban la preparación directa de las disoluciones finales. Así, se preparó la alícuota de HRP a una concentración de 200 U/mL y una alícuota de H_2O_2 a una concentración de 100 mM. Estas alícuotas se guardaron en la nevera a 4^{0} C hasta su uso.

Por otro lado, para cada experimento se prepararon alícuotas propias a partir de las comunes. Se preparó una alícuota por cada solvente a utilizar (F12, PBS, CFKRB), siendo la concentración final de 12 U/mL. Para ello, el volumen necesario de alícuota intermedia a utilizar se calculó de la siguiente forma: $\frac{10\% \cdot Vtotal}{Cal.intermedia}$, siendo V_{total} = V_{HG} × N^oHGs × 3. El volumen del solvente a añadir, por consiguiente, fue V_{solvente} = V_{total} – V_{al.intermedia}. Los volúmenes utilizados en cada experimento se pueden consultar en el ANEXO II.

4.4.3. PREPARACIÓN DE LA DISOLUCIÓN DE LOX

Las disoluciones de LOx se prepararon a las concentraciones indicadas en la Tabla 6, dos para cada experimento. En el caso de Experimento 3, se utilizó solamente una concentración.

En este caso, también se preparó primero una disolución intermedia: el volumen final de esta disolución fue el exactamente necesario para cada experimento (ver ANEXO III). Se añadió la enzima del stock (96.75 U/mL) a agua miliQ, de forma que la disolución resultante tenía una concentración de 25 U/mL. La alícuota se guardó en la nevera a 4^oC hasta su uso.

Para la preparación de la alícuota final, primero se preparó el stock de cofactores de la enzima, ácido L-ascórbico y CuSO₄. Como ambos cofactores tenían que estar a una misma concentración final en la alícuota con la LOx (cofactores a 5 μ g/mL), se preparó un mismo stock de ambas a una concentración de 5 mg/mL. Para ello, se pesaron 5 mg de ácido L-ascórbico y 7.8 mg de CuSO₄ y se disolvieron en 1 mL de agua miliQ. La disolución se guardó en la nevera a 4^oC hasta su uso.

Finalmente, para la preparación de la alícuota propia, el volumen final necesario fue $V_{\text{final}}=V_{\text{HGs}} \times n^{\circ}\text{HGs} \times 3$. Todos los valores para cada concentración final de enzima en la disolución se encuentran en el ANEXO III.

4.4.4. PREPARACIÓN DE LA DISOLUCIÓN DE GLYOXAL

En el caso del GlyO, también se tuvieron varias concentraciones según el experimento, que se recogen en la tabla Tabla 6.

Para estas disoluciones, puesto que el ratio se refiere a mol de GlyO por mol de amina (NH₂) se calcularon primero los mmol de NH₂ libres en cada HG a partir de la masa de Gel-Tyr en cada HG según el volumen de trabajo en cada experimento. A continuación, se obtuvo a partir de este dato y del peso molecular de GlyO (58.04 g/mol) la masa de éste requerida por mmol de NH₂ y por HG según el ratio establecido para cada experimento.

Finalmente, se calculó el volumen de GlyO de stock (40 g/100 mL) total necesario para el número de HGs de trabajo. Para el detalle de las cantidades consultar ANEXO III. La disolución se conservó a 4° C hasta su uso en el experimento.

4.5. SÍNTESIS DE SCAFFOLDS DE GELATINA TIRAMINA

Para la síntesis de *scaffolds* (Scff) de Gel-Tyr se siguió el protocolo descrito en el apartado de Síntesis de hidrogeles de Gel-Tyr usando CFKRB como solvente hasta el paso de la primera incubación de los HGs. A partir de ahí, la segunda incubación se realizó con CFKRB durante 24 h a 37°C, tras lo cual se retiró el buffer, se trasladaron los HGs a viales individuales y se congelaron en el congelador de -80°C. Una vez congelados, se procedió al proceso de liofilizado overnight. Finalmente, los Scff liofilizados resultantes se guardaron a RT hasta su uso. Consultar ANEXO IV.

Para su rehidratación, se colocaron en placas P-24, un Scff por pocillo, y se cubrieron con el volumen correspondiente del solvente (1050 μ L para los Scff de 350 μ L, 1500 μ L para los Scff de 500 μ L y 750 μ L para los Scff de 250 μ L), tras lo cual se incubaron a 37°C durante 24 h.

Para preparar los Scff para el cultivo, primeramente, se peló una fina capa por una de las caras para facilitar la penetración en el Scff de las células, de modo que la altura final de los Scff fuera de 2.5-3 mm, tal y como se muestra en la Figura 10. Esta cara, por tanto, fue en la que posteriormente se sembraron las células. A continuación, se procedió con el protocolo de rehidratación descrito en el párrafo anterior.

Figura 10. Scaffold con una cara pelada para facilitar la siembra celular.

4.6. MEDICIÓN DE PROPIEDADES MECÁNICAS DE LOS HGS Y SCFF

Las propiedades mecánicas y las variaciones de las mismas en función de las distintas composiciones de las disoluciones de incubación de los HGs (Experimentos 1-2) y los Scff (Experimentos 3-5) propuestos en el presente trabajo se evaluaron mediante ensayos de reología. Como resultado de dichas pruebas se obtuvieron curvas de los módulos de almacenamiento y pérdida para su posterior análisis. Los volúmenes de las muestras para estos experimentos fueron de 350 μ L para los experimentos 1 y 3, 300 μ L para el experimento 2 y 500 μ L para los experimentos 4 y 5.

El equipo utilizado fue el reómetro por control de deformación "Discovery HR-2 Hybrid" (TA Instruments, EE. UU.). Todas las medidas se realizaron con los HGs (Experimentos 1-2) o los Scff (Experimentos 3-5) previamente gelificados e hinchados (en el caso de los HGs) o rehidratados (en el caso de los Scff) hasta el equilibrio en los medios de trabajo correspondientes. El vástago superior utilizado fue de 8 mm de diámetro para las muestras de 300 µL y de 12 mm para el resto. La distancia entre el vástago y la muestra fue variando para mantener la fuerza axial en el valor de 0.04 N. Además, se utilizó el sistema *Solvent trap* para minimizar la evaporación del solvente durante el experimento y se añadieron gotas de agua destilada en la zona periférica del plato inferior para la generación de una atmosfera del 100% de humedad relativa y evitar la evaporación de agua durante las medidas (Figura 11).

Figura 11. Scaffold colocado en el plato inferior del reómetro. Alrededor, las gotas de agua y parte del sistema Solvent trap (negro).

Los HGs o los Scff, según el experimento, se retiraron de los pocillos y se situaron en el plato inferior del reómetro. Se añadieron enseguida las gotas periféricas de agua y se procedió a la regulación de la altura del vástago superior. Una vez ajustada, se inició el experimento desde el ordenador y se colocó inmediatamente el sistema *Solvent trap*.

El protocolo experimental establecido fue el mismo para todos los experimentos y consistió en dos pruebas, realizadas una detrás de otra en un tiempo total de 10 minutos. Primero se realizaba un barrido de amplitud que determinaba la región viscoelástica lineal de la muestra, en un rango de 0.1% a 20% y a una frecuencia constante de 1 Hz. El segundo barrido fue el de frecuencia, en un rango de 0.1 a 10 Hz y a una amplitud constante del 1% de deformación (en la región viscoelástica lineal de la muestra).

4.7. ESTERILIZACIÓN DE SCAFFOLDS DE GEL-TYR

Durante todo el proceso se trabajó en cabina de flujo laminar y con materiales estériles. Los Scff previamente rehidratados se colocaron en una placa multipocillo. La placa con Scff se mantuvo en agitación durante los tiempos de lavado para una mayor eficacia del tratamiento.

Previamente al comienzo del proceso de esterilización con etanoles, se realizaron tres lavados con agua miliQ, de 10 minutos cada uno, con el fin de eliminar la mayor cantidad posible de GlyO.

Se utilizaron 3 disoluciones de etanol: 70%, 50% y 30%.

Primeramente, se procedió a los lavados con disoluciones de etanol, todos a RT:

- 3 lavados de 45 minutos cada uno con etanol al 70%
- 1 lavado de 30 minutos con etanol al 50%
- 1 lavado de 25 minutos con etanol al 30%

A continuación, se realizaron 4 lavados de 10 minutos cada uno con agua miliQ para quitar los restos de etanol, también a RT.

Finalmente, se retiró el agua de los pocillos y se cubrieron los Scff esterilizados con medio de cultivo F12 (2 mL/pocillo) y se dejó overnight en el incubador a 37ºC. Con este último paso se busca acondicionar los materiales para la siembra del cultivo celular.

En el caso de los Scff de 500 μ L, tras el paso de la incubación en medio, se realizaron medidas de reología siguiendo el protocolo descrito en el apartado de "Medidas de propiedades mecánicas" para comprobar que se conservaba la rigidez determinada para los Scff rehidratados pero antes de esterilizar.

En el caso de los cultivos celulares con las HUVECs, se añadió un lavado extra de 3 h de duración para eliminar con mayor eficacia los posibles restos de etanol.

4.8. SIEMBRA DE CÉLULAS HEPG2 EN LOS SCAFFOLDS

4.8.1. HepG2

Previamente a la realización del protocolo de siembra, se calentaron en un baño de agua a 37^{0} C el medio de cultivo para HepG2 y el DPBS (-/-).
Se prepararon suspensiones celulares para la siembra en 3D en los Scff así como para sembrar en monocapa algunos pocillos adicionales que se emplearían como controles en las técnicas posteriores. Para ello, se retiró el medio del vial y se lavaron con DPBS. Se retiró el DPBS y se procedió al tripsinizado, consistente en un lavado de 3 minutos a 37° C con 4 mL de tripsina. Tras el lavado se comprobó con un microscopio óptico que las células se habían levantado de la pared del recipiente y se inactivó la tripsina mediante la adición de 8 mL de medio de cultivo con suero fetal bovino al 10% (FBS). A continuación, se recogió el líquido con las células levantadas en un Falcon de 15 mL y se centrifugó durante 3 minutos a 1500 rpm. Se retiró el líquido de Falcon dejando solamente el pellet de células. Éste se resuspendió en 4 mL de medio de cultivo ($V_{suspensión inicial$) tras lo cual se procedió al recuento de células con la cámara Neubauer.

A continuación, se prepararon las suspensiones de células para la siembra de Scff y de los cubreobjetos. Teniendo en cuenta que se quería sembrar 40×10^6 células/mL para los Scff (volumen de suspensión a añadir por Scff: 5 µL) y 12.000 células/cm² en el caso de las monocapas (superficie de 1 cm²) para controles, según la recomendación de la casa comercial.

4.8.2. HUVECs

Para el cultivo de las HUVECs, el procedimiento fue el mismo que el descrito para los HepG2, cambiando solamente los parámetros de tripsinizado (2 minutos a RT) y centrifugación (220 rcf durante 3 minutos), y la densidad celular sembrada en cada Scff, de acuerdo con las recomendaciones de la casa comercial: 14×10^6 células/mL en Scff y 3.000 células/cm² en monocapa (superficie de 2 cm²). El volumen de suspensión a añadir a cada Scff se mantuvo en 5 µL.

4.8.3. Hepatocitos primarios porcinos

De la misma manera que con las HUVECs, en el caso de los Hepatocitos primarios porcinos se alteró la centrifugación (se centrifugaron 4 veces a 20 rcf durante 5 minutos) y las densidades celulares de siembra. A falta de un protocolo optimizado, se redujo la densidad a la mitad en base a que el tamaño de los hepatocitos primarios de cerdo duplica el de las células HepG2 (Arzumanian, V. *et al.*, 2021), (Krishna, M., 2013): 20×10^6 células/mL en Scff y 10.000 células/cm² en monocapa (superficie de 2 cm²). El volumen de suspensión a añadir a cada Scff se mantuvo en 5 µL.

Los cultivos con HUVECs y con los hepatocitos primarios porcinos se llevaron a cabo en el laboratorio de *Biomedical Center* de la facultad de medicina de la Universidad Karlova (Pilsen, República Checa) durante una estancia Erasmus+ que la autora del presente TFM realizó de dos meses de duración (junio y julio de 2023).

4.9. VIABILIDAD CELULAR (ANÁLISIS VIVAS/MUERTAS)

Para disponer de un control negativo, a uno de los cultivos monocapa se le administró dimetilsulfóxido al 50% con PBS. Se dejó incubar durante media hora y se comprobó que las células se habían muerto. En este tiempo se prepararon las disoluciones de Calceína AM (stock de 4 mM) a una concentración de 2 μ M y de Etidio (stock de 2 mM) a una concentración de 4 μ M, tal y como recomienda el fabricante (ThermoFisher). El solvente utilizado fue DPBS.

Antes de sumergirlas en el fluoróforo, se lavaron con DPBS 1 vez y la monocapa con las células muertas, 2 veces. Se dejan en DPBS hasta el momento de echar el fluoróforo (con cuidado de que no sea un tiempo prolongado para que no se mueran las células). El medio de los Scff se sustituyó por el DPBS con los fluoróforos a oscuras y trabajando en cabina de flujo laminar. Tras la sustitución, se incubaron a 37^oC durante 20 min. Antes de ponerlas en el portaobjetos, se realizó otro lavado inmediato de DPBS de las muestras.

Las imágenes obtenidas en el microscopio de fluorescencia Leica HMR (HepG2) o en el microscopio de fluorescencia confocal Olympus ix 80 (HUVECs y hepatocitos) se analizaron con el software de análisis de imagen ImageJ (Institutos Nacionales de Salud). La viabilidad celular se calculó mediante la Ecuación 1.

viabilidad celular (%) = $\frac{c\acute{e}lulas vivas}{c\acute{e}lulas vivas + c\acute{e}lulas muertas} \cdot 100$

Ecuación 1. Cálculo de la viabilidad celular media.

En el caso de los hepatocitos primarios, los resultados fueron normalizados según la viabilidad que se obtuvo en el momento de la extracción de los mismos, antes de la siembra.

4.10. FUNCIONALIDAD CELULAR (ANÁLISIS DE INMUNOFLUORESCENCIA)

Para la prueba de funcionalidad de los hepatocitos primarios, atendiendo a la disponibilidad de los anticuerpos, se optó por el uso de los transportadores transmembrana MRP-2 (del inglés *Multidrug Resistance-Associated Protein*), (ABCC2 gene - genecards | MRP-2 protein | MRP-2 antibody)) y SLC22A3, también conocido como SLC-1 (*Solute Carrier family*,(SLC22A3 gene - genecards | S22A3 protein | S22A3 antibody)). Estos transportadores son participantes activos en el metabolismo de fármacos que se lleva a cabo por los hepatocitos, en especial el MRP-2, por lo que se concluyó que su expresión deberá ser alterada al encontrarse los hepatocitos en un entorno semejante al de la ECM fibrótica. El volumen de los Scff fue de nuevo 250 μ L. Se prepararon 2 réplicas por cada material (incubado con PBS como control negativo o con GlyO) y por tiempo de cultivo (24 h, 3 d y 7 d).

El protocolo seguido para la tinción de las muestras fue el siguiente: se incubaron las muestras previamente fijadas con formalina en 1 mL del buffer de bloqueo (1% BSA en PBS) por 1 h, tras lo cual se retiró el buffer, se pasaron las muestras a una placa multipocillos P-98 y se añadió la disolución con el anticuerpo primario. En la Tabla 7 se recogen los ratios y volúmenes empleados para el anclaje de anticuerpos primarios a las proteínas diana; MM1 – Master Mix 1 (nombre empleado para la disolución con anticuerpos primarios). Se incubó durante la noche a 4° C.

Anticuerpo	Primari	Dilució	Volume	Primari	Dilució	Volume	Volumen	Volumen
s Primarios	o 1	n	n	o 2	n	n	del	total
	(conejo)		(µL)	(ratón)		(µL)	disolvent e (mL)	disolució n (mL)
MM1	SLC22A	1:100	39	MRP-2	1:100	39	3.822	3.9
	3							

Tabla 7. Preparación de la disolución con el anticuerpo primario.

Tras la incubación con el anticuerpo primario, se lavaron las muestras 3 veces durante 10 min cada una en 1 mL de buffer TWEEN-20 (0.1% TWEEN en PBS). A continuación, se procedió al marcaje con los anticuerpos secundarios que contienen el fluoróforo y con DAPI (0.1%) y faloidina (1%), estos últimos para la tinción de núcleos y del citoesqueleto, respectivamente, para poder realizar debidamente los cálculos del análisis de imagen. En la Tabla 8 se recogen los ratios y volúmenes empleados para el anclaje de anticuerpos secundarios a los primarios; MM1 – Master Mix 4x (nombre empleado para la disolución con anticuerpos secundarios). Se añadieron 100 μ L de esta disolución a cada pocillo y se incubó durante 2 h a RT, a partir de aquí trabajando siempre en protección de la luz.

Anticuerpos Secundarios	Canal rojo (Cabra anti- ratón)	Volumen (µL)	Canal Rojo Far (Gallina anti-conejo)	Volumen (µL)	Disolvente + Phalloidin 488 + DAPI (μL)	Volumen total disolución (mL)
MM 4x	g-aM- AF568 1:200	19.5	Ch-aRab AF647 1:200	19.5 ul	(3818 + 39 + 3.9)	3.9

Tabla 8. Preparación de la disolución con el anticuerpo secundario.

Una vez obtenidas las imágenes por microscopio de fluorescencia confocal Olympus ix 80, se procesaron también con el software ImageJ (Institutos Nacionales de Salud) y se calculó la intensidad media de la señal de la proteína por célula según la Ecuación 2.

Intensidad media por célula (%) = $\frac{\% de \text{ área } de \text{ la imagen con señal}}{n^{\circ} de \text{ células } en \text{ la imagen}}$

Ecuación 2. Cálculo de la intensidad media por célula de la señal de la proteína.

Para el cómputo del número de células por imagen se ha tenido en cuenta que aquellas células en las que no se detectó tinción del citoesqueleto eran células muertas y se procuró no tenerlas en cuenta para los cálculos.

