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ABSTRACT
In wheel-rail contact mechanics, there coexist different models char-
acterised by their ability to reproduce the real phenomenon and the
time associated with computing the solution. In simulation of the
vehicle dynamics, the increase in the computational performance
places researchers close to a horizon in which it is possible to imple-
ment the most realistic theories (Variational Theory or finite ele-
ments), although at present the use of thesemodels ismainly limited
to offline calculations, far from real-time simulation. In this context,
this work presents a tangential contact theory that is an intermedi-
ate point between simplified models (unable to model non-Hertzian
contact) and more realistic models (whose complexity triggers sim-
ulation times). The tangential contact model proposed is based on
the FastSim algorithm, whose precision comes from the algorithm
convergence to the results of an exact adhesion theory (i.e. when
creepages tend to zero). The impossibility of considering Kalker’s Lin-
ear Theory as an adjustment method when the hypotheses of the
Hertzian model are not fulfilled leads to the adoption of the Kalker’s
steady-state CONTACT version in adhesion conditions. The calcula-
tions presented through the proposed algorithm provide errors for
creep forces lower than 4% with computational times one order
lower than the Variational Theory.
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1. Introduction

The calculation cost associated with the simulation of the railway vehicle dynamics is
well-known to be highly conditioned by the formulation of the wheel-rail contact prob-
lem. Although some authors have opted to use pre-calculated tables of creep forces and
moments as an approach to deal with this problem as alternative for vehicle dynamics
simulation [1], this difficulty has usually been solved by the implementation of simpli-
fied contact theories. These models achieve acceptable results and low computational costs
through less-realistic assumptions of the contact problem, such as Vermeulen and John-
son [2], Shen et al. [3] or Polach’s [4] model. Among those simplified theories, one of the
most widespread method is FastSim [5] due to its accuracy and low computing times. The
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FastSim algorithm is based on the full-adhesion solution and assumes that the surface dis-
placements at a point on the contact area are only dependent on the contact tractions at
that same point through the so-called flexibility parameters. These parameters are obtained
by matching the force results of the simplified full-adhesion solution with those of an
exact theory, which also assumes adhesion over the entire contact area. In the original
FastSim algorithm, this exact theory is Kalker’s Linear Theory [6] and the flexibility param-
eters are calculated by means of a closed-form expression of Kalker’s creepage coefficients
that linearly relate the longitudinal, tangential creep forces with the creepages. However,
despite its advantages, FastSim presents certain limitations that have led different authors
to modify the model to extend its applicability to non-elliptical contact areas. Despite the
full-adhesion solution does not assume theHertzian hypothesis, the Linear Theory does so,
thus, the original FastSim algorithm is limited to elliptical contact areas, namely Hertzian
contact conditions.

In order to extend FastSim applicability to non-Hertzian conditions, it is needed to
obtain the flexibility parameters for non-elliptical contact areas. To that aim, several
authors have proposed different FastSim extensions to non-Hertzian conditions that can
be distinguished depending on how the flexibility parameters are computed: (a) equivalent
ellipse methods [7–11], in which the contact area is associated with one or more equiva-
lent ellipses, obtaining the flexibility parameters from these equivalent ellipses geometry
(as it is done in the original FastSim algorithm); and (b) direct methods [12, 13], in which
a different theory to Kalker’s Linear Theory is used to compute the flexibility parameters
for arbitrary contact areas.

The equivalent-ellipse methods are computationally much more efficient since solving
each specific case is not needed. This improvement in computational cost has a loss of accu-
racy as counterpart since flexibility parameters are not directly computed from the original
geometry. Different alternatives have been proposed regarding the number of ellipses that
make up the contact area and how its dimensions are obtained. Piotrowski and Kik [7]
divided the contact patch into one or more separate regions to which an equivalent ellipse
is related to each one. The semi-axes of this equivalent ellipse are obtained from the geom-
etry of the original contact, ensuring that: (a) both traces have the same area; (b) the ratio
of the axes for the equivalent ellipse is equal to the ratio of the sides of the rectangle that
circumscribes the original contact area. This method achieves an error of 9% for tangen-
tial forces when only spin creepage is acting [14]. A later paper extended the study through
the comparison with several methods, showing that Piotrowski and Kik’s model presented
greater errors about 10 or even 15% [15]. Alonso and Giménez [8] proposed to associate
the contact area with two equivalent semi-ellipses (whose semi-axes were obtained from
the geometry of the original contact area) by assuming that the total area and the second
area moments of inertia are the same in the non-Hertzian and the equivalent Hertzian
areas. Results with errors generally lower than 10% compared with Kalker’s Variational
Theory [16] were obtained for different combinations of creepages, according to results
presented in Ref. [8]. Piotrowski et al. [9] focused on a particular case of contact area
based on their previous work [7]: when the wheel crosses a corrugated rail, a character-
istic contact shape appears, which can be approximated to two semi-ellipses; the resulting
area shows the advantage of having quasi-Hertzian characteristics and being regularisable
based on two geometric parameters (just like ellipses). Taking these characteristics into
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account, the authors proposed to build a look-up table for non-Hertzian contact (simi-
lar to the one proposed by Kalker in Ref. [1]) in order to speed up the calculations of the
tangential contact forces for non-Hertzian areas. For different cases analysed in this work,
maximum errors of 9.4% are achieved with respect to Kalker’s Variational Theory [13].

