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ABSTRACT

Antibiotic resistance in tuberculosis is a serious
global health problem and a growing obstacle to the control
of the disease. In 2021, 12% of TB deaths were due to
resistant strains of the bacterium, with this percentage being
much higher in some countries where, in addition, a large
proportion of new cases are already resistant. These data
imply a great economic burden for public health services
and threaten to eliminate the progress in tuberculosis control
that has been made in the last 30 years. In this thesis we
use genomics as a tool to study different aspects of the
biology of the bacterium in relation to the development of
antibiotic resistance and provide new knowledge to tackle
the challenge of its eradication.

First, we characterize new genomic determinants of
resistance to isoniazid, one of the most widely-used first-line
antibiotics. To do so, we used an approach based on
functional genomics and phylogenetic association. The
method consists of transposon sequencing of bacterial
populations exposed to the antibiotic to determine which
genes are involved in both sensitivity and resistance, and
then filtering with genomic data from a global collection of
clinical strains. We have verified the importance of the
metabolic pathways of bacterial wall synthesis in the
mechanism of action of isoniazid, and also discovered new
genes involved in cellular redox balance that confer
low-level resistance to this antibiotic. These results can be
used to develop new diagnostic techniques or therapeutic
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targets, and the method is applicable to new antibiotics to
predict future resistance determinants.

Second, we explored the bacterial diversity of
tuberculosis at its natural site of infection and the population
dynamics of antibiotic resistance. We have analyzed
samples from different parts of the lung lesion or granuloma
from patients in Georgia, a country with a high incidence of
drug-resistant TB, and detected a significant number of
polyclonal infections, i.e. infections caused by more than
one different strain of the bacterium. These different strains
can in turn be resistant to different antibiotics, which makes
it essential to detect them in time to offer the patient the
most appropriate treatment possible. The surgical
specimens gave us a more complete picture of bacterial
diversity than sputum, the routine clinical specimen, and
allowed us to detect polyclonal infections more accurately.
The data show that we are underestimating these types of
infections in high-burden TB countries and they may
adversely affect treatment outcome, so in these settings a
second sampling during the course of the antibiotic regimen
would be advisable.

Third, we evaluated the role of one of the most
important comorbidities of tuberculosis, HIV, in the
development of resistance during the first weeks of
treatment. To this end, we have sampled patients from
Mozambique with and without HIV on a serial basis during
the first month to analyze the impact of co-infection on both
immune and antibiotic selective pressures. We have
detected a higher total diversity in seronegative patients and
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furthermore, in comparison, HIV+ patients present difficulties
in eliminating this diversity during the early stages of
treatment that could affect their success. Thanks to deep
sequencing, we have also been able to observe an
accumulation of variants in resistance-related genes, and we
have associated some of them with changes in the MICs
(minimum inhibitory concentrations) of the samples. These
small changes during the first month may serve as
predictors of a reduced ability to eliminate bacterial diversity,
and could indicate future treatment failure.

In summary, in this thesis we have focused on better
understanding the bacterial and host factors that have an
impact on the development of antibiotic-resistant
tuberculosis and as a result will allow the development of
new diagnostics and epidemiological models to control it.
Genomic sequencing is a great tool to study this and other
pathogens in real time, and offers the possibility of detecting
resistance quickly and with high certainty in the clinical
setting. A correct diagnosis ensures adequate, shorter and
more successful treatment, and also prevents transmission
to new hosts. The techniques and results presented here
contribute to achieve these objectives and improve the
global control of the drug-resistant tuberculosis epidemic.
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RESUMEN

La resistencia a antibióticos en tuberculosis es un
grave problema de salud global y un obstáculo cada vez
mayor para el control de la enfermedad. En 2021, el 12% de
las muertes por tuberculosis fueron debidas a cepas
resistentes de la bacteria, siendo este porcentaje mucho
más elevado en algunos países donde además una gran
parte de los nuevos casos son ya resistentes. Estos datos
implican una gran carga económica para los servicios de
salud pública y amenazan con eliminar los progresos en el
control de la tuberculosis que se han hecho en los últimos
30 años. En esta tesis usamos la genómica como una
herramienta para estudiar diferentes aspectos de la biología
de la bacteria en relación al desarrollo de resistencia a
antibióticos y aportamos nuevo conocimiento para afrontar
el reto de su erradicación.

En primer lugar, caracterizamos nuevos
determinantes genómicos de la resistencia a isoniazida, uno
de los antibióticos de primera línea más ampliamente
usados. Para ello utilizamos una aproximación basada en
genómica funcional y asociación filogenética. El método
consiste en secuenciación de transposones de poblaciones
bacterianas expuestas al antibiótico para determinar los
genes implicados tanto en sensibilidad como en resistencia,
y su filtrado con datos genómicos de una colección global
de cepas clínicas. Hemos comprobado la importancia de las
vías metabólicas de síntesis de la pared bacteriana en el
mecanismo de acción del antibiótico, y además descubierto
nuevos genes implicados en el balance redox celular que
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otorgan resistencia de bajo nivel a la bacteria. Estos
resultados pueden emplearse para desarrollar nuevas
técnicas diagnósticas o dianas terapéuticas, y el método es
aplicable a nuevos antibióticos para predecir futuros
determinantes de la resistencia.

En segundo lugar, exploramos la diversidad
bacteriana de la tuberculosis en su lugar natural de infección
y las dinámicas poblacionales de la resistencia a
antibióticos. Hemos analizado muestras de diferentes partes
de la lesión pulmonar o granuloma de pacientes de Georgia,
un país con alta incidencia de tuberculosis resistente, y
detectamos una importante cantidad de infecciones
policlonales, es decir, infecciones causadas por más de una
cepa diferente de la bacteria. Estas diferentes cepas pueden
a su vez ser resistentes a antibióticos distintos, lo que hace
esencial poder detectarlas a tiempo para ofrecer al paciente
un tratamiento lo más adecuado posible. Las muestras de
cirujía nos otorgaron una visión más completa de la
diversidad bacteriana que el esputo, la muestra clínica que
se toma de rutina, y nos permitieron detectar las infecciones
policlonales con mayor precisión. Los datos muestran que
estamos subestimando este tipo de infecciones en los
países de alta carga de tuberculosis y pueden afectar
negativamente al resultado del tratamiento, por lo que en
estos entornos sería recomendable un segundo muestreo
durante el curso del régimen antibiótico.

Y en tercer lugar, evaluamos el papel de una de las
comorbilidades más importantes de la tuberculosis, el VIH,
en el desarrollo de resistencias durante las primeras
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semanas de tratamiento. Para ello, hemos tomado muestras
de pacientes de Mozambique con y sin VIH de forma
seriada durante el primer mes para analizar cuál es el
impacto de la coinfección en las presiones selectivas tanto
inmunes como antibióticas. Hemos detectado una mayor
diversidad total en los pacientes seronegativos y además,
en comparación, los pacientes VIH+ presentan dificultades
para eliminar esta diversidad durante las etapas tempranas
del tratamiento que podrían afectar a su éxito. Gracias a la
secuenciación profunda, también hemos podido observar
una acumulación de variantes en genes relacionados con
resistencia, y hemos asociado algunas de ellas a cambios
en las CMI (concentraciones mínimas inhibitorias) de las
muestras. Estos pequeños cambios durante el primer mes
pueden servir como predictores de una menor capacidad
para eliminar la diversidad bacteriana, y podrían llegar a
indicar un futuro fallo en el tratamiento.

