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Abstract 

In wheel-rail contact mechanics, there coexist different models characterised by their 

ability to reproduce the real phenomenon and the time associated with computing the 

solution. In simulation of the vehicle dynamics, the increase in the computational 

performance has allowed to place researchers close to a horizon in which it is possible to 

implement the most realistic theories (Variational Theory or finite elements), although at 

present the use of these models is mainly limited to offline calculations, far from real-

time simulation. In this context, this work presents a tangential contact theory that is an 

intermediate point between simplified models (unable to model non-Hertzian contact) 

and more realistic models (whose complexity triggers simulation times). The tangential 

contact model proposed is based on the FastSim algorithm and, as it is done in the original 

one, its precision is linked to the fact of the algorithm convergence to the results of an 

exact adhesion theory (i.e. when creepages tend to zero). The impossibility of considering 

Kalker’s Linear Theory as an adjustment method when the hypotheses of the Hertzian 

model are not fulfilled makes it necessary to propose the adoption of the Kalker’s steady-

state CONTACT version when adhesion conditions are considered. The calculations 

presented through the proposed algorithm provide errors for creep forces lower than 4% 

with computational times one order lower than those corresponding to the Variational 

Theory. 
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1. INTRODUCTION 

The calculation cost associated with the simulation of the railway vehicle dynamics is 

well-known to be highly conditioned by the formulation of the wheel-rail contact 

problem. Although some authors have opted to use pre-calculated tables of creep forces 

and moments as approach to deal with this problem as alternative for vehicle dynamics 

simulation [1], this difficulty has usually been solved by the implementation of simplified 

contact theories. These models achieve acceptable results and low computational costs 

through less-realistic assumptions of the contact problem, such as Vermeulen and 

Johnson [2], Shen et al. [3] or Polach’s [4] model. Among those simplified theories, one 

of the most widespread method is FastSim [5] due to its accuracy and low computing 

times. The FastSim algorithm is based on the full-adhesion solution and assumes that the 

surface displacements at a point on the contact area are only dependent on the contact 

tractions at that same point through the so-called flexibility parameters. These parameters 

are obtained by matching the force results of the simplified full-adhesion solution with 

those of an exact theory, which also assumes adhesion over the entire contact area. In the 

original FastSim algorithm, this exact theory is Kalker’s Linear Theory [6] and the 

flexibility parameters are calculated by means of a closed-form expression of Kalker’s 

creepage coefficients that linearly relate the longitudinal, tangential creep forces with the 

creepages. However, despite its advantages, FastSim presents certain limitations that have 

led different authors to modify the model to extend its applicability to non-elliptical 

contact areas. Despite the full-adhesion solution does not assume Hertzian hypothesis, 

the Linear Theory does so, thus, the original FastSim algorithm is limited to elliptical 

contact areas, namely Hertzian contact conditions.  

In order to extend FastSim applicability to non-Hertzian conditions, it is needed to obtain 

the flexibility parameters for non-elliptical contact areas. To that aim, several authors 
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have proposed different FastSim extensions to non-Hertzian conditions that can be 

distinguished depending on how the flexibility parameters are computed: (a) equivalent 

ellipse methods [7-11], in which the contact area is associated with one or more equivalent 

ellipses, obtaining the flexibility parameters from these equivalent ellipses geometry (as 

it is done in the original FastSim algorithm); and (b) direct methods [12, 13], in which a 

different theory to Kalker's Linear Theory is used to compute the flexibility parameters 

for arbitrary contact areas. 

The equivalent-ellipse methods are computationally much more efficient since solving 

each specific case is not needed. This improvement in computational cost has a loss of 

accuracy as counterpart since flexibility parameters are not directly computed from the 

original geometry. Different alternatives have been proposed regarding the number of 

ellipses that make up the contact area and how its dimensions are obtained. Piotrowski 

and Kik [7] divided the contact patch into one or more separate regions to which an 

equivalent ellipse is related to each one. The semi-axes of this equivalent ellipse are 

obtained from the geometry of the original contact, ensuring that: (a) both traces have the 

same area; (b) the ratio of the axes for the equivalent ellipse is equal to the ratio of the 

sides of the rectangle that circumscribes the original contact area. This method achieves 

an error of 9% for tangential forces when only spin creepage is acting [14]. A later paper 

extended the study through the comparison with several methods, showing that 

Piotrowski and Kik’s model presented greater errors about 10 or even 15% [15]. Alonso 

and Giménez [8] proposed to associate the contact area with two equivalent semi-ellipses 

(whose semi-axes were obtained from the geometry of the original contact area) by 

assuming that the total area and the second area moments of inertia are the same in the 

non-Hertzian and the equivalent Hertzian areas. Results with errors generally lower than 

10% compared with Kalker’s Variational Theory [16] were obtained for different 
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combinations of creepages, according to results presented in Ref. [8]. Piotrowski et al. 

[9] focused on a particular case of contact area based on their previous work [7]: when 

the wheel crosses a corrugated rail, a characteristic contact shape appears, which can be 

approximated to two semi-ellipses; the resulting area shows the advantage of having 

quasi-Hertzian characteristics and being regularisable based on two geometric parameters 

(just like ellipses). Taking these characteristics into account, the authors proposed to build 

a look-up table for non-Hertzian contact (similar to the one proposed by Kalker in Ref. 

