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Abstract: The location routing problem integrates both a facility location and a vehicle routing
problem. Each of these problems are NP-hard in nature, which justifies the use of heuristic-based
algorithms when dealing with large-scale instances that need to be solved in reasonable computing
times. This paper discusses a realistic variant of the problem that considers facilities of different sizes
and two types of uncertainty conditions. In particular, we assume that some customers’ demands are
stochastic, while others follow a fuzzy pattern. An iterated local search metaheuristic is integrated
with simulation and fuzzy logic to solve the aforementioned problem, and a series of computational
experiments are run to illustrate the potential of the proposed algorithm.

Keywords: location routing problem; uncertainty; heuristics; simulation; fuzzy logic

1. Introduction

When designing and managing supply chains, one of the most relevant problems is
the simultaneous location of distribution facilities and the routing of vehicles to deliver
products to a set of geographically dispersed customers. The former is considered a
strategic decision, while the latter is operational. This problem is known in the scientific
literature as the location routing problem (LRP). The LRP addresses these two types of
decisions in an integrated manner. From the formal view of the operational research
community, the LRP is known to be NP-hard, since it can be reduced to either the facility
location problem (FLP), the vehicle routing problem (VRP) or the multidepot VRP, which
are all known to be NP-hard. This computational complexity means that optimal solutions
are really difficult to obtain in a reasonable computational time. Thus, heuristic approaches
are required to solve medium- and large-sized instances. Due to its complexity, some of the
first studies tackled the problem by splitting it into the corresponding subproblems [1,2].
Nevertheless, this approach might lead to suboptimal solutions.

Due to the increase in computational power and the development of fast heuristic
approaches, the LRP has been studied in an integrated way, which clearly has improved the
obtained results [3]. One of the most studied versions of the LRP is the capacitated LRP, in
which both depot and vehicle capacity constraints must be satisfied (the acronym LRP will
henceforth refer to this version). However, all previous works consider the depot capacity
as a fixed value for each location. This could not be a suitable approach when dealing with
realistic problems, since it is usual that decision-makers can select the size of a facility from
a discrete set of known available sizes, or even freely. For real-world problems, this set is
usually associated with investment activities, such as building facilities [4], purchasing
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equipment [5] or qualifying workforce [6]. From an academic point of view, despite the
increasing number of published works on the LRP, the consideration of flexible sizes for
facilities has been rarely addressed in the literature. Nevertheless, real-life examples from
both LRP [4,7,8] and non-LRP [5,6] contexts show the relevance of considering a variety of
facility sizes to select from.

Traditional LRP approaches consider that parameters are deterministic or crisp, i.e.,
they assume that inputs are known in advance. This assumption is far from reality in
many applications, such as waste collection, humanitarian logistics and urban freight
distribution, where uncertainty is a key factor to consider. Despite this, the literature on
the LRP addressing uncertain parameters is still scarce. In order to overcome this problem,
articles employing stochastic approaches can be found in the literature. Customers’ demand
is one of the most addressed stochastic parameters [9–13]. Other parameters might also
be considered as stochastic, such as transportation costs and travel speeds [14] or logistic
costs and travel distance [15]. In general, many articles addressing stochasticity in routing
problems hybridize simulation models with heuristic or metaheuristic algorithms to tackle
efficiently both uncertainty and NP-hardness. In many real-life situations, however, it
might not be possible to accurately model all uncertainty sources as stochastic variables
following a probability distribution. This might be the case, for instance, when the volume
of observations is low or the available data does not have enough quality [16]. Hence,
uncertainty in the LRP has also been tackled through the use of fuzzy sets. Parameters
such as customers’ demands [17–20], travel times [21,22] or time windows [23] have been
modeled as fuzzy in several studies. Notice that, whenever possible, modeling uncertainty
as stochastic variables might allow a deeper statistical analysis of the results.

To the best of our knowledge, there are no works in the literature simultaneously
addressing stochastic and fuzzy approaches to model demand uncertainty in a flexible-
size LRP. This is a realistic scenario, since many companies might have historical data
on trustworthy customers and not enough data on new or unreliable ones. Hence, the
main contributions of this paper are two-fold: on the one hand, a new variant of the
location routing problem is studied, where facility sizing decisions and hybrid fuzzy-
stochastic demands are simultaneously considered. On the other hand, this paper proposes
a competitive solution approach based on the hybridization of a metaheuristic algorithm
with both simulation and fuzzy logic, i.e., a so-called fuzzy simheuristic, to solve the
aforementioned problem. Indeed, simheuristics have been traditionally proposed to deal
with stochastic issues in hard combinatorial optimization problems [24]. However, their
hybridization with fuzzy logic has been rarely studied.

The remainder of this paper is organized as follows: Section 2 describes previous
works on the topic. Section 3 presents a description of our addressed problem. Section 4
explains the fuzzy simheuristic approach used to solve the problem. Section 5 describes
a series of computational experiments. Section 6 analyzes our obtained results. Finally,
Section 7 draws some conclusions and future research perspectives.

2. Literature Review

This section presents a summary of the published manuscripts on the main topics
addressed by this work. Thus, Section 2.1 outlines works related to the location routing
problem in both its deterministic version and the variant including uncertain parameters.
Additionally, Section 2.2 summarizes the main contributions on the field of simheuristics
and fuzzy logic as methodologies to handle uncertain parameters in routing problems.

2.1. The Location Routing Problem

Perhaps the first work related to the location routing problem is the one
by Maranzana [25], who analyze the influence of transportation costs on location deci-
sions. Moreover, Salhi and Rand [1] quantify for the first time the benefits of considering
routing decisions when locating facilities. They also state that solving each subproblem
(location and routing) independently does not provide optimal solutions. Multiple variants
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of the LRP have been proposed over time. These variants depend on the characteristics of
depots (capacitated or not), vehicles (capacitated or not, homogeneous or heterogeneous
fleet), costs (symmetric or asymmetric) or the consideration of uncertain parameters. All
capacitated variants addressed by these authors assume that depot sizes are fixed and
cannot be changed.

Considering the limited computational power available at that time, the initial works
on the LRP firstly solved the underlying location problem and used the obtained solu-
tion as a starting point to handle the corresponding routing problem. However, as the
computational power has notably increased in recent years, the newest approaches deal
with the LRP in an integrated manner [26,27]. Among the recently published works on
the deterministic LRP, Escobar et al. [28] propose a granular tabu search within a VNS
framework to speed up computational times without decreasing the solutions quality. A
biased-randomization-based metaheuristic of two phases is developed by Quintero-Araujo
et al. [27] to solve the capacitated version of the problem. Ferdi and Layeb [29] propose
a GRASP with a novel technique used to create clusters around the open depots. Tradi-
tional applications of the LRP include horizontal cooperation [30], electric vehicle routing
problems [31–33], city logistics [34], humanitarian logistics [35] or supply chain network
design [36]. Moreover, most recent applications are related to environmental issues [37],
cold supply chains [38] or waste management [39].

When dealing with uncertainty, most works have focused on the use of stochastic
modeling. One of the utilized approaches has been the hybridization of simulation tech-
niques with metaheuristics. For instance, Quintero-Araujo et al. [9] propose a simheuristic
to solve an LRP with stochastic demands, by hybridizing Monte Carlo simulation with an
iterated local search metaheuristic. A similar approach is employed by Tordecilla et al. [13],
who address an LRP where the sizes of facilities to locate are also a variable to consider.
Rabbani et al. [10] also propose a simheuristic approach that combines a nondominated
sorting genetic algorithm-II (NSGA-II) and Monte Carlo simulation. They tackle a mul-
tiobjective multiperiod LRP in the context of the hazardous waste management industry.
Both generated waste and number of people at risk are stochastic. Inventory decisions are
also taken into account. Sun et al. [11] address a real-world case from an express delivery
company in Shanghai. These authors tackle an LRP in which demand is stochastic and can
be split for self-pickup. Then a simulation-based optimization model is proposed and two
heuristics results are compared.