En resumen, en esta tesis nos hemos centrado en
entender mejor los factores bacterianos y del hospedador
que tienen un impacto en el desarrollo de la tuberculosis
resistente a antibióticos y como resultado permitirán
desarrollar nuevos diagnósticos y modelos epidemiológicos
para controlarla. La secuenciación genómica es una gran
herramienta para estudiar éste y otros patógenos en tiempo
real, y ofrece la posibilidad de detectar resistencias
rápidamente y con una alta certeza en el ámbito clínico. Un
correcto diagnóstico asegura un tratamiento adecuado, más
corto y exitoso, y además previene la transmisión a nuevos
huéspedes. Las técnicas y resultados expuestos aquí
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contribuyen a lograr estos objetivos y mejorar el control
global de la epidemia de tuberculosis resistente.
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RESUM

La resistència a antibiòtics en tuberculosi és un greu
problema de salut global i un obstacle cada vegada més
gran per al control de la malaltia. El 2021, el 12% de les
morts per tuberculosi van ser degudes a soques resistents
del bacteri, sent aquest percentatge molt més elevat en
alguns països on a més una gran part dels nous casos són
ja resistents. Aquestes dades impliquen una gran càrrega
econòmica per als serveis de salut pública i amenacen amb
eliminar els progressos en el control de la tuberculosi que
s'han fet els darrers 30 anys. En aquesta tesi fem servir la
genòmica com una eina per estudiar diferents aspectes de
la biologia del bacteri en relació amb el desenvolupament de
resistència a antibiòtics i aportem nou coneixement per
afrontar el repte de la seua eradicació.

En primer lloc, caracteritzem nous determinants
genòmics de la resistència a isoniazida, un dels antibiòtics
de primera línia més àmpliament utilitzats. Per això utilitzem
una aproximació basada en genòmica funcional i associació
filogenètica. El mètode consisteix en seqüenciació de
transposons de poblacions bacterianes exposades a
l'antibiòtic per determinar els gens implicats tant en
sensibilitat com en resistència, i el filtratge amb dades
genòmiques d'una col·lecció global de soques clíniques.
Hem comprovat la importància de les vies metabòliques de
síntesi de la paret bacteriana al mecanisme d'acció de
l'antibiòtic, i a més descobert nous gens implicats en el
balanç redox cel·lular que atorguen resistència de baix nivell
al bacteri. Aquests resultats es poden fer servir per
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desenvolupar noves tècniques diagnòstiques o dianes
terapèutiques, i el mètode és aplicable a nous antibiòtics per
predir futurs determinants de la resistència.

En segon lloc, explorem la diversitat bacteriana de la
tuberculosi al lloc natural d'infecció i les dinàmiques
poblacionals de la resistència a antibiòtics. Hem analitzat
mostres de diferents parts de la lesió pulmonar o granuloma
de pacients de Geòrgia, un país amb alta incidència de
tuberculosi resistent, i detectem una quantitat important
d'infeccions policlonals, és a dir, infeccions causades per
més d'una soca diferent del bacteri. Aquestes diferents
soques poden ser resistents a antibiòtics diferents, cosa que
fa essencial poder detectar-les a temps per oferir al pacient
un tractament el més adequat possible. Les mostres de
cirurgia ens van atorgar una visió més completa de la
diversitat bacteriana que l'esput, la mostra clínica que es
pren de rutina, i ens van permetre detectar les infeccions
policlonals amb més precisió. Les dades mostren que estem
subestimant aquest tipus d'infeccions als països d'alta
càrrega de tuberculosi i poden afectar negativament el
resultat del tractament, per això en aquests entorns seria
recomanable un segon mostreig durant el curs del règim
antibiòtic.

I en tercer lloc, avaluem el paper d'una de les
comorbiditats més importants de la tuberculosi, el VIH, en el
desenvolupament de resistències durant les primeres
setmanes de tractament. Per això, hem pres mostres de
pacients de Moçambic amb i sense VIH de forma seriada
durant el primer mes per analitzar quin és l'impacte de la
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coinfecció a les pressions selectives tant immunes com
antibiòtiques. Hem detectat una diversitat total més gran en
els pacients seronegatius i a més, en comparació, els
pacients VIH+ presenten dificultats per eliminar aquesta
diversitat durant les etapes primerenques del tractament
que podrien afectar el seu èxit. Gràcies a la seqüenciació
profunda, també hem pogut observar una acumulació de
variants en gens relacionats amb resistència, i hem associat
algunes a canvis en les CMI (concentracions mínimes
inhibitòries) de les mostres. Aquests subtils canvis durant el
primer mes poden servir com a predictors d'una capacitat
menor per eliminar la diversitat bacteriana, i podrien arribar
a indicar un futur fracàs en el tractament.

En resum, en aquesta tesi ens hem centrat a
entendre millor els factors bacterians i de l'hoste que tenen
un impacte en el desenvolupament de la tuberculosi
resistent a antibiòtics i com a resultat permetran
desenvolupar nous diagnòstics i models epidemiològics per
controlar-la. La seqüenciació genòmica és una gran eina per
estudiar aquest i altres patògens en temps real, i ofereix la
possibilitat de detectar resistències ràpidament i amb una
certesa alta en l'àmbit clínic. Un diagnòstic correcte
assegura un tractament adequat, més curt i exitós, i a més
prevé la transmissió a nous hostes. Les tècniques i els
resultats exposats aquí contribueixen a assolir aquests
objectius i millorar el control global de l'epidèmia de
tuberculosi resistent.

20



21



22



23



24



Introduction

INTRODUCTION

Antibiotic resistance and tuberculosis

Antibiotic resistance is a major global health problem
and an increasingly serious threat to public health [1].
Antibiotic resistance occurs when bacteria change in a way
that reduces or eliminates the effectiveness of the chemical
compounds designed to cure or prevent infections [2]. This
can occur through a process of natural selection, where
bacteria with a genetic mutation that allows them to survive
antibiotic treatment are more likely to persist and reproduce
[3]. It is becoming a major public health issue as the
development of antibiotic-resistant bacteria is outpacing the
development of new antibiotics [4].

The consequences of antibiotic resistance are
widespread and can have serious implications for public
health. Antibiotic-resistant bacteria can cause more severe
and longer-lasting infections, resulting in higher healthcare
costs, increased morbidity and mortality, and a decreased
quality of life [5]. Antibiotic resistance is also associated with
increased length of hospital stay and increased risk of
hospital-acquired infections [5]. Thus the problem of
antibiotic resistance is quite complex and requires a
multifaceted approach to address it. Some strategies to
tackle antibiotic resistance include the judicious use of
antibiotics, the development of new antibiotics, the
development of new diagnostic and laboratory tests, the
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Introduction

implementation of infection prevention and transmission
control measures, or the use of vaccines. These strategies
must be implemented in combination in order to effectively
address the problem and prevent both the emergence and
spread of drug-resistant bacterial strains [6].

Tuberculosis (TB) is an airborne infectious disease
mainly caused by Mycobacterium tuberculosis (MTB), a
human obligate pathogen belonging to the Mycobacterium
tuberculosis complex (MTBC). It is one of the most common
and deadliest diseases in human history, and it is estimated
that up to one-fourth of the world’s population has been
exposed to it [7]. TB is actually an ancient disease that has
been around for a very long time, and it has adapted to the
human host over many centuries. Despite mycobacteria in
general and MTB in particular show a low genetic diversity
compared to other bacteria, it still translates into a sizable
amount of phenotypic diversity. MTB has evolved into eight
distinct lineages that are classified according to their genetic
makeup and are used to identify different strains of the
bacteria [8,9]. Also, they are thought to cause different levels
of disease severity. Many of them are restricted to some
geographic areas, while others like Lineage 4 or 2 are
globally distributed and more successful [10].