Linder [10] and Ayasse and Chollet [11] proposed to divide the contact patch into strips
parallel to the longitudinal direction with a virtual ellipse associated with each of them;
therefore, the flexibility parameters were calculated for the ellipse corresponding to each
strip. The way in which these ellipses are obtained is different in each work. Linder main-
tained the lateral dimensions of each ellipse identical to the size of the original contact area
and, with that dimension fixed, the longitudinal one is chosen, thus the strip fits within the
resulting equivalent ellipse. Instead, Ayasse and Chollet calculated these ellipses based on
the relative curvatures in the centre of the strip. According to the studies carried out by
Sichani et al. [14], the errors for the tangential force in the case of steady-state pure spin
are about 14% for the method in Ref. [10] and 108% in [11]. Unlike the rest of the methods
presented in which the entire contact area has the same contact angle, in Ref. [11] each
strip has a different contact angle and, hence, a different value for spin, thus explaining
this disproportionate error. Notwithstanding this particular study, calculations carried out
in Ref. [15] show errors between 10 and 15% under different scenarios for the method
presented by Ayasse and Chollet [11].

Regarding direct methods, Kalker proposed a modification for his original
algorithm [13] based on determining the flexibility parameters bymeans ofminimising the
difference between the displacements calculated through the simplified theory and those
produced by a certain tangential traction distribution (usually, the traction distribution
under full-slip conditions) calculated through Cerruti’s equations. According to the results
shown in Ref. [8], this method leads to a significant loss of accuracy even for Hertzian
contact cases, with errors reaching approximately 15% for the flexibility parameters.

In the same line of direct methods, Knothe and Hung [12] contributed with an alter-
native method by means of the computation of the flexibility parameters for each specific
patch by equating the forces of the full-adhesion solution with those obtained after solv-
ing the tangential exact contact problem [13] for non-elliptical contact areas assuming full
adhesion. To solve the corresponding equations, the contact area is discretised into strips
parallel to the rolling (or longitudinal) direction, and the contact traction distributions in
the longitudinal and lateral directions are approximated to quadratic polynomials in the
longitudinal direction. This polynomial approximation is implemented in this work, giv-
ing deviations about 4% for the creepage coefficients compared with the ones obtained
through Kalker’s Linear Theory.

In the present paper, a methodology for the calculation of the tangential forces and
tractions over the wheel-rail contact area for non-Hertzian contact conditions is proposed
based on the FastSim algorithm. This new proposal for the FastSim generalisation, which
will be called nH-FastSim along the paper, can be included within the direct methods since
the flexibility parameters are computed through an alternative exact method. Instead of
using the Linear Theory for calculating the flexibility parameters, this paper proposes the
use of the steady-state CONTACT version [13] assuming infinite friction coefficient. The
CONTACT method developed by Kalker allows solving the unsteady and the steady-state
tangential contact problem for non-Hertzian areas. The methodology for the calculation
of the flexibility parameters is deduced by forcing that the extension of FastSim provides
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the same results as the steady-state CONTACT version when it is assumed that the entire
contact area is in adhesion (i.e. infinite friction coefficient).

The structure of this paper is as follows. Section 2 presents the nH-FastSim algorithm
proposed. The formulation of the method depending on the flexibility parameters is
detailed in subsection 2.1. The calculation of the flexibility parameters is presented in
the following two subsections: subsection 2.2 reproduces for clarity and completeness
the Kalker’s steady-state CONTACT version when infinite friction coefficient is assumed
(adhesion model); subsection 2.3 imposes that the contact forces provided by CONTACT
and nH-FastSim coincide to obtain the flexibility parameters. Section 3 evaluates the
steady-state CONTACT version for adhesion areas through the calculation of the creepage
coefficients. Section 4 shows results of nH-FastSim that can contribute to the validation of
the method as a simulation tool in railway dynamics. Finally, Section 5 presents the most
relevant conclusions of this paper.