Other parameters are also considered to be uncertain. For instance, Herazo-Padilla
et al. [14] hybridize an ant colony optimization metaheuristic with discrete-event simulation
to solve an LRP in which both transportation costs and vehicle travel speeds are considered
stochastic. Authors demonstrate that their proposed approach is not only efficient but is
able to find statistical interactions among the different parameters. Zhang et al. [15] present
an approach that hybridizes a genetic algorithm with simulation to solve a sustainable
multiobjective LRP in the context of emergency logistics. The authors consider the travel
distance, the demand and the cost of opening a depot as uncertain variables. Additionally,
the emergence of new technologies introduces new challenges. This is the case of Zhang
et al. [12], who address the problem of locating battery swap stations and routing electric
vehicles with stochastic demands. This problem is solved using a hybrid approach that
combines a variable neighborhood search with a binary particle swarm optimization
algorithm. The problem’s complexity increases when considering the low autonomy of
this type of vehicles, since route failures can frequently be present when demands are not
known in an accurate manner.

Uncertainty in the LRP has been studied using either stochastic or fuzzy parameters.
Table 1 shows an overview of works addressing this topic, which includes: (i) whether the
uncertainty is addressed stochastically or in a fuzzy fashion; (ii) the considered uncertain
parameter; (iii) the mathematical modeling approach; (iv) the approach used to solve
the problem; and (v) the objective function. Analyzed works show a clear preference for
considering an uncertain demand, as well as for using fuzzy chance constrained models.
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Given both the considered uncertainty and the combinatorial nature of the LRP, most works
employ a hybrid approach combining simulation with a metaheuristic algorithm. Finally,
cost minimization is the prevalent objective, although a few works also consider the mini-
mization of risk or the minimization of the additional travel distance due to route failures.
Regarding works on fuzzy parameters, Zhang et al. [17] propose a hybrid particle swarm
optimization (PSO) algorithm to solve a capacitated LRP with fuzzy triangular demands
(CLRP-FD). The hybrid PSO algorithm is composed of three phases including a local search
method and stochastic simulation. In addition, the authors propose a chance-constrained
programming model for the CLRP-FD. Zarandi et al. [21] consider a multidepot LRP with
fixed depot capacity and fuzzy travel times. Mehrjerdi and Nadizadeh [18] present a fuzzy
chance constrained programming model where demands are modeled as fuzzy numbers.
A four-phase method called “greedy clustering” is proposed, in which both an ant colony
system metaheuristic and stochastic simulation are included. Fazayeli et al. [19] propose
an LRP with time windows and fuzzy demands as the delivery part of a multimodal
transport network. The mixed integer mathematical fuzzy model is coded and solved
using GAMS and compared to the results provided by a genetic algorithm. Nadizadeh
and Kafash [20] analyze a LRP with simultaneous pick-up and delivery in the context of
reverse logistics. Both types of demands (pick-up and deliveries) are fuzzy variables. A
fuzzy chance constrained programming model is proposed to represent the problem, and a
greedy clustering method is used to solve it.

Table 1. Recent works related to the location routing problem with uncertain parameters.

Reference Type of
Uncertainty

Uncertain
Parameter

Mathematical
Approach

Solving Approach Objective Criterion

Quintero-Araujo
et al. [9] Stochastic Demand

Mixed-integer
linear programming

Simheuristic
Iterated local search

Monte Carlo simulation
Minimize cost

Rabbani et al. [10] Stochastic
Demand

Number of
people at risk

Mixed-integer non-
linear programming

Simheuristic
NSGA-II

Monte Carlo Simulation

Minimize cost
Minimize

environmental risk

Sun et al. [11] Stochastic Demand
Mixed-integer

linear programming
Biogeography-based optimization

Adaptive large neighborhood search
Minimize cost

Zhang et al. [12] Stochastic Demand — Variable neighborhood search
Particle swarm optimization

Minimize cost

Tordecilla et al. [13] Stochastic Demand — Simheuristic
Iterated local search

Monte Carlo simulation
Minimize cost

Herazo-Padilla
et al. [14]

Stochastic Transportation cost
Travel speed

Mixed-integer
linear programming

Ant colony optimization
Discrete-event simulation

Minimize cost

Zhang et al. [15] Stochastic
Demand

Travel distance
Depot opening cost

Mixed-integer non-
linear programming

Genetic algorithm
Uncertain simulation

Minimize travel time
Minimize emergency relief cost

Minimize CO2 emissions

Zhang et al. [17] Fuzzy Demand A fuzzy chance
constrained model

Particle swarm optimization
Variable neighborhood search

Stochastic simulation

Minimize cost
Minimize additional travel

distance due to route failures

Mehrjerdi and
Nadizadeh [18] Fuzzy Demand

A fuzzy chance
constrained model

A greedy clustering method
Ant colony system

Stochastic simulation
Minimize cost

Fazayeli et al. [19] Fuzzy Demand
Mixed-integer non-
linear programming

Exact approach
Genetic algorithm

Minimize cost

Nadizadeh and
Kafash [20] Fuzzy Demand A fuzzy chance

constrained model

A greedy clustering method
Ant colony system

Stochastic simulation
Minimize cost

Zarandi et al. [21] Fuzzy Travel time A fuzzy chance
constrained model

Simulated annealing
Fuzzy simulation

Minimize cost

Zarandi et al. [22] Fuzzy
Demand

Travel time
A fuzzy chance

constrained model
Simulated annealing

Fuzzy simulation
Minimize cost

Minimize additional travel
distance due to route failures
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Table 1. Cont.

Reference Type of
Uncertainty

Uncertain
Parameter

Mathematical
Approach

Solving Approach Objective Criterion

Ghezavati and
Morakabatchian

[23]
Fuzzy Time windows Mixed-integer

linear programming
Exact approach Minimize cost

Minimize risks

Ghaffari-Nasab
et al. [40] Fuzzy Demand A fuzzy chance

constrained model
Simulated annealing
Stochastic simulation

Minimize cost
Minimize additional travel

distance due to route failures

Nadizadeh and
Nasab [41] Fuzzy Demand A fuzzy chance

constrained model

A hybrid heuristic algorithm
Ant colony system

Stochastic simulation

Minimize cost
Minimize additional travel

distance due to route failures

Wei et al. [42] Fuzzy
Transportation cost
Number of people
that may be at risk

A fuzzy chance
constrained model

Genetic algorithm
Fuzzy simulation

Minimize cost
Minimize risks

The analyzed works show that uncertainty in the LRP has been addressed either by
using stochastic or fuzzy demands but never considering both types of uncertainty at
the same time—e.g., that some customers’ demands are modeled as stochastic variables
while others are modeled as fuzzy values. In addition, to the best of our knowledge,
there are no previous studies on the LRP with facility sizing decisions and hybrid fuzzy-
stochastic demands. Only Tordecilla et al. [13] have studied a similar LRP variant, although
considering all customers’ demands as stochastic. Thus, our work aims to fulfill the existing
gap by considering a flexible-size LRP and two different types of uncertain parameters:
stochastic and fuzzy demands.

2.2. Simheuristics and Fuzzy Logic for Vehicle Routing Problems under Uncertainty

When dealing with combinatorial optimization problems subject to uncertain pa-
rameters, one of the most recommended approaches is the combination of simulation (to
handle stochasticity) with heuristic-based methods (to deal with the optimization part of
the problem) [43,44]. In that sense, a simheuristic approach is a relatively new and efficient
technique to tackle combinatorial optimization problems under uncertainty [24,45]. In
general, a simheuristic algorithm works as follows: (i) given a stochastic problem, the
random variables are transformed into their deterministic counterpart by using expected
values; (ii) an approximated framework (heuristic or metaheuristic) is used to generate
high-quality solutions for the transformed deterministic instance that can also be “promis-
ing” solutions for the stochastic version of the problem; (iii) these promising solutions are
sent to a simulation engine in order to estimate its quality in a stochastic environment. The
simulation engine, in addition, provides feedback to better guide the search used by the
approximated procedure; and (iv) an improved estimation of the quality of the solutions
is obtained for a subset of “elite” solutions using a longer simulation process. Different
simheuristic algorithms have been presented in the literature to solve routing problems.