[1]) in order to speed up the calculations of the tangential contact forces for non-Hertzian 

areas. For different cases analysed in this work, maximum errors of 9.4% are achieved 

with respect to Kalker’s Variational Theory [13]. 

Linder [10] and Ayasse and Chollet [11] proposed to divide the contact patch into strips 

parallel to the longitudinal direction with a virtual ellipse associated with each of them; 

therefore, the flexibility parameters were calculated for the ellipse corresponding to each 

strip. The way in which these ellipses are obtained is different in each work. Linder 

maintained the lateral dimensions of each ellipse identical to the size of the original 

contact area and, with that dimension fixed, the longitudinal one is chosen, thus the strip 

fits within the resulting equivalent ellipse. Instead, Ayasse and Chollet calculated these 

ellipses based on the relative curvatures in the centre of the strip. According to the studies 

carried out by Sichani et al. [14], the errors for the tangential force in the case of steady-

state pure spin are about 14% for the method in Ref. [10] and 108% in [11]. Unlike the 

rest of the methods presented in which the entire contact area has the same contact angle, 

in Ref. [11] each strip has a different contact angle and, hence, a different value for spin, 

thus explaining this disproportionate error. Notwithstanding this particular study, 

calculations carried out in Ref. [15] show errors between 10 and 15% under different 

scenarios for the method presented by Ayasse and Chollet [11]. 
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Regarding direct methods, Kalker proposed a modification for his original algorithm [13] 

based on determining the flexibility parameters by means of minimising the difference 

between the displacements calculated through the simplified theory and those produced 

by a certain tangential traction distribution (usually, the traction distribution under full-

slip conditions) calculated through Cerruti’s equations. According to the results shown in 

Ref. [8], this method leads to a significant loss of accuracy even for Hertzian contact 

cases, with errors reaching approximately 15% for the flexibility parameters. 

In the same line of direct methods, Knothe and Hung [12] contributed with an alternative 

method by means of the computation of the flexibility parameters for each specific patch 

by equating the forces of the full-adhesion solution with those obtained after solving the 

tangential exact contact problem [13] for non-elliptical contact areas assuming full 

adhesion. To solve the corresponding equations, the contact area is discretised into strips 

parallel to the rolling (or longitudinal) direction, and the contact traction distributions in 

the longitudinal and lateral directions are approximated to quadratic polynomials in the 

longitudinal direction. This polynomial approximation is implemented in this work, 

giving deviations about 4% for the creepage coefficients compared with the ones obtained 

through Kalker's Linear Theory. 

In the present paper, a methodology for the calculation of the tangential forces and 

tractions over the wheel-rail contact area for non-Hertzian contact conditions is proposed 

based on the FastSim algorithm. This new proposal for the FastSim generalisation, which 

will be called nH-FastSim along the paper, can be included within the direct methods 

since the flexibility parameters are computed through an alternative exact method. Instead 

of using the Linear Theory for calculating the flexibility parameters, this paper proposes 

the use of the steady-state CONTACT version [13] assuming infinite friction coefficient. 

The CONTACT method developed by Kalker allows solving the unsteady and the steady-
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state tangential contact problem for non-Hertzian areas. The methodology for the 

calculation of the flexibility parameters is deduced by forcing that the extension of 

FastSim provides the same results as the steady-state CONTACT version when it is 

assumed that the entire contact area is in adhesion (i.e. infinite friction coefficient).   

The structure of this paper is as follows. Section 2 presents the nH-FastSim algorithm 

proposed. The formulation of the method depending on the flexibility parameters is 

detailed in subsection 2.1. The calculation of the flexibility parameters is presented in the 

following two subsections: subsection 2.2 reproduces for clarity and completeness the 

Kalker’s steady-state CONTACT version when infinite friction coefficient is assumed 

(adhesion model); subsection 2.3 imposes that the contact forces provided by CONTACT 

and nH-FastSim coincide to obtain the flexibility parameters. Section 3 evaluates the 

steady-state CONTACT version for adhesion areas through the calculation of the 

creepage coefficients. Section 4 shows results of nH-FastSim that can contribute to the 

validation of the method as a simulation tool in railway dynamics. Finally, Section 5 

presents the most relevant conclusions of this paper.  

In the present document, the results from CONTACT refers to a version of the program 

that was developed by the authors, and it does not correspond neither to the original 

software developed by Kalker nor any other commercial package. 

 

2. NON-HERTZIAN FASTSIM EXTENSION DEVELOPMENT 

2.1. FastSim extension algorithm  

In order to model the contact problem between the wheel and the rail, a moving reference 

system 𝐗1𝐗2𝐗3 is adopted, whose origin is the centre of pressure associated with the 
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normal traction distribution. The 𝐗1-axis corresponds to the rolling direction, the 𝐗3-axis 

is normal to the contact area (being the positive direction towards the wheel), and the 𝐗2-

axis is associated with the lateral direction, positive according to a right-handed frame of 

reference, as depicted in Figure 1. 

Unlike the discretisation of the contact area proposed in the original FastSim algorithm, 

particularly adapted to an elliptical patch, a regular mesh of rectangles is now adopted to 

address a general contact area as used in CONTACT, in which the potential contact area 

is meshed. Tractions are assumed to be constant in each element of the mesh in contact. 