In the present document, the results from CONTACT refers to a version of the pro-
gram that was developed by the authors, and it does not correspond neither to the original
software developed by Kalker nor any other commercial package.

2. Non-Hertzian FastSim extension development

2.1. Fastsim extension algorithm

In order to model the contact problem between the wheel and the rail, a moving reference
system X1X2X3 is adopted, whose origin is the centre of pressure associated with the nor-
mal traction distribution. The X1-axis corresponds to the rolling direction, the X3-axis is
normal to the contact area (being the positive direction towards the wheel), and the X2-
axis is associated with the lateral direction, positive according to a right-handed frame of
reference, as depicted in Figure 1.

Figure 1. Frame of reference X1X2X3 centred at the centre of pressure between the rail (lower body)
and the wheel (upper one). The small closed curve sketches the contact patch.
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Unlike the discretisation of the contact area proposed in the original FastSim algorithm,
particularly adapted to an elliptical patch, a regular mesh of rectangles is now adopted to
address a general contact area as used in CONTACT, in which the potential contact area
is meshed. Tractions are assumed to be constant in each element of the mesh in contact.
For the e-th element, the coordinates of its centre are defined as (xe1, x

e
2), corresponding to

a point of the contact plane X1X2.
Non-conformal contact conditions are adopted. Assuming elastic quasi-identity

hypotheses for the solids in contact [13], the solution of the normal contact problem pro-
vides the value of the normal traction in each element of the contact area independently
of the tangential contact problem. Its value in the e-th element can be obtained through
any exact (e.g. normal CONTACT) or simplified method (see Refs. [7, 11]). Following the
same procedure than in the original FastSim algorithm, it is proposed tomodify the normal
traction distribution used to discern whether an element is under slip or adhesion condi-
tions. To do so, the original normal traction distributions along strips in the x1-direction
are approximated to parabolas to extend the method to a non-elliptical patch [5]. The cri-
terion followed to get these parabolas is that the modified distribution maintains the size
of the contact area and the level of the normal contact force F3. Following this criterion,
equations for the parabolas can be obtained:

pe3 = he
(
1 − 4

(
xe1 − xec
xe� − xet

)2
)
, (1)

where pe3 is themodified normal traction of the e-th element, he is the height of the parabola
(obtained by equalling the normal contact force on each strip with both distributions), xe�
and xet are the coordinates of the leading and trailing edge of the contact area and xec is the
midpoint between the leading and trailing edges of the contact area; parameters he, xe�, x

e
t

and xec depend on the lateral coordinate of the current element xe2.
By approximating the normal tractions to parabolas, results are considerablymore accu-

rate through FastSim since an elliptic reference traction distribution prevents slip at the
leading edge of the contact area [17]. In the same reference, it is also demonstrated that a
parabolic traction distribution reproduces better the subdivision of the contact area into
adhesion and slip regions.

From this point on, the methodology follows the original FastSim algorithm, so that
the tractions for the e-th element of the mesh under adhesion conditions p̄eτ along to the τ

direction (τ = 1, 2) are calculated as

p̄e1 =
(

ξ

L1
− φ

L3
xe2

)
(xe1 − xe�), (2)

p̄e2 =
(

η

L2
+ 1

2
φ

L3
(xe1 + xe�)

)
(xe1 − xe�), (3)

where ξ , η and φ are the longitudinal, lateral and spin creepages, respectively; and L1, L2
and L3 are the flexibility parameters.

Equations (2) and (3) can be written also in matrix form as

p̄ = B L−1 ξ , (4)



2556 J. GÓMEZ-BOSCH ET AL.

being p̄ the vector that contains tangential tractions in the elements of themesh under full-
adhesion hypothesis, ξ = {ξ , η,φ}T the creepage vector, B is a matrix with the geometrical
terms in Equations (2) and (3), and L is the following diagonal matrix

L =
⎡
⎣L1 0 0
0 L2 0
0 0 L3

⎤
⎦ . (5)

In order tomaintain a coherent formulationwith the formulation presented in the paper,
the vector of tangential tractions p̄ is ordered according to the following scheme

p̄ =
[
p̄11 p̄12 p̄21 p̄22 . . . p̄NC

1 p̄NC
2

]T
, (6)

being NC the number of elements in contact.
Tractions obtained through Equations (2) and (3) in each element must be corrected to

consider the possible slip of the element. To do so, each element must be checked to verify
if the adhesion condition is met

||(p̄e1, p̄e2)|| ≤ μpe3, (7)

where ||.|| denotes the vector norm and µ is the friction coefficient. If the condition in
Equation (7) is fulfilled, the stick solution for the element is valid, that is, peτ = p̄eτ . If the
condition is not met, the traction in the element is formulated as

peτ = μpe3
||(p̄e1, p̄e2)||

p̄eτ , τ = 1, 2. (8)