Stochastic demands in vehicle routing problems are addressed by Quintero-Araujo
et al. [46] and Gruler et al. [47]. Moreover, stochastic demands are also studied in arc routing
problems [48]. Stochastic versions of the inventory routing problem can be found in Gruler
et al. [49]. Real applications like the waste collection problem with stochastic demands
are analyzed in Gruler et al. [50]. Intermodal routing problems have also considered other
stochastic parameters, such as capacity [51] or travel times [52,53]. Additionally, the need
of using fuzzy logic in vehicle routing problems arises when there are some vague or
uncertain parameters. The literature presents various works in which fuzzy logic is added,
for instance, to model uncertain demands [54–57], travel times [58,59], capacity [57,59],
and service times [60]. Additional aspects are also considered by these works, such as
time windows [57,61,62], environmental aspects [59], multiple objectives [59], intermodal
transportation [57,59] and an open VRP [63]. Additional applications of metaheuristics
combined either with Monte Carlo simulation or fuzzy logic can be found in several
fields, such as scheduling [64,65], controller optimization [66,67] parameter estimation [68],
finance [69], facility location [70], etc.
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3. Problem Description

The location routing problem is a well-known problem in which three main decisions
must be made: (i) locating one or more facilities; (ii) allocating customers to open facilities
without exceeding their capacity; and (iii) designing a number of routes whose aggregated
customers’ demand does not exceed a vehicle capacity. Each route must start and finish at
the same facility. Furthermore, we consider a location routing problem with facility sizing
decisions, where the size of each open facility is also a variable to decide on. Furthermore,
we also consider both stochastic and fuzzy demands. Hence, a percentage of the vehicles’
capacity is reserved as a safety stock (SS), in case the demand is higher than expected.
Therefore, the main decision variables in this problem are related to the number of facilities
to open, the facilities’ size and location, which customers must be allocated to each open
facility, how many vehicles must be used and how to design the associated routes. This
problem is NP-hard since it contains, as special cases, the capacitated vehicle routing
problem, the multidepot VRP and the facility location problem, all of them known to be
computationally hard. Figure 1 provides an example of a complete LRP solution. Facilities
are represented by diamonds and customers by circles. Black (solid) diamonds are the
open facilities, while noncolored diamonds correspond to nonopen facilities. For each open
depot, a set of routes starting and finishing at the corresponding depot location is designed
to serve all customers’ demands. Each route is assigned a single vehicle.

Figure 1. Graphical representation of a location routing problem (LRP) solution.

Formally speaking, the LRP can be defined on a complete, weighted, and undirected
graph G(V, E, C), in which V = J ∪ I is the set of nodes (comprising the subset J of potential
facility locations and subset I of customers), E is the set of edges, and C is the cost matrix of
traversing each edge. Delivery routes are performed by a set K of unlimited homogeneous
vehicles with limited capacity. This problem also assumes that all vehicles are shared by
all facilities (i.e., no depot has a specific fleet) and each edge e ∈ E satisfies the triangle
inequality. The customers’ demands are uncertain and are modeled using stochastic values
for a subset of customers I1, and fuzzy values for a subset of customers I2, such that
I1 ∪ I2 = I. The variant of the LRP considered in this paper is the one in which a decision
must be made about the size of the facilities to open. Hence, a set L of alternative sizes for
each facility and associated fixed and variable opening costs are provided as inputs. Depots
might have equal or different capacities. Each customer node must be served by exactly
one vehicle that starts and finishes its route in the facility to which it has been allocated (i.e.,
split deliveries are not allowed). The following notation is used to describe our problem:

Parameters

sl = Available size of type l ∈ L
Di = Uncertain demand of customer i ∈ I
f j = Fixed opening cost of depot j ∈ J
ojl = Variable opening cost of depot j ∈ J with size of type l ∈ L
ce = Cost of traversing arc e ∈ E
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q = Capacity of each vehicle
%SS = Safety stock percentage

Decision variables

yjl = Binary variable that indicates whether the depot j ∈ J is open with size l ∈ L
or not.

xij = Binary variable that indicates whether customer i ∈ I is assigned to the depot
j ∈ J or not

wek = Binary variable that indicates whether arc e ∈ E is used in the route performed
by vehicle k ∈ K or not

The objective is to minimize the total cost (TC), which includes opening facilities costs
(OC), routing costs (RC), and failure costs (FC), i.e., TC = OC + RC + FC. These parts are
defined in Equations (1)–(3).

OC = ∑
j∈J

∑
l∈L

( f j + ojl)yjl (1)

RC = ∑
e∈E

∑
k∈K

cewek (2)

FC = min{creac, cprev} (3)

FC represents the cost incurred whenever the actual demand of a route is greater
than the vehicle capacity, where creac and cprev depend on the corrective action consid-
ered, namely:

1. A reactive strategy with a cost creac, in which a vehicle must perform a round-trip
to its assigned facility for a replenishment if the actual current-customer demand is
higher than the vehicle’s current load.

2. A preventive strategy with a cost cprev, in which a vehicle must perform a detour to the
facility before visiting the next customer. The decision about performing this detour
depends on the type of demand of the next customer. If the demand is stochastic, the
detour is carried out whenever the expected demand of the next customer is higher
than the current capacity of the vehicle. Alternatively, if the demand is fuzzy, this
decision depends on the comparison between the fuzzy values of both the demand of
the next customer and the current capacity.

Let ∅ 6= S ⊂ V be a subset of nodes, δ+(S) the set of edges leaving S, δ−(S) the set
of edges entering S, and A(S) the set of edges with both ends in S. Hence, the location
routing problem with facility sizing decisions and uncertain demands can be modeled as
the following integer program:

Minimize TC (4)

subject to:

∑
k∈K

∑
e∈δ−(i)

wek = 1 ∀i ∈ I (5)

∑
i∈I

∑
e∈δ−(i)

Diwek ≤ (1−%SS)q ∀k ∈ K (6)

∑
e∈δ+(n)

wek = ∑
e∈δ−(n)

wek, ∀k ∈ K, ∀n ∈ V (7)

∑
e∈δ+(J)

wek ≤ 1 ∀k ∈ K (8)

∑
e∈A(S)

wek ≤ |S| − 1 ∀S ⊆ I, ∀k ∈ K (9)
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∑
e∈δ+(j)

wek + ∑
e∈δ−(i)

wek ≤ 1 + xij ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (10)

∑
j∈J

xij = 1 ∀i ∈ I (11)

∑
i∈I

Dixij ≤ ∑
l∈L

slyjl ∀j ∈ J (12)

∑
l∈L

yjl ≤ 1 ∀j ∈ J (13)

∀ yjl , xij, wek ∈ {0, 1} (14)

The objective function (4) minimizes the total cost. Constraint (5) ensures that each
customer is served by a single route and a single vehicle. Constraint (6) guarantees that
the total demand served by a vehicle in a route does not exceed its capacity. This limit
is reduced by a safety stock, which is a percentage of the vehicle capacity reserved to
respond more effectively to the uncertain demand. Constraint (7) guarantees the continuity
of each route. Constraint (8) ensures the return of each vehicle to its starting depot.
Constraint (9) guarantees the subtour elimination. Constraint (10) ensures that a customer
is served by a route departing from an open depot only if this customer is allocated
to this depot. Constraint (11) guarantees that a customer is assigned to only one depot.
Constraint (12) ensures that the total demand served from a depot does not exceed its
assigned size. Constraint (13) guarantees that only one size is assigned to an open depot.
Finally, Constraint (14) determines that all decision variables are binary.

4. Solution Approach

Since the problem described in Section 3 is known for being NP-hard, the formulated
mathematical model is not employed to find an optimal solution but just to provide a better
understanding of the problem details Hence, we propose a fuzzy simheuristic approach [24]
for minimizing the expected total cost. Traditionally, simheuristics have been used to solve
optimization problems with stochastic components, such as arc routing problems with
stochastic demands [48], stochastic waste collection problems [50] or team orienteering
problems with stochastic travel times [71]. We have extended the simheuristic framework
by including fuzzy components in order to deal with combinatorial optimization problems
with uncertainty components of both stochastic and nonstochastic nature. In particular,
our methodology combines an iterated local search (ILS) metaheuristic with Monte Carlo
simulation and fuzzy inference systems (FIS) to deal with stochastic and fuzzy variables,
respectively. As discussed in Ferone et al. [72], several metaheuristic frameworks offer a
well-balanced combination of efficiency and relative simplicity and can be easily extended
to a fuzzy simheuristic. In general, our approach is composed of three stages. During the
first stage, a set of promising LRP solutions are generated using a constructive heuristic,
which employs biased-randomization techniques [73]. In the second stage, the ILS meta-
heuristic tries to improve each of these promising solutions by iteratively exploring the
search space and conducting a short number of simulations. Finally, in the third stage, a
refinement procedure using a larger number of simulation runs is applied to these elite
solutions, which allows one to obtain a more accurate estimation of the expected total cost.