Regarding the natural history of TB, it has been
described that after infection, bacteria are phagocytized by
macrophages in the lower sections of the lungs and
internalized into deeper tissues where they are kept
contained in granulomas [7]. These structures are the perfect
example of the duality of MTB infection: they keep bacteria
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Introduction

confined from the rest of the body to protect from further
infection, but at the same time provide the perfect
environment for them to thrive, recruiting phagocytic cells in
which they can replicate. At this stage, infection can remain
latent or reactivate -usually within two years- and progress
to active disease [7]. The mechanisms of TB latency and
reactivation are not well understood yet, but evidence
suggests that the host immune response plays an important
role. The necrotizing granuloma eventually cavitates,
producing coughing and completing the infective cycle via
small bacteria-containing aerosols that can transmit to the
next host.

Although TB can be treated with antibiotics, it is still
a major problem due to its ability to become resistant over
time [11]. The first-line treatment for tuberculosis is a
combination of four different drugs: isoniazid (INH),
rifampicin (RIF), ethambutol (EMB), and pyrazinamide (PZA).
Treatment with this combination of antibiotics is generally
recommended for anyone with active TB disease, regardless
of their age, sex, or underlying medical conditions and is
typically continued for six months or longer, depending on
the individual’s response to the medications. In cases where
the infecting strain is resistant to first-line drugs, second-line
drugs may be used, but they are more costly and often more
toxic. This second-line treatment is recommended when a
patient fails to respond to, or is unable to take, first-line TB
drugs and it must be tailored to the specific needs of the
patient and the type of TB infection. Second-line treatment
of TB typically includes the use of injectable agents such as
amikacin (AMK) or capreomycin (CPR), and oral medications

27

https://paperpile.com/c/BhT5Xo/DmMT
https://paperpile.com/c/BhT5Xo/U48g


Introduction

such as fluoroquinolones, ethionamide or cycloserine. Other
drugs, such as linezolid and clofazimine, may also be used
as part of a second-line regimen. Two new TB drugs,
bedaquiline and delamanid, were approved for use in 2012
and 2014, respectively. These drugs have recently been
included in the WHO treatment guidelines and offer hope for
individuals with drug-resistant TB, with a new all-oral
6-month regimen consisting of bedaquiline, pretomanid,
linezolid and moxifloxacin (BPaLM) [12,13].

Unsurprisingly, TB is still one of the top ten causes of
death in the world, and was responsible for an estimated 1.6
million deaths in 2021, with 191,000 of those due to DR-TB
[14]. The challenge of eradicating drug resistance in
tuberculosis has been the focus of public health efforts for
decades. Drug-resistant TB (DR-TB) has emerged as a
growing public health challenge in many countries, and is a
major cause of morbidity and mortality in many regions.
Traditionally, DR-TB has been broadly classified into two
main categories: multidrug resistant tuberculosis (MDR-TB),
caused by bacteria that is resistant to two of the first-line
treatment drugs, isoniazid (INH) and rifampicin (RIF), and
extensively-drug resistant tuberculosis (XDR-TB), a form of
TB caused by bacteria that is resistant to at least four of the
most commonly used antitubercular drugs, including
isoniazid and rifampicin but also second-line antibiotics, any
fluoroquinolone (FQ) and at least one of the injectable drugs
line kanamycin (KAN) [11]. However, definitions are changing
as the first options for treating MDR-TB are now all-oral
drugs. The importance of both MDR-TB and XDR-TB resides
in their higher severity, with an increased mortality rate and
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greater difficulty to treat. They are particularly concerning as
they are also more difficult to control and are most common
in low- and middle-income countries, where access to
treatment is limited and the risk of transmission is high.

Mechanisms and evolution of drug
resistance in M. tuberculosis

Mycobacteria possess a complex, thick and
hydrophobic cell wall that confers them intrinsic resistance
to a wide range of antimicrobials. The envelope of
Mycobacterium tuberculosis has been described to
incorporate a wide variety of lipids -like mycolic acids,
unique to mycobacteria- and very few porins, making it
scarcely permeable to external molecules [15]. This renders
many hydrophobic compounds useless to treat tuberculosis,
like most macrolides and tetracyclines or some rifamycins
and fluoroquinolones. We also have experimental evidence
that blocking lipid synthesis renders the bacteria susceptible
to many of these drugs. However, antibiotics that manage to
surpass the cell wall can be enzymatically degraded, like the
cleavage of the penicillin β-lactam ring by mycobacterial
β-lactamases [16], or modified like in the case of
aminoglycosides acetylation to render them inactive [17].
Also, a wide range of efflux systems are thought to
contribute to drug resistance in various levels of
effectiveness. This is supported by the fact that many of
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these efflux pumps are non-specific and thus highly
permissive towards structurally-diverse molecules [18,19].

We have seen how enzymatic action and efflux
systems, together with the particular structure and
composition of the mycobacterial cell wall, make MTB
intrinsically resistant to many antibiotics. However,
antimicrobial resistance can also be evolved during the
standard therapy to both first- and second-line drugs, and
through various different mechanisms [20]. As with many
other pathogens, the most common acquired resistance
mechanism is drug target alteration, which in MTB mostly
happens through chromosomal mutations in the form of
single nucleotide polymorphisms (SNPs). The specificity of
antibiotics to their targets is usually so high that small
alterations in the target protein can diminish their affinity or
even render them completely useless. A classic example is
rifampicin resistance by means of point mutations in the
RNA polymerase subunit rpoB [21]. Another possibility is the
prevention of prodrug activation in the cell, as some
antitubercular drugs are actually prodrugs. This is the case
of isoniazid, which needs to be activated via the catalase
peroxidase katG, and resistance is achieved by mutations
that strongly reduce this enzyme activity [22]. Finally,
resistance can arise as a result of an imbalance of the drug
and its target, via the overexpression of the latter. An
example of this mechanism is also illustrated by isoniazid
resistance due to the overexpression of its target, the
reductase inhA involved in mycolic acid biosynthesis [23].
Finally, it is important to note that in addition to these
mechanisms, variants may arise that confer low-level
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resistance, which in turn provides the necessary
evolutionary space for the bacteria to develop high-level
resistance through a canonical mechanism [24,25].

The evolution of de novo drug resistance at the
population scale has classically been attributed to
suboptimal control of transmission, poor adherence to
treatment or irregular drug supply in low-income settings.
However, we see drug resistance arise in all kinds of
settings, even under optimal treatment conditions, which
suggests that both pathogen and host determinants play a
role in its development [26]. Both patient heterogeneity in
the form of immune status or suboptimal drug penetration
can create opportunities for resistance to arise in
subinhibitory antibiotic concentrations [27,28]. On the
pathogen side, emergence of drug resistance is heavily
influenced by other factors such as the effective population
size during infection, the particular mutation rate of MTB or
the fitness cost associated with many resistance-conferring
mutations. Population size is in turn influenced by the
infection bottleneck -the number of bacteria received by the
host upon transmission- and the ability to control the
infection once it has been established. Higher bacterial
loads statistically increase the chances for resistance to
develop, even under optimal drug concentrations. MTB
mutation rate during infection is nonetheless low compared
to other pathogens and it has been estimated to be around
0.5 SNPs/genome/year [29].