In the original FastSim algorithm, these flexibility parameters are obtained through the
creepage coefficientsCij [13], the ellipse semiaxes of the contact area, a and b, and the shear
modulus G, as follows

L1 = 8a
3C11G

, L2 = 8a
3C22G

, L3 = πa3/2

4
√
bC23G

. (9)

These creepage coefficientsCij, also known as Kalker coefficients, are used for tangential
forces calculation in Kalker’s Linear Theory. They are obtained by the numerical resolu-
tion of elliptic integrals, using a suitable series expansion truncated after a small number
of terms, being a good approximation to the real values. As it is explained in [13], these
parameters are function of the ellipse geometry via its semiaxes ratio a/b and the material
properties through the Poisson’s ratio υ.

At this point, it is come up with a methodology to calculate the flexibility parameters
L1, L2 and L3 for non-elliptical areas. For this, it is needed to have a numerical method-
ology to solve the full-adhesion steady-state tangential contact problem for non-elliptical
areas. This numerical methodology is Kalker’s CONTACT when an infinite friction coef-
ficient is assumed, and its formulation is reproduced for completeness in subsection 2.2.
The procedure through which the flexibility parameters are obtained is presented in
subsection 2.3.
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2.2. Kalker’s CONTACT for adhesion areas

The CONTACT algorithm [13] provides the solution of the tangential contact problem
assuming non-Hertzian contact conditions. The steady-state CONTACT version will be
adopted in the present sectionwith the purpose of developing the formulation for adhesion
conditions (infinite friction coefficient).

According to the steady-state CONTACT, the tangential problem is solved based on the
equation that combines kinematics in contact with the constitutive relationships associated
with an infinite half-space, which is

s = w − V
	x1

(A − A0) p, (10)

where s is the vector that contains the local slip velocities of the collocation points,V is the
speed (or rolling velocity) of thewheel,	x1 is the traversed distance of thewheel associated
with finite differences (	x1 should be taken as the size of the element on the longitudinal
direction [13]), p is the vector with the steady-state tangential tractions in the elements of
the mesh, A is the matrix of the elastic influence coefficients that relate the displacements
at the collocation points and the tangential tractions in the elements,A0 associates the dis-
placements at the collocation points with the traction distribution applied on the mesh at
the previous wheel position displaced 	x1 backwards, and w is the vector with the veloci-
ties of the wheel associated with the undeformed configuration. The vector w is computed
according to the linear relationship

w = VDT ξ , (11)

being D the matrix that contains the coordinates of the collocation points associated with
the elements, which can be formulated as

D =
⎡
⎣ 1 0 1 0 · · · 1 0

0 1 0 1 · · · 0 1
− x12 x11 − x22 x21 · · · − xNC

2 xNC
1

⎤
⎦ , (12)

where xeτ is the coordinate of the e-th element along theXτ -direction, with τ = 1, 2.Matrix
D is also used to calculate the resultant forces F as

F = SD p, (13)

being F = {F1, F2,M3}T a vector that contains the contact forces and spin moment, and S
the area of the mesh element.

With the purpose of computing the flexibility parameters, it is assumed full-adhesion
hypothesis. To do so, zero-slip velocity is imposed in Equation (14):

p̄ = 	x1
V

(A − A0)−1 w. (14)

The above equation is a numerical model for non-Hertzian contact areas that is analo-
gous to Kalker’s Linear Theory. Equation (14) is linear and its computation is much faster
than CONTACT based on Kalker’s TANG algorithm and Newton iteration for the subse-
quent nonlinear systems when finite friction coefficient is assumed. From the tangential
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tractions under adhesion conditions obtained, the flexibility parameters can be computed
as detailed in the next subsection.

Besides for computing flexibility parameters, this steady-state CONTACT is also used
as a reference solution. In that case, the solution of Equation (10) is obtained by means
of regularisation of the Coulomb’s law, through the methodology that is explained in the
Appendix of the present paper.

2.3. Flexibility parameters calculation

As done in the original algorithm, the flexibility parameters are calculated by imposing that
the forces given by FastSim coincide with the forces calculated through an exact theory
considering infinite friction coefficient. In this FastSim extension to non-Hertzian areas,
the Kalker’s steady-state CONTACT method formulated in the preceding subsection is
adopted as exact theory.