For the 𝑒-th element, the coordinates of its centre are defined as (𝑥1
𝑒 , 𝑥2

𝑒), corresponding 

to a point of the contact plane 𝐗1𝐗2. 

 

Figure 1. Frame of reference 𝑿1𝑿2𝑿3 centred at the centre of pressure between the rail 

(lower body) and the wheel (upper one). The small closed curve sketches the contact 

patch.  

 

Non-conformal contact conditions are adopted. Assuming elastic quasi-identity 

hypotheses for the solids in contact [13], the solution of the normal contact problem 
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provides the value of the normal traction in each element of the contact area 

independently of the tangential contact problem. Its value in the 𝑒-th element can be 

obtained through any exact (e.g., normal CONTACT) or simplified method (see Refs. [7, 

11]). Following the same procedure than in the original FastSim algorithm, it is proposed 

to modify the normal traction distribution used to discern whether an element is under 

slip or adhesion conditions. To do so, the original normal traction distributions along 

strips in the 𝑥1-direction are approximated to parabolas to extend the method to a non-

elliptical patch [5]. The criterion followed to get these parabolas is that the modified 

distribution maintains the size of the contact area and the level of the normal contact force 

𝐹3. Following this criterion, equations for the parabolas can be obtained: 

 
𝑝3

𝑒 = ℎ𝑒 (1 − 4 (
𝑥1

𝑒 − 𝑥𝑐
𝑒

𝑥ℓ
𝑒 − 𝑥𝑡

𝑒)

2

) , (1) 

where 𝑝3
𝑒 is the modified normal traction of the 𝑒-th element, ℎ𝑒 is the height of the 

parabola (obtained by equalling the normal contact force on each strip with both 

distributions), 𝑥ℓ
𝑒 and 𝑥𝑡

𝑒 are the coordinates of the leading and trailing edge of the contact 

area and 𝑥𝑐
𝑒 is the midpoint between the leading and trailing edges of the contact area; 

parameters ℎ𝑒, 𝑥ℓ
𝑒, 𝑥t

𝑒 and 𝑥c
𝑒 depend on the lateral coordinate of the current element 𝑥2

𝑒.  

By approximating the normal tractions to parabolas, results are considerably more 

accurate through FastSim since an elliptic reference traction distribution prevents slip at 

the leading edge of the contact area [17]. In the same reference, it is also demonstrated 

that a parabolic traction distribution reproduces better the subdivision of the contact area 

into adhesion and slip regions.  
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From this point on, the methodology follows the original FastSim algorithm, so that the 

tractions for the 𝑒-th element of the mesh under adhesion conditions �̅�𝜏
𝑒 along to the 𝜏 

direction (𝜏 = 1, 2) are calculated as 

 
�̅�1

𝑒  = (
𝜉

𝐿1
−

𝜙

𝐿3
 𝑥2

𝑒) (𝑥1
𝑒 − 𝑥ℓ

𝑒) ,  (2) 

 
�̅�2

𝑒  = (
𝜂

𝐿2
+

1

2
 
𝜙

𝐿3
 (𝑥1

𝑒 +  𝑥ℓ
𝑒)) (𝑥1

𝑒 −  𝑥ℓ
𝑒) , (3) 

where 𝜉, 𝜂 and 𝜙 are the longitudinal, lateral and spin creepages, respectively; and 𝐿1, 𝐿2 

and 𝐿3 are the flexibility parameters.  

Eqs. (2) and (3) can be written also in matrix form as 

 �̅� = 𝐁 𝐋−1 𝛏, (4) 

being �̅� the vector that contains tangential tractions in the elements of the mesh under 

full-adhesion hypothesis, 𝛏 = {𝜉, 𝜂, 𝜙}T the creepage vector, 𝐁 is a matrix with the 

geometrical terms in Eqs. (2) and (3), and 𝐋 is the following diagonal matrix  

 

𝐋 = [
𝐿1 0 0
0 𝐿2 0
0 0 𝐿3

] . (5) 

In order to maintain a coherent formulation with the formulation presented in the paper, 

the vector of tangential tractions �̅� is ordered according to the following scheme 

 �̅� = [�̅�1
1 �̅�2

1 �̅�1
2 �̅�2

2 … �̅�1
𝑁𝑐 �̅�2

𝑁𝑐]
T

 , (6) 

being 𝑁𝑐 the number of elements in contact. 
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Tractions obtained through Eqs. (2) and (3) in each element must be corrected to consider 

the possible slip of the element. To do so, each element must be checked to verify if the 

adhesion condition is met  

 ‖(�̅�1
𝑒 , �̅�2

𝑒)‖ ≤ 𝜇 𝑝3
𝑒 , (7) 

where ‖ . ‖ denotes the vector norm and 𝜇 is the friction coefficient. If the condition in 

Eq. (7) is fulfilled, the stick solution for the element is valid, that is, 𝑝𝜏
𝑒 =  �̅�𝜏

𝑒. If the 

condition is not met, the traction in the element is formulated as 

 
𝑝𝜏

𝑒 =
𝜇 𝑝3

𝑒

‖(�̅�1
𝑒, �̅�2

𝑒)‖
�̅�𝜏

𝑒  ,       𝜏 = 1, 2. (8) 