It is important to understand that, canonically, drug
resistance comes with a fitness cost. This is, the ability of a

31

https://paperpile.com/c/BhT5Xo/tN3Z+Shiu
https://paperpile.com/c/BhT5Xo/Xn6a
https://paperpile.com/c/BhT5Xo/72h0+axDT
https://paperpile.com/c/BhT5Xo/FivQ


Introduction

particular bacterium to grow and thrive in the context of a
competitive environment, and those with drug-resistance
mutations that suffer a lower or even null fitness cost are
more likely to persist even in the absence of antibiotic
pressure. Compensation mechanisms have been described
in MTB, for example mutations in rpoC that arise to make up
for the loss of fitness that comes with rifampicin resistance
through rpoB mutations [30]. And finally, the genetic
background of the infecting strain is also relevant for both
the evolution of drug resistance, its levels and its associated
fitness cost [31], as there is evidence that some lineages like
Lineage 2 have a higher tendency to develop drug
resistance [32].

All these factors combined, we have been observing
a rise of drug-resistant tuberculosis in the last years. The
WHO has collected data and monitored the levels of
drug-resistant TB since 1994 and the last available report
shows a total of 450,000 DR-TB cases in 2021, out of a total
of 10.6 million new TB cases [14]. Just 3.6% of all new
cases were DR-TB in 2021, with 18% being previously
treated patients. However, in certain high-burden DR-TB
settings, acquisition of drug resistance is majoritarily due to
transmission and not treatment failure. DR-TB is most
prevalent in low- and middle-income countries, where
access to healthcare is more limited and diagnosis is often
delayed. In 2021, nearly 90% of the estimated DR-TB cases
occurred in these settings. Some of the highest proportions
of DR-TB cases are found in Russia, South Africa, Eastern
Europe or Central Asia. In many of these regions, treatment
success rates are alarmingly low when DR-TB strains are
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involved. This scenario shows that the intrinsic resistance of
Mycobacterium tuberculosis to numerous classes of
antibiotics, the increasing number of drug-resistant strains,
and the scarcity of newly-developed drugs are endangering
the success of controlling the disease in the coming years.

Genomics and drug resistance
detection in tuberculosis

With the advent of next-generation sequencing,
bacterial genomics research received an important boost in
terms of affordability, scale and resolution. Having access to
the complete genome meant we could associate genotypes
to clinically-relevant phenotypes like drug resistance.
Traditionally, accurate resistance detection has required
dedicated expertise and infrastructure. Drug susceptibility
testing (DST) is the standard diagnostic method, but it is
slow and can often delay adequate treatment when the
infecting strain is not susceptible. The most successful
commercial platform for this purpose is the Bactec MGIT
system [33], which can detect isoniazid and rifampicin
resistance, yet it can take up to 3 weeks to provide a result.
There are also molecular tests that help improve this
diagnostic gap, like the widely-known GeneXpert, a
standardized PCR-based method that can detect rifampicin
resistance from a clinical isolate in a cost-effective manner
that is very convenient in low-income settings [34,35]. Tests
like this, despite being fast, are very limited in the range of
variants that they can detect and thus lack flexibility, heavily
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relying on our previous knowledge of resistance-conferring
genotypes [36].

In this regard, whole-genome sequencing (WGS) has
seen increasing use as a tool to predict drug resistance in
tuberculosis, vastly improving our ability to provide an
accurate diagnosis in a short time window [37]. Having the
ability to correctly detect mutations that confer antibiotic
resistance is vital to avoid starting a patient in a suboptimal
therapy, and WGS can offer results in 48h with an adequate
setup. Illumina platforms that utilize short-read sequencing
technology have been established as the standard both in
research and in the clinic, although long-read technologies
such as PacBio and Nanopore are also gaining traction after
years of development [38]. TB whole-genome sequencing
routinely aims for at least ~60X of read depth and a ~98%
genome coverage, which is sufficient for most transmission
and drug resistance analyses. However, deep sequencing at
500X or even 1000X has proved to be useful for many
research applications, despite its higher cost preventing it
from reaching the clinic. Other types of sequencing
strategies to detect drug resistance in TB also exist, like
targeted sequencing in the form of amplicon panels that
cover a range of resistance-related genes [39,40]. This
approach is both faster and cheaper at the expense of
losing information of the rest of the genome, but in turn it
can achieve extremely high read depths. That is critical to
identify small fractions of a sample -bacterial
subpopulations- that have evolved to be drug-resistant
during the course of treatment under the selective pressure
of antibiotics, a phenomenon known as heteroresistance
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[41,42]. Both deep sequencing and amplicon sequencing
offer the chance to detect these resistant subpopulations
that may have evolved de novo during treatment or are
present in the sample due to polyclonal infections, which
appear to be more frequent in high-burden TB settings than
previously thought. Nonetheless, with the decreasing trend
in sequencing costs, achieving a higher read depth -and
resolution- in clinical settings may become a reality sooner
than we think, as detecting these two phenomenons is
imperative for a successful treatment outcome.

As we have already stated, MTB is a particularly
clonal organism that has no evidence of horizontal gene
transfer, so it is predominantly through single nucleotide
mutations (SNPs) and small insertions and deletions
(INDELs) that drug resistance is acquired [43]. This narrow
range of variability facilitates the interpretation of genomic
data, and as more MTB sequences started to be available,
researchers quickly noted a pattern by which some variants
appeared to always happen alongside the same phenotypes
[44]. This realization was the start of the genomic prediction
of drug resistance in tuberculosis and, succeeding this
finding, many studies started to associate WGS data to DST
results to infer causal relationships and test these variants in
the lab. After this, with the early small lists of
resistance-related variants, the first big study using genomic
sequencing to predict drug resistance in TB was published
in 2015 [45], and it accomplished both high sensitivity and
specificity values for isoniazid and rifampicin. Resistance to
other antibiotics, however, appeared to be more complex to
predict, pointing out that we were still missing many
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genomic resistance determinants. And so the need emerged
to start developing a robust, evidence-based catalog to
make accurate drug resistance predictions using WGS data.
Several databases and tools were developed, for example
PhyResSE [46], TBProfiler [47] or genTB [48], and eventually
large-scale consortiums like CRyPTIC or ReSeqTB were
established, gathering TB experts to build and analyze huge
global strain collections coupled with DST data. This proved
to be the optimal path in systematically identifying new
variants that confer antibiotic resistance in MTB.

Figure 1. Sensitivity and specificity for all drugs included in the
2021 WHO catalog for TB drug resistance diagnosis. Source:
Walker et al. 2021 [49].
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In 2021, these endeavors finally achieved the
milestone of publishing the first WHO-sponsored drug
resistance catalog for tuberculosis, which describes more
than 17,000 algorithm and manually-curated variants to
predict resistance to first-, second-line and new drugs [49].
It was built from the analysis of more than 38,000 samples
and achieved a pooled sensitivity of more than 80% for the
most widely-used antibiotics in TB (Figure 1). The catalog
strives to be the groundwork of whole-genome sequencing
as a reliable diagnostic tool for tuberculosis, and ongoing
updates are now focusing on improving geographical
representation of diverse strains, newer drugs like
bedaquiline, epistatic interactions and recently-described
mechanisms like drug tolerance. Antibiotic resistance
diagnosis through genomics is a reality that seems closer
each day and will allow us to offer real-time personalized
care to every TB patient.