Algorithm 1 outlines the main components of Stage 1. It generates quickly a ranked
list of “promising” LRP solutions. The main input parameters of this heuristic are: the list of
customers with both their demand and location in Cartesian coordinates, the list of facilities
including their opening costs and the vehicle capacity. The algorithm procedure is as
follows: initially, the minimum and maximum (nbDepots0 and maxNbDepots, respectively)
numbers of facilities required to serve the total demand are computed. Both bounds are
calculated by dividing the total demand by the maximum available facility size, and the
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minimum available facility size, respectively, and they are rounded up to the next integer
number. Then we run our algorithm for each number of facilities between nbDepots0 and
maxNbDepots (line 3). Later, for each iteration of the line 4 loop, a new set of random
locations are generated (line 5). This is stored in usedOpenDepots to avoid repeating. Next,
if the available capacity of facilities in openDepots is enough to satisfy customers demand,
customers’ allocation and routing procedures are carried out; otherwise, openDepots is
rejected. The customers’ allocation procedure is performed by producing a new map (line 9)
where each facility has a list of all customers sorted by savings. These savings represent
the benefit of allocating each customer to the current depot instead to the best alternative
facility. Then a facility in openDepots is selected randomly, and a biased-randomized
procedure is used to allocate a customer of the list to the current depot. This procedure
ends when all customers have been allocated. In the step in line 10 a VRP is solved for each
subset facility-customers in the map. Finally, a feasible LRP solution is yielded and stored
in the pool of solutions poolSol. The algorithm ends returning a top list of complete LRP
solutions, assessed in terms of opening and routing costs.

Algorithm 1 Constructive heuristic (cust, depots, vehCap, β, itermax)
1: usedOpenDepots← ∅

2: 〈nbDepots0, maxNbDepots〉 ← computeDepotsBound(depots)

3: for nbDepots← nbDepots0 to maxNbDepots do

4: for iter← 1 to itermax do

5: openDepots← depotsToOpen(nbDepots)

6: if openDepots /∈ usedOpenDepots then

7: if capacity(openDepots) ≥ demand(cust) then

8: usedOpenDepots← add(usedOpenDepots, openDepots)

9: map← allocateCustomers(openDepots, cust)

10: lrpSol← CWS(map, β, vehCap)

11: poolSol← add(poolSol, lrpSol)

12: end if

13: end if

14: end for

15: end for

16: return sortingByCost(poolSol)

Algorithm 2 outlines Stages 2 and 3. During the second stage, each “promising”
map generated by the constructive heuristic is processed by the simulation and the fuzzy
components to estimate its safety stock (line 4). This procedure is carried out by performing
a low number of runs, where a new value is assigned to each random or fuzzy element
based on its probability distribution or fuzzy function, respectively. We use Monte Carlo
simulation in order to estimate the stochastic variables, whilst a fuzzy inference system is
used to estimate the fuzzy variables. Then, the objective function and the constraints are
evaluated under the random/fuzzy generated values to compute the expected cost of each
promising map. Next, the ILS metaheuristic tries to improve the set of “promising” maps by
iteratively exploring the search space and conducting a second process of fuzzy/simulation
runs. We start the process by perturbing the current base solution baseSol (line 8). In this
phase we use two different strategies. In the first one, the algorithm randomly selects a
set of customers and tries to reassign them in a random way to another facility without
violating its capacity. Regarding the second strategy, the algorithm randomly exchanges
the allocation of a percentage of customers among facilities. This process is dependent
on the value of k, which represents the degree of exchange to be applied. This value is



Algorithms 2021, 14, 45 10 of 23

updated in each iteration between Kmin and Kmax, i.e., it is reset to Kmin whenever a new
solution newSol outperforms the baseSol, and it is increased whenever the algorithm fails to
improve the current solution until a maximum value Kmax. The strategy to be used in each
iteration of the algorithm is randomly selected.

Algorithm 2 ILS-based Fuzzy Simheuristic (inputs, α, β, λ, Inc, T0, Kmin, Kmax, I0, tmax)
1: initSol← genInitSol(inputs,α, β )

2: baseSol← initSol

3: bestSol← baseSol

4: fastSimulation(baseSol) % Fuzzy and Monte Carlo Simulation

5: T← T0

6: while (time ≤ tmax) do % ILS stage

7: k← Kmin

8: perturbationSol← perturbation(baseSol, k, α, β)

9: newSol← localSearch(perturbationSol)

10: if (detCost(newSol) < detCost(baseSol)) then

11: fastSimulation(newSol) % Fuzzy and Monte Carlo simulation

12: if (expCost(newSol) < expCost(baseSol)) then

13: baseSol← newSol

14: if (expCost(newSol) < expCost(bestSol)) then

15: bestSol← newSol

16: insert(poolBestSol,bestSol)

17: end if

18: k← Kmin

19: end if

20: else % SA-based acceptance criterion

21: temperature← updateTemperature(detCost(newSol), detCost(baseSol), T)

22: if (U (0,1) ≤ temperature) then

23: baseSol← newSol

24: k← Kmin

25: else

26: k←min(k * Inc,Kmax)

27: end if

28: end if

29: T← λT

30: end while

31: for (sol ∈ poolBestSol) do % Refinement stage - Fuzzy and Monte Carlo simulation

32: longSimulation(sol)

33: if (expCost(sol) < expCost(bestSol)) then

34: bestSol← sol

35: end if

36: end for

37: return bestSol
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Afterwards, the algorithm starts a local search around the perturbed solution in order
to improve it (line 9). This stage consists in a two-opt inter-route operator, which interchanges
two chains of randomly selected customers between different facilities. A newSol is returned
whenever no more improvements are achieved. Later, whenever the deterministic cost of
the baseSol is improved (line 10), the newSol is processed by the simulation and the fuzzy
components to deal with the uncertainty of the proposed problem, using a low number
of runs to compute the expected cost of the solution (line 11). Notice that this procedure
does not only provide estimated values to the expected cost associated with the solutions
generated by our approach, but it also reports feedback to the metaheuristic search process.
If the newSol is also able to improve the expected cost of the baseSol (line 12), the latter
is updated. In the same way, if the expected cost of the newSol improves the cost of the
best solution (bestSol) found so far (line 14), the latter is updated and added to the pool
of elite solutions (line 16). This pool contains the best stochastic/fuzzy solutions found
so far. The number of solutions in this pool is a known parameter that depends on the
available computational time. Moreover, by limiting the size of this pool we ensure that we
only keep track of the top solutions as the algorithm evolves. In order to further diversify
the search, the algorithm might occasionally accept nonimproving solutions following
an acceptance criterion (lines 20–28). Specifically, we have used a simulated-annealing
acceptance criterion, which contains a decaying probability that is regulated by a dynamic
temperature parameter (T).

Finally, a refinement procedure using a larger number of simulation runs is executed
in the third stage for each elite solution (lines 31–36). Hence, a more accurate summary
of output variables can be obtained. As before, both probability distributions and fuzzy
functions are employed in this simulation, depending on whether the element has a
stochastic or fuzzy nature. Finally, the ”best” solution (or pull of best alternative solutions)
is returned, considering that the decision maker might be not only interested in the average
value associated with a solution but also in its variability level. Particularly, the main
output variables in our experiments are: the opening and routing costs, the cost incurred
whenever a route fails and the safety stock.