In the original FastSim algorithm, these flexibility parameters are obtained through the 

creepage coefficients 𝐶𝑖𝑗 [13], the ellipse semiaxes of the contact area, 𝑎 and 𝑏, and the 

shear modulus 𝐺, as follows 

 

𝐿1 =
8 𝑎

3 𝐶11 𝐺
 , 𝐿2 =

8 𝑎

3 𝐶22 𝐺
 ,       𝐿3 =

𝜋 𝑎
3
2

4√𝑏 𝐶23 𝐺
  .  (9) 

These creepage coefficients 𝐶𝑖𝑗, also known as Kalker coefficients, are used for tangential 

forces calculation in Kalker's Linear Theory. They are obtained by the numerical 

resolution of elliptic integrals, using a suitable series expansion truncated after a small 

number of terms, being a good approximation to the real values. As it is explained in [13], 

these parameters are function of the ellipse geometry via its semiaxes ratio 𝑎/𝑏 and the 

material properties through the Poisson’s ratio 𝜐.  

At this point, it is come up with a methodology to calculate the flexibility parameters 𝐿1, 

𝐿2 and 𝐿3 for non-elliptical areas. For this, it is needed to have a numerical methodology 
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to solve the full-adhesion steady-state tangential contact problem for non-elliptical areas. 

This numerical methodology is Kalker’s CONTACT when infinite friction coefficient is 

assumed, and its formulation is reproduced for completeness in subsection 2.2. The 

procedure through which the flexibility parameters are obtained is presented in subsection 

2.3. 

2.2. Kalker’s CONTACT for adhesion areas  

The CONTACT algorithm [13] provides the solution of the tangential contact problem 

assuming non-Hertzian contact conditions. The steady-state CONTACT version will be 

adopted in the present section with the purpose of developing the formulation for adhesion 

conditions (infinite friction coefficient). 

According to the steady-state CONTACT, the tangential problem is solved based on the 

equation that combines kinematics in contact with the constitutive relationships 

associated with an infinite half-space, which is 

 
𝐬 =  𝐰 −

𝑉

Δ𝑥1

(𝐀 − 𝐀0) 𝐩, (10) 

where 𝐬 is the vector that contains the local slip velocities of the collocation points, 𝑉 is 

the speed (or rolling velocity) of the wheel, Δ𝑥1 is the traversed distance of the wheel 

associated with finite differences (Δ𝑥1 should be taken as the size of the element on the 

longitudinal direction [13]),  𝐩 is the vector with the steady-state tangential tractions in 

the elements of the mesh, 𝐀 is the matrix of the elastic influence coefficients that relate 

the displacements at the collocation points and the tangential tractions in the elements, 

𝐀0 associates the displacements at the collocation points with the traction distribution 

applied on the mesh at the previous wheel position displaced Δ𝑥1 backwards, and 𝐰 is 
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the vector with the velocities of the wheel associated with the undeformed configuration. 

The vector 𝐰 is computed according to the linear relationship 

 𝐰 = 𝑉 𝐃T 𝛏 , (11) 

being 𝐃 the matrix that contains the coordinates of the collocation points associated with 

the elements, which can be formulated as  

 
𝐃 = [

1 0 1 0 ⋯ 1 0
0 1 0 1 ⋯ 0 1

− 𝑥2
1 𝑥1

1 − 𝑥2
2 𝑥1

2 ⋯ − 𝑥2
𝑁 𝑥2

𝑁
] , (12) 

where 𝑥𝜏
𝑒 is the coordinate of the 𝑒-th element along the 𝐗𝜏-direction, with 𝜏 = 1, 2. 

Matrix 𝐃 is also used to calculate the resultant forces 𝐅 as  

 𝐅 = 𝑆 𝐃 𝐩, (13) 

being 𝐅 = {𝐹1, 𝐹2, 𝑀3}T a vector that contains the contact forces and spin moment, and 𝑆 

the area of the mesh element.  

With the purpose of computing the flexibility parameters, it is assumed full-adhesion 

hypothesis. To do so, zero-slip velocity is imposed in Eq. (14): 

 
 �̅� =

Δ𝑥1

𝑉
(𝐀 − 𝐀0)−1 𝐰. (14) 

The above equation is a numerical model for non-Hertzian contact areas that is analogous 

to Kalker's Linear Theory. Eq. (14) is linear and its computation is much faster than 

CONTACT based on Kalker’s TANG algorithm and Newton iteration for the subsequent 

nonlinear systems when finite friction coefficient is assumed. From the tangential 

tractions under adhesion conditions obtained, the flexibility parameters can be computed 

as detailed in the next subsection. 
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 Besides for computing flexibility parameters, this steady-state CONTACT is also used 

as a reference solution. In that case the solution of Eq. (10) is obtained by means of 

regularisation of the Coulomb's law, through the methodology that is explained in the 

Appendix of the present paper. 

2.3. Flexibility parameters calculation 

As done in the original algorithm, the flexibility parameters are calculated by imposing 

that the forces given by FastSim coincide with the forces calculated through an exact 

theory considering infinite friction coefficient. In this FastSim extension to non-Hertzian 

areas, the Kalker’s steady-state CONTACT method formulated in the preceding 

subsection is adopted as exact theory. 