Under adhesion conditions, any contact model establishes a linear relationship between
forces and creepages that can be expressed as

F̄ = K ξ , (15)

where F̄ = {F̄1, F̄2, M̄3}T is the vector with the contact forces and the spin moment when
considering adhesion conditions in the entire contact area. ThematrixK contains the creep
coefficients, being formulated for Hertzian areas as

K1 =
⎡
⎣−f11 0 0

0 −f22 −f23
0 f23 −f33

⎤
⎦ , (16)

so that with K1, Equation (15) would correspond to Kalker’s Linear Theory.
The matrix K can be derived from the steady-state method with infinite friction coef-

ficient by replacing Equation (11) in (14), and the resulting formulation in (13), hence
obtaining

F = S 	x1 D (A − A0)−1DTξ , (17)

and consequently,

K2 = S 	x1 D
(
A − A0)−1 DT . (18)

On the other hand, the nH-FastSim extension permits to deduce the contact force vector
F̄ from Equations (4) and (13)

F = SD B L−1 ξ . (19)

From this expression, the matrix K for the nH-FastSim method can be obtained

K3 = SD B L−1. (20)

As the contact patches are no longer elliptical, terms f12, f13, f21 and f31 of matrices K2
and K3 are non-zero due to the asymmetry of the contact area.
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Matching the tangential forces of both methods means forcing matrices K2 from the
full-adhesion exact method and K3 from nH-FastSim to be equal. From this equality, L
matrix can be obtained as

L = S K−1
2 D B , (21)

from where the flexibility parameters are derived from the entries of L on the diago-
nal (Equation (5)). Nevertheless, this procedure, in which the non-zero terms are taken
into account, did not give accurate results for the flexibility parameters, contrary to what
other researchers found [8, 12, 18]. This loss of accuracy led us to use the methodology
proposed by Kalker in his FastSim development [5]: the tangential contact forces given
by the full-adhesion steady-state CONTACT model in Equation (17), in which the non-
zero terms are neglected, are equated term by term with the forces given by nH-FastSim
in Equation (19), providing the flexibility parameters that compute more precise contact
forces for non-Hertzian cases.

3. Creepage coefficients through contact

The ability of the nH-FastSim algorithm to obtain acceptable results is conditioned by the
precision in the calculation of the creepage coefficients through the steady-state CON-
TACT method, which will be tested in this section. Kalker’s Linear Theory is used in
this analysis as reference solution since it is the only known theory that provides exact
results under adhesion conditions. This fact limits to conduct this evaluation exclusively
for elliptical areas.2

The steady-state CONTACT is based on the collocation method: the solution of the
fundamental equation must be fulfilled in a finite number of points in the spatial domain.
Consequently, the behaviour of this numerical model depends fundamentally on the posi-
tion and the number of the collocation points and the shape of the domain. The position
refers, in this case, to the relative location of the point within each element of the mesh;
the number of points is associated with the mesh refinement, and the shape of the domain
is analysed through the ratio between the semiaxes of the contact ellipse. All these studies
are carried out for the dimensions of a railway case (normal load of 10 tons, wheel and
rail Young’s modulus of E = 2.1 × 1011 N/m2), except the Poisson’s ratio, which is varied
through the different studies.

3.1. Influence of the collocation point

The x1-coordinate of the collocation point with respect to the centre of the element
is defined by α	x1/2, being 	x1 the longitudinal dimension of the element, and α a
dimensionless parameter (see Figure 2).

Figure 3 illustrates the influence of the collocation point location on the relative error
for the creepage coefficients calculation through the CONTACTmodel performed at UPV.
This study has been carried out for five different ellipses, defined by their semiaxes ratio r =
a/b. Figure 3(A and B) show that the lowest relative error values in coefficientsC11 andC22
are achieved when the collocation point is located at the centre of the element. Conversely,
the lowest errors in coefficient C23 calculation occur for α = 0.5 (see Figure 3C).
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Figure 2. Element of the mesh with a collocation point.

Figure 3. Influence of the collocation point location for an 80 × 80 mesh and five different ellipse
geometries on the creepage coefficients: (A) C11 coefficient; (B) C22 coefficient; (C) C23 coefficient.

3.2. Influence of the element size

Figure 4 shows the relative error in the calculation of the creepage coefficients as a function
of the mesh refinement. As a refinement control parameter, the total number of elements
in contact NC is used. As in the previous section, the calculation has been carried out for
five semiaxes ratios.