5. Computational Experiments

Multiple sets of instances are found in the literature to test the algorithms designed
to solve the LRP [74–76]. Nevertheless, these sets do not consider characteristics such
as parameters uncertainty and flexible facility sizes, i.e., instances must be adapted
to our problem’s features. Therefore, we use Akca’s [74] instances and introduce the
following modifications:

1. Traditional LRP instances consider that a single fixed size is available to assign to
open depots. We extend this unit set to five alternative sizes, so that our algorithm
selects one of them for each open depot. If sj is the size proposed by the original
instance for each potential depot j ∈ J, and L is the set of available sizes, our approach’
alternative sizes are sjl ∈ {(1− 2r)sj, (1− r)sj, sj, (1 + r)sj, (1 + 2r)sj}, where l ∈ L,
0.0 < r < 0.5, and r is the range of difference between available sizes. When r = 0,
the case is the same as the traditional LRP. We consider that r = 0.25.

2. Traditional LRP instances consider a fixed cost ( f j) incurred whenever a depot j ∈ J is
open. We keep this parameter unaltered. Additionally, we introduce a variable cost

(ojl) depending on f j and sjl , namely: ojl =
(sjl − sj)

2sj

∑j f j

|J| . This formula preserves ojl

in the same order as f j for each depot j ∈ J. Besides, it yields negative costs whenever
sjl < sj, positive costs whenever sjl > sj, and a null cost when sjl = sj. Thus our
results can be compared with those found in the LRP literature.

3. An uncertain demand Di for each customer i ∈ I is considered. The demand of half of
the customers is assumed to follow a log-normal probability distribution. If φi is the
deterministic demand in the Akca’s set, then E[Di] = φi. In addition, three different
values of variance are considered: low, medium and high, i.e., for λ ∈ {0.05, 0.10, 0.20},
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Var[Di] = λφi. These variability values are preserved identical to the ones used by
Tordecilla et al. [13], in order to perform a suitable results comparison. The demand
of the other half of the customers is considered to be fuzzy. In this case, Di can be
estimated as low (DL), medium (DM) or high (DH). The demand in each of these
fuzzy sets is represented by a triangular fuzzy number Di = (d1i, d2i, d3i). If q is the
vehicle total load capacity, all fuzzy demand values are expressed as a proportion of q
in order to perform an appropriate comparison between the demand and the vehicle
available capacity, i.e., 0 ≤ Di ≤ 1. The membership function of these fuzzy sets are
displayed in Figure 2.

Figure 2. Fuzzy sets for the demand of the customer i.

A Fuzzy Approach for the Demand and the Vehicle Available Capacity

When considering customers with stochastic demands, the decision about visiting
the next customer in a route is made simply by comparing its expected demand with the
vehicle’s current capacity. If this demand is greater, the vehicle will perform a detour to
the depot for a replenishment. Nevertheless, when the next customer demand is fuzzy,
the decision about serving it is made employing a preference index pi [77]. It indicates the
strength of our inclination to visit the next node in a route. This index depends on both the
estimated demand of the next node Di+1 and the vehicle capacity Ci that remains available
after serving the customer i ∈ I. Ci is expressed as a proportion of q, i.e., 0 ≤ Ci ≤ 1. It
also can be treated as low (CL), medium (CM) or high (CH), and it is represented by a
triangular fuzzy number Ci = (c1i, c2i, c3i). The membership function of the capacity fuzzy
sets are displayed in Figure 3.

Figure 3. Fuzzy sets for the vehicle available capacity after visiting the customer i.

The preference index is defined between 0 and 1, i.e., 0 ≤ pi ≤ 1. When pi = 1, we will
definitely visit the next node in a route since the vehicle available capacity can for sure meet
its demand. When pi = 0, we are sure that Di+1 exceeds Ci and the vehicle must return to
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the depot for a replenishment. We consider that the preference can be very low (PVL), low
(PL), medium (PM), high (PH) or very high (PVH). Each of these categories is represented
by a fuzzy set, whose membership function is depicted in Figure 4. Additionally, we
define a set of reasoning rules (Table 2) to determine the preference to visit the next node
depending on the levels of both the demand and the vehicle available capacity.

Figure 4. Fuzzy sets for the preference strength to visit the customer i.

Table 2. Reasoning rules determining the visit preference strength.

Demand
Available Capacity

CL CM CH

DL PM PH PVH
DM PL PM PH
DH PVL PL PM

Figure 5 displays the procedure used to compute the preference index pi after serving
the customer i ∈ I. This procedure is described as follows:

Simulate the actual
demand

Calculate the vehicle
available capacity

Estimate the fuzzy
demand

Estimate the fuzzy
available capacity

Determine the
membership function of

the preference index

Calculate a crisp
preference index

Figure 5. Procedure used to compute the preference index pi.

1. Simulate the actual demand of each customer employing a fuzzy simulation approach.
Based on the works by Teodorović and Pavković [77], Sun et al. [59] and Sun [78], we
follow the steps described below:

(a) Generate a random demand di between a lower bound and an upper bound.
Since the objective is preserving the variability conditions similar to the
stochastic demands, the lower and upper bounds are given by the expres-

sions
φi−
√

3λφi
q and

φi+
√

3λφi
q , respectively.

(b) Calculate the membership degree µ(di) of this demand. Notice that µ(di) ∈ [0, 1].
(c) Generate a random number ρ ∈ [0, 1].
(d) Compare ρ and µ(di). If ρ ≤ µ(di), then assume the actual demand of the

customer i as di; otherwise, repeat steps (a)–(d) until this condition is fulfilled.
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2. Calculate the vehicle available capacity subtracting from q the sum of the simulated
demand of the first m customers visited in the current route, including the customer
i. Whenever the route fails and the vehicle must perform a trip to the depot for a
replenishment, the counting of m starts again from 1.

3. Estimate the fuzzy demand and the fuzzy available capacity according to the cate-
gories previously defined: low, medium or high.

4. Determine the membership function of the preference index using the reasoning rules
defined in Table 2.

5. Calculate a crisp preference index using the center of gravity as defuzzification
method. Additional methods can be found in Klir and Yuan [79], and Opricovic and
Tzeng [80].

We define a known threshold p∗, such that 0 ≤ p∗ ≤ 1. The computed preference index
pi must be compared with p∗ in order to make a decision about the vehicle next destination.
If pi ≥ p∗, the vehicle should visit the next customer directly; otherwise, we estimate that
the vehicle available capacity cannot meet the next customer demand. In this case, both
preventive (cprev) and reactive (creac) costs are calculated (see Section 3). If cprev < creac, the
vehicle should perform a detour to the depot for a preventive replenishment; otherwise, it
should visit the next customer directly and react to its real demand. The lower the threshold
level, the greater the inclination to unload the vehicle as much as possible before making a
replenishment trip to the depot. In this case, less preventive detours are performed. Hence,
the number of times that a reactive round-trip must be carried out increases. Previous tests
using modified Akca’s instances yielded lower costs when p∗ = 0.45.

The following parameters are used by our algorithm to run the experiments: (i) 350 iter-
ations for map perturbations; (ii) 150 iterations for the biased-randomized savings heuristic;
(iii) 150 iterations for splitting; (iv) a random value between 0.05 and 0.80 for β1, the
parameter of the geometric distribution associated with the biased-randomized selection
during the allocation map process; (v) a random value between 0.07 and 0.23 for β2, the
parameter of the geometric distribution associated with the biased-randomized heuristic
for routing; (vi) n = 100 runs for the initial simulation stage; (vii) N = 5000 runs for
the intensive simulation stage; and (viii) 100 iterations to estimate the safety stock (SS),
testing only discrete values between 0% and 10%. Our proposed algorithm was coded
as a Java application. All experiments were executed on a standard Windows PC with
a Core i5 processor and 6 GB RAM. A total of ten different random seeds were used for
each instance.

6. Results and Discussion

Table 3 shows our obtained results for 12 Akca’s instances. Five main indicators are
computed: depots opening costs (OC), which is formed by both fixed and variable costs;
routing costs (RC); failure costs (FC), which is incurred whenever the vehicle must perform
either a detour or a round-trip to the depot; total costs (TC); and the estimated safety stock
(SS) level. Four types of solutions are compared. All of them are flexible, i.e., they consider
facility sizing decisions. Firstly, our best deterministic solutions are shown, i.e, there is no
uncertainty in the customers’ demand and its realization is exactly as expected. In this case,
a safety stock is not necessary and there are no failure costs. Secondly, we show the best
stochastic solutions reported by Tordecilla et al. [13], in which the exact customers’ demand
is not known. Instead, all of them follow a log-normal distribution with known mean
and standard deviation. Thirdly, our best hybrid fuzzy-stochastic solutions are displayed,
in which half of the customers’ demand follows a log-normal distribution, and half of
the customers’ demand is considered to be fuzzy. Finally, our best fuzzy solutions are
shown, in which all customers’ demand is considered to be fuzzy, due to a high level of
uncertainty. Additionally, results for three levels of variability (λ) are shown. Clearly, our
best deterministic solutions are the same regardless of the variability level, given the total
absence of uncertainty.
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Table 3. Comparative results between our flexible solutions under different uncertainty levels.