Under adhesion conditions, any contact model establishes a linear relationship between 

forces and creepages that can be expressed as 

 �̅� = 𝐊 𝛏 , (15) 

where �̅� = {�̅�1, �̅�2, �̅�3}T is the vector with the contact forces and the spin moment when 

considering adhesion conditions in the entire contact area. The matrix 𝐊 contains the 

creep coefficients, being formulated for Hertzian areas as 

 

𝐊1 = [

−𝑓11 0 0
0 −𝑓22 −𝑓23

0 𝑓23 −𝑓33

] , (16) 

so that with 𝐊1, Eq. (15) would correspond to Kalker’s Linear Theory. 

The matrix 𝐊 can be derived from the steady-state method with infinite friction coefficient 

by replacing Eq. (11) in (14), and the resulting formulation in (13), hence obtaining 
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 𝐅 = 𝑆 Δ𝑥1 𝐃 (𝐀 − 𝐀0)−1 𝐃T 𝛏 , (17) 

and consequently, 

 𝐊𝟐 = 𝑆 Δ𝑥1 𝐃 (𝐀 − 𝐀0)−1 𝐃T . (18) 

On the other hand, the nH-FastSim extension permits to deduce the contact force vector 

�̅� from Eqs. (4) and (13) 

 𝐅 = 𝑆 𝐃 𝐁 𝐋−1 𝛏. (19) 

From this expression, the matrix 𝐊 for the nH-FastSim method can be obtained 

 𝐊3 = 𝑆 𝐃 𝐁 𝐋−1. (20) 

As the contact patches are no longer elliptical, terms 𝑓12, 𝑓13, 𝑓21 and 𝑓31 of matrices 𝐊2 

and 𝐊3 are non-zero due to the asymmetry of the contact area. 

Matching the tangential forces of both methods means forcing matrices 𝐊2 from the full-

adhesion exact method and 𝐊3 from nH-FastSim to be equal. From this equality, 𝐋 matrix 

can be obtained as 

 𝐋 = 𝑆 𝐊2
−1 𝐃 𝐁 , (21) 

from where the flexibility parameters are derived from the entries of 𝐋 on the diagonal 

(Eq. (5)). Nevertheless, this procedure, in which the non-zero terms are taken into 

account, did not give accurate results for the flexibility parameters, contrary to what other 

researchers found [8, 12, 18]. This loss of accuracy led us to use the methodology 

proposed by Kalker in his FastSim development [5]: the tangential contact forces given 

by the full-adhesion steady-state CONTACT model in Eq. (17), in which the non-zero 
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terms are neglected, are equated term by term with the forces given by nH-FastSim in Eq. 

(19), providing the flexibility parameters that compute more precise contact forces for 

non-Hertzian cases. 

 

3. CREEPAGE COEFFICIENTS THROUGH CONTACT 

The ability of the nH-FastSim algorithm to obtain acceptable results is conditioned by the 

precision in the calculation of the creepage coefficients through the steady-state 

CONTACT method, which will be tested in this section. Kalker's Linear Theory is used 

in this analysis as reference solution since it is the only known theory that provides exact 

results under adhesion conditions. This fact limits to conduct this evaluation exclusively 

for elliptical areas. The following results correspond to the relative error of the creepage 

coefficients using the steady-state CONTACT for adhesion areas with respect to the 

values provided by Kalker's Linear Theory. 

The steady-state CONTACT is based on the collocation method: the solution of the 

fundamental equation must be fulfilled in a finite number of points in the spatial domain. 

Consequently, the behaviour of this numerical model depends fundamentally on the 

position and the number of the collocation points and the shape of the domain. The 

position refers, in this case, to the relative location of the point within each element of the 

mesh; the number of points is associated with the mesh refinement, and the shape of the 

domain is analysed through the ratio between the semiaxes of the contact ellipse. All these 

studies are carried out for the dimensions of a railway case (normal load of 10 tons, wheel 

and rail Young’s modulus of 𝐸 = 2.1 × 1011 N/m2), except the Poisson’s ratio, which is 

varied through the different studies. 
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3.1. Influence of the collocation point 

The 𝑥1-coordinate of the collocation point with respect to the centre of the element is 

defined by 𝛼Δ𝑥1/2, being Δ𝑥1 the longitudinal dimension of the element, and 𝛼 a 

dimensionless parameter (see Figure 3). 

 

Figure 3. Element of the mesh with a collocation point. 

Figure 4 illustrates the influence of the collocation point location on the relative error for 

the creepage coefficients calculation through the CONTACT model performed at UPV. 

This study has been carried out for five different ellipses, defined by their semiaxes ratio 

𝑟 = 𝑎/𝑏. Figure 4A and B show that the lowest relative error values in coefficients 𝐶11 

and 𝐶22 are achieved when the collocation point is located at the centre of the element. 

Conversely, the lowest errors in coefficient 𝐶23 calculation occur for 𝛼 = 0.5 (see Figure 

4C). 
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Figure 4. Influence of the collocation point location for an 80 × 80 mesh and five 

different ellipse geometries on the creepage coefficients: (A) 𝐶11 coefficient; (B) 𝐶22 

coefficient; (C) 𝐶23 coefficient. 