The program developed by the authors of CONTACT program with infinite friction
coefficient presents an error below 2% for meshes with 2800 elements in contact, although
the tendency does not present convergence since errors do not decrease to zero. The
full-adhesion hypothesis makes the tangential tractions at the trailing edge of the con-
tact area tend to infinity, producing numerical errors and the non-convergence of the
method due to the singularity in the domain [8], but allows obtaining results that pro-
vide acceptable precision. Despite this, for meshes with 2800 elements in contact, errors
are below 2% in all the studied cases (with an error average of 0.8%) even for the most
distorted ellipse (r = 10), validating the use of this approach for simulation in railway
dynamics.
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Figure 4. Influence of the element size (through the number of elements in contact NC ) for five differ-
ent ellipse geometries and α = 0 on the creepage coefficients: (A) C11 coefficient; (B) C22 coefficient;
(C) C23 coefficient.

3.3. Influence of the contact area shape

Table 1 presents the relative error obtained when calculating the creepage coefficients Cij
for the values of semiaxes ratio r and Poisson’s ratio υ proposed in the well-known table
published in Ref. [13] and other railway monographs and papers. It can be observed an
increasing error trend with the ellipse ratio a/b for the coefficients C11 and C22, contrary
to the proneness shown for C23. Except for the most extreme cases of ellipse ratios, the
computed errors through the CONTACT program developed by the authors are below
1%, being slightly higher for C23.

4. Results

This section summarises the results of nH-FastSim, which may contribute to its valida-
tion for the computing of the contact problem for realistic cases. Table 2 gathers a test-set
compatible with a realistic value for the normal load per axle and a range of creepages plau-
sible under normal circumstances for existing wheel (S1002) and rail profiles (UIC60). The
simulations performed give the creep forces and traction distribution for the study case
summarised, together with the associated computational cost, which is compared with our
implementation of the steady-state CONTACT method. The study also analyses various
lateral positions of the wheelset with respect to its position centred on the track.

The normal contact problem is solved through the methodology described in Ref. [19]
for the different wheelset positions studied. The location of the wheelset is considered
through its lateral displacement y, assuming null yaw angle. For the analysed wheel, a neg-
ative displacement y < 0 comes closer the contact area to the wheel flange. In Ref. [20], the
difference of the rolling radii for different wheelset positions can be found, for the same
model data than the one gathered in Table 2.

In this section, normalised values of longitudinal ξ ′ and lateral η′ creepage are consid-
ered, which represent the beginning of the full slip conditionwhen ||(ξ ′, η′)|| ≈ 1 (it would
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Table 1. Relative error (in %) associated with the calculation of the creepage coefficients Cij by means
of the steady-state CONTACT model for adhesion conditions.

C11 relative error C22 relative error C23 relative error

υ = 0 υ = 1/4 υ = 1/2 υ = 0 υ = 1/4 υ = 1/2 υ = 0 υ = 1/4 υ = 1/2

a/b
0.1 0.43% 0.53% 0.61% 0.43% 0.63% 0.49% 1.05% 1.11% 1.33%
0.2 0.41% 0.50% 0.53% 0.41% 0.48% 0.55% 1.17% 1.00% 0.98%
0.3 0.51% 0.66% 0.59% 0.51% 0.55% 0.69% 1.26% 1.03% 1.00%
0.4 0.46% 0.53% 0.58% 0.46% 0.51% 0.46% 1.29% 1.15% 0.96%
0.5 0.52% 0.56% 1.17% 0.52% 0.56% 0.70% 1.27% 1.17% 0.67%
0.6 0.62% 0.42% 0.60% 0.62% 0.65% 0.66% 1.16% 0.69% 1.33%
0.7 0.41% 0.61% 0.65% 0.41% 0.42% 0.63% 0.97% 1.02% 1.47%
0.8 0.53% 0.58% 0.45% 0.53% 0.49% 0.60% 0.90% 1.22% 1.26%
0.9 0.62% 0.57% 0.56% 0.62% 0.54% 0.55% 0.88% 1.31% 0.83%
b/a