Instance
Best Deterministic Solution Best Stochastic Solution [13] Best Hybrid Solution Best Fuzzy Solution

OC RC TC OC RC FC TC SS OC RC FC TC SS OC RC FC TC SS

Low variability

Cr30x5a-1 200.00 575.14 775.14 200.00 575.14 2.37 777.51 0% 200.00 575.14 3.31 778.45 2% 200.00 575.14 5.86 781.00 2%
Cr30x5a-2 200.00 607.28 807.28 200.00 607.28 0.04 807.32 3% 200.00 607.28 0.12 807.40 3% 200.00 607.28 0.12 807.40 3%
Cr30x5a-3 187.50 507.92 695.42 187.50 509.25 10.99 707.74 3% 187.50 509.25 17.48 714.22 3% 187.50 509.25 25.50 722.25 3%
Cr30x5b-1 225.00 623.22 848.22 225.00 623.22 9.37 857.59 0% 225.00 623.22 14.59 862.81 0% 225.00 623.22 22.85 871.07 1%
Cr30x5b-2 187.50 625.32 812.82 187.50 625.32 0.00 812.82 2% 187.50 625.32 0.00 812.82 2% 187.50 625.32 0.00 812.82 2%
Cr30x5b-3 187.50 684.58 872.08 187.50 684.58 2.25 874.33 1% 187.50 684.58 6.35 878.43 1% 187.50 684.58 9.50 881.58 1%
Cr40x5a-1 162.50 731.84 894.34 162.50 731.84 0.03 894.37 1% 162.50 731.84 0.07 894.41 1% 162.50 731.84 0.59 894.93 1%
Cr40x5a-2 225.00 637.26 862.26 225.00 639.02 0.10 864.12 0% 225.00 639.02 0.81 864.83 1% 225.00 642.02 0.03 867.05 3%
Cr40x5a-3 162.50 752.88 915.38 162.50 752.88 0.97 916.35 0% 162.50 752.88 3.26 918.64 0% 162.50 752.88 6.82 922.21 1%
Cr40x5b-1 162.50 852.04 1014.54 162.50 852.04 6.90 1021.45 1% 162.50 852.04 12.24 1026.78 1% 162.50 852.04 20.79 1035.33 1%
Cr40x5b-2 225.00 690.57 915.57 225.00 690.57 0.08 915.65 1% 225.00 690.57 0.62 916.18 1% 225.00 690.57 1.23 916.79 1%
Cr40x5b-3 175.00 764.33 939.33 175.00 772.87 0.07 947.93 2% 175.00 772.87 0.29 948.16 2% 175.00 772.87 0.35 948.22 2%

Average 191.67 671.03 862.70 191.67 672.00 2.76 866.43 1.17% 191.67 672.00 4.93 868.59 1.42% 191.67 672.25 7.80 871.72 1.75%

Medium variability

Cr30x5a-1 200.00 575.14 775.14 200.00 575.14 7.63 782.77 2% 200.00 575.14 9.67 784.81 2% 200.00 575.14 12.91 788.05 2%
Cr30x5a-2 200.00 607.28 807.28 200.00 607.28 0.46 807.74 3% 200.00 607.28 1.94 809.22 3% 200.00 607.28 1.43 808.71 3%
Cr30x5a-3 187.50 507.92 695.42 187.50 509.25 18.50 715.25 3% 187.50 509.25 24.10 720.85 3% 187.50 509.25 29.73 726.48 3%
Cr30x5b-1 225.00 623.22 848.22 225.00 623.22 14.63 862.85 0% 225.00 623.22 18.32 866.53 3% 225.00 623.22 24.23 872.45 3%
Cr30x5b-2 187.50 625.32 812.82 187.50 625.32 0.00 812.82 2% 187.50 625.32 0.00 812.82 2% 187.50 625.32 0.00 812.82 2%
Cr30x5b-3 187.50 684.58 872.08 187.50 684.58 10.21 882.28 0% 187.50 684.58 12.79 884.87 1% 187.50 684.58 12.88 884.96 1%
Cr40x5a-1 162.50 731.84 894.34 162.50 739.24 0.01 901.75 3% 162.50 739.24 0.01 901.75 3% 162.50 739.24 0.00 901.74 3%
Cr40x5a-2 225.00 637.26 862.26 225.00 643.52 3.07 871.59 1% 225.00 642.02 0.24 867.26 3% 225.00 642.02 0.57 867.59 3%
Cr40x5a-3 162.50 752.88 915.38 162.50 752.88 4.46 919.85 1% 162.50 752.88 8.57 923.95 1% 162.50 752.88 11.83 927.22 1%
Cr40x5b-1 162.50 852.04 1014.54 162.50 858.58 4.54 1025.62 2% 162.50 858.58 8.01 1029.09 2% 237.50 795.18 0.00 1032.68 4%
Cr40x5b-2 225.00 690.57 915.57 225.00 690.57 2.06 917.63 1% 225.00 690.57 3.77 919.33 0% 225.00 690.57 5.80 921.37 1%
Cr40x5b-3 175.00 764.33 939.33 175.00 772.87 1.42 949.29 2% 175.00 772.87 2.53 950.40 2% 175.00 772.87 2.96 950.82 2%

Average 191.67 671.03 862.70 191.67 673.54 5.58 870.79 1.67% 191.67 673.41 7.50 872.57 2.08% 197.92 668.13 8.53 874.57 2.33%
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Table 3. Cont.

Instance
Best Deterministic Solution Best Stochastic Solution [13] Best Hybrid Solution Best Fuzzy Solution

OC RC TC OC RC FC TC SS OC RC FC TC SS OC RC FC TC SS

High variability

Cr30x5a-1 200.00 575.14 775.14 200.00 575.14 19.66 794.80 2% 200.00 575.14 19.82 794.96 0% 200.00 575.14 24.25 799.38 1%
Cr30x5a-2 200.00 607.28 807.28 200.00 607.74 0.02 807.76 5% 200.00 611.41 0.02 811.43 7% 200.00 607.74 0.04 807.78 5%
Cr30x5a-3 187.50 507.92 695.42 187.50 509.25 27.86 724.61 2% 187.50 509.25 29.95 726.70 4% 187.50 509.25 33.41 730.16 3%
Cr30x5b-1 225.00 623.22 848.22 225.00 623.22 19.99 868.21 10% 225.00 623.22 20.73 868.95 10% 225.00 623.22 24.86 873.08 10%
Cr30x5b-2 187.50 625.32 812.82 187.50 625.32 0.10 812.92 3% 187.50 625.32 0.20 813.02 5% 187.50 625.32 0.15 812.97 3%
Cr30x5b-3 187.50 684.58 872.08 187.50 684.58 24.93 897.00 1% 187.50 684.58 29.03 901.11 5% 187.50 684.58 34.01 906.09 5%
Cr40x5a-1 162.50 731.84 894.34 162.50 737.20 2.85 902.55 2% 162.50 735.84 7.83 906.17 1% 162.50 735.84 9.38 907.71 1%
Cr40x5a-2 225.00 637.26 862.26 225.00 642.02 1.79 868.82 3% 225.00 642.02 1.48 868.50 3% 225.00 642.02 2.25 869.27 3%
Cr40x5a-3 162.50 752.88 915.38 162.50 763.69 5.78 931.97 2% 162.50 763.69 7.76 933.96 2% 162.50 752.88 18.65 934.04 1%
Cr40x5b-1 162.50 852.04 1014.54 237.50 786.00 4.65 1028.14 3% 237.50 792.36 2.84 1032.70 4% 237.50 786.00 8.47 1031.97 3%
Cr40x5b-2 225.00 690.57 915.57 225.00 690.57 9.35 924.91 2% 225.00 690.57 12.59 928.15 2% 225.00 690.57 14.96 930.53 2%
Cr40x5b-3 175.00 764.33 939.33 175.00 780.62 4.14 959.76 3% 175.00 780.62 4.90 960.52 3% 175.00 780.62 5.86 961.48 3%