4.11. ANÁLISIS ESTADÍSTICO

Los tamaños de muestra en los experimentos fueron los siguientes: para los ensayos mecánicos se estableció una n igual a 2 en los Experimentos 1, 3 y 4; una n igual a 1 en el Experimento 2; y una n igual a 5 en el experimento 5. Por otro lado, para los cultivos celulares se estableció una n igual a 3 en el caso de las células HepG2 y una n igual a 2 en el resto de los cultivos.

El análisis estadístico, así como todas las gráficas que se presentan en este TFM, se llevó a cabo en el software GraphPAD 8.0.2. Los datos sujetos al análisis estadístico se analizaron primeramente para determinar si seguían una distribución normal (test de Shapiro-Wilk para variables con tamaño de muestra pequeño y el d'Agostino-Pearson cuando el tamaño de muestra lo permitía) y de homocedasticidad de residuos. Tras este primer análisis, si las variables resultaron normales se realizó el T-test no emparejado para análisis de dos variables y el ANOVA de un factor con test de Holm-Sidak en el caso de comparar más de dos variables. En el caso contrario, para el análisis de dos variables se aplicó el test no paramétrico de Mann-Whitney y la prueba de Kruskall-Wallis con test de Dunn para el caso de comparación de más de dos variables. Las diferencias se consideraron estadísticamente significativas para p<0.05.

5. RESULTADOS

A continuación, se presentan los resultados obtenidos en los experimentos descritos en el apartado de Métodos para la síntesis de Gel-Tyr, las propiedades mecánicas de los HGs y de los Scff, y los resultados de los cultivos celulares en los Scff de los distintos tipos celulares descritos en los Métodos.

5.1. Grado de injerto de Gel-Tyr

Tras la síntesis de la Gel con injerto de Tyr según el procedimiento descrito en el apartado de Métodos, se obtuvieron los resultados del grado de injerto para el material fabricado, acompañados de una curva de calibrado (Figura 12) para el cálculo del porcentaje en función de la absorbancia detectada en el NanoDrop.

Curva patrón Tyr

Figura 12. Curva patrón de la Tiramina (izq.). R² = 0.9998. Resultados para la absorbancia de la síntesis de Gel-Tyr (dcha.).

El resultado promedio obtenido tras los cálculos (consultar ANEXO I) es de 21% de grado de injerto. Este resultado es el óptimo y deseado, en base al estudio en el que se ha basado la fabricación del material (Poveda-Reyes *et al.*, 2016), con lo cual la síntesis se dio por exitosa y se procedió a los experimentos siguientes.

5.2. Reómetro HGs. Incubación 3h/24h

En todos los resultados de reología del presente TFM los resultados numéricos del módulo elástico han sido obtenidos empleando las curvas del barrido de frecuencia, puesto que es el utilizado normalmente para la caracterización de las propiedades mecánicas de los compuestos. Los resultados numéricos que se presentan son los obtenidos a la frecuencia de 1 Hz.

Figura 13. Curvas obtenidas para el módulo de almacenamiento (G') de los HGs tras 3 h de incubación (arriba) y tras 24 h de incubación (debajo). Se emplearon dos réplicas por material y tiempo de incubación.

Figura 14. Estadística obtenida para el módulo de almacenamiento en el barrido de frecuencia tras 3 h y 24 h de incubación. Se emplearon 2 réplicas por material y tiempo. Significancia estadística: *p<0.05, **0.001<p<0.05, ***p<0.001. Pruebas t múltiples con test de Holm-Sidak.

Los resultados numéricos obtenidos tras 3 h de incubación fueron (Figura 14): 371 ± 148 Pa para el control hinchado con F12, 573 ± 162 Pa para el grupo LOx 0.1 U/mL, 4723 ± 107 Pa para el grupo LOx 0.2 U/mL y 432 ± 201 Pa para el grupo hinchado con GlyO 5:1 de ratio molar. Los resultados numéricos obtenidos tras 24 h de incubación fueron: 234 \pm 37 Pa para el control hinchado con F12, 406 ± 122 Pa para el grupo LOx 0.1 U/mL, 187 \pm 43 Pa para el grupo LOx 0.2 U/mL y 883 \pm 175 Pa para el grupo hinchado con GlyO 5:1 de ratio molar.

En este primer experimento, se pretendía comprobar la posibilidad de incrementar progresivamente la rigidez del HG desde el nivel de la ECM sana hasta la fibrótica. Como se puede ver en las Figuras 13 y 14, los resultados para los dos grupos de la LOx no difieren significativamente de los valores obtenidos para el grupo control, cuyos valores se sitúan aún por debajo de los patológicos (Chen *et al.*, 2019), ni tampoco se observó una diferencia entre los dos tiempos de incubación. Sin embargo, el grupo con GlyO (control positivo) sí tiene diferencias estadísticas con todos los grupos a las 24 h de incubación y con la incubación a 3 horas del mismo. Los valores del estudio en el que se basó el presente TFM para la determinación de las concentraciones de trabajo de la enzima sí obtiene resultados significativamente distintos para la concentración mayor (Tirella *et al.*, 2020). No obstante, en teoría los niveles de LOx son elevados durante la fibrosis (Guo *et al.*, 2023), por lo que se decidió repetir el experimento con unas concentraciones de 1 U/mL y 5 U/mL.

Además, se consideró la posibilidad de que la falta del incremento del módulo elástico se debiera a que el medio utilizado, F12, tuviese aminas en su composición que estuviesen compitiendo con la enzima por unirse a las cadenas de Gel. Es por ello por lo que el experimento siguiente se realizó tanto con medio F12 como con PBS, para confirmar o rechazar dicha hipótesis.

Por último, como no se observaron cambios relevantes en la reología a las 3 h de incubación, se decidió omitir este tiempo en futuros experimentos.

5.3. Reómetro HGs. Incubación 24h F12 vs PBS

Como se puede observar de la Figura 15, en este experimento no se observaron cambios respecto del grupo control en ninguno de los grupos LOx ni tampoco en los de GlyO, indiferentemente del solvente empleado para estos entrecruzadores.

Figura 15. Curvas del módulo de almacenamiento tras los barridos de frecuencia obtenidas para los HGs incubados durante 24 h en distintos solventes de los entrecruzadores. Se empleó una réplica por cada material, por lo que ha sido imposible el análisis estadístico, aunque a simple vista ya se aprecia que las diferencias son mínimas tanto entre materiales como entre los solventes.

Los resultados numéricos obtenidos tras 24 horas de incubación con PBS fueron (Figura 15): 1728 Pa para el control, 1372 Pa para el grupo LOx 1 U/mL, 870 Pa para el grupo LOx 5 U/mL, 1841 Pa para el grupo hinchado con GlyO 20:1 de ratio molar y 2043 Pa para el grupo hinchado con GlyO 50:1. Para los HGs hinchados en F12, se obtuvo: 907 Pa para el control, 938 Pa para el grupo LOx 1 U/mL, 597 Pa para el grupo LOx 5 U/mL, 1241 Pa para el grupo hinchado con GlyO 20:1 de ratio molar y 1176 Pa para el grupo hinchado con GlyO 50:1.

Teniendo en cuenta resultados del estudio mencionado anteriormente (Tirella *et al.*, 2020) y en vista de que no se vió efecto tampoco en el GlyO, se propuso que dichos resultados se dan debido a que la penetración tanto de la LOx como del GlyO al interior del HG no se daba apropiadamente debido a un mal intercambio de líquidos en el mismo. Para confirmar dicha hipótesis, se propuso el siguiente experimento, en el cual los HGs eran convertidos en Scff y luego rehidratadas con los medios con LOx y GlyO.

5.4. Reómetro Scff rehidratados

Los resultados numéricos a 1 Hz de frecuencia en este caso fueron (Figura 16): 1991 \pm 226 Pa para el control, 2302 \pm 297 Pa para el grupo LOx 0.8 U/mL y 5241 \pm 293 Pa para el grupo de GlyO de ratio molar 50:1. En el caso de este experimento, se observa en la Figura 16 que sí se da una diferencia estadística significativa entre los niveles de módulo elástico en el caso del grupo GlyO. Sin embargo, se siguen sin obtener los resultados esperados en la LOx, aunque el grado de entrecruzamiento es mayor con este método en general para todos los grupos, incluyendo el control.

Figura 16. Curvas obtenidas de módulo de almacenamiento en el barrido de frecuencia y de amplitud para los Scff rehidratados (arriba) y la estadística correspondiente (debajo). Se emplearon 2 réplicas para cada material. Significancia estadística: *p<0.05, **0.001<p<0.05, ***p<0.001. Pruebas t múltiples con test de Holm-Sidak.

En vista de los resultados obtenidos, se concluyó que las posibles razones de la baja actividad de la LOx fuesen o bien que su alto peso molecular y tamaño impide una buena difusión de la enzima por el Scff. En la Figura 17 se pueden apreciar los poros de los Scff en imágenes de FESEM, y se observa que el tamaño del poro del Scff sin GlyO es de aproximadamente 100 µm.

Figura 17. Imágenes obtenidas por FESEM de los poros del HG rehidratado hinchado en PBS. La fijación previa de las muestras congeladas fue llevada a cabo por Sandra Clara Trujillo. La escala se mantiene para las tres imágenes. Las imágenes fueron adquiridas también por ella, en presencia de la autora del presente TFM. Se presentan imágenes de las cortezas inferior y superior del HG (arriba a la izquierda y a la derecha, respectivamente), así como del corte transversal (abajo).

El tamaño de la LOx es de 50 kDa en forma inactiva y de unos 35 kDa en la activa (Smith-Mungo y Kagan, 1998), lo cual, según (Harold P. Erickson, 2009) equivale a un tamaño máximo de 2.4 nm, tamaño con el cual sí podría penetrar una red con poros de un diámetro del orden de micrómetros. Por esta razón, y en vista del límite de tiempo para la realización del trabajo, se optó por el uso del GlyO 50:1 junto con esta técnica de rehidratación de Scff. Esta decisión, a pesar de introducir la limitación de no poder rigidizar progresivamente el Scff con las células encapsuladas debido a la citotoxicidad inicial del GlyO, permite una modificación mayor del módulo elástico. De esta forma, se obtiene un sistema 3D con varios módulos (un material cercano a la ECM normal y otro a la fibrótica) que va a permitir hacer una primera aproximación del comportamiento celular en los cultivos.

5.5. Reómetro Scff rehidratados 24 h con distintos ratios de GlyO

Para conseguir los valores de módulo elástico de los estadios de fibrosis más avanzados, se estudiaron distintas concentraciones de GlyO elevando la máxima hasta un 1000:1. Aquí los valores numéricos que se obtuvieron del módulo de almacenamiento a 1 Hz de frecuencia para los nuevos ratios de GlyO fueron (Figura 18): 5650 ± 236 Pa para el ratio 100:1, 4785 ± 205 Pa para el ratio 500:1, y 3131 ± 295 Pa para el ratio 1000:1.

Figura 18. Gráfica de la estadística a 1 Hz de frecuencia para los Scff rehidratados con distintos ratios de GlyO. Se emplearon 3 réplicas de cada material. Significancia estadística: ***p0.001 (test de Kruskall-Wallis).

Como se observa en la Figura 18, los ratios más elevados del GlyO no superan prácticamente el orden de los 5 kPa del ratio original 50:1, por lo que se concluyó que se tiene una saturación en este punto.

5.6. Reómetro Scff rehidratados vs. Esterilizados

Finalmente, se comprobó que el proceso de esterilización aplicado a los Scff rehidratados con GlyO para eliminar la citotoxicidad de éstos no afectara a las propiedades mecánicas. Los resultados que se obtuvieron del módulo elástico fueron: 9684 ± 498 Pa para los SCff rehidratados y 5461± 223 Pa para los esterilizados.

Figura 19. Curvas obtenidas para el módulo de almacenamiento de los barridos de amplitud y frecuencia de los Scff rehidratados y esterilizados (arriba), acompañados de la estadística correspondiente (abajo). Se emplearon 5 réplicas por cada condición. Significancia estadística: *p<0.05, **0.001<p<0.05, ***p<0.001.

Aunque sí se da una diferencia significativa entre ambos (Figura 19), se observó que los Scff esterilizados aún mantienen un módulo cercano al de la fibrosis, por lo que se decidió proceder con ensayos de cultivos celulares.

5.7. CULTIVO CELULAR

A continuación, se presentan los resultados de los ensayos en cultivos celulares realizados en el contexto del presente TFM. Así, se presentan imágenes del ensayo de células VIVAS/MUERTAS (Figuras 20, 22 y 24) junto con la estadística obtenida con los resultados numéricos del ensayo (Figuras 21, 23 y 25); y las imágenes de Inmunofluorescencia (Figura 26) también con los correspondientes resultados estadísticos (Figura 27). Para todos los resultados numéricos detallados, consultar ANEXOS V y VI.

5.7.1. Viabilidad celular (ensayo de células VIVAS/MUERTAS)

5.7.1.1. HepG2

En el estudio con la línea celular HepG2, se observó (Figura 21) que la viabilidad celular a las 24 h de cultivo fue de 81 ± 11% para el grupo control y 70 ± 17% para los hidrogeles rehidratados con GlyO, lo cual resulta inferior al límite establecido en la literatura (ISO 10993-5:2009, n.d.). Sin embargo, en los resultados del día 5 de cultivo se observó un cambio en la viabilidad, siendo en este caso 70 ± 11% para el grupo control y 86 ± 6% para los hidrogeles rehidratados con GlyO (Figura 21).

Figura 20. Imágenes obtenidas de la tinción VIVAS/MUERTAS para HepG2 a los días 1 y 5 de cultivo. Verde - vivas (calceína), rojo - muertas (etidio).

Viabilidad celular HepG2 (%)

Figura 21. Resultados del análisis estadístico para el día 1, día 3 y día 7 del cultivo de HepG2. Se utilizaron 3 réplicas para cada tiempo y material. Significancia estadística: *p<0.05, **p<0.01. Pruebas t múltiples (método de Holm-Sidak) y prueba de Kruskall-Wallis (para comparación entre muestras del mismo material).

Así pues, aunque en el caso del control la viabilidad no solamente está por debajo de los valores óptimos, sino que decrece con el tiempo, los Scff objeto del estudio demuestran llegar al porcentaje óptimo en un tiempo de cultivo prolongado. En estudios similares sobre la viabilidad de células HepG2 en condiciones de fibrosis, se obtienen también resultados con un aumento de viabilidad a lo largo del tiempo de cultivo (Calitz *et al.,* 2023).

5.7.1.2. HUVECs

En el caso de los cultivos con las células endoteliales, los resultados de viabilidad fueron los siguientes: $92\pm5\%$ en el control frente a un $94\pm5\%$ a las 24 h de cultivo; $84\pm9\%$ en el control frente a un $89\pm14\%$ en el día 3; y $86\pm3\%$ en el control frente a un $89\pm7\%$ en el día 7. Por tanto, la viabilidad general se consideró óptima de acuerdo con las fuentes anteriores (véase la figura 23).

Día 1

Figura 22. Imágenes obtenidas en el ensayo de VIVAS/MUERTAS para las HUVECs. Código de colores: verde - vivas (calceína AM), rojo - muertas (bromuro de etidio).

Viabilidad celular HUVECs (%)

Figura 23. Resultados del análisis estadístico para el día 1, día 3 y día 7 del cultivo HUVECs. Se utilizaron 2 réplicas para cada tiempo y material. Significancia estadística: *p<0.05, **p<0.01. Pruebas t múltiples (método de Holm-Sitak) y prueba de Kruskall-Wallis (para comparación entre muestras del mismo material).

Es además interesante destacar que, aunque los resultados del análisis estadístico no concluyen que sea una diferencia significativa, se observa que la viabilidad del grupo con el módulo fibrótico (grupo GlyO) muestra una tendencia de valores ligeramente por encima de los del grupo control, y que la forma de las células en el primer caso es más característica de este tipo celular. Esto puede deberse a que en la fibrosis hepática se observa un incremento notable de angiogénesis, como ya se observó en el apartado de Introducción (Campana *et al.*, 2014). Un estudio similar sobre la influencia de factores profibróticos en la angiogénesis reporta un aumento de ésta en presencia del factor (Coll *et al.*, 2020), en coherencia con los resultados obtenidos en el presente trabajo.

5.7.1.3. Hepatocitos primarios porcinos

Por último, en el cultivo de hepatocitos porcinos se obtuvieron los siguientes resultados (Figura 25), teniendo en cuenta que se normalizaron con la viabilidad inicial obtenida justo antes de la siembra (81%): $36 \pm 15\%$ en el control frente a un $33 \pm 8\%$ a las 24 h de cultivo; $30 \pm 7\%$ en el control frente a un $48 \pm 9\%$ en el día 3; y 24 $\pm 6\%$ en el control frente a un $61 \pm 17\%$ en el día 7. Estos resultados están claramente por debajo del 85% óptimo (ISO 10993-5:2009, n.d.). No obstante, se debe de tener en cuenta que el protocolo de extracción de las células del hígado porcino (realizado por *Biomedical Center, Charles University, Faculty of Medicine* en Plzen, República Checa) no estaba completamente puesto a punto, afectando a la calidad de los hepatocitos obtenidos.

Figura 24. Imágenes obtenidas en el ensayo de VIVAS/MUERTAS para los hepatocitos primarios. Código de colores: verde - vivas (calceína AM), rojo - muertas (bromuro de etidio).

ത

Figura 25. Resultados del análisis estadístico para el día 1, día 3 y día 7 del cultivo de hepatocitos primarios. Se utilizaron 2 réplicas para cada tiempo y material. Significancia estadística: *p<0.05, **p<0.01. Pruebas t múltiples (método de Holm-Sitak) y prueba de Kruskall-Wallis y ANOVA de un factor (para comparación entre muestras del mismo material).