Tuberculosis comorbidities and TB-HIV
coinfection

Comorbidities associated with TB are conditions that
occur alongside the TB infection, and can complicate
treatment, cause poorer outcomes, or increase the risk of
death [50]. The most common comorbidities associated with
TB include HIV, diabetes, cardiovascular disease, mental
health conditions, and substance use disorders. HIV is the
most frequent comorbidity, and is associated with more
severe TB, more frequent and longer-lasting symptoms, and
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decreased treatment success. Diabetes is another common
comorbidity for TB, and it is associated with an increased
risk of TB infection and lower treatment success rates.
Cardiovascular disease is also associated with an increased
risk of TB infection and poorer treatment outcomes. In
addition, mental health conditions or substance use
disorders can impact the management of TB, as they can
lead to poor adherence to treatment, and they can also
worsen the physical symptoms of TB, making them harder
to manage.

HIV is however the most common comorbidity
associated with TB and also a major risk factor for infection,
with people living with HIV being up to 20 times more likely
to develop TB than those without HIV [51]. The clinical
outcomes of TB-HIV coinfection are worsened due to the
presence of HIV, as several studies have observed that with
HIV patients have a higher risk of TB mortality and
drug-resistant TB than those without HIV, although the
mechanisms by which this occurs are poorly understood
[52]. The observation is that HIV patients develop TB with a
subclinical manifestation, have lower bacterial loads, but
usually progress faster than non-coinfected patients. Some
argue that it is probably due to HIV-associated
immunosuppression, which reduces the body’s ability to
fight off TB. Also, it has been shown that drug bioavailability
is different in HIV patients due to them not forming
granulomas as in regular TB infection. Finally, there is
evidence to suggest that HIV-associated stigma and
discrimination may also contribute to poorer clinical
outcomes of TB-HIV coinfection [52]. But perhaps the key
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factor is our lack of understanding of the pathogen-host
interactions that drive the development and reactivation of
TB in immunosuppressed individuals, with lots of work still
to be done in this regard.
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OBJECTIVES OF THIS
DISSERTATION

The challenge of eradicating DR-TB requires a
comprehensive approach and thus the World Health
Organization has identified a series of urgent problems to
tackle in the End TB Strategy. These include the accurate
detection of drug resistance, improved diagnostic
techniques, a robust control of the transmission of resistant
strains or the evaluation of comorbidities like HIV in the
acquisition and spread of resistance. This dissertation
revolves around the use of bacterial genomics as a tool to
study different aspects of MTB biology and undertake the
former challenges. Each chapter constitutes a step forward
in the eradication of DR-TB in accordance with the following
objectives:

1. Characterize the genomic architecture and
determinants of drug resistance in Mycobacterium
tuberculosis. This objective corresponds with Chapter 1, in
which we use functional genomics and phylogenetic
association to unravel the architecture of isoniazid
resistance, expanding the current knowledge of this
antibiotic’s mechanism of action and providing evidence of
new genes and pathways involved in low-level resistance.

2. Improve diagnosis and treatment of DR-TB in
high-burden settings. This objective corresponds with
Chapter 2, in which we explore MTB diversity in the site of
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infection using lung surgical samples from MDR and XDR-TB
patients and discover a high rate of polyclonal infections.
Different strains involved in these types of infection often
have different drug resistance profiles, and we highlight how
access to accurate and timely diagnosis of DR-TB is
essential for successful treatment in Georgia, a high-burden
DR-TB setting.

3. Evaluate the impact of TB-HIV coinfection in drug
resistance evolution. This objective corresponds with
Chapter 3, in which we delve into how HIV affects the
antibiotic selective forces that shape MTB subpopulations
during early treatment. We used deep-sequencing in two
cohorts from Mozambique, both a high-burden TB and HIV
country, to study the dynamics of early drug resistance
acquisition. Results show how HIV impacts the rate at which
TB subpopulations are eliminated and how we can link
low-frequency variants to MIC shifts that can end up
developing high-level drug resistance and eventual
treatment failure.

In the following chapters, we will approach the study
of DR-TB from both the bacterial and the host’s point of view
using functional and evolutionary genomics and providing
valuable insights about its biology that will help us advance
in the global control of this epidemic.
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Chapter 1

Chapter summary

Efforts to eradicate tuberculosis are hampered by the
rise and spread of antibiotic resistance. Several large-scale
projects have aimed to specifically link clinical mutations to
resistance phenotypes, but they were limited in both their
explanatory and predictive powers. Here, we combine
functional genomics and phylogenetic associations using
clinical strain genomes to decipher the architecture of
isoniazid resistance and search for new resistance
determinants. This approach has allowed us to confirm the
main target route of the antibiotic, determine the clinical
relevance of redox metabolism as an isoniazid resistance
mechanism and identify novel candidate genes harboring
resistance mutations in strains with previously unexplained
isoniazid resistance. This approach can be useful for
characterizing how the tuberculosis bacilli acquire resistance
to new antibiotics and how to forestall them.
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INTRODUCTION

In 2018, an estimated 484,000 people contracted
drug-resistant tuberculosis and a further 214,000 people
died from it [53]. Resistance to antitubercular drugs has
been present ever since their introduction decades ago but
it is now becoming a pressing problem as it hampers our
ability to control and eradicate the disease. Drug-resistant
tuberculosis requires longer treatments, has lower cure rates
and spreads in the population, particularly in high-burden
countries [53]. Licensing new antibiotics is not a definitive
solution as the bacteria can develop resistance to those
antibiotics as well [54,55]. A new approach is needed in
which a thorough understanding of the evolutionary forces
shaping resistance helps us understand how it is acquired
and how it can be reversed.

Most of what we know of tuberculosis drug
resistance comes from genetic association studies in which
a particular mutation is associated with a specific resistance
phenotype [56]. We now have large databases of diagnostic
mutations with which we can reliably predict the resistance
phenotype of our strain when we determine its genomic
sequence [57]. For instance, we can detect rifampicin
resistance with a 92% sensitivity, but the figure drops to
87% for isoniazid and 58% for ethambutol [58]. However,
there is still a knowledge gap as the catalog of mutations is
incomplete and we do not know most of the
resistance-causing mutations and mechanisms for some
antibiotics. To close this gap, there are a series of ongoing
efforts by consortiums like ReSeqTB and CRyPTIC where
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tens of thousands of isolates are being phenotyped and
genotyped in order to obtain a comprehensive mutation
database with the overarching aim to develop new
diagnostic assays with maximum specificity and sensitivity.
However, we still need more than mutation databases to
effectively combat drug resistance. Firstly, it is impossible to
predict the phenotype for a mutation never seen before. For
this reason, it is very difficult to accurately predict resistance
to newly-licensed antibiotics. Additionally, an approach that
prioritizes diagnostic mutations generally provides very little
information on other mutations that contribute to the
resistant phenotype but are normally overlooked because
their clinical effect is small or they are in genes not known to
be associated with resistance. Finally, we need extensive
insight on the genetic architecture of resistance, and
especially on any changes that can increase sensitivity to
the antibiotic. This is important as this information could be
used to find companion drugs that potentiate the action of
antibiotics or that prevent or even reverse resistance [59].