1.0 0.41% 0.33% 0.56% 0.41% 0.55% 0.73% 0.89% 1.31% 0.86%
0.9 0.51% 0.61% 0.43% 0.51% 0.65% 0.83% 0.81% 1.08% 1.05%
0.8 0.52% 0.59% 0.44% 0.52% 0.60% 0.78% 0.87% 1.29% 0.75%
0.7 0.75% 0.56% 0.43% 0.75% 0.73% 0.99% 0.88% 1.06% 1.08%
0.6 0.61% 0.49% 0.41% 0.61% 0.84% 1.19% 1.28% 1.16% 0.97%
0.5 0.87% 0.63% 0.44% 0.87% 0.91% 1.20% 1.06% 0.81% 0.62%
0.4 0.81% 0.81% 0.60% 0.81% 1.03% 1.36% 1.11% 0.88% 0.63%
0.3 1.15% 0.86% 0.70% 1.15% 1.30% 1.60% 1.03% 0.88% 0.53%
0.2 1.39% 1.21% 0.97% 1.39% 1.52% 1.82% 0.92% 0.71% 0.53%
0.1 1.90% 1.67% 1.44% 1.90% 2.22% 2.21% 0.47% 0.87% 0.50%

Table 2. Model data.

Rail profile UIC60
Rail inclination 1/40
Track gauge 1435mm
Wheel profile S1002
Wheel diameter 900mm
Vertical load per wheelset 200 kN
Wheel and rail Young modulus 2.1 1011 N/m2

Wheel and rail Poisson ratio 0.3
Friction coefficient 0.4
Nr. of mesh elements 2800

be a normalisation with respect to saturation conditions). The normalised creepage values
ξ ′ and η′ were proposed in Ref. [13] for elliptical areas and calculated according to the
following formulas:

ξ ′ = ξ
f11

3μF3
, (22)

η′ = η
f22

3μF3
. (23)

For the studies carried out in this section, an extension of the previous formulas will be
made to the non-Hertzian case by using the creep coefficients f11 and f22 obtained numer-
ically from the matrixK2 in Equation (18). In order to adopt realistic creepage spin values,
these are calculated as the projection of the angular velocity of the wheelset to the normal
direction to the contact area, normalised with respect to the vehicle speed. Therefore, the
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spin is estimated through the following formula

φ = 2
d
sin γ , (24)

where d is the diameter of the wheel and γ its conicity at the contact point. In this way, φ
becomes dependent of the lateral displacement y through the wheel conicity γ .

4.1. Tangential forces calculation

Figure 5 shows the relative error associated with the calculation of the total tangential force
through nH-FastSim, which is computed as follows

Relative error = |F − FC|
FC

, (25)

F being the total tangential force modulus obtained by means of nH-FastSim, and FC
the one calculated through the steady-state CONTACT program developed by the authors.
This result is computed as a function of the lateral displacement y for various values of
normalised creepages ξ ′ and η′. When a non-zero spin creepage value is considered, it
is calculated according to Equation (24) depending on the lateral displacement y. Since
only single contact areas are analysed in this work, the wheelset lateral displacement is
varied between ±4.5mm (multiple contact areas appear for greater absolute values [19]).
In general, the results present an error less than 4% in the estimation of the total tangential
force, showing the highest values when the wheelset is centred on the track (case of less
elliptical contact area).

Errors obtained with the proposed method are below 5% in all study cases, which is
in accordance with FastSim error results presented by other authors [21], since neither
pure spin cases nor realistic cases with combined longitudinal, lateral and spin creepage
are analysed in the present work (only realistic cases were pretended to be analysed).

4.2. Tangential traction distribution

Figure 6 shows the tangential traction distribution calculated for the contact area corre-
sponding to the wheelset centred on the track (as just indicated, the position for which the
model produces worse force results due to the resulting non-elliptical contact patch). The
analysis is performed for different load conditions with different creepages imposed. These
creepage combinations have been chosen in order to analyse the influence of the creepage
direction on the tangential traction distribution: only longitudinal creepage (Figure 6A and
D), lateral and spin creepages (Figure 6B and E) and combined longitudinal, lateral and
spin creepages (Figure 6C and F). The calculations have been carried out by means of both
nH-FastSim and the steady-state CONTACT (authors’ own implementation), showing that
the first one underestimates the slip area, especially when creepages are combined.

Figure 7 gathers the creep curves for the longitudinal contact force under different
wheelset lateral displacements and lateral creepage values, with the aim of studying the
influence of the contact area shape and the combination of creepages. Results in this figure
show an accurate approximation of the proposed nH-FastSim extension when comparing
with the exact solution provided by the steady-state CONTACTprogramused, with similar
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Figure 5. Relative error in the tangential total force as a function of the wheelset lateral displacement
y for: (A) pure longitudinal creepage (η′ = φ′ = 0); (B) lateral creepage with spin (ξ ′ = 0); (C) general
case.
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Figure 6. Tangential traction distribution for a wheelset lateral displacement y = 0mm.
Upper row corresponds to nH-FastSim, and lower row to the steady-state CON-
TACT results. Darker colour background indicates slip area. Results have been
obtained for different creepages: (A) and (D) ξ ′ = 0.5; (B) and (E) η′ = 0.5,φ′ �= 0;
(C) and (F) ξ ′ = 0.5, η′ = 0.5,φ′ �= 0.

errors in the results shown in Figure 5 (lower than 4%). The initial linear region, equiva-
lent to consider infinity friction coefficient, perfectly overlaps and the saturation values end
up coinciding for the simulated cases. Larger errors are found when the wheelset is cen-
tred on the track (again in line with Figure 5) and when combined creepages are imposed
(according to Figure 6).