Por otro lado, son interesantes las diferencias observadas entre el grupo control y el GlyO. Se observa una tendencia decreciente de la viabilidad a lo largo del tiempo en el grupo control, mientras que todo lo contrario ocurre para el GlyO. Estos resultados difieren diametralmente de lo encontrado en estudios similares sobre modelado de la fibrosis in vitro (Farooqi et al., 2021), si bien en la literatura los cambios en la F1 de fibrosis refieren a una ligera pérdida de funcionalidad, pero no de viabilidad de los hepatocitos (Acharya et al., 2021). Por tanto, y como se verá a continuación con los resultados de la inmunofluorescencia, los resultados de la viabilidad para el GlyO se mantienen en la línea de lo que se encuentra en la literatura. Este aumento de la viabilidad con el tiempo en el caso del grupo con GlyO puede ser debido bien a la eliminación de las células muertas que afectaban negativamente los números en el día 1 de cultivo, o bien a la posible desdiferenciación de los hepatocitos en condiciones de fibrosis. Para el grupo control, los resultados de una viabilidad más baja e inconsistente con las expectativas de ser como mínimo similares a los del grupo GlyO puedan deberse a fallos de pipeteo u otros errores incontrolables en la manipulación de las células a la hora de la siembra e incubación del grupo control.

5.7.2. INMUNOFLUORESCENCIA

En el caso del ensayo de inmunofluorescencia, se detectó señal tanto de MRP-2 como de SLC-1 tanto en el control como en el GlyO en los tres tiempos de cultivo (Figura 27). Los resultados se dan en términos del porcentaje de intensidad media por célula.

Figura 26. Imágenes obtenidas de la tinción de inmunofluorescencia. Código de colores: azul – núcleos (DAPI), verde – citoesqueleto (faloidina), cian – MRP-2 (TRITC) y magenta – SLC22A3 (Cy5).

Para la proteína MRP-2, sin embargo, es donde se observa una clara pérdida de expresión en el grupo GlyO frente al control, si bien el porcentaje de expresión aumenta a largo del

Día 1

Día 3

tiempo en ambos casos, lo cual puede deberse a un comienzo de la disminución de la actividad de los hepatocitos en la ECM fibrótica, tal y como sigue de la literatura (Acharya *et al.*, 2021). No obstante, esta pérdida de expresión no se da para el caso del SLC-1 (proteína Oct3), donde además la expresión es similar para los dos tipos de Scff (Figura 27).

Figura 27. Resultados del análisis estadístico para el día 1, día 3 y día 7 de la intensidad media por célula (%) de las proteínas SLC-1 y MRP-2 en los cultivos de hepatocitos primarios. Se utilizaron 2 réplicas para cada tiempo y material. Significancia estadística: *p<0.05, **p<0.01. Pruebas t múltiples con test de Holm-Sidak y prueba de Kruskall-Wallis (para comparación entre muestras del mismo material).

6. DISCUSIÓN

La fibrosis es una de las patologías más comunes encontradas actualmente y los fármacos antifibróticos requieren de modelos *in vitro* robustos para probar su eficacia. Los hidrogeles y *scaffolds* de hidrogeles son una opción óptima para dicho fin puesto que imitan la ECM natural, y pueden ser modificados mediante biomoléculas presentes en la ECM hepática para alcanzar progresivamente la fibrosis y permitir el estudio del efecto de los fármacos en estos componentes de la ECM fibrótica, así como en las células encapsuladas o sembradas en ellos (Almawash, S. *et al.*, 2022).

Una de las moléculas clave en el proceso de la fibrosis hepática es la enzima LOx (Saneyasu, T. et al., 2016). Se ha empleado en varios sistemas, como ahora un hidrogel de lisina en el que sereportó un incremento de la estabilidad y de las propiedades mecánicas del hidrogel a lo largo del tiempo debido a la continua actividad de la LOx (Moreira Teixeira, L. S. et al., 2012). Además, se ha implementado para la fabricación de un sistema con aumento progresivo del módulo elástico basado en hidrogeles de PEG, donde también se reportan resultados satisfactorios (Tirella et al., 2020). Otro estudio reporta un aumento de la expresión de la enzima con unos módulos de Young de entre 5 kPa y 30 kPa (Brovold, M. et al., 2021). En vista de esta dinámica más bien positiva de la acción de la LOx en el aumento de la rigidez de los hidrogeles, los resultados obtenidos en el caso del presente TFM resultan claramente fuera de la línea (Figuras 13-16), ya que no se ha conseguido llegar a un mínimo de 5 kPa, que sería la rigidez de la ECM en el primer estadio de la fibrosis (Chen, G., et al., 2019). Es posible que, en vista de los resultados del tamaño del poro encontrado en este TFM (Figura 17), cabe la posibilidad de que la rigidez aumente si se emplea un hidrogel con mayor porosidad y por tanto, mayor capacidad de absorción de medio y penetración de la enzima.

Por otro lado, es común el entrecruzamiento de hidrogeles con productos químicos sintéticos, como lo es el Glioxal, empleado en el caso del presente TFM como control positivo, y que resultó ser el material elegido para fabricar scaffolds con rigideces de fibrosis en estadio F1 y cultivar las células seleccionadas. Se encuentran varios ejemplos de aplicaciones de este compuesto como agente entrecruzador y también rigidizante. Por ejemplo, en el estudio de (Tsai, C.-C. et al., 2021), hidrogeles de gelatina y quitosano se formaron empleando distintos ratios de GlyO, obteniendo módulos a cizalla de entre 400 y 6 kPa. En otro caso, también se reporta el uso de GlyO como agente entrecruzador de un hidrogel de quitosano (Kaczmarek-Szczepańska, B. et al, 2021). Por último, (Ikhaddalene, S. et al, 2021) apuntan un módulo elástico de 4.9 kPa. Por todo ello, los resultados finalmente obtenidos para los Scff rehidratados (Figura 16), del orden de 5 kPa, resultan coherentes con estos estudios previos y se decidió emplear este material como base en los cultivos celulares. No obstante, si bien los anteriores estudios mencionan la biocompatibilidad del GlyO a una concentración de 0.01%, en el caso de tener un ratio de 50:1 mmol de GlyO:mmol de aminas, este porcentaje resulta mayor, por lo que resulta de especial interés el estudio de la viabilidad celular del material.

Los cultivos celulares con células HepG2 se encuentran entre los más comunes para la puesta a punto de sistemas (Krebs *et al.*, 2007). En estudios con hidrogeles cuya rigidez se asemeja a la normal, se reportan unos valores de viabilidad de 95% en el día 7 (Tirella *et al.*, 2020), de 98% a 94% entre los días 0 y 6, respectivamente (Hong, S., y Song, J. M.,

2021), y de entre 70% y 80% en el día 10 de cultivo (Bazou, D. *et al.*, 2008). Sin embargo, es interesante notar también que en un estudio con una rigidez del hidrogel de entre 5 kPa y 8 kPa la viabilidad también asciende al 90% (Gholami, M. *et al.*, 2023). De aquí que los resultados obtenidos en este trabajo (Figura 21), si bien pueden parecer fuera de lo esperado puesto que la viabilidad en los Scff fibróticos resulta más alta al cabo de 5 días que la viabilidad en aquellos con la rigidez de la ECM sana (70% vs. 86%), se puede decir que se mantiene en la línea de estos estudios.

Procediendo a los cultivos de células HUVEC, estas células se han empleado para la creación de condiciones fibróticas en un modelo con células esteladas (Risbud, M. V. *et al*, 2002), se ha visto que el factor de crecimiento *vascular endothelial growth factor* (VEGF) de HUVECs en fibrosis retroalimenta positivamente la progresión de la patología (Zahmatkesh, E. *et al.*, 2022) y que en un modelo de fibrosis hepática basado en un gel de fibrina el fármaco antifibrótico disminuía la angiogénesis como parte de su acción terapéutica (Siddiqui, H. *et al.*, 2020). Se reportó una viabilidad de 96% a 98% en matriz con rigidez incrementada (Liu, H. *et al.*, 2019). En el contexto del presente TFM se ha obtenido que las viabilidades del grupo con rigidez fibrótica siempre se han mantenido por encima de aquellas del grupo control en los tres días de cultivo (Figura 23). Teniendo en cuenta la revisión de la literatura que se ha hecho, dichos resultados se reportan coherentes.

Por último, en el caso de los hepatocitos primarios porcinos, cabe destacar que estos, junto con los de rata, son de amplio uso en la ingeniería tisular del hígado (Navarro-Alvarez, N. et al., 2006), (Biswas, S. et al, 2022). La viabilidad para este tipo celular se reporta que es del 80% en condiciones de ECM normal, si bien se observa una disminución de citoesqueleto en el día 7 (Biswas, S. et al, 2022). Es más interesante aún destacar que para los valores de rigidez por encima de los 10 kPa se han obtenido resultados de viabilidad positivos para hepatocitos de ratón (Serna-Márquez, N. et al., 2020). No obstante, para los hepatocitos humanos se ha visto que, si bien la viabilidad se mantiene e incluso aumenta al llegar a los valores de 4.6 kPa, la funcionalidad en términos de secreción de albúmina resulta significativamente disminuida a lo largo del tiempo para este valor (Deegan, D. B. et al., 2016). En el caso del presente TFM se han obtenido unos valores más altos (24% en el control y 61% en GlyO) para el cultivo en Scff fibróticos especialmente en el día 7 (Figura 25), si bien, como se verá a continuación en la discusión de los resultados de la inmunofluorescencia, la funcionalidad en este grupo fue inferior a la del grupo control al menos para una de las proteínas. Por ello, se puede decir que se observó un comportamiento similar al de los hepatocitos humanos.

Para el análisis de la funcionalidad celular, las proteínas-diana fueron MRP-2 y SLC-1. Ambas, como reportan (ABCC2 gene – genecards, n.d.), (SLC22A3 gene – genecards, n.d.), son proteínas transportadoras transmembrana características de las células hepáticas (especialmente SLC-1), que participan en el metabolismo de fármacos, con lo cual se relacionan directamente con la función de los hepatocitos. Un estudio reporta que la actividad de una proteína de la familia de SLC resulta disminuida significativamente durante la NAFLD (Nakanishi, T. *et al.*, 2023). Se ha visto en (Vollmar *et al.*, 2019) que la actividad de SLC-1 se ve disminuida en fibrosis. No obstante, los resultados pilotos del presente TFM muestran que no se ha observado tal efecto en los Scff que simulan la fibrosis suave (Figura 27). Queda por confirmar, por tanto, si esta disminución de la actividad de SLC-1 ocurre en un entorno de mayor rigidez. En resumen, teniendo en cuenta que de los valores obtenidos de las pruebas de reología se obtuvieron valores de rigidez propios de la primera fase de fibrosis en los Scff de GlyO, estos resultados indican una parcial pérdida de funcionalidad de los hepatocitos en estos Scff. Lo cual, a su vez, puede servir como confirmación de que el modelo propuesto en este TFM influye en el comportamiento de dichas células de la forma esperada de una ECM fibrótica (Acharya *et al.,* 2021). No se han podido encontrar otros estudios similares acerca del estas dos proteínas en hígado fibrótico, sin embargo, un estudio sobre MRP-2 (Thakkar *et al.,* 2017) confirma una disminución de su actividad en patologías relacionadas con la fibrosis (coleostasis y NASH). Esto es interesante puesto que precisamente es la MRP-2 la proteína más afectada en este trabajo (Figura 27), y se requieren también otros estudios para profundizar en el papel y la actividad de ambas en la fibrosis.

7. CONCLUSIONES

Primeramente, la síntesis de la Gel-Tyr fue exitosa y se corroboró que los resultados coincidían con los obtenidos en la literatura. Se obtuvo un grado de injerto de la Tyr de 21%, y se pudo proceder a la síntesis de HGs.

Por otro lado, los resultados de las incubaciones de los HGs de Gel-Tyr en medio con la LOx no fueron satisfactorios en ningún momento, manteniéndose el módulo elástico de los HGs por debajo de los valores patológicos. No obstante, en el material que se utilizó como control positivo sí se observaron cambios significativos tras cambiar el método de fabricación por el de la fabricación de *scaffolds* y la rehidratación de éstos con el solvente y con el segundo entrecruzador. Se decidió utilizar los Scff rehidratados con GlyO para cultivos celulares.

La esterilización de los Scff de GlyO fue exitosa y, aunque influyó significativamente disminuyendo los valores del módulo elástico, éstos se mantuvieron dentro del rango de la fibrosis suave y siendo significativamente distintos del grupo control. Por tanto, se consideró el tratamiento como óptimo para proceder con los cultivos.

Los cultivos celulares mostraron una viabilidad creciente de las HepG2 con el tiempo, ligeramente mayor para el GlyO en las HUVECs y unas diferencias significativas en los hepatocitos porcinos, si bien este último resultado se deberá estudiar más a fondo. Por otra parte, la inmunofluorescencia mostró una ligera disminución de los niveles de una de las proteínas, MRP-2, en los Scff con GlyO, tal y como se esperaría de un hepatocito que apenas comienza a perder su fenotipo en la fase 1 de la fibrosis (Acharya *et al.*, 2021).

En conclusión, la idea inicial del trabajo sufrió un desvío hacia la fabricación de *scaffolds* de hidrogeles en vez de hidrogeles inyectables, pero se han obtenido resultados que pueden ser útiles para estudios futuros de la fibrosis hepática y de su influencia en las principales células del hígado. Además, se ha establecido como óptima la concentración en ratio molar 50:1 de Glioxal para la consecución de un entrecruzamiento cercano al de la fibrosis, dato que también puede ser de potencial uso para investigaciones futuras.

Los resultados de este TFM han sido elaborados en forma de abstract y aceptados para presentar en forma de póster en el congreso *"2nd International Workshop of Liver and Gut Fibrosis"* que se celebrará en Valencia en las fechas 26 y 27 de octubre de 2023.

8. PERSPECTIVAS DE FUTURO

En vista de los resultados obtenidos y de la discusión de los mismos, el contexto de este TFM se prevé la realización de estudios de inmunohistoquímica también de las HUVECs y co-cultivos, y más adelante, estudios de la expresión genética de los hepatocitos porcinos para una completa caracterización del modelo. Para ello, la autora del TFM volverá a realizar una estancia Erasmus+ en Plzen para acabar los resultados y que puedan conducir a una publicación científica.

En cuanto a la idea inicial de la plataforma – empleo de la LOx para la rigidización progresiva de la ECM – queda por solucionar el problema de la baja penetración de la

enzima en los hidrogeles, que al parecer se da por el tamaño del poro. Serían interesantes estudios con un tamaño de poro mayor con el fin de determinar el efecto de esta característica en el módulo elástico de los hidrogeles.

9. BIBLIOGRAFÍA

ABCC2 gene - genecards | MRP-2 protein | MRP-2 antibody. (n.d.-a). Extraído de: https://www.genecards.org/cgi-bin/carddisp.pl?gene=Abcc2

Abdel-Misih, S. R. Z., & Bloomston, M. (2010). Liver anatomy. *Surgical Clinics of North America*, *90*(4), 643–653. https://doi.org/10.1016/j.suc.2010.04.017

Acharya, P., Chouhan, K., Weiskirchen, S., & Weiskirchen, R. (2021). Cellular Mechanisms of Liver Fibrosis. *Frontiers in Pharmacology*, 12(May), 1–28. https://doi.org/10.3389/fphar.2021.671640

Ajay S., Sanjay Kumar, S. K., & B. Mishra. (2021). Electrical and mechanical characterization of gelatin/poly (aniline) composite films. *Advanced Materials Proceedings*, *2*(5), 337–341. https://doi.org/10.5185/amp.2017/510

Agarwal, T., Subramanian, B., & Maiti, T. K. (2019). Liver Tissue Engineering: Challenges and Opportunities. *ACS Biomaterials Science and Engineering*, 5(9), 4167–4182. https://doi.org/10.1021/ACSBIOMATERIALS.9B00745

Almawash, S., Osman, S. K., Mustafa, G., & El Hamd, M. A. (2022). Current and Future Prospective of Injectable Hydrogels—Design Challenges and Limitations. *Pharmaceuticals*, 15(3). https://doi.org/10.3390/ph15030371

Apunte: Fisiologia del Higado: Fisiología Animal y bioquímica fisiológica: Veterinaria (UBA). *Filadd.* (n.d.). Extraído de: https://filadd.com/doc/hiago-docx-fisiologia-animal-y-bioquimica

Arzumanian, V. A., Kiseleva, O. I., & amp; Poverennaya, E. V. (2021). The curious case of the hepg2 cell line: 40 years of expertise. *International Journal of Molecular Sciences*, 22(23), 13135. https://doi.org/10.3390/ijms222313135

Bazou, D., Coakley, W. T., Hayes, A. J., & Jackson, S. K. (2008). Long-term viability and proliferation of alginate-encapsulated 3-D Hepg2 aggregates formed in an ultrasound trap. *Toxicology in Vitro*, *22*(5), 1321–1331. https://doi.org/10.1016/j.tiv.2008.03.014

Biswal, T. (2021). Biopolymers for tissue engineering applications: A review. *Materials Today: Proceedings*, 41, 397–402. https://doi.org/10.1016/J.MATPR.2020.09.628

Biswas, S., Vasudevan, A., Yadav, N., Yadav, S., Rawal, P., Kaur, I., Tripathi, D. M., Kaur, S., & Chauhan, V. S. (2022). Chemically modified dipeptide based hydrogel supports threedimensional growth and functions of primary hepatocytes. *ACS Applied Bio Materials*, *5*(9), 4354–4365. https://doi.org/10.1021/acsabm.2c00526

Brooks, A., Liang, X., Zhang, Y., Zhao, C. -., Roberts, M. S., Wang, H., Crawford, D. H. G. (2021). Liver organoid as a 3D in vitro model for drug validation and toxicity assessment. *Pharmacological Research*, 169 https://doi:10.1016/j.phrs.2021.105608

Brovold, M., Keller, D., Devarasetty, M., Dominijanni, A., Shirwaiker, R., & Soker, S. (2021). Biofabricated 3d in vitro model of fibrosis-induced abnormal hepatoblast/biliary progenitors' expansion of the developing liver. *Bioengineering & amp; Translational Medicine*, 6(3). https://doi.org/10.1002/btm2.10207

Campana, L., Iredale, J.P. Extracellular Matrix Metabolism and Fibrotic Disease. *Current Pathobiology Reports 2*, 217–224 (2014). https://doi.org/10.1007/s40139-014-0058-7