3.2. Influence of the element size  

Figure 5 shows the relative error in the calculation of the creepage coefficients as a 

function of the mesh refinement. As a refinement control parameter, the total number of 

elements in contact 𝑁𝐶 is used. As in the previous section, the calculation has been carried 

out for five semiaxes ratios. 

The program developed by the authors of CONTACT program with infinite friction 

coefficient presents an error below 2% for meshes with 2800 elements in contact, 

although the tendency does not present convergence since errors do not decrease to zero. 

The full-adhesion hypothesis makes the tangential tractions at the trailing edge of the 

contact area tend to infinity, producing numerical errors and the non-convergence of the 

method due to the singularity in the domain [8], but allows obtaining results that provide 

acceptable precision. Despite this, for meshes with 2800 elements in contact, errors are 

below 2% in all the studied cases (with an error average of 0.8%) even for the most 

distorted ellipse (𝑟 = 10), validating the use of this approach for simulation in railway 

dynamics.  
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Figure 5. Influence of the element size (through the number of elements in contact 𝑁𝐶) 

for five different ellipse geometries and 𝛼 = 0 on the creepage coefficients: (A) 𝐶11 

coefficient; (B) 𝐶22 coefficient; (C) 𝐶23 coefficient. 

3.3. Influence of the contact area shape 

Table 1 presents the relative error obtained when calculating the creepage coefficients 𝐶𝑖𝑗 

for the values of semies ratio 𝑟 and Poisson’s ratio 𝜐 proposed in the well-known table 

published in Ref. [13] and other railway monographs and papers. It can be observed an 

increasing error trend with the ellipse ratio 𝑎/𝑏 for the coefficients 𝐶11 and 𝐶22, contrary 

to the proneness shown for 𝐶23. Except for the most extreme cases of ellipse ratios, the 

computed errors through the CONTACT program developed by the authors are below 

1%, being slightly higher for 𝐶23.  

Table 1. Relative error (in %) associated with the calculation of the creepage coefficients 

𝐶𝑖𝑗 by means of the steady-state CONTACT model for adhesion conditions. 
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  𝐶11 relative error 𝐶22 relative error 𝐶23 relative error 

  𝜐 = 0 
𝜐
= 1/4 

𝜐
= 1/2 

𝜐 = 0 
𝜐
= 1/4 

𝜐
= 1/2 

𝜐 = 0 
𝜐
= 1/4 

𝜐
= 1/2 

𝑎/𝑏             

0.1 0.43% 0.53% 0.61% 0.43% 0.63% 0.49% 1.05% 1.11% 1.33% 

0.2 0.41% 0.50% 0.53% 0.41% 0.48% 0.55% 1.17% 1.00% 0.98% 

0.3 0.51% 0.66% 0.59% 0.51% 0.55% 0.69% 1.26% 1.03% 1.00% 

0.4 0.46% 0.53% 0.58% 0.46% 0.51% 0.46% 1.29% 1.15% 0.96% 

0.5 0.52% 0.56% 1.17% 0.52% 0.56% 0.70% 1.27% 1.17% 0.67% 

0.6 0.62% 0.42% 0.60% 0.62% 0.65% 0.66% 1.16% 0.69% 1.33% 

0.7 0.41% 0.61% 0.65% 0.41% 0.42% 0.63% 0.97% 1.02% 1.47% 

0.8 0.53% 0.58% 0.45% 0.53% 0.49% 0.60% 0.90% 1.22% 1.26% 

0.9 0.62% 0.57% 0.56% 0.62% 0.54% 0.55% 0.88% 1.31% 0.83% 

𝑏/𝑎             

1.0 0.41% 0.33% 0.56% 0.41% 0.55% 0.73% 0.89% 1.31% 0.86% 

0.9 0.51% 0.61% 0.43% 0.51% 0.65% 0.83% 0.81% 1.08% 1.05% 

0.8 0.52% 0.59% 0.44% 0.52% 0.60% 0.78% 0.87% 1.29% 0.75% 

0.7 0.75% 0.56% 0.43% 0.75% 0.73% 0.99% 0.88% 1.06% 1.08% 

0.6 0.61% 0.49% 0.41% 0.61% 0.84% 1.19% 1.28% 1.16% 0.97% 

0.5 0.87% 0.63% 0.44% 0.87% 0.91% 1.20% 1.06% 0.81% 0.62% 

0.4 0.81% 0.81% 0.60% 0.81% 1.03% 1.36% 1.11% 0.88% 0.63% 

0.3 1.15% 0.86% 0.70% 1.15% 1.30% 1.60% 1.03% 0.88% 0.53% 

0.2 1.39% 1.21% 0.97% 1.39% 1.52% 1.82% 0.92% 0.71% 0.53% 

0.1 1.90% 1.67% 1.44% 1.90% 2.22% 2.21% 0.47% 0.87% 0.50% 

 

4. RESULTS 

This section summarises the results of nH-FastSim, which may contribute to its validation 

for the computing of the contact problem for realistic cases. Table 2 gathers a test-set 

compatible with a realistic value for the normal load per axle and a range of creepages 

plausible under normal circumstances for existing wheel (S1002) and rail profiles 

(UIC60). The simulations performed give the creep forces and traction distribution for 

the study case summarised, together with the associated associated computational cost, 

which is compared with our implementation of the steady-state CONTACT method. The 
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study also analyses various lateral positions of the wheelset with respect to its position 

centred on the track.  