Average 191.67 671.03 862.70 197.92 668.78 10.09 876.79 3.17% 197.92 669.50 11.43 878.85 3.83% 197.92 667.77 14.69 880.37 3.33%
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Results in Table 3 show a slight average increase in total costs when increasing the
variability level for all types of solutions, except the best deterministic solution. This
growth is caused mainly by the rise in failure costs, since a greater number of detours and
round-trips is expected when the demand variability level is higher. Additionally, total
costs also increase when the uncertainty level is higher regardless of the variability level,
i.e., the deterministic solution is the cheapest one, and the fuzzy solution is the most costly.
If we compare only the average deterministic cost of each set of solutions, formed by the
sum of OC and RC, we obtain values with negligible differences. Hence, the contrasts in
total costs are caused mainly by failure costs. For example, for the instance Cr30x5a-3 in the
low variability scenario, 1.6% of total costs are failure costs in the best stochastic solution.
However, in the best fuzzy solution this percentage rises to 3.5%. Most instances show this
steady growth when increasing the uncertainty level, which confirms that fuzzy scenarios
have a higher uncertainty level when compared with deterministic and stochastic scenarios.
Finally, the average safety stock increases when both variability and uncertainty levels rise,
since more protection against uncertainty is necessary in both cases.

Results corresponding to our best deterministic solution in Table 3 were yielded
assuming that the realized demand is deterministic. Hence, an additional experiment has
been performed, in which this solution (called henceforth OBD) is tested in a hybrid fuzzy-
stochastic environment, using 0% of safety stock protection against uncertainty. Figure 6
compares this solution’s results with our best-found hybrid fuzzy-stochastic solution (OBF)
in terms of failure costs. Results for 12 Akca’s instances are depicted for each demand
variability scenario. Extreme points in dashed lines indicate the average cost for each set
of data. As expected, average failure costs show an increasing trend when the variability
grows, regardless of the type of solution. Conversely, Figure 6 shows that OBF outperforms
OBD when tested under uncertainty conditions. This fact demonstrates the quality of our
fuzzy simheuristic approach, especially in scenarios where the demand variability is high.

 

Figure 6. Failure costs of our best deterministic and our best hybrid solutions.

Table 4 compares two types of hybrid fuzzy-stochastic solutions. Firstly, we show our
best solution with a single facility size alternative given by the original Akca’s instances—
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i.e., the solution is not flexible since only one size is available to select. Secondly, we
show our best flexible solution, which corresponds to our best hybrid solution in Table 3.
When comparing the total costs of both types of solutions, the negative gap obtained for all
instances and under all variability levels shows the advantages of considering facility sizing
decisions. For example, we reach a maximum absolute gap of 7.71% in total cost savings for
a single instance. In average, both opening and routing costs decrease whenever alternative
depot sizes are available. Nevertheless, each instance shows different results regarding
OC and RC. The most evident case is that in which opening costs decrease. Clearly, this
is a direct result of having smaller facility size alternatives. Without loss of generality, all
examples below take as reference the high variability scenario. For example, the instance
Cr30x5b-3 has a total demand of 1620. Both flexible and nonflexible approaches design the
same routes and yield equal routing costs. Nevertheless, the nonflexible approach locates
two depots of size 1000 each. Conversely, our flexible approach locates one depot of size
1000 and one depot of size 750. Hence, the nonflexible solution assigns an extra capacity
that is not necessary under the problem’s current conditions.

Table 4. Comparative results between our hybrid solutions when considering facility sizing decisions.

Instance
Best Nonflexible Hybrid Solution Best Flexible Hybrid Solution Gap

TCOC RC FC TC SS OC RC FC TC SS

Low variability

Cr30x5a-1 200.00 619.51 3.45 822.96 1% 200.00 575.14 3.31 778.45 2% −5.41%
Cr30x5a-2 200.00 626.01 0.04 826.05 1% 200.00 607.28 0.12 807.40 3% −2.26%
Cr30x5a-3 200.00 507.99 17.56 725.55 2% 187.50 509.25 17.48 714.22 3% −1.56%
Cr30x5b-1 200.00 682.97 0.32 883.29 2% 225.00 623.22 14.59 862.81 0% −2.32%
Cr30x5b-2 200.00 625.32 0.00 825.32 2% 187.50 625.32 0.00 812.82 2% −1.51%
Cr30x5b-3 200.00 684.58 5.95 890.53 1% 187.50 684.58 6.35 878.43 1% −1.36%
Cr40x5a-1 200.00 733.47 3.22 936.70 0% 162.50 731.84 0.07 894.41 1% −4.51%
Cr40x5a-2 200.00 691.47 11.15 902.63 1% 225.00 639.02 0.81 864.83 1% −4.19%
Cr40x5a-3 200.00 748.64 9.88 958.52 1% 162.50 752.88 3.26 918.64 0% −4.16%
Cr40x5b-1 200.00 858.58 1.94 1060.53 2% 162.50 852.04 12.24 1026.78 1% −3.18%
Cr40x5b-2 300.00 690.57 0.65 991.22 2% 225.00 690.57 0.62 916.18 1% −7.57%
Cr40x5b-3 200.00 780.62 0.07 980.69 2% 175.00 772.87 0.29 948.16 2% −3.32%

Average 208.33 687.48 4.52 900.33 1.42% 191.67 672.00 4.93 868.59 1.42% −3.45%

Medium variability

Cr30x5a-1 200.00 619.51 9.17 828.68 0% 200.00 575.14 9.67 784.81 2% −5.29%
Cr30x5a-2 200.00 626.01 0.60 826.61 2% 200.00 607.28 1.94 809.22 3% −2.10%
Cr30x5a-3 200.00 507.99 24.30 732.29 2% 187.50 509.25 24.10 720.85 3% −1.56%
Cr30x5b-1 200.00 681.50 14.31 895.80 1% 225.00 623.22 18.32 866.53 3% −3.27%
Cr30x5b-2 200.00 625.32 0.01 825.33 2% 187.50 625.32 0.00 812.82 2% −1.52%
Cr30x5b-3 200.00 684.58 15.60 900.18 1% 187.50 684.58 12.79 884.87 1% −1.70%
Cr40x5a-1 200.00 733.47 7.69 941.17 1% 162.50 739.24 0.01 901.75 3% −4.19%
Cr40x5a-2 200.00 700.80 12.59 913.39 3% 225.00 642.02 0.24 867.26 3% −5.05%
Cr40x5a-3 200.00 748.64 20.15 968.79 0% 162.50 752.88 8.57 923.95 1% −4.63%
Cr40x5b-1 200.00 863.91 2.32 1066.23 3% 162.50 858.58 8.01 1029.09 2% −3.48%
Cr40x5b-2 300.00 690.57 4.18 994.75 1% 225.00 690.57 3.77 919.33 0% −7.58%
Cr40x5b-3 200.00 780.62 0.94 981.56 3% 175.00 772.87 2.53 950.40 2% −3.17%