One way to unveil the genetic basis of resistance is
by means of functional genomics, like transposon
mutagenesis approaches. This technique involves the
genetic alteration of every gene in the genome for explicit
genotype-phenotype associations [60,61], thus revealing
more genetic determinants than regular association studies
do. This approach successfully overcomes the shortcomings
of genetic association studies: it can be used in a
prospective way, as it involves the systematic generation
and testing of resistant mutants; it can detect both genes
with large and small effects on resistance; and it explicitly

52

https://paperpile.com/c/BhT5Xo/yOwz
https://paperpile.com/c/BhT5Xo/IZRX+UxzE


Chapter 1

detects genes that increase sensitivity when disrupted, thus
indicating which genes are most promising for treatments to
prevent or reverse the evolution of resistance. However,
transposon mutagenesis alters the gene by disrupting it,
highly informative about the biology of resistance but limited
in clinical explanation potential as most types of mutations
found in clinical resistance of M. tuberculosis are single
nucleotide polymorphisms. Conversely, the low diversity of
the MTBC, its clonality and the fact that clinical resistance is
encoded in the chromosome makes Mycobacterium
tuberculosis amenable for phylogenetic association tests
[62], which can determine which mutations are associated
with resistance in the bacterial phylogeny and are thus
clinically relevant.

In this chapter, we provide a synergistic approach
that uses functional genomics and phylogenetic inference
from clinical data to provide an in-depth picture of
resistance to the first-line antibiotic isoniazid. Isoniazid is a
well-studied drug, yet we are still unable to determine the
causal mutation in around 6% of resistant strains [62],
although some researchers have reported up to 25% in
certain settings [63]. Here, we systematically determine the
effect on isoniazid resistance of every non-essential gene in
the tuberculosis genome using transposon sequencing and
afterwards we use clinical data to find out which of those
genes are more likely to harbor resistance mutations. We
successfully find novel regions associated with increased
resistance in vitro, determine two major resistance pathways
for the mode of action of the antibiotic and identify novel
associated regions to clinical resistance not described
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before. We believe this approach will help uncover the
resistance determinants for poorly-studied antibiotics, as
well as deepen our understanding of resistance emergence,
spread and evolution.
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METHODS

Strains, media and culture conditions

We used Mycobacterium tuberculosis strain H37Rv,
kindly supplied by Darío García de Viedma. Bacteria were
cultured at 37ºC in Middlebrook 7H9 supplemented with
10% ADC (both from BD) and 0.05% Tween 80 (Difco) for
liquid cultures and in Middlebrook 7H10 supplemented with
10% OADC (both from BD) for solid cultures. All experiments
were conducted in a BSL3 laboratory using a biosafety
cabinet.

Mutant pool generation and selection
experiment

We generated a mutant pool using the protocol by
Long et al [60]. Briefly, we harvested 100 mL Mycobacterium
tuberculosis H37Rv culture and washed twice with MP
buffer to remove the Tween. We then transduced the
bacteria with 1011 pfu phiMycomarT7 for 20 hours in a total
volume of 10 mL. Afterwards, we pelleted the cells and
washed away excess phage twice with PBS-Tween 80.
Finally, we plated the transduced bacteria in three 25x25
square plates (Corning) containing Middlebrook 7H10 media
supplemented with OADC, 0.05% Tween 80 and 20 ug/mL
kanamycin (Panreac). After three weeks, mutant bacteria
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were scraped from the agar, homogenized in liquid media
and stored at -80ºC. For each experiment, we used a starter
culture of the pool at OD 0.8 - 1.0 to inoculate two 100-mL
roller bottles in parallel with approximately 10⁷ bacteria each.
One of the bottles contained either 0.18 or 0.20 ug/mL
isoniazid (Panreac) while the other contained just plain
media and served as a control. We allowed the bacteria to
grow for about 13 generations and stored final populations
at -80ºC.

DNA extraction

Mycobacterial cultures were pelleted by
centrifugation and resuspended in 500 μL TE buffer.
Following inactivation by heat at 80ºC for 1 hour, lysozyme
(50 μL of a 10 mg/mL stock) was added and samples were
incubated overnight at 37ºC. Then 50 μL of proteinase K (10
mg/mL stock solution) were added, incubating for 1 h at
60°C with shaking in a thermomixer. After this, 100 μL 5 M
NaCl and 100 μL 10% CTAB were mixed by inverting,
samples were frozen for 15 min at −80°C and re-incubated
at 60°C for 15 min with shaking. Once cooled, 700 μL
chloroform–isoamyl alcohol (24:1) were mixed in, yielding a
white, homogenous solution. Samples were centrifuged,
transferred into 700 μL cold isopropanol and left at -20ºC
overnight. Then, they were pelleted and washed with 70%
ethanol and dried in a speed vacuum concentrator for 10
min. Finally, DNA was resuspended in 50 μL TE and its
concentration was determined with a QuBit 3.0 Fluorometer
(Thermo Fisher Scientific). Also, the amount of
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contaminating phage DNA was estimated by PCR to ensure
it was low and would not affect sequencing results.

Library preparation and sequencing

We followed the protocol described by Long et al [60]
with some modifications. After extraction, samples were
quantified using a QuBit 3.0 Fluorometer (Thermo Fisher
Scientific). Then, 50 µl of each DNA sample were transferred
to Covaris tubes, centrifuged and fragmented to an
approximate size of 550 bp using standard settings (Illumina
TruSeq Library Prep Reference Guide). Samples were
size-selected using NucleoMag NGS Clean-up and Size
Select (Macherey-Nagel) to 50 uL final volume. The DNA
end-repair was performed using NEBNext End Repair
Module (New England BioLabs), and dA-tailing was
achieved with NEBNext dA-tailing Module (New England
BioLabs), both as per the manufacturer’s instructions. Next,
a stock of barcoded adapters was prepared by mixing 20 µl
of 50 μM oligonucleotides (detailed in Supplementary Table
1) in a final concentration of 2 μM MgCl2, heating to 93ºC for
10 min and reducing the temperature by 3ºC/cycle over 2
hours until reaching 20ºC. These double-stranded adapters
were then ligated to the purified dA-tailed DNA using T4
DNA ligase from NEBNext Quick Ligation Module (New
England BioLabs).

After another purification step, we performed a PCR
to selectively amplify the transposon-chromosomal junctions
using a pair of primers specific to the end of the transposon

57

https://paperpile.com/c/BhT5Xo/IZRX


Chapter 1

and ligated adapter (Supplementary Table 1) with the
following parameters: initial denaturation at 98ºC for 5 min,
twenty cycles of denaturation at 98ºC for 20 sec, annealing
at 65ºC for 15 sec and extension at 72ºC for 30 sec, with a
final extension at 72ºC for 3 min. We size-selected ~500bp
products using magnetics beads, and a standard 8-cycle
indexing PCR introduced the Illumina indexes required for
sequencing. Final libraries were validated on a Bioanalyzer
DNA chip (Agilent Technologies) to verify size and then
quantified again using Qubit. Libraries were sequenced on
the Illumina NextSeq 550 platform using the High Output v2
kit (150 cycles), producing an average of 35 million raw
paired reads per sample with a good quality distribution.

Bioinformatic analysis

Quality control of sequencing files was performed
using FASTQC, after which they underwent quality trimming
by PRINSEQ. The selected criteria for keeping sequences
was a mean Phred quality score of 20 in a 20 bp sliding
window. Next we processed the cleaned sequences by
means of a custom Python script that served two purposes:
for every read pair, it first scanned the beginning of the
forward read looking for a ‘TGTTA’ motif that marked the
start of the transposon insertion and cut the sequence at the
TA site; second, it looked for the random barcode in the
reverse read, cut it from the sequence, and appended it to
the header as a comment if it passed a structure check.