The normal contact problem is solved through the methodology described in Ref. [19] for 

the different wheelset positions studied. The location of the wheelset is considered 

through its lateral displacement 𝑦, assuming null yaw angle. For the analysed wheel, a 

negative displacement 𝑦 < 0 comes closer the contact area to the wheel flange. In Ref. 

[20], the difference of the rolling radii for different wheelset positions can be found, for 

the same model data than the one gathered in Table 2. 

In this section, normalised values of longitudinal 𝜉′ and lateral 𝜂′ creepage are considered, 

which represent the beginning of the full slip condition when ‖(𝜉′, 𝜂′)‖ ≈ 1 (it would be 

a normalisation with respect to saturation conditions). The normalised creepage values 

 𝜉′ and 𝜂′ were proposed in Ref. [13] for elliptical areas and calculated according to the 

following formulas: 

 
𝜉′ = 𝜉

𝑓11

3𝜇𝐹3
 , (22) 

 
𝜂′ = 𝜂

𝑓22

3𝜇𝐹3
 . (23) 

For the studies carried out in this section, an extension of the previous formulas will be 

made to the non-Hertzian case by using the creep coefficients 𝑓11 and 𝑓22 obtained 

numerically from the matrix 𝐊2 in Eq. (18). In order to adopt realistic creepage spin 

values, these are calculated as the projection of the angular velocity of the wheelset to the 

normal direction to the contact area, normalised with respect to the vehicle speed. 

Therefore, the spin is estimated through the following formula 
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𝜙 =

2

𝑑
 sin 𝛾,  (24) 

where 𝑑 is the diameter of the wheel and 𝛾 its conicity at the contact point. In this way, 

𝜙 becomes dependent of the lateral displacement 𝑦 through the wheel conicity 𝛾. 

Table 2. Model data. 

Rail profile     UIC60 

Rail inclination   1/40 

Track gauge     1435 mm 

Wheel profile    S1002 

Wheel diameter    900 mm 

Vertical load per wheelset  200 kN 

Wheel and rail Young modulus 2.1 10¹¹ N/m² 

Wheel and rail Poisson ratio   0.3 

Friction coefficient   0.4 

Nr. of mesh elements   2800 

 

 

4.1. Tangential forces calculation 

Figure 6 shows the relative error associated with the calculation of the total tangential 

force through nH-FastSim, which is computed as follows  

 
Relative error =  

|𝐹 −  𝐹𝐶|

𝐹𝐶
 ,  (25) 

𝐹 being the total tangential force modulus obtained by means of nH-FastSim, and 𝐹𝐶 the 

one calculated through the steady-state CONTACT program developed by the authors. 

This result is computed as a function of the lateral displacement 𝑦 for various values of 

normalised creepages 𝜉′ and 𝜂′. When a non-zero spin creepage value is considered, it is 

calculated according to Eq. (24) depending on the lateral displacement 𝑦. Since only 

single contact areas are analysed in this work, the wheelset lateral displacement is varied 

between ±4.5 mm (multiple contact areas appear for greater absolute values [19]). In 

general, the results present an error less than 4% in the estimation of the total tangential 
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force, showing the highest values when the wheelset is centred on the track (case of less 

elliptical contact area). 

Errors obtained with the proposed method are below 5% in all study cases, which is in 

accordance with FastSim error results presented by other authors [21], since neither pure 

spin cases nor realistic cases with combined longitudinal, lateral and spin creepage are 

analysed in the present work (only realistic cases were pretended to be analysed). 
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Figure 6. Relative error in the tangential total force as a function of the wheelset lateral 

displacement 𝑦 for: (A) pure longitudinal creepage (𝜂′ = 𝜙′ = 0); (B) lateral creepage 

with spin (𝜉′ = 0); (C) general case.  

 

 

4.2. Tangential traction distribution 

Figure 7 shows the tangential traction distribution calculated for the contact area 

corresponding to the wheelset centred on the track (as just indicated, the position for 

which the model produces worse force results due to the resulting non-elliptical contact 

patch). The analysis is performed for different load conditions with different creepages 

imposed. These creepage combinations have been chosen in order to analyse the influence 

of the creepage direction on the tangential traction distribution: only longitudinal 

creepage (Figure 7A and D), lateral and spin creepages (Figure 7B and E) and combined 

longitudinal, lateral and spin creepages (Figure 7C and F). The calculations have been 

carried out by means of both nH-FastSim and the steady-state CONTACT (authors’ own 

implementation), showing that that the first one underestimates the slip area, especially 

when creepages are combined.  

Figure 8 gathers the creep curves for the longitudinal contact force under different 

wheelset lateral displacements and lateral creepage values, with the aim of studying the 

influence of the contact area shape and the combination of creepages. Results in this 
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figure show an accurate approximation of the proposed nH-FastSim extension when 

comparing with the exact solution provided by the the steady-state CONTACT program 

used, with similar errors than in the results shown in Figure 6 (lower than 4%). The initial 

linear region. equivalent to consider infinity friction coefficient. perfectly overlaps and 

the saturation values end up coinciding for the simulated cases. Larger errors are found 

when the wheelset is centred on the track (again in line with Figure 6) and when combined 

creepages are imposed (according to Figure 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Tangential traction distribution for a wheelset lateral displacement 𝑦 = 0 mm. 