Carthew, J., Frith, J. E., Forsythe, J. S., & Truong, V. X. (2018). Polyethylene glycol–gelatin hydrogels with tuneable stiffness prepared by horseradish peroxidase-activated tetrazine–norbornene ligation. *Journal of Materials Chemistry B*, 6(9), 1394–1401. https://doi.org/10.1039/C7TB02764H

Cao, H., Duan, L., Zhang, Y., Cao, J., & Zhang, K. (2021). Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. *Signal Transduction and Targeted Therapy* 2021, 6(1), 1–31. https://doi.org/10.1038/s41392-021-00830-x

Carotti, S., Morini, S., Carpino, G., & Gaudio, E. (2020). Liver histology. *Liver Diseases*, 17–28. https://doi.org/10.1007/978-3-030-24432-3_2

Chen, L., Ma, H., Li, K., Song, X., & Zeng, X. (2021). Liver extracellular matrix hydrogelbased three-dimensional culture system of HEPG2 cells to enhance cancer stem cell properties. *Materials Science and Engineering C*, *126*, 112119. https://doi.org/10.1016/j.msec.2021.112119

Chen, W., Yan, X., Xu, A., Sun, Y., Wang, B., Huang, T., Wang, H., Cong, M., Wang, P., Yang, A., Jia, J., & You, H. (2019). Dynamics of elastin in liver fibrosis: Accumulates late during progression and degrades slowly in regression. *Journal of Cellular Physiology*, 234(12), 22613–22622. https://doi.org/10.1002/jcp.28827

Deegan, D. B., Zimmerman, C., Skardal, A., Atala, A., & Shupe, T. D. (2016). Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology. *Journal of the Mechanical Behavior of Biomedical Materials*, *55*, 87–103. https://doi.org/10.1016/j.jmbbm.2015.10.016

Dubey, G., & Mequanint, K. (2011). Conjugation of fibronectin onto three-dimensional porous scaffolds for vascular tissue engineering applications. *Acta Biomaterialia*, 7(3), 1114–1125. https://doi.org/10.1016/J.ACTBIO.2010.11.010

Feher, J. (2017). Pancreatic and Biliary Secretion. *Quantitative Human Physiology*, 810–820. https://doi.org/10.1016/B978-0-12-800883-6.00080-X

Gholami, M., Tajabadi, M., Khavandi, A., & Azarpira, N. (2023). Synthesis, optimization, and cell response investigations of natural-based, thermoresponsive, injectable hydrogel: An attitude for 3D hepatocyte encapsulation and cell therapy. *Frontiers in Bioengineering and Biotechnology*, *10*. https://doi.org/10.3389/fbioe.2022.1075166

Guo, T., Wantono, C., Tan, Y., Deng, F., Duan, T., & Liu, D. (2023). Regulators, functions, and mechanotransduction pathways of matrix stiffness in hepatic disease. *Frontiers in Physiology*, 14. https://doi:10.3389/fphys.2023.1098129

Hall, A., Cotoi, C., Luong, T. V., Watkins, J., Bhathal, P., & Quaglia, A. (2021). Collagen and elastic fibres in acute and chronic liver injury. *Scientific Reports*, 11(1). https://doi.org/10.1038/s41598-021-93566-1

Henderson, N. C., & Iredale, J. P. (2007). Liver fibrosis: cellular mechanisms of progression and resolution. *Clinical Science*, 112(5), 265–280. https://doi.org/10.1042/CS20060242

Hong, S., & Song, J. M. (2021). A 3D cell printing-fabricated hepg2 liver spheroid model for high-content *in situ* quantification of drug-induced liver toxicity. *Biomaterials Science*, *9*(17), 5939–5950. https://doi.org/10.1039/d1bm00749a

Ikhaddalene, S., Zibouche, F., Ponton, A., Irekti, A., & Carn, F. (2021). Synthesis and rheological properties of magnetic chitosan hydrogel. *Periodica Polytechnica Chemical Engineering*, *65*(3), 378–388. https://doi.org/10.3311/ppch.17148

Iredale, J. P., Thompson, A., & Henderson, N. C. (2013). Extracellular matrix degradation in liver fibrosis: Biochemistry and regulation. *Biochimica Et Biophysica Acta - Molecular Basis of Disease*, 1832(7), 876-883. doi: 10.1016/j.bbadis.2012.11.002

ISO - ISO 10993-5:2009 - Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. (n.d.). Extraído de https://www.iso.org/standard/36406.html

Kaczmarek-Szczepańska, B., Mazur, O., Michalska-Sionkowska, M., Łukowicz, K., & Osyczka, A. M. (2021). The preparation and characterization of chitosan-based hydrogels cross-linked by Glyoxal. *Materials*, *14*(9), 2449. https://doi.org/10.3390/ma14092449

Klotz, B. J., Gawlitta, D., Rosenberg, A. J. W. P., Malda, J., & Melchels, F. P. W. (2016). Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair. *Trends in Biotechnology*, 34(5), 394–407. https://doi.org/10.1016/J.TIBTECH.2016.01.002

Krebs, N. J., Neville, C., & Vacanti, J. P. (2007). Cellular transplants for liver diseases. *Cellular Transplantation*, 215–240. https://doi.org/10.1016/b978-012369415-7/50013-2

Krishna, M. (2013). Anatomía microscópica del hígado. *Clinical Liver Disease*, 2(S5), 109–112. https://doi.org/10.1002/cld.287

Lee, Y.-S., & Seki, E. (2023). In vivo and in vitro models to study liver fibrosis: Mechanisms and limitations. *Cellular and Molecular Gastroenterology and Hepatology*, *16*(3), 355–367. https://doi.org/10.1016/j.jcmgh.2023.05.010

Liang, J., Guo, Z., Timmerman, A., Grijpma, D., & Poot, A. (2019). Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks. *Biomedical Materials*, 14(2), 024102. https://doi.org/10.1088/1748-605X/AAF31B

Liu, H., Lv, J., Zhao, Z., Xiong, A., Tan, Y., Glenn, J. S., Tao, Y., Weng, H., & Liu, C. (2019). Fuzhenghuayu decoction ameliorates hepatic fibrosis by attenuating experimental sinusoidal capillarization and liver angiogenesis. *Scientific Reports*, *9*(1). https://doi.org/10.1038/s41598-019-54663-4

Liu, Q., Zeng, A., Liu, Z., Wu, C., & Song, L. (2022). Liver organoids: From fabrication to application in liver diseases. *Frontiers in Physiology*, 13 https://doi:10.3389/fphys.2022.956244

Lu, S., Zhang, J., Lin, S., Zheng, D., Shen, Y., Qin, J., Li, Y., & Wang, S. (2021). Recent advances in the development of in vitro liver models for hepatotoxicity testing. *Bio-Design and Manufacturing* 2021 4:4, 4(4), 717–734. https://doi.org/10.1007/S42242-021-00142-7

Maharjan, S., Bonilla, D., Sindurakar, P., Li, H., Li, W., Duarte, S., & Zhang, Y. S. (2021). 3D human non-alcoholic hepatic steatosis and fibrosis models. *Bio-Design and Manufacturing*, 4(2), 157-170. https://doi:10.1007/s42242-020-00121-4

Martinez-Hernandez, A., & Amenta, P. S. (1993). The hepatic extracellular matrix. *Virchows Archiv A*, 1993 423(2), 77–84. https://doi.org/10.1007/BF01606580

Mazza, G., Al-Akkad, W., & Rombouts, K. (2017). Engineering in vitro models of hepatofibrogenesis. *Advanced Drug Delivery Reviews*, 121, 147–157. https://doi.org/10.1016/j.addr.2017.05.018

Moreira Teixeira, L. S., Feijen, J., van Blitterswijk, C. A., Dijkstra, P. J., & Karperien, M. (2012). Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. *Biomaterials*, 33(5), 1281–1290. https://doi.org/10.1016/j.biomaterials.2011.10.067

Nagy, P., Thorgeirsson, S. S., & Grisham, J. W. (2020). Organizational principles of the liver. *The Liver*, 1–13. https://doi.org/10.1002/9781119436812.ch1

Nakanishi, T., Kawasaki, Y., Nakamura, Y., Kimura, Y., Kawamura, K., Shumba, M. N., & Shimokawa, N. (2023). An implication of the mitochondrial carrier SLC25A3 as an oxidative stress modulator in NAFLD. *Experimental Cell Research*, 431(1), 113740. https://doi.org/10.1016/j.yexcr.2023.113740

Nanjappan, S., Paul, D., & Bolla, L. (2018). Assessing Herb–Drug Interactions of Herbal Products With Therapeutic Agents for Metabolic Diseases: Analytical and Regulatory Perspectives. *Studies in Natural Products Chemistry*, 59, 283–322. https://doi.org/10.1016/B978-0-444-64179-3.00009-8

Navarro-Alvarez, N., Soto-Gutierrez, A., Rivas-Carrillo, J. D., Chen, Y., Yamamoto, T., Yuasa, T., Misawa, H., Takei, J., Tanaka, N., & Kobayashi, N. (2006). Self-assembling peptide nanofiber as a novel culture system for isolated porcine hepatocytes. *Cell Transplantation*, 15(10), 921–927. https://doi.org/10.3727/00000006783981387

Risbud, M. V., Karamuk, E., Moser, R., & Mayer, J. (2002). Hydrogel-coated textile scaffolds as three-dimensional growth support for human umbilical vein endothelial cells

(huvecs): Possibilities as Coculture system in liver tissue engineering. *Cell Transplantation*, 11(4), 369–377. https://doi.org/10.3727/00000002783985837

Sakai, S., Hirose, K., Taguchi, K., Ogushi, Y., & Kawakami, K. (2009). An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and Tissue Engineering. *Biomaterials*, 30(20), 3371–3377. https://doi.org/10.1016/j.biomaterials.2009.03.030

Saneyasu, T., Akhtar, R., & Sakai, T. (2016). Molecular cues guiding matrix stiffness in liver fibrosis. *BioMed Research International*, 2016. doi:10.1155/2016/2646212

Sawicka, K. M., Seeliger, M., Musaev, T., Macri, L. K., & Clark, R. A. (2015). Fibronectin Interaction and Enhancement of Growth Factors: Importance for Wound Healing. *Advances in wound care*, 4(8), 469–478. https://doi.org/10.1089/wound.2014.0616

Serna-Márquez, N., Rodríguez-Hernández, A., Ayala-Reyes, M., Martínez-Hernández, L. O., Peña-Rico, M. Á., Carretero-Ortega, J., Hautefeuille, M., & Vázquez-Victorio, G. (2020). Fibrillar collagen type I participates in the survival and aggregation of primary hepatocytes cultured on soft hydrogels. *Biomimetics*, 5(2), 30. https://doi.org/10.3390/biomimetics5020030

Shan, L., Wang, F., Zhai, D., Meng, X., Liu, J., & Lv, X. (2023). Matrix metalloproteinasesinduce extracellular matrix degradation through various pathways to alleviate hepaticfibrosis.BiomedicineandPharmacotherapy,https://doi:10.1016/j.biopha.2023.114472

Shangari, N., & O'Brien, P. J. (2004). The cytotoxic mechanism of glyoxal involves oxidativestress.*BiochemicalPharmacology*,68(7),1433–1442.https://doi.org/10.1016/j.bcp.2004.06.013

Sibulesky, L. (n.d.). *Normal liver anatomy*. https://doi.org/10.1002/cld.124

Siddiqui, H., Rawal, P., Bihari, C., Arora, N., & Kaur, S. (2020). Vascular Endothelial Growth Factor promotes proliferation of epithelial cell adhesion molecule–positive cells in nonalcoholic steatohepatitis. *Journal of Clinical and Experimental Hepatology*, 10(4), 275–283. https://doi.org/10.1016/j.jceh.2019.11.011

SLC22A3 gene - genecards | S22A3 protein | S22A3 antibody. (n.d.-b). Extraído de: https://www.genecards.org/cgi-bin/carddisp.pl?gene=SLC22A3

Šmíd, V. (2020). Jaterní fibróza. [Liver fibrosis] *Vnitrni Lekarstvi*, 66(4), 61-66. doi: 10.36290/vnl.2020.078

Tabernilla, A., dos Santos Rodrigues, B., Pieters, A., Caufriez, A., Leroy, K., Van Campenhout, R., Cooreman, A., Gomes, A. R., Arnesdotter, E., Gijbels, E., & Vinken, M. (2021). In vitro liver toxicity testing of chemicals: A pragmatic approach. *International Journal of Molecular Sciences*, 22(9), 5038. https://doi.org/10.3390/ijms22095038

Tirella, A., Mattei, G., La Marca, M., Ahluwalia, A., & Tirelli, N. (2020). Functionalized enzyme-responsive biomaterials to model tissue stiffening in vitro. *Frontiers in Bioengineering and Biotechnology*, *8*. https://doi.org/10.3389/fbioe.2020.00208

Tsai, C.-C., Young, T.-H., Chen, G.-S., & Cheng, N.-C. (2021). Developing a glyoxalcrosslinked chitosan/gelatin hydrogel for sustained release of human platelet lysate to promote tissue regeneration. *International Journal of Molecular Sciences*, *22*(12), 6451. https://doi.org/10.3390/ijms22126451

Vallet, S. D., Guéroult, M., Belloy, N., Dauchez, M., & amp; Ricard-Blum, S. (2019). A threedimensional model of human lysyl oxidase, a cross-linking enzyme. *ACS Omega*, 4(5), 8495–8505. https://doi.org/10.1021/acsomega.9b00317

Yasui, Y., Abe, T., Kurosaki, M., Higuchi, M., Komiyama, Y., Yoshida, T., Hayashi, T., Kuwabara, K., Takaura, K., Nakakuki, N., Takada, H., Tamaki, N., Suzuki, S., Nakanishi, H., Tsuchiya, K., Itakura, J., Takahashi, Y., Hashiguchi, A., Sakamoto, M., & Izumi, N. (2016). Correction: Elastin fiber accumulation in liver correlates with the development of hepatocellular carcinoma. *PLOS ONE*, 11(8). https://doi.org/10.1371/journal.pone.0160133

Yu, L., & Ding, J. (2008). Injectable hydrogels as unique biomedical materials. *Chemical Society Reviews*, 37(8), 1473–1481. https://doi.org/10.1039/B713009K

Zahmatkesh, E., Othman, A., Braun, B., Aspera, R., Ruoß, M., Piryaei, A., Vosough, M., & Nüssler, A. (2022). In vitro modeling of liver fibrosis in 3D microtissues using scalable micropatterning system. *Archives of Toxicology*, 96(6), 1799–1813. https://doi.org/10.1007/s00204-022-03265-7

Zhou, Z., Xu, M. J., & Gao, B. (2015). Hepatocytes: a key cell type for innate immunity. *Cellular & Molecular Immunology* 2016 13(3), 301–315. https://doi.org/10.1038/cmi.2015.97

ANEXO

El presente ANEXO contiene los cálculos de los siguientes puntos:

- I. Grado de injerto de Gel-Tyr. Curva patrón.
- II. Síntesis de hidrogeles de Gel-Tyr para medidas de reología
- III. Preparación de las disoluciones de LOx y de GlyO
- IV. Síntesis de hidrogeles de Gel-Tyr para cultivos celulares
- V. Viabilidad celular
- VI. Inmunofluorescencia

Además, se recogen los resultados de las pruebas estadísticas realizadas:

- VII. Estadística
 - a. Reología
 - b. Viabilidad celular
 - c. Inmunofluorescencia

I. Curva patrón de Gel-Tyr

Se tomó una concentración inicial de Tyr de 0.125 mg/mL en agua milliQ, siendo las demás 0.1, 0.05 y 0.025 mg/mL. El volumen necesario para cada disolución fue de 30 μ L. Se calcularon la masa de Tyr y el volumen de agua miliQ para la primera disolución de volumen de 1 mL y se tomó el volumen calculado de esta para la siguiente disolución, y así sucesivamente:

Concentración Tyr (mg/mL)	Cálculos
0.125	0.125 mg de Tyr-HCl en 1 mL de agua milliQ
0.1	$V_i = \frac{0.1 mg/mL \cdot 45 uL}{0.125 mg/mL} = 36 uL + 9 uL de agua milliQ$
0.05	$V_{i} = \frac{0.05 mg/mL \cdot 45 uL}{0.1 mg/mL} = 22.5 uL + 22.5 uL de agua milliQ$
0.025	$V_{i} = \frac{0.025 mg/mL \cdot 30 uL}{0.05 mg/mL} = 15 uL + 15 uL de agua milliQ$

 $C_i \cdot V_i = C_f \cdot V_f$

La curva patrón obtenida que se muestra en el apartado de Resultados se obtuvo con los datos siguientes:

Curva patrón Gel-Tyr						
mg/mL		Absorbancia Media				
	0.125	1.15	1.15	1.16	1.15	
	0.1	0.92	0.92	0.91	0.92	
	0.05	0.47	0.45	0.44	0.45	
	0.025	0.24	0.18	0.22	0.21	

Doco mologular Tur	137.18	g/mol
reso molecular Tyr	137180	mg/mol
	80	mmol/100g
Mol de COOH/mg Gel	0.8	mmol/g
	0.000008	mol/mg

Resultando la ecuación de la curva patrón $y = 9.1652 \cdot x$, y teniendo en cuenta la tabla anterior, se calculó en grado de injerto de COOH por factores de conversión:

Muestra	Abs	orbai	ncia	Media	mg Tyr/mL Gel	mol Tyr/ mL	mol phenol/mg Gel	%COOH injertado
Gel Tyr	0.21	0.24	0.19	0.21	0.02	1.7E-07	1.7E-07	21.21

II. Síntesis de hidrogeles de Gel-Tyr para medidas de reología

Para la síntesis de X réplicas, se calculan las cantidades necesarias para X+1 réplicas para tener un exceso de material en el caso de haber error de pipeteo. Además, para la fabricación de los hidrogeles primero se mezclaron los volúmenes de Gel-Tyr y HRP, y posteriormente se fue cogiendo de esa disolución la cantidad necesaria para cada hidrogel. Los volúmenes de las disoluciones comunes de las enzimas y de H₂O₂ se establecieron manualmente según el volumen de la disolución final necesario.