58



Chapter 1

We then mapped the reads to the M. tuberculosis
H37Rv reference genome (NC_000962.3) using BWA with
default parameters but keeping header comments in the
resulting SAM files. It was important to detect PCR
duplicates and remove them to correctly estimate the
proportion of each mutant in the original pool. This step was
again performed by a custom Python script that used the
barcode, strand, mapping coordinate and fragment length
information to define unique reads. After removing PCR
duplicates, the insertion count final list for each sample was
generated, with coordinates determined by the mapping
point of the ‘TA’ site. At this point we were able to determine
a ~78% insertion density and thus the high quality of our
mutant pool.

We developed our own pipeline to analyze the
Tn-seq data. Our idea was to determine which genes
consistently alter isoniazid resistance and current
approaches work better when the size of the effect is large.
First, we normalized insertion counts by 40% trimmed mean
and generated a T0 library that was sampled 1000 times to
obtain z-scores that represented the standardized deviation
of each site from its expected insertion count. We also
generated two new libraries, R1 and R2, by subtracting
z-scores from controls to their treatment’s counterparts. A
sliding window analysis was designed to evaluate the
significance of inserted genomic features with the aim of
detecting zones with equally consistent insertion changes.
Each window containing between 6 and 10 ‘TA’ sites
underwent a Wilcoxon test that determined if the region was
inserted more or less than expected by chance. We only
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considered windows that fell within the limits of annotated
genomic features and eliminated the ones that spanned
more than one. In terms of fitness, a window above the
expected insertion level was defined as an increased
resistance window, and one below the expected insertion
level was considered an increased sensitivity window. A
multitest correction was applied to all p-values after the
analysis, obtaining a final q-value for each window. Then we
established a call for each ‘TA’ site by judging the windows
in which it appeared. If half of its windows got a significant
call, that call was applied to the ‘TA’ site, otherwise it was
left as non-significant. Non-inserted ‘TA’ sites in the T0
libraries were not called and were annotated as ‘not
evaluated’. Finally, ‘TA’ sites were assigned to genomic
features to give these a call. Features containing at least
70% of a certain significant call were given that same call if
their median z-score was either positive or negative and
their ranking among all features was above or below 50%
respectively. We selected all significant calls from either of
the two concentrations tested and a final call for each gene
and intergenic region was obtained following this pipeline.
Scripts necessary to perform the analyses are available at
https://gitlab.com/tbgenomicsunit.

To determine how reproducible our results were, we
compared them with published data from Xu et al [64] and
we found approximately five times more resistance-altering
features than they did, suggesting that our results might
provide a more detailed picture of the genetic architecture of
isoniazid resistance. This is probably due to a combination
of stronger selective conditions, an increased number of
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inserted sites and the fact that our analytical method tests
for consistency independently of the size of the effect.
Coincidence between our and their sets of
resistance-altering genes was significantly higher than
expected (chi-squared test, chi = 297.28, p-value < 0.0001),
with particularly strong association in the direction of the
effect (Supplementary Figure 1A). Finally, we checked if an
effect in the same direction was found for all our
resistance-altering regions even if it was not significant.
Indeed, our resistance-increasing features had significantly
higher resistance than non-significant ones (Wilcoxon test, z
= 8.93, p-value < 0.0001), while sensitivity-increasing
features showed lower resistance (Wilcoxon test, z = 11.54,
p-value < 0.0001; Supplementary Figure 1B).

Clinical dataset phylogeny and ancestral
state reconstruction

A 4,763-strain dataset consisting of different
worldwide clinical isolates was constructed from publicly
available databases. We downloaded all FASTQ files from
NCBI using their fastq-dump tool, mapped them to a
predicted M. tuberculosis ancestor reference and called
SNPs using VarScan 2. An alignment of all homozygous
variable positions among isolates was generated and a
phylogenetic tree was constructed using FastTree 2.1.

We then proceeded to reconstruct the ancestral state
of every polymorphism using PAUP 4.0a158 with a custom
weight matrix that punished reversions with a 10X multiplier
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(see Supplementary Text 1 for the assumptions block
including this matrix). As we had more positions than the
program could compute at a time, we had to split the
alignment into four 60K-SNP pieces before building the
NEXUS files as input for the program. We obtained a list of
changes associated with the tree’s nodes and this output
was parsed using a custom Python script, yielding a
summary table of changes that was further processed to
add more information about each change. The final table
contains for each SNP event the tree node in which it
occurs, associated genomic feature, translational impact,
homoplasy and antibiotic resistance details.

Phylogenetic association test

We used R to perform an association test linking
particular SNPs occurring in clinical settings to antibiotic
resistance. We began by defining susceptible and resistant
tree branches according to the absence or presence,
respectively, of an antibiotic-resistance associated mutation
from a high-confidence resistance mutations list based on
PhyResSE [46] and ReSeqTB. Along with isoniazid we
considered all first-line antibiotics, because although
isoniazid resistance tends to appear first [65], resistance
mutations are not always detected. Furthermore, resistant
strains can accumulate non-specific or low-level rare
mutations and we are also interested in those mutations. In
any case, we repeated the analysis only with isoniazid
resistance mutations and the results were very similar. After
we determined “resistant” and “sensitive” subtrees of the
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phylogeny, we eliminated all diagnostic mutations and
calculated the number of all mutations, non-synonymous
mutations and homoplasies for each genomic feature in
resistant subtrees. We then determined the expected
number of mutations in each category by resampling the
assigned branch for each mutation 10,000 times and
recalculating the numbers for each category. We determined
that one particular genomic feature was phylogenetically
associated with resistance if it ranked higher than 9,500 of
the 10,000 samplings in any of the three categories.

We used the entire list of mutations for all first and
second-line antibiotics for several reasons: i) we expect
most strains resistant to other antibiotics to be resistant to
isoniazid as well since not all isoniazid resistance mutations
are known and resistance mutations in tuberculosis tend to
appear in a stepwise fashion with isoniazid resistance
mutations being one of the first; ii) even in the cases where
no proper isoniazid resistance mutation has occurred, other
low-level resistance mutations may have been acquired and
they are also relevant to the evolution of resistance; and iii)
as mutations that confer resistance to different antibiotics
are highly correlated due to the nature of the treatment, it is
very difficult to disentangle one from the other and it is
better to study resistance as a whole independently of the
specific antibiotic. All diagnostic mutations used to mark the
onset of resistance in the phylogeny were subsequently
eliminated from analysis.
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Resistance prediction in the clinical dataset

We used 444 isoniazid-resistant strains from the
Cryptic dataset [58]: 362 with typical isoniazid resistance
mutations and 82 without any known isoniazid resistance
mutations. We analyzed the raw sequence data using our
lab’s validated pipeline (available at
https://gitlab.com/tbgenomicsunit/ThePipeline) and
determined all the single nucleotide mutations above a 10%
frequency for each strain in the sample. We centered our
analysis on “rare” mutations (mutations appearing in only 1
to 3 strains) and all diagnostic resistance mutations were
excluded. We first determined the number of strains in each
group (resistant with typical mutations or resistant with no
clear mutations) that contained at least one mutation in any
of the candidate genes and then we compared this number
to the results we obtained using 1000 random subsets of
genes with the same number of features as our candidates
list (PE/PPE, phage and repetitive sequences excluded [66]).
The relative position of the sensitivity obtained with our
candidate list revealed how relevant those genes are to
clinical resistance. To build the ROC curve, we similarly
analyzed 188 randomly sampled pan-susceptible strains
from the CRypTIC consortium and added each gene
sequentially in descending order of specificity. When two
genes had the same specificity, the one with the highest
sensitivity took precedence.
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Candidates validation using BCG mutants