Upper row corresponds to nH-FastSim, and lower row to the steady-state CONTACT 

program developed by the authors. Darker colour background indicates slip area. Results 

have been obtained for different creepages: (A) and (D) 𝜉′ = 0.5; (B) and (E) 𝜂′ = 0.5,
𝜙′ ≠ 0; (C) and (F) 𝜉′ = 0.5, 𝜂′ = 0.5, 𝜙′ ≠ 0. 
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Figure 8. Longitudinal force as a function of the longitudinal creepage calculated 

through nH-FastSim, and the steady-state CONTACT program developed by the 

authors. The following wheelset lateral displacements and creepages are studied: (A) 𝑦 

= -0.003 m, 𝜂′ = 0; (B) 𝑦 = 0 m, 𝜂′ = 0; (C) 𝑦 = -0.003m, 𝜂′ = 0.5; (D) 𝑦 = 0 m, 𝜂′ = 0.5. 

 

4.3. Computational time 

Figure 9 compares the algorithm speed with respect to the steady-state CONTACT 

version used by the authors. To that this aim, computational times required by steady-
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state CONTACT and nH-FastSim are collected for simulations run in Matlab© through 

a PC with the following specifications: Intel(R) Core (TM) i7-9700 CPU 3.0 GHz with 

64.00 GB of RAM and 64-bit computing. For the same study case, Figure 9A plots the 

absolute computational time required by both methods for a sweep in the number of 

elements in contact 𝑁𝐶; the creepage values and the lateral displacement are randomly 

selected according to a uniform distribution. Figure 9B shows the computational 

performance through the ratio between the calculation times computed for both methods 

for the same study cases. In general, the times associated with nH-FastSim are one order 

below the steady-state CONTACT implemented by the authors, performance that will be 

different from other implementations and enhancements (such as those proposed in Ref. 

[22]). The trend of the increase in computational cost with the number of elements is 

linear when it is plotted on a logarithmic scale. 

  

Figure 9. Computational times vs. number of mesh elements in contact 𝑁𝐶 for random 

values of creepages and wheelset lateral displacements: (A) Absolute computational 

times for both CONTACT (program developed by the authors) and nH-FastSim 

methods; (B) Time ratio. 

  



27 

 

 

CONCLUSIONS 

In this work, a methodology based on the FastSim algorithm is presented to solve the 

tangential problem with improved computational features in the case that the Hertzian 

contact conditions are not met. The formulation presents a parallelism with the original 

method, differing in the type of discretisation (a regular mesh is adopted in the proposed 

one) and in the calculation of the flexibility parameters, since Kalker’s Linear Theory is 

only applicable for elliptical areas. To get around this issue, an alternative simplified 

method named nH-FastSim is implemented so as to obtain the forces under adhesion 

conditions for non-elliptical areas. It leads to the need of adapting the steady-state 

CONTACT program for adhesion areas, which allows to compute the creepage 

coefficients with errors lower than 2% when selecting the collocation point at the centre 

of the mesh element. When compared with the steady-state CONTACT that implements 

the Coulomb’s law regularisation, nH-FastSim produces acceptable levels of precision, 

significantly reducing the maximum error below 4% for the creep forces in the non-

Hertzian contact simulations performed, while the computational times required are 

between 10 and 20 times lower than the steady-state CONTACT with the Coulomb’s law 

regularisation. Consequently, the proposed extension of FastSim can be shown as a tool 

compatible with other improvements implemented in CONTACT that lead to the 

reduction of its computational cost, such as those included in Ref. [22].  
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APPENDIX 

The solution of Eq. (10) is originally carried out through Kalker's TANG algorithm and 

Newton iteration (an iterative process in which systems of equations are solved from 

successive hypotheses about if the elements belong to the adhesion or the slip area, see 

Ref [13]). The calculation procedure can be accelerated if the regularisation of the 

Coulomb's law is implemented [23]. According to this approach, the tangential tractions 

in the 𝑒-th element of the mesh are approximated through the formula 

 
𝑝𝜏

𝑒 =
−2  𝜇 𝑝3

𝑒

𝜋 
atan (

‖(𝑠1
𝑒, 𝑠2

𝑒)‖

𝜀
)

𝑠𝜏
𝑒

‖(𝑠1
𝑒 , 𝑠2

𝑒)‖
,       𝜏 = 1, 2, (A1) 

being 𝜀 sufficiently small (𝜀 = 10−8 m/s is chosen in this paper). Figure A1 shows the 

behaviour of the tangential traction with the slip velocity for different 𝜀. 

 

Figure A1. Coulomb’s law regularisation for different values of 𝜀 parameter. 

This procedure allows formulating Eq. (10), being the slip velocity vector 𝐬 as the only 

unknown variable after introducing Eq. (A1) in (10) [24]. The resulting equation is solved 
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by means of a Newton-Raphson scheme, in which 𝐬 is the unknown variable. Once the 

slip velocity vector is obtained, tangential tractions distribution can be obtained through 

Eq. (A1). This method leads to the steady-state CONTACT solution used as reference for 

the later validation of the proposed FastSim extension. 

 

 