Volumen de hidrogel	350	μL
Nº hidrogeles a		
preparar	18	geles
Volumen total	6300	μL

Solución	201.6	mg	(peso gelatina)
gelatina	5040	μL	(volumen solvente)

	Alícuota común	volumen total HRP stock agua miliQ	100 20 80	μL μL μL
HRP		volumen total HRP alícuota	630	μL
	Alícuota propia	común	39.38	μL
		solvente	590.63	μL
		(F12)		

	Alícuota común	volumen total H ₂ O ₂ stock agua miliQ	500 μL 5.11 μL 494.89 μL
HaOa			
11202	Alíonata propia	volumen total H2O2 alícuota	630 µL
	Alicuota propia	común	126 µL
		solvente	504 µL

Mezclar en un tubo Falcon:					
Gel-Tyr	3360 μL				
HRP	420 μL				
A añadir en cada hidrogel:					
Gel-Tyr+HRP	315 μL				
Homogeneizar y añadir en gotas:					
H ₂ O ₂	35 μL				

Volumen de hidrogel	300	μL
Nº hidrogeles a		
preparar	12	geles
Volumen total	3600	μL

Solución	115.2 m	ng (peso gelatina)
gelatina	2880 μ	L (volumen solvente)

	Alícuota común	volumen total HRP stock agua miliQ	100 μL 20 μL 80 μL
HRP	Alícuota propia	volumen total HRP alícuota común solvente (PBS/F12)	360 μL 22.5 μL 337.5 μL

	Alícuota común	volumen total H2O2 stock agua miliQ	500 μL 5.11 μL 494.89 μL	
H2O2	Alícuota propia	volumen total H ₂ O ₂ alícuota común solvente (PBS/F12)	360 μL 72 μL 288 μL	

Mezclar en un tubo falcon:		
Gel-Tyr	2880 μL	
HRP	360 μL	
A añadir en cada hidrogel:		
Gel-Tyr+HRP	270 μL	
Homogeneizar y añadir en gotas:		
H ₂ O ₂ 30 μL		

Volumen de hidrogel	350	μL
Nº hidrogeles a		
preparar	8	geles
Volumen total	2800	μL

Solución	89.6	mg ((peso gelatina)
gelatina	2240	μL ((volumen solvente)

	Alícuota común	volumen total HRP stock agua miliQ	100 μL 20 μL 80 μL
нкр		volumen total HRP alícuota	280 µL
	Alícuota propia	común	17.5 μL
		solvente	262.5 μL
		(PBS/CFKRB)	

	Alícuota común	volumen total H2O2 stock agua miliQ	500 5.11 494.89	μL μL μL
H2O2		volumen total H2O2 alícuota	280	μL
	Alícuota propia	común	56	μL
		solvente	224	μL
		(PBS/CFKRB)		

Mezclar en un tubo Falcon:		
Gel-Tyr	5040 μL	
HRP	630 μL	

A añadir en cada hidrogel:		
Gel-Tyr+HRP 315 μL		
Homogeneizar y añadir en gotas:		
H ₂ O ₂ 35 μL		

Volumen de hidrogel	500	μL
Nº hidrogeles a		
preparar	11	geles
Volumen total	5500	μL

Solución	176	mg	(peso gelatina)
gelatina	4400	μL	(volumen solvente)

	Alícuota común	volumen total HRP stock agua miliQ	100 μL 20 μL 80 μL
HRP		volumen total HRP alícuota	550 µL
	Alícuota propia	común	34.4 μL
		solvente	515.6 μL
		(PBS/CFKRB)	

	Alícuota común	volumen total H2O2 stock agua miliQ	500 5.11 494.89	μL μL μL
H2O2	Alícuota propia	volumen total H2O2 alícuota común solvento	550 110 440	μL μL
		(PBS/CFKRB/F12)	440	μц

Mezclar en un tubo Falcon:		
Gel-Tyr	4400 μL	
HRP 550 μL		
A añadir en cada hidrogel:		
Gel-Tyr+HRP 450 μL		
Homogeneizar y añadir en gotas:		

H ₂ O ₂	50 μL

Volumen de hidrogel	500	μL
Nº hidrogeles a		
preparar	12	geles
Volumen total	6000	μL

Solución	192	mg	(peso gelatina)
gelatina	4800	μL	(volumen solvente)

	Alícuota común	volumen total	100	μL
	Alleuota colliuli	IINF SLOCK	20	μL
		agua miliQ	80	μL
HRP		volumen total	600	μL
		HRP alícuota		
	Alícuota propia	común	37.5	μL
		solvente	562.5	μL
		(PBS/CFKRB/F12)		

	Alícuota común	volumen total H2O2 stock agua miliQ	500 5.11 494.89	μL μL μL
H ₂ O ₂		volumen total H2O2 alícuota	600	μL
	Alícuota propia	común	120	μL
		solvente	480	μL
		(PBS/CFKRB/F12)		

Mezclar en un tubo Falcon:		
Gel-Tyr	4800 μL	
HRP 600 μL		
A añadir en cada hidrogel:		
Gel-Tyr+HRP 450 μL		
Homogeneizar y añadir en gotas:		
H ₂ O ₂ 50 μL		

III. Preparación de las disoluciones de LOx y de GlyO

A continuación, se presentan los volúmenes empleados para la preparación de las disoluciones de LOx y GlyO para cada experimento:

Reactivo	Disoluciones finales		
	mmol por mmol de		
GlyO	5	NH ₂	
	0.1	U/mL	
LOx	0.2	U/mL	

Preparación de la disolución de GlyO				
1) mmol NH ₂ por HG				
masa (Gel-Tyr)/HG:	14	g		
mmol(NH ₂)/g Gel-Tyr:	0.168	mmol		
mmol(NH2)/HG:	2.352	mmol		
2) Volúmenes para la dis	solución de GlyO			
mmol (GlyO)/HG:	11.76	mmols		
mass (GlyO)/HG:	0.68	g		
Volumen (GlyO)/HG:	1.71	μL		
Volumen total (GlyO):	6.83	μL		
Volumen total				
solvente:	4193.17	μL		

	Preparación de la solución de LOx (0.1 U/mL)		
	Volumen final:	20	μL
Alícuota común	Stock Volumen:	5.17	μL
	solvente:	14.83	μL
	Volumen final:	4200	μL
	Volumen alícuota común:	16.8	μL
Alícuota final	Volumen cofactores (stock común):	4.2	μL
Alleuota illiai	Volumen cofactores (2 stocks):	8.4	μL
	Solvente (stock común):	4179	μL
	Solvente (2 cofactores stocks):	4174.8	μL
Cofactores	Volumen de stock a añadir (stock común		
Cofactores	para ambos):	4.2	μL
Volumen de stock a añadir (Ácido L- ascórbico):	4.2 μL		
--	---------------		
 Volumen de stock a añadir (CuSO4):	4.2 <u>μL</u>		

Preparación de la solución de LOx (0.2 U/mL)					
	Volumen final:	40	μL		
Alícuota común	Stock Volumen:	10.36	μL		
	solvente:	29.66	μL		
	Volumen final:	4200	μL		
	Volumen alícuota común:	33.6	μL		
Alícuota final	Volumen cofactores (stock común):	4.2	μL		
Alleuota Illiai	Volumen cofactores (2 stocks):	8.4	μL		
	Solvente (stock común):	4162.2	μL		
	Solvente (2 cofactores stocks):	4158	μL		
	Volumen de stock a añadir (stock común				
	para ambos):	4.2	μL		
Cofactores	Volumen de stock a añadir (Ácido L-				
	ascórbico):	4.2	μL		
	Volumen de stock a añadir (CuSO4):	4.2	μL		

Reactivo		Diluciones finales	
GlyO	5	mmol por 1 de NH2	
	20	mmol por 1 de NH ₂	
	1	U/mL	
LOx	5	U/mL	

Alíc	uota intermedia
LOx:	25 U/mL

Preparación de la disolución de GlyO (5:1)

1) mmol NH₂ por HG

masa (Gel-Tyr)/HG:	12	g
mmol(NH ₂)/g Gel-Tyr:	0.168	mmol
mmol(NH ₂)/HG:	2.016	mmol
2) Volúmenes para la disolución de GlyO		
mmol (GlyO)/HG:	10.08	mmol
masa (GlyO)/HG:	0.59	g
Volumen (GlyO)/HG:	1.46	μL
Total Volumen (GlyO):	2.93	μL
Volumen total solvente:	1797.07	μL

Preparación de la disolución de GlyO (20:1)					
1) mmol NH ₂ por HG					
masa (Gel-Tyr)/HG:	12	g			
mmol(NH ₂)/g Gel-Tyr:	0.168	mmol			
mmol(NH ₂)/HG:	2.016	mmol			
2) Volúmenes para la disolución de GlyO					
mmol (GlyO)/HG:	40.32	mmol			
masa (GlyO)/HG:	2.34	g			
Volumen (GlyO)/HG:	5.85	μL			
Total Volumen (GlyO):	11.7	μL			
Volumen total solvente:	1788.3	μL			

Preparación de la solución de LOx (1 U/mL)				
	Volumen final:	80	μL	
Alícuota común	Stock Volumen:	20.67	μL	
	solvente:	59.33	μL	
	Volumen final:	1800	μL	
	Volumen alícuota común:	72	μL	
Alícuota final	Volumen cofactores (stock común):	1.8	μL	
Allcuota Illiai	Volumen cofactores (2 stocks):	3.6	μL	
	Solvente (stock común):	1726.2	μL	
	Solvente (2 cofactores stocks):	1724.4	μL	
Cofactores	Volumen de stock a añadir (stock común			
	para ambos):	1.8	μL	
	Volumen de stock a añadir (Ácido L-			
	ascórbico):	1.8	μL	

Volumen de stock a añadir (CuSO4):	1.8 μL

Preparación de la solución de LOx (5 U/mL)					
	Volumen final:	400	μL		
Alícuota común	Stock Volumen:	103.36	μL		
	solvente:	296.64	μL		
	Volumen final:	1800	μL		
	Volumen alícuota común:	360	μL		
Alícuota final	Volumen cofactores (stock común):	1.8	μL		
Allcuota Illiai	Volumen cofactores (2 stocks):	3.6	μL		
	Solvente (stock común):	1438.2	μL		
	Solvente (2 cofactores stocks):	1436.4	μL		
	Volumen de stock a añadir (stock común				
	para ambos):	1.8	μL		
Cofactores	Volumen de stock a añadir (Ácido L-				
	ascórbico):	1.8	μL		
	Volumen de stock a añadir (CuSO4):	1.8	μL		

Г

Reactivo		Diluciones finales
GlyO	50	mmol por 1 de NH2
LOx	0.8	U/mL

Preparación de la disolucion de GlyO (50:1)						
1) mmol NH ₂ por HG						
masa (Gel-Tyr)/HG:	12	g				
mmol(NH ₂)/g Gel-Tyr:	0.168	mmol				
mmol(NH ₂)/HG:	2.016	mmol				
2) Volúmenes para la disolución de GlyO						
mmol (GlyO)/HG:	100.8	mmol				
masa (GlyO)/HG:	5.85	g				
Volumen (GlyO)/HG:	14.63	μL				
Total Volumen (GlyO):	43.88	μL				
Volumen total solvente:	2656.12	μL				

Preparación de la solución de LOx (0.8 U/mL)					
	Volumen final:	100	μL		
Alícuota común	Stock Volumen:	25.84	μL		
	solvente:	74.16	μL		
	Volumen final:	2700	μL		
	Volumen alícuota común:	86.4	μL		
Alícuota final	Volumen cofactores (stock común):	2.7	μL		
Allcuota Illiai	Volumen cofactores (2 stocks):	5.4	μL		
	Solvente (stock común):	2610.9	μL		
	Solvente (2 cofactores stocks):	2608.2	μL		
	Volumen de stock a añadir (stock común				
	para ambos):	2.7	μL		
Cofactores	Volumen de stock a añadir (Ácido L-				
	ascórbico):	2.7	μL		
	Volumen de stock a añadir (CuSO4):	2.7	μL		

Reactivo	Diluciones finales		
	100	mmol por 1 de NH2	
	500	mmol por 1 de NH2	
GlyO	1000	mmol por 1 de NH2	

Preparación de la disolución de GlyO (100:1)							
1) mmol NH ₂ por HG							
masa (Gel-Tyr)/HG:	12	g					
mmol(NH ₂)/g Gel-Tyr:	0.168	mmol					
mmol(NH ₂)/HG:	2.016	mmol					
2) Volúmenes para la disolución de GlyO							
mmol (GlyO)/HG:	201.6	mmol					
masa (GlyO)/HG:	11.7	g					
Volumen (GlyO)/HG:	29.25	μL					
Total Volumen (GlyO):	117	μL					
Volumen total solvente:	3483	μL					

Preparación de la disolución de GlyO (500:1)							
1) mmol NH ₂ por HG							
masa (Gel-Tyr)/HG:	12	g					
mmol(NH ₂)/g Gel-Tyr:	0.168	mmol					
mmol(NH2)/HG:	2.016	mmol					
2) Volúmenes para la disolución de GlyO							
mmol (GlyO)/HG:	1008	mmol					
masa (GlyO)/HG:	58.5	g					
Volumen (GlyO)/HG: 146.26 μL							
Total Volumen (GlyO): 585.04 µL							
Volumen total solvente:	3014.96	μL					

Preparación de la disolución de GlyO (1000:1)							
1) mmol NH ₂ por HG							
masa (Gel-Tyr)/HG:	12	g					
mmol(NH ₂)/g Gel-Tyr:	0.168	mmol					
mmol(NH ₂)/HG:	2.016	mmol					
2) Volúmenes para la disolución de GlyO							
mmol (GlyO)/HG:	2016	mmol					
masa (GlyO)/HG:	117	g					
Volumen (GlyO)/HG:	292.52	μL					
Total Volumen (GlyO):	1170.09	μL					
Volumen total solvente:	2429.91	μL					

Reactivo		Diluciones finales
GlyO	50	mmol por 1 de NH ₂

Preparación de la disolución de GlyO (1000:1)						
1) mmol NH ₂ por HG						
masa (Gel-Tyr)/HG:	12	g				
mmol(NH ₂)/g Gel-Tyr:	0.168	mmol				
mmol(NH ₂)/HG: 2.016 mmol						

2) Volúmenes para la disolución de GlyO		
mmol (GlyO)/HG:	100.8	mmol
masa (GlyO)/HG:	5.85	g
Volumen (GlyO)/HG:	14.63	μL
Total Volumen (GlyO):	87.76	μL
Volumen total solvente:	5312.24	μL

IV. Síntesis de hidrogeles de Gel-Tyr para cultivos celulares

Reactivo	Diluciones finales	
GlyO	50	mmol por 1 de NH2

Preparación de la disolucion de GlyO (50:1)							
1) mmol NH2 por HG							
masa (Gel-Tyr)/HG:	12	g					
mmol(NH ₂)/g Gel-Tyr:	0.168	mmol					
mmol(NH ₂)/HG:	2.016	mmol					
2) Volúmenes para la disolución de GlyO							
mmol (GlyO)/HG:	100.8	mmol					
masa (GlyO)/HG:	5.85	g					
Volumen (GlyO)/HG: 14.63 µL							
Total Volumen (GlyO): 117 µL							
Volumen total solvente:	7083	μL					

V. Resultados de la viabilidad celular

Todas las imágenes analizadas fueron tomadas a una magnificación de 10x, excepto en las que se indica lo contrario.

HepG2:

DIA 1						
Mues	stra	Vivas	Muertas	Viabilidad	Viabilidad media	STD
		229	51	82%		
	1	291	64	82%		
		361	62	85%	70%	17%
GlyO		438	230	66%		
	2	349	769	31%		
		197	142	58%		
		1110	235	83%		
	3	1776	404	81%		
		1408	543	72%		

		601	145	81%		
	1	489	29	94%		
		576	142	80%		
		839	98	90%		
PBS	2	385	118	77%	81%	11%
		217	152	59%		
		595	64	90%		
	3	499	34	94%		
		459	60	88%		

DIA 5						
Muestra		Vivas	Muertas	Viabilidad	Viabilidad media	STD
		430	147	75%		
	1	285	44	87%		
		219	33	87%		
		977	167	85%		
GlyO	2	568	117	83%	86%	6%
		608	38	94%		
		355	48	88%		
	3	253	42	86%		
		828	272	75%		
	1	202	50	80%		110/
		60	18	77%		
		167	94	64%		
		153	128	54%		
DDC	2	312	59	84%		
PBS		202	164	55%	70%	11%
		417	113	79%	-	
	2	386	82	82%		
	3	297	87	77%		
		708	169	81%		

HUVECs:

	DIA 1										
Muestra Vivas s Viabilidad Viabilidad media STD											
HUVECs	PBS	1	1683	127	93%	92%	5%				

			1509	94	94%]
			-	-	-		
			1882	55	97%		
		2	2004	156	93%		
			1477	295	83%		
			1461	168	90%		
		1	708	130	84%		
	ChuO		1378	84	94%	0.40/	E0/
	GIYU		1901	38	98%	94%	5%
		2	1319	44	97%		
			1440	26	98%		

				DIA 3			
	Muestra		Vivas	Muertas	Viabilidad	Viabilidad media	STD
			3061	1000	75%		
		1	2639	971	73%		
	DRS		2206	439	83%	8406	90%
	1 05		472	37	93%	0470	970
		2 (20x)	656	80	89%		
			888	67	93%		
HUVECs		1	1011	78	93%		
			1272	50	96%		
			837	45	95%		
	GlyO		148	5	97%	89%	14%
		2	154	78	66%		
		2	194	23	89%		
			59	33	64%		

				DL	A 7		
Mue	estra		Vivas	Muertas	Viabilidad	Viabilidad media	STD
			1363	225	86%	-	
		1	1482	145	91%		
	DDC		759	146	84%	9604	204
	PDS	2	1886	359	84%	80%0	3%
			1890	351	84%		
HUVECa			2214	414	84%		
HUVELS			427	32	93%		
		1	268	15	95%		
	Claro		85	12	88%	000/	70/
	GIYU		804	63	93%	09%	/ %0
		2	789	262	75%		
			851	59	94%		

Hepatocitos primarios:

						DIA 1					
			Viv	Muert	Viabilid	Viabilidad (normalizada al 81%	Viabilidad	ST			
Mu	ıestra		as	as	ad	inicial)	media	D			
			116	240	33%	40%					
		1	333	219	60%	74%					
	PB		239	787	23%	29%	260/	18			
	S		438	1589	22%	27%	30%	%			
		2	210	903	19%	23%					
PH			125	501	20%	25%					
s		1 ly	1 Gly	1	1	211	1068	16%	20%		
						1	1	134	334	29%	35%
	Gly			127	226	36%	44%	270/	10		
	0		142	730	16%	20%	2190	%			
		2	132	970	12%	15%					
			221	786	22%	27%					

						DIA 3		
			Viv	Muert	Viabilid	Viabilidad (normalizada al 81%	Viabilidad	ST
Mue	stra		as	as	ad	inicial)	media	D
			105					
			6	3367	24%	29%		
		1	134					
	PB		9	3691	27%	33%		
	S		420	1692	20%	25%	30%	8%
			314	1476	18%	22%		
рн		2	337	595	36%	45%		
s			257	1031	20%	25%		
			333	651	34%	42%		
		1	349	693	33%	41%		
	Gly		228	209	52%	64%	400/	10
	0		464	1049	31%	38%	40%	%
		2	536	902	37%	46%		
			822	930	47%	58%		

	DIA 7												
			Viv	Muert	Viabilida	Viabilidad (normalizada al	Viabilidad						
Mu	iestra		as	as	d	81% inicial)	media	STD					
			123	638	16%	20%							
		1	1	1	1	1	294	94 1464	17%	21%			
	DDC	BC	200	648	24%	29%	2404	704					
PHs	2	1 05	100	826	11%	13%	24%	790					
		2	188	609	24%	29%							
			86	226	28%	34%							
	GlyO	1	201	205	50%	61%	61%	19%					

	223	222	50%	62%
	255	203	56%	69%
	164	756	18%	22%
2	429	342	56%	69%
	649	294	69%	85%

VI. Inmunofluorescencia

Se analizaron imágenes de magnificación 20x y 40x.