4.3. Computational time

Figure 8 compares the algorithm speed with respect to the steady-state CONTACT version
used by the authors. To this aim, computational times required by steady-state CONTACT
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Figure 7. Longitudinal force as a function of the longitudinal creepage for different studies:
(A) y = −0.003m, η′ = 0; (B) y = 0m, η′ = 0; (C) y = −0.003m, η′ = 0.5; (D) y = 0m, η′ = 0.5.

and nH-FastSim are collected for simulations run in Matlab© through a PC with the fol-
lowing specifications: Intel(R) Core (TM) i7-9700 CPU 3.0GHz with 64.00 GB of RAM
and 64-bit computing. For the same study case, Figure 8A plots the absolute computational
time required by both methods for a sweep in the number of elements in contact NC; the
creepage values and the lateral displacement are randomly selected according to a uniform
distribution. Figure 8B shows the computational performance through the ratio between
the calculation times computed for both methods for the same study cases. In general, the
times associated with nH-FastSim are one order below the steady-state CONTACT pro-
grammed by the authors, performance that will be different from other implementations
and enhancements (such as those proposed in Ref. [22]). The trend of the increase in com-
putational cost with the number of elements is approximately linear when it is plotted on
a logarithmic scale.
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Figure 8. Computational times vs. number of mesh elements in contact NC for random values of creep-
ages and wheelset lateral displacements: (A) absolute computational times for both CONTACT and
nH-FastSimmethods; (B) time ratio.

5. Conclusions

In this work, a methodology based on the FastSim algorithm is presented to solve the tan-
gential problemwith improved computational features in the case that theHertzian contact
conditions are not met. The formulation presents a parallelism with the original method,
differing in the type of discretisation (a regular mesh is adopted in the proposed one) and
in the calculation of the flexibility parameters, since Kalker’s Linear Theory is only appli-
cable for elliptical areas. To get around this issue, an alternative simplified method named
nH-FastSim is implemented so as to obtain the forces under adhesion conditions for non-
elliptical areas. It leads to the need of adapting the steady-state CONTACT program for
adhesion areas, which allows to compute the creepage coefficients with errors lower than
2%when selecting the collocation point at the centre of themesh element.When compared
with the steady-state CONTACT that implements the Coulomb’s law regularisation, nH-
FastSim produces acceptable levels of precision, significantly reducing the maximum error
below 4% for the creep forces in the non-Hertzian contact simulations performed, while
the computational times required are between 10 and 20 times lower than the steady-state
CONTACT with the Coulomb’s law regularisation. Consequently, the proposed extension
of FastSim can be shown as a tool compatible with other improvements implemented in
CONTACT that lead to the reduction of its computational cost, such as those included in
Ref. [22].
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Appendix

The solution of Equation (10) is originally carried out through Kalker’s TANG algorithm and
Newton iteration (an iterative process in which systems of equations are solved from successive
hypotheses about if the elements belong to the adhesion or the slip area, see Ref [13]). The calcu-
lation procedure can be accelerated if the regularisation of the Coulomb’s law is implemented [23].
According to this approach, the tangential tractions in the e-th element of themesh are approximated
through the formula

peτ = −2μ pe3
π

atan
( ||(se1, se2)||

ε

)
seτ

||(se1, se2)||
, τ = 1, 2, (A1)

being ε sufficiently small (ε = 10−8m/s is chosen in this paper). Figure A1 shows the behaviour of
the tangential traction with the slip velocity for different ε.

This procedure allows formulating Equation (10), being the slip velocity vector s as the only
unknown variable after introducing Equation (A1) in (10) [24]. The resulting equation is solved
by means of a Newton-Raphson scheme, in which s is the unknown variable. Once the slip velocity
vector is obtained, tangential tractions distribution can be obtained through Equation (A1). This
method leads to the steady-state CONTACT solution used as reference for the later validation of the
proposed FastSim extension.

Figure A1. Coulomb’s law regularisation for different values of ε parameter.
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