Average 208.33 688.58 9.32 906.23 1.58% 191.67 673.41 7.50 872.57 2.08% −3.63%

High variability

Cr30x5a-1 200.00 619.51 20.69 840.20 0% 200.00 575.14 19.82 794.96 0% −5.38%
Cr30x5a-2 200.00 621.45 5.66 827.12 3% 200.00 611.41 0.02 811.43 7% −1.90%
Cr30x5a-3 200.00 507.99 30.16 738.15 4% 187.50 509.25 29.95 726.70 4% −1.55%
Cr30x5b-1 200.00 681.50 18.85 900.35 0% 225.00 623.22 20.73 868.95 10% −3.49%
Cr30x5b-2 200.00 625.32 0.14 825.46 5% 187.50 625.32 0.20 813.02 5% −1.51%
Cr30x5b-3 200.00 684.58 30.23 914.81 1% 187.50 684.58 29.03 901.11 5% −1.50%
Cr40x5a-1 200.00 737.94 5.78 943.73 2% 162.50 735.84 7.83 906.17 1% −3.98%
Cr40x5a-2 200.00 700.80 15.98 916.78 3% 225.00 642.02 1.48 868.50 3% −5.27%
Cr40x5a-3 200.00 748.64 32.89 981.54 0% 162.50 763.69 7.76 933.96 2% −4.85%
Cr40x5b-1 200.00 858.58 22.53 1081.11 2% 237.50 792.36 2.84 1032.70 4% −4.48%
Cr40x5b-2 300.00 693.03 12.66 1005.69 0% 225.00 690.57 12.59 928.15 2% −7.71%
Cr40x5b-3 200.00 772.87 13.22 986.09 2% 175.00 780.62 4.90 960.52 3% −2.59%

Average 208.33 687.68 17.40 913.42 1.83% 197.92 669.50 11.43 878.85 3.83% −3.68%
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Some instances show an opposite behavior, i.e., opening costs either increase or remain
the same while routing costs decrease. For example, the nonflexible solution of the instance
Cr30x5a-1 opens two depots of size 1000 each. Alternatively, the flexible solution opens
one depot of size 1500 and one depot of size 500, i.e., the total capacity is equal and, given
our defined costs structure, also the opening costs. However, this slight change drives
a redesign of routes that decreases RC. An additional example is given by the instance
Cr40x5a-2. Figure 7 depicts the best solution found by both the nonflexible approach (a)
and our flexible approach (b). The solution in Figure 7a locates two depots of size 1750 each,
and the solution in Figure 7b locates three depots of size 875 each. The latter case has a
total capacity that is smaller than the former’s; however, opening costs are higher since the
fixed cost is clearly greater when 3 facilities are open instead of 2. This new configuration
decreases considerably routing costs (Table 4), which shows that considering facility sizing
decisions not only reduces total costs by decreasing depots capacity but also by increasing
it, since shorter routes can be designed.
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Figure 7. Best-found solution by a nonflexible (a) and a flexible (b) fuzzy LRP for the instance Cr40x5a-2.

Managerial Insights

From a managerial perspective, we have shown a general algorithm useful to solve
a flexible-size LRP where a subset of customers provides enough information to model
stochastically their demand, while the complementary subset provides scarce data. In this
case, decision makers may estimate a fuzzy demand. Our algorithm is general because
scenarios where the demand of all customers is deterministic, stochastic or fuzzy represent
particular cases of our described problem. Hence, decision makers can employ our ap-
proach more extensively than other algorithms. We analyze these scenarios through some
numerical results and assess how the level of uncertainty influences opening, routing and
route-failure costs. Clearly, more precise data decrease total costs. Furthermore, we have
calculated the cost of assuming a deterministic demand when the real scenario is fuzzy or
stochastic. It has been shown that our hybrid approach yields less average costs, which
leads to a more competitive supply chain. Additionally, we have also shown that important
cost savings are generated whenever a set of facility size alternatives are analyzed by deci-
sion makers, instead of considering a single alternative—as in most LRP studies. Finally,
our algorithm is able to generate detailed information about the location-allocation-routing
decisions that should be made.

7. Conclusions

This work presented a location routing problem where the facility size is an additional
variable, instead of a known parameter as the traditional LRP assumes. Moreover, we
consider a hybrid fuzzy-stochastic setting in which some customers’ demands are fuzzy
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and others are stochastic. Hence, a fuzzy simheuristic approach is proposed to solve this
problem cost- and time- efficiently. Initially, our algorithm selects the best size for each open
facility from a set of provided alternatives. We perform an iterative procedure in which a set
of location-allocation-routing configurations are assessed in terms of opening and routing
costs. Then a top list of complete LRP solutions is iteratively perturbed and simulated. The
perturbation stage is performed by employing an iterated local search metaheuristic. The
simulation stage is carried out by running a classic Monte Carlo simulation for the stochastic
demands and a fuzzy simulation for the fuzzy demands. Failure costs are introduced as
an additional performance indicator. Finally, a set of elite solutions is assessed through a
refinement procedure where a larger number of simulation runs is executed.

Our fuzzy simheuristic approach has been proved to be flexible enough not only to
combine efficiently stochastic and fuzzy demands in a single execution but also to address
less general scenarios in which demands of all customers are either deterministic or fuzzy.
Our approach has also been proved to be a cost-efficient algorithm when considering
uncertainty scenarios. It decreases route failure costs when compared with the best de-
terministic solution tested in a hybrid fuzzy-stochastic environment. The use of a safety
stock policy as a protection against uncertainty has also contributed to this decrease. In
order to design a time-efficient algorithm, our current approach employs stochastic and
fuzzy simulation only to assess the designed routes. Hence, our algorithm results can be
enhanced by introducing fuzzy-stochastic aspects from the construction stage. However,
this approach might also increase computational times.

To the best of our knowledge, this is the first time that a hybrid fuzzy-stochastic LRP
with facility sizing decisions is addressed. Medium-sized benchmark instances considering
three demand variability levels were used. Obtained results show that introducing such
flexibility decreases total costs in two mutually nonexclusive ways: firstly, yielding savings
in opening costs by locating facilities of smaller size; and secondly, yielding savings in
routing costs by locating facilities of higher size, which drives a routes redesign that
reduces the total traveled distance. We also have demonstrated that these savings are
always incurred regardless of the demand variability level.

Multiple challenges remain open for future research. Since we are considering that only
routes fail when demands are higher than expected, future work can include the simulation
of facility failures, which would prompt a revision of location-allocation decisions. In
addition, failure costs are currently measured only by considering the distances traveled to
perform round-trips and detours. Still, real-life customers might not allow a delivery delay,
e.g., because a time windows constraint must be met. This delay may drive lost sales or a
goodwill reduction. Hence, this type of costs can be included in the computation of failure
costs. Finally, large-sized instances can be used to assess the influence of the number of
nodes in our approach performance.
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77. Teodorović, D.; Pavković, G. The fuzzy set theory approach to the vehicle routing problem when demand at nodes is uncertain.

Fuzzy Sets Syst. 1996, 82, 307–317. [CrossRef]
78. Sun, Y. A Fuzzy Multi-Objective Routing Model for Managing Hazardous Materials Door-to-Door Transportation in the Road-Rail

Multimodal Network With Uncertain Demand and Improved Service Level. IEEE Access 2020, 8, 172808–172828. [CrossRef]
79. Klir, G.; Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Possibility Theory Versus Probab. Theory 1996, 32, 207–208.
80. Opricovic, S.; Tzeng, G.H. Defuzzification within a multicriteria decision model. Int. J. Uncertain. Fuzziness Knowl. Based Syst.

2003, 11, 635–652. [CrossRef]

http://dx.doi.org/10.1016/j.fss.2008.09.016
http://dx.doi.org/10.1016/j.eswa.2009.07.021
http://dx.doi.org/10.1016/j.simpat.2017.09.001
http://dx.doi.org/10.1007/s10462-018-9667-6
http://dx.doi.org/10.1007/s40815-019-00723-w
http://dx.doi.org/10.3233/JIFS-191873
http://dx.doi.org/10.1007/s00500-019-04225-7
http://dx.doi.org/10.1007/s10732-018-9367-z
http://dx.doi.org/10.1057/s41274-016-0155-6
http://dx.doi.org/10.1504/EJIE.2020.108581
http://dx.doi.org/10.1080/01605682.2018.1494527
http://dx.doi.org/10.1016/j.eswa.2015.09.011
http://dx.doi.org/10.1016/j.ejor.2005.06.074
http://dx.doi.org/10.1016/j.cor.2010.09.019
http://dx.doi.org/10.1016/0165-0114(95)00276-6
http://dx.doi.org/10.1109/ACCESS.2020.3025315
http://dx.doi.org/10.1142/S0218488503002387

	Introduction
	Literature Review
	The Location Routing Problem
	Simheuristics and Fuzzy Logic for Vehicle Routing Problems under Uncertainty

	Problem Description
	Solution Approach
	Computational Experiments
	Results and Discussion
	Conclusions
	References