MRP-2:

М	uestra		Área de la imagen con señal de la proteína (%)	№ de células en la imagen	Intensidad media por célula (%)	Mean	STD	
		1	12.431	1737	0.007156592			
	CTRL 1	2	9.469	1586	0.005970366			
		3	10.582	1143	0.009258093	0.0005	0.0017	
		1	4.782	1410	0.003391489	0.0065	0.0017	
	CTRL2	2	2.486	351	0.007082621			
Β ÍΑ 1		3	7.472	1176	0.006353741			
DIA 1		1	1.023	270	0.003788889	0.0051		
	Gly01	2	0.541	190	0.002847368			
		3	0.077	64	0.001203125	0.0051	0.0045	
		1	14.409	968	0.014885331	0.0051	0.0045	
	GlyO2	2	1.341	355	0.003777465			
		3	0.856	199	0.004301508			
		1	8.411	538	0.015633829			
	CTRL 1	2	1.562	137	0.01140146	0.0134	0.0046	
		3	3.011	372	0.008094086			
			1	13.262	605	0.021920661	0.0151	0.0010
	CTRL 2	2	5.055	374	0.013516043			
DÍΔ 3		3	5.347	560	0.009548214			
DIA 5		1	0.172	79	0.002177215			
	Gly01	2	0.058	32	0.0018125			
		3	0.144	10	0.0144	0.0050	0.0045	
		1	1.945	498	0.003905622	0.0030	0.0045	
	GlyO2	2	4.847	799	0.006066333			
		3	0.419	230	0.001821739			
		1	2.225	124	0.017943548			
	CTRL 1	2	2.233	169	0.013213018	0.0355	0.0237	
DÍA 7		3	5.426	144	0.037680556	0.0333		
	CTRL 2	1	0.975	24	0.040625			

		2	2.499	30	0.0833		
		3	3.403	169	0.020136095		
		1	0.09	48	0.001875		
	Gly01	2	NO S				
		3	0.037	176	0.000210227	0.0110	0.0140
		1	10.412	600	0.017353333	0.0119	0.0148
	GlyO2	2	33.969	880	0.038601136		
		3	0.813	590	0.001377966		

SLC-1:

Muestra			Área de la imagen con señal de la proteína (%)	№ de células en la imagen	Intensidad media por célula (%)	Media	STD																	
		1	1.833	1737	0.001055268																			
	CTRL 1	2	0.046	1586	2.90038E-05																			
		3	9.174	1143	0.008026247	0.0024	0.0020																	
		1	1.452	1410	0.001029787	0.0024	0.0028																	
	CTRL 2	2	0.224	351	0.000638177																			
Día 1		3	4.416	1176	0.003755102																			
Dia 1		1	0.076	270	0.000281481																			
	Gly01	2	1.963	190	0.010331579																			
		3	0.058	64	0.00090625	0.00(2	0.0050																	
		1	0.036	968	3.71901E-05	0.0063	0.0059																	
	GlyO2	2	4.472	355	0.012597183																			
			2.685	199	0.013492462																			
		1	1.959	538	0.003641264																			
	CTRL 1	2	0.975	137	0.007116788		0.0022																	
		3	2.052	372	0.005516129	0.00(7																		
		1	6.591	772	0.008537565	0.0067	0.0023																	
	CTRL 2	2	2.279	442	0.005156109																			
D(z)		3	6.981	665	0.010497744																			
Dia 3		1	0.499	79	0.006316456																			
	Gly01	2	0.111	32	0.00346875																			
		3	0.347	10	0.0347	0.0077	0.0122																	
		1	0.671	498	0.00134739	0.0077	0.0122																	
	GlvO2	ChuO2	ChrO2	Charles	Chaon			CL 02	ChuO2	ChrO2	$C_{W}O2$			GlvO2	GlvO2	GlvO2	GlvO2	GlvO2						
	GlyO2	2	0.027	799	3.37922E-05																			
	Gly02	23	0.027	799 230	3.37922E-05 0.000521739	-																		
	GlyO2	23	0.027	799 230	3.37922E-05 0.000521739																			
	GlyO2	2 3 1	0.027 0.12 0.005	799 230 124	3.37922E-05 0.000521739 4.03226E-05																			
D(- 7	GlyO2 CTRL 1	2 3 1 2	0.027 0.12 0.005 0.062	799 230 124 169	3.37922E-05 0.000521739 4.03226E-05 0.000366864	0.0102	0.0125																	
Día 7	GlyO2 CTRL 1	2 3 1 2 3	0.027 0.12 0.005 0.062 3.148	799 230 124 169 144	3.37922E-05 0.000521739 4.03226E-05 0.000366864 0.021861111	0.0102	0.0125																	

		2	0.97	30	0.032333333		
		3	0.01	169	5.91716E-05		
		1	0.062	48	0.001291667		
	Gly01	2	NO SE				
		3	0.03	176	0.000170455	0.0120	0.0120
		1	16.122	600	0.02687	0.0120	0.0139
	GlyO2	2	27.257	880	0.030973864		
		3	0.379	590	0.000642373		

VII. Estadística

a. Reología

Variables a comparar	Significancia estadística	P-valor	Resumen
Gel-Tyr + LOx 0.1 U/mL	No	0.206	ns
Gel-Tyr + LOx 0.2 U/mL	No	0.0304	ns
Gel-Tyr CTRL	No	0.672	ns
Gel-Tyr + GlyO	Sí	< 0.001	***

Tabla 9. Estadística 3h vs. 24h de incubación.

Variables a comparar	Significancia estadística	P-valor	Resumen
Gel-Tyr + LOx 0.1	No	0.206	ns
U/mL vs. LOX 0.2			
U/mL			
Gel-Tyr + LOx 0.1	No	0.286	ns
U/mL vs. CTRL			
Gel-Tyr + LOx 0.1	No	0.167	ns
U/mL vs. GlyO			
Gel-Tyr + LOX 0.2	No	0.435	ns
U/mL vs. CTRL			
Gel-Tyr + LOX 0.2	No	0.245	ns
U/mL vs. GlyO			
Gel-Tyr CTRL vs.	No	0.010.788	ns
GlyO			

Tabla 10. Estadística a 3h de incubación.

Variables a	Significancia	P-valor	Resumen
comparar	estadística		
Gel-Tyr + LOx 0.1	No	0.206	ns
U/mL vs. LOX 0.2			
U/mL			
Gel-Tyr + LOx 0.1	No	0.183	ns
U/mL vs. CTRL			

Gel-Tyr + LOx 0.1	Sí	0.004	**
U/mL vs. GlyO			
Gel-Tyr + LOX 0.2	No	0.508	ns
U/mL vs. CTRL			
Gel-Tyr + LOX 0.2	Sí	< 0.001	***
U/mL vs. GlyO			
Gel-Tyr CTRL vs.	Sí	0.01	*
GlyO			

Tabla 11. Estadística a 24h de incubación.

Variables a comparar	Significancia estadística	P-valor	Resumen
Gel-Tyr + LOx 0.8 U/mL vs. CTRL	No	0.483	ns
Gel-Tyr + GlyO vs. CTRL	Sí	0.011	*

Tabla 12. Estadística de HGs rehidratados tras 24h.

Variables a comparar	Significancia estadística	P-valor	Resumen
Gel-Tyr + GlyO	Sí	0.004	**
rehidratados vs.			
esterilizados			

Tabla 13. Estadísitca de HGs rehidratados 24h vs. esterilizados.

b. Viabilidad celular

Variables a	Significancia	P-valor	Resumen
comparar	estadística		
HepG2 D1 vs. D3	Sí	0.041	*
HUVECs D1 vs. D3	No	0.213	ns
HUVECs D1 vs. D7	No	0.286	ns
HUVECs D3 vs. D7	No	0.999	ns
H. Primarios D1	No	0.999	ns
vs. D3			
H. Primarios D1	No	0.661	ns
vs. D7			
H. Primarios D3	No	0.999	ns
vs. D7			

Tabla 14. Estadística de viabilidad celular según el tiempo de cultivo (grupo Control).

Variables a comparar	Significancia estadística	P-valor	Resumen
HepG2 D1 vs. D5	Sí	0.01	**
HUVECs D1 vs. D3	No	0.720	ns
HUVECs D1 vs. D7	No	0.594	ns
HUVECs D3 vs. D7	No	0.999	ns
H. Primarios D1 vs.	No	0.052	ns
D3			

H. Primarios D1 vs.	Sí	0.004	**
D7			
H. Primarios D3 vs.	No	0.149	ns
D7			

Tabla 15. Estadística de viabilidad celular según el tiempo de cultivo (grupo Control).

Variables a	Significancia	P-valor	Resumen
comparar	estadística		
HepG2 D1	No	0.089	ns
HepG2 D5	Sí	0.018	*
HUVECs D1	No	0.660	ns
HUVECs D3	No	0.842	ns
HUVECs D7	No	0.235	ns
H. Primarios D1	No	0.320	ns
H. Primarios D3	Sí	0.007	**
H. Primarios D7	Sí	0.002	**

Tabla 16. Estadística de viabilidad celular (intergrupo).

Inmunofluorescencia c.

Variables a comparar	Significancia estadística	P-valor	Resumen
H. Primarios D1 vs. D3	No	0.105	ns
H. Primarios D1 vs. D7	Yes	0.001	**
H. Primarios D3 vs. D7	No	0.433	ns

Tabla 17. Estadística de la inmunofluorescencia de MRP-2 (grupo Control).

Variables a comparar	Significancia estadística	P-valor	Resumen
H. Primarios D1 vs. D3	No	0.999	ns
H. Primarios D1 vs. D7	No	0.999	ns
H. Primarios D3 vs. D7	No	0.999	ns

Tabla 18. Estadística de la inmunofluorescencia de MRP-2 (grupo GlyO).

Variables a comparar	Significancia estadística	P-valor	Resumen
H. Primarios D1 vs. D3	No	0.281	ns
H. Primarios D1 vs. D7	No	0.999	ns
H. Primarios D3 vs. D7	No	0.999	ns

Tabla 19. Estadística de la inmunofluorescencia de SLC-1 (grupo Control).

Variables a comparar	Significancia estadística	P-valor	Resumen
H. Primarios D1 vs. D3	No	0.999	ns
H. Primarios D1 vs. D7	No	0.999	ns
H. Primarios D3 vs. D7	No	0.999	ns

Tabla 20. Estadística de la inmunofluorescencia de SLC-1 (grupo GlyO).

Variables a Significancia comparar estadística		P-valor	Resumen
H. Primarios D1	No	0.529	ns
H. Primarios D3	Sí	0.015	**
H. Primarios D7	No	0.113	ns

Tabla 21. Estadística de la inmunofluorescencia de MRP-2 (intergrupo).

Variables a Significancia comparar estadística		P-valor	Resumen
H. Primarios D1	No	0.218	ns
H. Primarios D3	No	0.863	Ns
H. Primarios D7	No	0.847	ns

Tabla 22. Estadística de la inmunofluorescencia de SLC-1 (intergrupo).

DOCUMENTO II: PRESUPUESTO

Índice

1.	INTRODUCCIÓN AL PRESUPUESTO	89
2.	CUADRO DE MANO DE OBRA	89
3.	CUADRO DE MAQUINARIA	89
4.	CUADRO DE MATERIALES	91
5.	CUADRO DE PRECIOS DESCOMPUESTOS	93
6.	CUADRO DE PRESUPUESTOS PARCIALES	101
7.	PRESUPUESTO DE EJECUCIÓN MATERIAL Y POR CONTRATA	103

1. INTRODUCCIÓN AL PRESUPUESTO

En este documento se hallan recogidos los cálculos que se llevaron a cabo para obtener el presupuesto total del proyecto con el fin de estudiar la viabilidad económica. Las abreviaturas de los conceptos empleadas se recogen en la Tabla 1.

Abreviatura	Significado
МО	Mano de obra
EPI	Equipo de protección individual
MAT	Material
MAQ	Maquinaria

Tabla 23. Abreviaturas.

2. CUADRO DE MANO DE OBRA

En la Tabla 2 se recoge el cuadro de mano de obra. Se consideró a la autora del TFM como graduada de Ingeniería Biomédica, aunque no recibió ningún tipo de retribución al respecto. De igual forma se procedió con las estudiantes Erasmus+ que participaron en el trabajo en el laboratorio, graduadas en Biología.

Tabla 24. Cuadro de mano de obra.

			Importe			
N°	Código	Designación	Precio	Cantidad	Total	
			Importe Precio Cantidad (€) (Horas) 12,00 1.700,407040 70,00 30,000000 45,00 40,000000 45,00 29,500000 12,00 715,896000	(€)		
1	MO.01 Graduado/a de Ingeniería Biomédica		12,00	1.700,407040	20.404,88	
2	MO.02 MO.03	Tutor/a responsable del proyecto	70,00	30,000000	2.100,00	
3		Cotutor/a responsable del proyecto	45,00	40,000000	1.800,00	
4	MO.04	Tutor/a Erasmus+ Prácticas	45,00	29,500000	1.327,50	
5	MO.05	Graduado/a en Biología	12,00	715,896000	8.590,75	
6	MO.06	Graduado/a en Biología (2)	12,00	715,896000	8.590,75	
			Io	tal mano de obra	42.813,88	

3. CUADRO DE MAQUINARIA

A continuación en la Tabla 3 se tiene el cuadro de maquinaria con todas las máquinas usadas y descritas en el apartado de Métodos del documento de la Memoria. La estimación de los costes se realizó mediante la amortización (Ecuación 1), tomando 10 añoscomo período de amortizado:

 $Amortización = \frac{Coste \ del \ equipo \cdot Tiempo \ de \ uso}{Período \ de \ amortizado}$

Ecuación 3. Cálculo de la amortización.

Tabla 25. Cuadro de maquinaria.

				Importe			
N°.	Código	Designación	Precio	Cantidad	Total		
			(€)		(€)		
1	MAQ.01	Estufa 37°C	0,01	5.632,871000 h	56,37		
2	MAQ.02	Balanza de precisión	0,15	70,757000 h	11,41		
3	MAQ.03	Agitador magnético	0,01	28,704000 h	0,29		
4	MAQ.04	Reómetro	10,00	12,750000 h	127,50		
5	MAQ.06	Liofilizadora	1,35	7.490,688000 h	10.112,43		
6	MAQ.07	Ultracentrífuga	0,13	0,470000 h	0,07		
7	MAQ.12	Cámara Neubauer	0,01	1,150000 h	0,01		
8	MAQ.13	Microscopio Leica HMR	0,01	0,250000 h	0,00		
9	MAQ.14	pH-metro	0,30	14,882520 h	4,47		
10	MAQ.15	Microscopio <u>confocal</u> de fluorescencia <u>Olyympus</u> IX80	0,02	33,000000 h	0,68		
				Total Maquinaria	10.313,21		

4. CUADRO DE MATERIALES

En segundo lugar, se presenta en la Tabla 4 el cuadro de materiales, que recoge la parte del presupuesto asociada a todo el material utilizado durante la realización del presente TFM que previamente se describió en detalle en el apartado de Materiales del documento de la Memoria.

			Importe			
N°	Código	Designación	Precio	Cantidad	Total	
			(€)		(€)	
1	EPI.01	Bata de laboratorio	22,50	1,000000 u	22,50	
2	EPI.02	Guantes de látex (caja)	5,95	4,000000 u	23,80	
3	EPI.03	Máscara de gases	30,50	1,000000 u	30,50	
4	FPH_488	Flash Faloidina Verde 488	216,44	0,039000 mL	8,44	
5	MAT.01	Pinzas de laboratorio	8,73	1,000000 u	8,73	
6	MAT.02	Espátula metálica	3,66	3,000000 u	10,98	
7	MAT.03	Micropipeta 1000 µL	215,00	1,000000 u	215,00	
8	MAT.04	Micropipeta 200 µL	215,00	1,000000 u	215,00	
9	MAT.05	Micropipeta 100 µL	215,00	1,000000 u	215,00	
10	MAT.06	Micropipeta 100 µL	215,00	1,000000 u	215,00	
11	MAT.07	Micropipeta 10 µL	215,00	1,000000 u	215,00	
12	MAT.08	Caja puntas micropipeta 1000 µL	65,25	3,000000 u	195,75	
13	MAT.09	Caja puntas micropipeta 200 µL	39,16	3,000000 u	117,48	
14	MAT.10	Caja puntas micropipeta 100 µL	65,25	3,000000 u	195,75	
15	MAT.11	Caja puntas micropipeta 20 µL	60,20	3,000000 u	180,60	
16	MAT.12	Caja puntas micropipeta 10 µL	52,60	3,000000 u	157,80	
17	MAT.13	Tubo Eppendorf 2 mL	0,08	50,000000 u	4,00	
18	MAT.14	Tubo Eppendorf 1.5 mL	0,07	200,000000 u	14,00	
19	MAT.15	Tubo Eppendorf 0.5 mL	0,05	300,000000 u	15,00	
20	MAT.16	Placa petri	1,13	1,000000 u	1,13	
21	MAT.17	Viales de cristal 50 mL	0,17	21,000000 u	3,57	
22	MAT.18	Tapas viales de cristal 50 mL	0,01	21,000000 u	0,21	
23	MAT.19	Placas de pocillo profundo P-48	2,81	5,000000 u	14,05	
24	MAT.20	Placas de pocillo negras P-96	5,52	2,000000 u	11,04	
25	MAT.21	Vaso de precipitados 25 mL	3,56	1,000000 u	3,56	
26	MAT.22	Falcon de ultracentrífuga 50 mL	0,10	2,000000 u	0,20	
27	MAT.24	Agua miliQ	0,20	2,134540 L	0,33	
28	MAT.25	Etanol absoluto	3,93	1,000000 L	3,93	
29	MAT.26	Gelatina de cerdo (Gel)	0,43	11,481600 g	4,88	
30	MAT.27	DPBS	175,00	20,191080 L	3.533,64	
31	MAT.28	Kit de ensayo de viabilidad celular VIVAS/MUERTAS	834,00	2,000000 u	1.668,00	
32	MAT.29	Tripsina	409,50	0,013000 L	5,33	

Tabla 26. Cuadro de materiales.

				Importe	
Nº	Código	Designación	Precio	Cantidad	Total
			(€)		(€)
33	MAT.30	Clorhidrato de tiramina (Tyr-HCl)	15,10	3,189876 g	48,22
34	MAT.31	Buffer MES	2,82	5,604169 g	15,79
35	MAT.32	N-3-dimetilaminopropil-N'-etilcarbodiimida (EDC)	62,30	3,521407 g	219,30
36	MAT.33	N-hidroxisuccinimida (NHS)	3,84	0,211261 g	0,84
37	MAT.34	Cloruro sódico (NaCl)	0,15	7,130189 g	1,07
38	MAT.36	Cloruro potásico	0,16	0,392585 g	0,04
39	MAT.37	Ácido 4-(2-hidroxietil)piperazin-1-iletanosµLfónico (HEPES)	2,07	6,323798 g	13,09
40	MAT.38	Peroxidasa de rábano (HRP)	38,60	0,124900 L	4,63
41	MAT.39	Peróxido de hidrógeno (H2O2)	7,17	0,031825 L	0,24
42	MAT.40	Lisil oxidasa (LOx)	6.270,00	3,874164 L	24.291,03
43	MAT.41	Glioxal (GlyO)	29,60	0,006069 L	0,08
44	MAT.42	Medio de cultivo F12	50,90	6,633900 L	337,70
45	MAT.44	Suero bovino fetal (SBF)	1.136,00	0,011000 L	12,50
46	MAT.45	Penicilina/Streptomicina	18,65	0,001200 L	0,02
47	MAT.47	BSA 10%	1.080,00	0,000100 L	0,11
48	MAT.48	Células HUVECs	400,00	1,000000 vial	400,00
49	MAT.49	Medio de cultivo de células endoteliales	334,00	0,074000 L	24,72
50	MAT.50	William's medium E	86,88	0,124000 L	10,77
51	MAT.51	L-glutamina	0,63	0,002200 g	0,00
52	MAT.52	Anticuerpo primario Ratón anti-Humano MRP2	2.600,00	0,039000 mL	101,40
53	MAT.53	Anticuerpo primario Conejo anti-Humano SLC22A3	4.950,00	0,039000 mL	193,05
54	MAT.54	Anticuerpo secundario Cabra anti-Ratón AF568	336,60	0,019500 mL	6,56
55	MAT.55	Anticuerpo secundario Gallina anti-Conejo AF647	448,80	0,019500 mL	8,75
56	MAT.56	DAPI	155,21	0,003900 mL	0,61
57	MAT.57	Pipeta Pasteur	0,02	10,000000 u	0,20
58	MAT.58	Tween-20	80,00	0,000010 L	0,00
59	MAt.35	Fosfato potásico (KH2PO4)	15,10	0,148546 g	2,24
	1	1		Total Materiales	33.003,19

5. CUADRO DE PRECIOS DESCOMPUESTOS

A continuación se presenta el cuadro de precios descompuestos por capítulo (Tabla 5). El Capítulo 1 se consideró repetido y no se incluyó, en vista de que constaba de los cuadros de mano de obra, materiales y maquinaria ya presentados en los apartados anteriores.

Tabla 27. Cuadro de precios descompuestos.

			2 Síntesis de	Gelatina con injerto de tiramina		
2.1 02.0	01	u	Síntesis de gelati	na con injerto de tiramina		
Ν	1AT.26		0,400000 g	Gelatina de cerdo (Gel)	0,43	0,17
Ν	1AT.30		0,111130 g	Clorhidrato de tiramina (Tyr-HCI)	15,10	1,68
Ν	1AT.31		0,195240 g	Buffer MES	2,82	0,55
Ν	1AT.33		0,007360 g	N-hidroxisuccinimida (NHS)	3,84	0,03
Μ	1AT.32		0,122680 g	N-3-dimetilaminopropil-N'-etilcarbodiimida	62,30	7,64
Ν	1AQ.01		24,000000 h	Estufa 37°C	0,01	0,24
Ν	1AQ.02		0,500000 h	Balanza de precisión	0,15	0,08
Ν	1AQ.03		1,000000 h	Agitador magnético	0,01	0,01
Ν	1AQ.06		72,000000 h	Liofilizadora	1,35	97,20
Ν	1AQ.14		0,500000 h	pH-metro	0,30	0,15
Ν	10.01		24,000000 h	Graduado/a de Ingeniería Biomédica	12,00	288,00
Ν	10.05		24,000000 h	Graduado/a en Biología (1)	12,00	288,00
Ν	10.06		24,000000 h	Graduado/a en Biología (2)	12,00	288,00
%	60400		4,000000 %	Costes indirectos	971,75	38,87
%	60404		4,000000 %	Recursos auxiliares	1.010,62	40,42
				Precio total por u:		1.051,04
			3 Síntesis de l	hidrogeles		
			3.1 Preparación d	el buffer CFKRB		
3.1.1 03	01.01	u	Preparación buffe	er CFKRB		
Μ	1AT.34		6,720000 g	Cloruro sódico (NaCl)	0,15	1,01
Μ	1At.35		0,140000 g	Fosfato potásico (KH ₂ PO ₄)	15,10	2,11
Μ	1AT.36		0,370000 g	Cloruro potásico	0,16	0,06
Μ	1AT.37		5,960000 g	Ácido 4-(2-hidroxietil)piperazin-1- iletanosul fónico (HEPES)	2,07	12,34
Μ	1AT.24		1,000000 L	Agua miliQ	0,20	0,20
Μ	1AQ.14		0,500000 h	pH-metro	0,30	0,15
М	10.01		1,000000 h	Graduado/a de Ingeniería Biomédica	12,00	12,00
%	60400		4,000000 %	Costes indirectos	27,87	1,11

%0404	4,000000 %	Recursos auxiliares	28,98	1,16
		Precio total por u:		30,14
	3.2 Síntesis de n	nuestras para reología		
3.2.1 03.02.01	u Gelificación de l	nidrogeles 350 μL con LOx o.1 U/mL		
02.01	0,050000 u	Síntesis de gelatina con injerto de tiramina	1.051,04	52,55
MAT.40	1,290000 L	Lisil oxidasa (LOx)	6.270,00	8.088,30
MAT.38	0,020000 L	Peroxidasa de rábano (HRP)	38,60	0,77
MAT.39	0,005100 L	Peróxido de hidrógeno (H ₂ O ₂)	7,17	0,04
MAT.24	0,080000 L	Agua miliQ	0,20	0,02
MAT.42	1,100000 L	Medio de cultivo F12	50,90	55,99
MAQ.02	0,250000 h	Balanza de precisión	0,15	0,04
MO.01	3,000000 h	Graduado/a de Ingeniería Biomédica	12,00	36,00
MO.05	3,000000 h	Graduado/a en Biología (1)	12,00	36,00
MO.06	3,000000 h	Graduado/a en Biología (2)	12,00	36,00
%0400	4,000000 %	Costes indirectos	8.305,71	332,23
%0404	4,000000 %	Recursos auxiliares	8.637,94	345,52
		Precio total por u:		8.983,46
3.2.2 03.02.02	u Gelificación hidi	rogeles 350 μL con LOx 0.2 U/mL		
02.01	0,200000 u	Síntesis de gelatina con injerto de tiramina	1.051,04	210,21
MAT.40	0,001290 L	Lisil oxidasa (LOx)	6.270,00	8,09
MAT.38	0,020000 L	Peroxidasa de rábano (HRP)	38,60	0,77
MAT.39	0,005100 L	Peróxido de hidrógeno (H ₂ O ₂)	7,17	0,04
MAT.24	0,080000 L	Agua miliQ	0,20	0,02
MAT.42	1,100000 L	Medio de cultivo F12	50,90	55,99
MAQ.01	0,500000 h	Estufa 37°C	0,01	0,01
MAQ.02	0,167000 h	Balanza de precisión	0,15	0,03
MO.01	3,000000 h	Graduado/a de Ingeniería Biomédica	12,00	36,00
MO.05	3,000000 h	Graduado/a en Biología (1)	12,00	36,00
MO.06	3,000000 h	Graduado/a en Biología (2)	12,00	36,00
%0400	4,000000 %	Costes indirectos	383,16	15,33
%0404	4,000000 %	Recursos auxiliares	398,49	15,94
		Precio total por u:		414,43
3.2.3 03.02.03	u Gelificación hidi	rogeles 350 μL con GlyO ratio 5:1		
02.01	0,050000 u	Síntesis de gelatina con injerto de tiramina	1.051,04	52,55
MAT.42	0,001100 L	Medio de cultivo F12	50,90	0,06
MAQ.01	0,500000 h	Estufa 37ºC	0,01	0,01
MAQ.02	0,167000 h	Balanza de precisión	0,15	0,03
MO.01	3,000000 h	Graduado/a de Ingeniería Biomédica	12,00	36,00

MO.05		3,000000 h	Graduado/a en Biología (1)	12,00	36,00
MO.06		3,000000 h	Graduado/a en Biología (2)	12,00	36,00
%0400		4,000000 %	Costes indirectos	160,65	6,43
%0404		4,000000 %	Recursos auxiliares	167,08	6,68
			Precio total por u:		173,76
3.2.4 03.02.04	u	Gelificación hidr	rogeles 300 μL		
02.01		0,050000 u	Síntesis de gelatina con injerto de tiramina	1.051,04	52,55
MAT.27		0,000550 L	DPBS	175,00	0,10
MAT.42		0,000550 L	Medio de cultivo F12	50,90	0,03
MAQ.01		24,000000 h	Estufa 37ºC	0,01	0,24
MAQ.02		0,167000 h	Balanza de precisión	0,15	0,03
MO.01		2,000000 h	Graduado/a de Ingeniería Biomédica	12,00	24,00
%0400		4,000000 %	Costes indirectos	76,95	3,08
%0404		4,000000 %	Recursos auxiliares	80,03	3,20
			Precio total por u:		83,23
3.2.5 03.02.05	u	Gelificación hidr	rogeles 300 μL con LOx 1 U/mL		
02.01		0,050000 u	Síntesis de gelatina con injerto de tiramina	1.051,04	52,55
MAT.40		0,000009 L	Lisil oxidasa (LOx)	6.270,00	0,06
MAT.27		0,000550 L	DPBS	175,00	0,10
MAT.42		0,000550 L	Medio de cultivo F12	50,90	0,03
MAQ.01		1,000000 h	Estufa 37°C	0,01	0,01
MAQ.02		0,167000 h	Balanza de precisión	0,15	0,03
MO.01		2,000000 h	Graduado/a de Ingeniería Biomédica	12,00	24,00
%0400		4,000000 %	Costes indirectos	76,78	3,07
%0404		4,000000 %	Recursos auxiliares	79,85	3,19
			Precio total por u:		83,04
3.2.6 03.02.06	u	Gelificación hidr	rogeles 300 μL con LOx 5 U/mL		
MAT.40		0,000057 L	Lisil oxidasa (LOx)	6.270,00	0,36
MAT.27		0,000550 L	DPBS	175,00	0,10
MAT.42		0,000550 L	Medio de cultivo F12	50,90	0,03
MAQ.01		1,000000 h	Estufa 37ºC	0,01	0,01
MAQ.02		0,170000 h	Balanza de precisión	0,15	0,03
MO.01		2,000000 h	Graduado/a de Ingeniería Biomédica	12,00	24,00
%0400		4,000000 %	Costes indirectos	24,53	0,98
%0404		4,000000 %	Recursos auxiliares	25,51	1,02
			Precio total por u:		26,53
3.2.7 03.02.07	u	Síntesis scaffold	is 350 μL con LOx 0.8 U/mL		
02.01		0,050000 u	Síntesis de gelatina con injerto de tiramina	1.051,04	52,55

03.01.01		0,000280 u	Preparación buffer CFKRB	30,14	0,01
MAT.40		0,000010 L	Lisil oxidasa (LOx)	6.270,00	0,06
MAT.27		0,001100 L	DPBS	175,00	0,19
MAQ.01		0,500000 h	Estufa 37ºC	0,01	0,01
MAQ.02		0,167000 h	Balanza de precisión	0,15	0,03
MAQ.06		24,000000 h	Liofilizadora	1,35	32,40
%0400		4,000000 %	Costes indirectos	85,25	3,41
%0404		4,000000 %	Recursos auxiliares	88,66	3,55
			Precio total por u:		92,21
3.2.8 03.02.08	u	Síntesis scaffolo	ds 350 μL con Glyoxal ratio 50:1		
02.01		0,050000 u	Síntesis de gelatina con injerto de tiramina	1.051,04	52,55
03.01.01		0,000280 u	Preparación buffer CFKRB	30,14	0,01
MAT.27		0,001100 L	DPBS	175,00	0,19
MAQ.06		24,000000 h	Liofilizadora	1,35	32,40
MO.01		3,000000 h	Graduado/a de Ingeniería Biomédica	12,00	36,00
%0400		4,000000 %	Costes indirectos	121,15	4,85
%0404		4,000000 %	Recursos auxiliares	126,00	5,04
			Precio total por u:		131,04
3.2.11 03.02.11	u	Síntesis scaffolo	is 500 μL con Glyoxal 1000:1		
02.01		0,060000 u	Síntesis de gelatina con injerto de tiramina	1.051,04	63,06
03.01.01		0,000500 u	Preparación buffer CFKRB	30,14	0,02
MAT.41		0,000488 L	Glyoxal	29,60	0,01
MAT.27		0,000600 L	DPBS	175,00	0,11
MAQ.02		0,200000 h	Balanza de precisión	0,15	0,03
MAQ.06		24,000000 h	Liofilizadora	1,35	32,40
MO.01		3,000000 h	Graduado/a de Ingeniería Biomédica	12,00	36,00
%0400		4,000000 %	Costes indirectos	131,63	5,27
%0404		4,000000 %	Recursos auxiliares	136,90	5,48
			Precio total por u:		142,38
		3.3 Síntesis de S	Scaffolds para cultivo celular		
3.3.1 03.03.01	u	Gelificación hidi	rogeles 250 μL con Glyoxal 50:1		
02.01		0,080000 u	Síntesis de gelatina con injerto de tiramina	1.051,04	84,08
03.01.01		0,000250 u	Preparación buffer CFKRB	30,14	0,01
MAT.27		0,000738 L	DPBS	175,00	0,13
MAQ.01		24,000000 h	Estufa 37ºC	0,01	0,24
MAQ.02		0,250000 h	Balanza de precisión	0,15	0,04
MAQ.06		24,000000 h	Liofilizadora	1,35	32,40
MO.01		3,000000 h	Graduado/a de Ingeniería Biomédica	12,00	36,00

%0	0400	4,000000 %	Costes indirectos	152,90	6,12
%0	0404	4,000000 %	Recursos auxiliares	159,02	6,36
			Precio total por u:		165,38
		4 Caracteriza	ción de hidrogeles		
		4.1 Medición de	propiedades mecánicas en hidrogeles hinchados	\$	
4.1.1 04.0	01.01 u	Medición de pro	piedades mecánicas en hidrogeles pregelificados	s/hinchados	
MA	AQ.04	0,250000 h	Reómetro	10,00	2,50
МС	D.01	0,300000 h	Graduado/a de Ingeniería Biomédica	12,00	3,60
%0	0400	4,000000 %	Costes indirectos	6,10	0,24
%0	0404	4,000000 %	Recursos auxiliares	6,34	0,25
			Precio total por u:		6,59
		4.2 Medición de	propiedades mecánicas en Scaffolds rehidratado	s	
4.2.1 04.0	01.01 u	Medición de pro	piedades mecánicas en hidrogeles pregelificados	s/hinchados	
MA	AQ.04	0,250000 h	Reómetro	10,00	2,50
МС	D.01	0,300000 h	Graduado/a de Ingeniería Biomédica	12,00	3,60
%0	0400	4,000000 %	Costes indirectos	6,10	0,24
%0	0404	4,000000 %	Recursos auxiliares	6,34	0,25
			Precio total por u:		6,59
		5 Cultivo celu	ılar		
5.1 05.01	u	Esterilización de	Scaffolds rehidratados		
MA	AT.25	1,000000 L	Etanol absoluto	3,93	3,93
MA	AT.42	0,024000 L	Medio de cultivo F12	50,90	1,22
MA	AT.49	0,024000 L	Medio de cultivo de células endoteliales con	334,00	8,02
MA	AT.50	0,024000 L	William's medium E	86,88	2,09
MA	NT.44	0,006000 L	Suero bovino fetal (SBF)	1.136,00	6,82
MA	AT.45	0,001200 L	Penicilina/Streptomicina	18,65	0,02
MA	AQ.01	24,000000 h	Estufa 37°C	0,01	0,24
МС	D.01	15,000000 h	Graduado/a de Ingeniería Biomédica	12,00	180,00
МС	D.03	5,000000 h	Cotutor/a responsable del proyecto	45,00	225,00
%0	0400	4,000000 %	Costes indirectos	427,34	17,09
%0)404	4,000000 %	Recursos auxiliares	444,43	17,78
			Precio total por u .		462,21
5.2 05.02	u	Suspensión celu	ılar		
MA	AT.27	0,010000 L	DPBS	175,00	1,75
MA	AT.29	0,010000 L	Tripsina	409,50	4,10
MA	AQ.07	0,050000 h	Ultracentrífuga	0,13	0,01
МС	D.01	0,150000 h	Graduado/a de Ingeniería Biomédica	12,00	1,80
МС	D.03	1,000000 h	Cotutor/a responsable del proyecto	45,00	45,00

	%0400		4,000000 %	Costes indirectos	52,66	2,11
	%0404		4,000000 %	Recursos auxiliares	54,77	2,19
				Precio total por u:		56,96
5.3 0	5.03	u	EncapsµLación d	celular en hidrogeles		
	MO.01		1,000000 h	Graduado/a de Ingeniería Biomédica	12,00	12,00
	MO.03		1,000000 h	Cotutor/a responsable del proyecto	45,00	45,00
	%0400		4,000000 %	Costes indirectos	57,00	2,28
	%0404		4,000000 %	Recursos auxiliares	59,28	2,37
				Precio total por u:		61,65
5.4 0	5.04	u	Estudio de la via	bilidad celular		
	MAT.28		1,000000 u	Kit de ensayo de viabilidad celular VIVAS/MUERTAS	834,00	834,00
	MAQ.01		0,500000 h	Estufa 37°C	0,01	0,01
	MO.01		3,000000 h	Graduado/a de Ingeniería Biomédica	12,00	36,00
	MO.03		3,000000 h	Cotutor/a responsable del proyecto	45,00	135,00
	%0400		4,000000 %	Costes indirectos	1.005,01	40,20
	%0404		4,000000 %	Recursos auxiliares	1.045,21	41,81
				Precio total por u:		1.087,02
5.5 0	5.05	u	Suspensión celu	lar HUVECs		
	MAT.49		0,050000 L	Medio de cultivo de células endoteliales con mix de suplementos	334,00	16,70
	MAT.48		1,000000 vial	Células HUVECs	400,00	400,00
	MAT.29		0,003000 L	Tripsina	409,50	1,23
	MAQ.07		0,120000 h	Ultracentrífuga	0,13	0,02
	MAQ.12		0,600000 h	Cámara Neubauer	0,01	0,01
	MO.01		0,500000 h	Graduado/a de Ingeniería Biomédica	12,00	6,00
	MO.04		0,500000 h	Tutor/a Erasmus+ Prácticas	45,00	22,50
	%0400		4,000000 %	Costes indirectos	446,46	17,86
	%0404		4,000000 %	Recursos auxiliares	464,32	18,57
				Precio total por u:		482,89
5.6 0	5.06	u	Siembra de célul	as HUVECs en Scaffolds		
	MO.01		0,500000 h	Graduado/a de Ingeniería Biomédica	12,00	6,00
	%0400		4,000000 %	Costes indirectos	6,00	0,24
	%0404		4,000000 %	Recursos auxiliares	6,24	0,25
				Precio total por u:		6,49
5.7 0	5.07	u	Estudio de la via	bilidad celular de HUVECs		
	MAT.28		0,500000 u	Kit de ensayo de viabilidad celular VIVAS/MUERTAS	834,00	417,00
	MAT.27		5,000000 L	DPBS	175,00	875,00
	MAQ.01		1,000000 h	Estufa 37ºC	0,01	0,01

	MAQ.15		15,000000 h	Microscopio confocal de fluorescencia Olympus	0,02	0,30
	MO.01		18,000000 h	Graduado/a de Ingeniería Biomédica	12,00	216,00
	%0400		4,000000 %	Costes indirectos	1.508,31	60,33
	%0404		4,000000 %	Recursos auxiliares	1.568,64	62,75
				Precio total por u:		1.631,39
5.8 0	5.08	u	Suspensión celu	lar hepatocitos primarios		
	MAT.50		0,050000 L	William's medium E	86,88	4,34
	MAT.44		0,002500 L	Suero bovino fetal (SBF)	1.136,00	2,84
	MAQ.07		0,300000 h	Ultracentrífuga	0,13	0,04
	MO.01		2,000000 h	Graduado/a de Ingeniería Biomédica	12,00	24,00
	MO.04		2,000000 h	Tutor/a Erasmus+ Prácticas	45,00	90,00
	%0400		4,000000 %	Costes indirectos	121,22	4,85
	%0404		4,000000 %	Recursos auxiliares	126,07	5,04
				Precio total por u:		131,11
5.9 0	5.09	u	Siembra de hepa	tocitos porcinos primarios en Scaffolds		
	MAT.50		0,050000 L	William's medium E	86,88	4,34
	MAT.44		0,002500 L	Suero bovino fetal (SBF)	1.136,00	2,84
	MO.01		1,000000 h	Graduado/a de Ingeniería Biomédica	12,00	12,00
	%0400		4,000000 %	Costes indirectos	19,18	0,77
	%0404		4,000000 %	Recursos auxiliares	19,95	0,80
				Precio total por u:		20,75
5.10 (05.10	u	Estudio de la via	bilidad celular de hepatocitos porcinos primarios		
	MAT.28		0,500000 u	Kit de ensayo de viabilidad celular VIVAS/MUERTAS	834,00	417,00
	MAT.27		15,000000 L	DPBS	175,00	2.625,00
	MAQ.01		1,000000 h	Estufa 37ºC	0,01	0,01
	MAQ.15		18,000000 h	Microscopio confocal de fluorescencia Olympus IX80	0,02	0,36
	MO.01		24,000000 h	Graduado/a de Ingeniería Biomédica	12,00	288,00
	%0400		4,000000 %	Costes indirectos	3.330,37	133,21
	%0404		4,000000 %	Recursos auxiliares	3.463,58	138,54
				Precio total por u:		3.602,12
5.11 (05.11	u	Estudio de funcio	onalidad celular de hepatocitos primarios porcinos	5	
	MAT.52		0,039000 mL	Anticuerpo primario Ratón anti-Humano MRP-2	2.600,00	101,40
	MAT.53		0,039000 mL	Anticuerpo primario Conejo anti-Humano SLC22A3	4.950,00	193,05
	MAT.56		0,003900 mL	DAPI	155,21	0,61
	FPH_488		0,039000 mL	Flash Faloidina Verde 488	216,44	8,44
	MAT.55		0,019500 mL	Anticuerpo secundario Gallina anti-Conejo AF647	448,80	8,75
	MAT.54		0,019500 mL	Anticuerpo secundario Cabra anti-Ratón AF568	336,60	6,56

		Precio total por u:		1.091,63
%0404	4,000000 %	Recursos auxiliares	1.049,64	41,99
%0400	4,000000 %	Costes indirectos	1.009,27	40,37
MO.04	10,000000 h	Tutor/a Erasmus+ Prácticas	45,00	450,00
MO.01	20,000000 h	Graduado/a de Ingeniería Biomédica	12,00	240,00
MAT.27	0,002000 L	DPBS	175,00	0,35
MAT.47	0,000100 L	BSA 10%	1.080,00	0,11

6 Equipos de protección individual y seguridad

		Precio total por u:		79,87
%0400	4,000000 %	Costes indirectos	76,80	3,07
EPI.03	1,000000 u	Máscara de partículas	30,50	30,50
EPI.02	4,000000 u	Guantes de látex (caja)	5,95	23,80
EPI.01	1,000000 u	Bata de laboratorio	22,50	22,50
6.1 06.01	u EPIs			

7 Material inventariable/fungible

7.1 07	7.01	u	Material inventari	able/fungible		
	MAT.01		1,000000 u	Pinzas de laboratorio	8,73	8,73
	MAT.02		3,000000 u	EspátµLa metálica	3,66	10,98
	MAT.03		1,000000 u	Micropipeta 1000 μL	215,00	215,00
	MAT.04		1,000000 u	Micropipeta 200 μL	215,00	215,00
	MAT.05		1,000000 u	Micropipeta 100 µL	215,00	215,00
	MAT.06		1,000000 u	Micropipeta 20 μL	215,00	215,00
	MAT.07		1,000000 u	Micropipeta 10 μL	215,00	215,00
	MAT.08		3,000000 u	Caja puntas micropipeta 1000 µL	65,25	195,75
	MAT.09		3,000000 u	Caja puntas micropipeta 200 μL	39,16	117,48
	MAT.10		3,000000 u	Caja puntas micropipeta 100 µL	65,25	195,75
	MAT.11		3,000000 u	Caja puntas micropipeta 20 µL	60,20	180,60
	MAT.12		3,000000 u	Caja puntas micropipeta 10 µL	52,60	157,80
	MAT.13		50,000000 u	Tubo Eppendorf 2 mL	0,08	4,00
	MAT.14		200,000000 u	Tubo Eppendorf 1.5 mL	0,07	14,00
	MAT.15		300,000000 u	Tubo Eppendorf 0.5 mL	0,05	15,00
	MAT.16		1,000000 u	Placa petri 80 mm	1,13	1,13
	MAT.17		21,000000 u	Viales de cristal 50 mL	0,17	3,57
	MAT.18		21,000000 u	Tapas viales de cristal 50 mL	0,01	0,21
	MAT.19		5,000000 u	Placas de pocillo profundo P-48	2,81	14,05
	MAT.20		2,000000 u	Placas de pocillo negras P-96	5,52	11,04
	MAT.21		1,000000 u	Vaso de precipitados 25 mL	3,56	3,56
	MAT.22		2,000000 u	Falcon de ultracentrífuga 50 mL	0,10	0,20

MAT.57	10,000000 u	Pipeta Pasteur	0,02	0,20
%0400	4,000000 %	Costes indirectos	2.009,05	80,36
		Precio total por u:		2.089,41

6. CUADRO DE PRESUPUESTOS PARCIALES

En la Tabla 6 se presenta el cuadro de presupuestos parciales, en el que se recoge el presupuesto agrupado por capítulos. De igual forma, se excluyó el Capítulo 1.

Tabla 28. Cuadro de presupuestos parciales.

Capit	ulo 2. Síntesi	s de Gelat	tina con injerto de tiramina			
Núm.	Código	Ud	Denominación	Cantidad	Precio (€)	Total (€)
2.1 02	2.01	u	Síntesis de gelatina con injerto de tiramina	10,000000	1.051,04	10.510,40
	Tota	al presupu	uesto parcial nº 2 Síntesis de Gelatina con inje	erto de tiramina:		10.510,40
Capitu	ılo 3. Síntesis	de hidro	geles			
Núm.	Código	Ud	Denominación	Cantidad	Precio (€)	Total (€)
3.1 Pre	eparación de	l buffer CF	FKRB			
3.1.1 0	3.01.01	u	Preparación buffer CFKRB	1,000000	30,14	30,14
3.2 Sír	ntesis de mue	estras par	a reología			
3.2.1 0	3.02.01	u	Gelificación de hidrogeles 350 µL con LOx o.1 U/mL	3,000000	8.983,46	26.950,38
3.2.2 0	3.02.02	u	Gelificación hidrogeles 350 µL con LOx 0.2 U/mL	3,000000	414,43	1.243,29
3.2.3 0	3.02.03	u	Gelificación hidrogeles 350 µL con GlyO	3,000000	173,76	521,28
3.2.4 0	3.02.04	u	Gelificación hidrogeles 250 µL	4,000000	83,23	332,92
3.2.5 0	3.02.05	u	Gelificación hidrogeles 300 µL con LOx 1 U/mL	4,000000	83,04	332,16
3.2.6 0	3.02.06	u	Gelificación hidrogeles 300 µL con LOx 5 U/mL	4,000000	26,53	106,12
3.2.7 0	3.02.07	u	Gelificación hidrogeles 300 µL con GlyO ratio 20:1	3,000000	92,21	276,63
3.2.8 0	3.02.08	u	Síntesis scaffolds 350 µL con Glyoxal ratio 50:1	15,000000	131,04	1.965,60
3.2.9 0	3.02.09	u	Síntesis scaffolds 500 µL GlyO ratio 100:1	4,000000	45,95	183,80
3.2.10	03.02.10	u	Gelificación hidrogeles 500 μL GlyO ratio 500:1	4,000000	103,33	413,32
3.2.11	03.02.11	u	Gelificación hidrogeles 500 µL con Glyoxal 1000:1	4,000000	142,38	569,52
3.3 Sír	ntesis de Sca	ffolds par	a cultivo celular			
3.3.1 0	3.03.01	u	Gelificación hidrogeles 250 µL con Glyoxal 50:1	200,000000	165,38	33.076,00
			Total presupuesto parcial nº 3 Síntesis	de hidrogeles:		66.001,16
Capít	ulo 4. Caracte	erización (de hidrogeles			
Núm.	Código	Ud	Denominación	Cantidad	Precio (€)	Total (€)
4.1 Me	edición de pr	opiedades	s mecánicas en hidrogeles hinchados			
4.1.1 (04.01.01	u	Medición de propiedades mecánicas en hidrogeles pregelificados/hinchados	32,000000	6,59	210,88
4.2 Me	edición de pr	opiedades	s mecánicas en Scaffolds rehidratados			
4.2.1 (04.01.01	u	Medición de propiedades mecánicas en hidrogeles pregelificados/hinchados	19,000000	6,59	125,21

Total presupuesto parcial nº 4 Caracterización de hidrogeles:

336,09

Capítulo 5. Cultivo celular

Núm. Código	Ud	Denominación	Cantidad	Precio (€)	Total (€)
5.1 05.01	u	Esterilización de Scaffolds rehidratados	1,000000	462,21	462,21
5.2 05.02	u	Suspensión celular	1,000000	56,96	56,96
5.3 05.03	u	Encapsulación celular en hidrogeles	1,000000	61,65	61,65
5.4 05.04	u	Estudio de la viabilidad celular	1,000000	1.087,02	1.087,02
5.5 05.05	u	Suspensión celular HUVECs	1,000000	482,89	482,89
5.6 05.06	u	Siembra de células HUVECs en Scaffolds	1,000000	6,49	6,49
5.7 05.07	u	Estudio de la viabilidad celular de HUVECs	1,000000	1.631,39	1.631,39
5.8 05.08	u	Suspensión celular hepatocitos primarios	1,000000	131,11	131,11
5.9 05.09	u	Siembra de hepatocitos porcinos primarios en Scaffolds	1,000000	20,75	20,75
5.10 05.10	u	Estudio de la viabilidad celular de hepatocitos porcinos primarios	1,000000	3.602,12	3.602,12
5.11 05.11	u	Estudio de funcionalidad celular de hepatocitos primarios porcinos	1,000000	1.091,63	1.091,63
		<u>Total</u> presupuesto parcial nº 5 C	ultivo celular:		8.634,22
Capítulo 6. Equipo	s de prote	cción individual y seguridad			
Núm. Código	Ud	Denominación	Cantidad	Precio (€)	Total (€)
6.1 06.01	u	EPIs	1,000000	79,87	79,87
<u>Total</u> p	resupues	to parcial nº 6 Equipos de protección individua	l y seguridad:		79,87
Capítulo 7. Material	inventari	able/fungible			
Núm. Código	Ud	Denominación	Cantidad	Precio (€)	Total (€)
7.1 07.01	u	Material inventariable/fungible	1,000000	2.089,41	2.089,41
	Т	otal presupuesto parcial nº 7 Material inventari	able/fungible:		2.089,41

Capítulo 8. Reuniones de proyecto

Núm. Código	Ud	Denominación	Cantidad	Precio (€)	Total (€)
8.1 10.01	u	Reuniones de planificación	5,000000	402,36	2.011,80
8.2 10.02	u	Reuniones de resultados	5,000000	159,00	795,00
8.3 10.03	u	Redacción/correcciones	1,000000	3.407,04	3.407,04
		Total presupuesto parcial nº 8 Re	uniones de proyecto:		6.213,84

7. PRESUPUESTO DE EJECUCIÓN MATERIAL Y POR CONTRATA

Tabla 29. Presupuesto de ejecución material.

Presupuesto de ejecución material

		Importe (€)
2 Síntesis de Gelatina con injerto de tiramina		10.510,40
3 Síntesis de hidrogeles		66.001,16
4 Caracterización de hidrogeles		336,09
5 Cultivo celular		8.634,22
6 Equipos de protección individual y seguridad		79,87
7 Material inventariable/fungible		2.089,41
8 Reuniones de proyecto		6.213,84
	Total	93.864,99

Asciende el presupuesto de ejecución material a la expresada cantidad de NOVENTA Y TRES MIL OCHOCIENTOS SESENTA Y CUATRO EUROS CON NOVENTA Y NUEVE CÉNTIMOS.

Tabla 30. Presupuesto de ejecución por contrata.

Presupuesto de ejecución material	93.864,99
13% de gastos generales	12.202,45
0% de beneficio industrial	0,00
Suma	106.067,44
21% IVA	22.274,16
Presupuesto de ejecución por contrata	128.341,60

Asciende el presupuesto de ejecución por contrata a la expresada cantidad de CIENTO VEINTIOCHO MIL TRESCIENTOS CUARENTA Y UN EUROS CON SESENTA CÉNTIMOS.