We selected 30 BCG Danish mutants (24 candidate
genes plus 6 controls) from the BCCM/ITM Mycobacteria
Collection, which were regrown and shipped in 7H11 solid
medium. Upon reception, bacteria were collected and
further amplified in 7H9 liquid medium to generate stocks for
MIC determination experiments. We set up 96-well microtiter
plates (using 7H9-OADC) with two-fold serial dilutions of
isoniazid, with concentrations ranging from 0.015 to 8 μg/mL
and leaving two wells without antibiotic to have a growth
control. BCG mutants were inoculated by rows, adding 104

bacteria per well, along with a wild-type BCG Danish strain
as internal control in each plate. After a 7-day incubation at
37ºC, 20 μL of 0.02% resazurin were added to each well,
and plates were allowed to incubate for 2 more days. At the
24h and 48h time points, resazurin color change was visually
assessed and a 50 μL aliquot was inactivated with 50 μL of
4% paraformaldehyde and placed in a black plate for
fluorescence reading. Resazurin reduction was assessed by
measuring fluorescence in a Tecan Infinite M Plex plate
reader, allowing for a precise estimation of IC50 and IC90
values. Briefly, we subtracted the negative controls and
re-calculated the fluorescence values as relatives to their
respective growth control. We determined the slope of the
steepest part of the inhibition curve and used that estimation
to determine the concentrations at which inhibition was
exactly 50% and 90% relative to the growth control.
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Statistics and Reproducibility

We performed all statistical analyses using R v3.3.3
and publicly available databases (cited in the main text). The
specific test performed in each case (Fisher’s exact test,
Wilcoxon test or custom) is indicated throughout the text.
The TnSeq selection experiment was performed twice and
the same pool was tested in two independent blocks, in
each block we seeded one control and one experimental
culture from the same starter culture. Depth of sequencing
for the TnSeq experiment was designed so that there would
be around 50 reads per insertion to ensure adequate
coverage of all insertion sites. Experimental cultures were
inoculated with 10 million bacteria, ensuring that on average
each insertion mutant would have 100 copies. We allowed
bacteria to grow for 13 generations because that is enough
to see differences in growth for the different mutants. We
compared with similar results from other groups and found
good agreement. We tested 24 insertion mutants for
candidate genes for confirmation, comparing them with 6
control mutants. Insertion mutants were tested in
randomized blocks and with a quality control strain.

All analyses can be reproduced using datasets and code
available at https://gitlab.com/tbgenomicsunit.
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RESULTS

Functional genomics allows for detection of
resistance-associated genomic regions

We generated a highly saturated M. tuberculosis
H37Rv pool with over 100,000 different transposon-insertion
mutants following the protocol by Long et al [60]. Using
transposon sequencing (TnSeq), we found 58,389 out of
74,603 possible insertion sites had at least one read,
meaning a saturation of 78%. For comparison, a systematic
study with 14 independent pools found saturations in the
range of 42% to 64% and a combined saturation of 84.3%
[67], meaning that our pool is highly saturated. Additionally,
as many as 43% of our non-inserted sites and only 0.03% of
our inserted sites were in regions described as essential in
that study. The pool also showed a 10-fold increase in the
frequency of bacteria resistant to isoniazid compared to the
original clone (Supplementary Figure 2A).
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Figure 2. Transposon sequencing detects changes in
response to isoniazid. a) Design of the experiment.
Parallel antibiotic-containing and antibiotic-free cultures
were inoculated with a saturated insertion mutant pool.
After ~13 generations, bacterial DNA was extracted and
sequenced to determine the relative abundance of each
mutant. b) Optical density of the different cultures
throughout the experiment. Graph shows that isoniazid
partially inhibits bacterial growth. c) Isoniazid-containing
cultures show strong enrichment of a fraction of
insertions indicating a selective advantage relative to the
bulk of the population, showing that those cultures
experienced higher levels of selection (blue = control, red
= isoniazid experiment).

The pool was tested in duplicate with a subinhibitory
dose of isoniazid close to the IC50 for 13 generations (Figure
2A). We expected this specific dose of isoniazid to provide
intermediate levels of selection and to maximize the number
of genomic features detected. Optical density
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measurements showed that isoniazid was partially inhibiting
bacterial growth (Figure 2B). In the presence of isoniazid the
proportion of isoniazid-resistant bacteria increased 100-fold
to 1000-fold, while control cultures showed no change
(Supplementary Figure 2B).

We determined the frequencies of the different
insertion mutants in all four experimental populations using
TnSeq. Isoniazid-treated populations had a higher
proportion of sites with null frequency and the top 100 sites
comprised a larger share of the total counts (Figure 2C). We
transformed the normalized data into standardized fitness
measurements, which can be directly compared between
populations. We defined resistance as the net change in
fitness in the presence of the antibiotic and calculated it as
the difference between fitness in the presence and absence
of the antibiotic for each insertion site (Supplementary Data
1). Insertion mutants for katG, the gene most frequently
involved in isoniazid resistance, were disproportionately
overrepresented in antibiotic-treated populations and thus
displayed very high resistance values. All these results show
that the selection step had the intended effect.

It is important to note that transposon libraries have
limitations as they only allow us to study the effect of gene
disruptions. This has two main consequences: i) we cannot
study essential genes because they cannot tolerate
insertion, and ii) we cannot observe the effect of more subtle
genetic changes such as single nucleotide mutations. To
overcome these limitations, we used two main approaches:
first, we used functional and pathway analysis to understand
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which portions of bacterial metabolism were involved in
isoniazid resistance and second, we used phylogenetic
association to determine which genes were accumulating
mutations in clinical settings.

We analyzed all insertion sites with an
annotation-aware sliding window approach to find changes
in resistance that were consistent over stretches of the
genome independent of the size of the effect. We detected a
total of 555 genes and intergenic regions that alter isoniazid
sensitivity when disrupted (resistance-altering genomic
features). Of those regions, 411 were associated with
increased resistance while 144 were associated with
increased sensitivity (resistance-increasing and
sensitivity-increasing features, respectively). Figure 3 depicts
these regions ordered by their fitness in the presence of the
antibiotic. Given that fitness in the presence of the antibiotic
is the primary driver of the resistance phenotype, we
observed resistance was split into two groups according to
whether the genes conferred increased sensitivity or
resistance when disrupted. Multiple features showed a
significant change in resistance, implying that they could, in
theory, confer clinically relevant resistance in vivo when
mutated. Features that could be tested but showed no
significant effect were considered non-associated features.
Our method did not allow us to test regions that had fewer
than 6 inserted TA sites, although not all of these regions
were essential. Intergenic regions tend to be small and often
harbor regulatory sequences for the genes they precede but
were massively overrepresented in non-evaluated features.
Thus, we can assume that intergenic regions preceding
candidate genes and with resistance scores that show the
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same sign as those in the gene are probably associated with
resistance. Using this approach, we found 126 additional
probable resistance-altering features, 82 of which were
associated with increased resistance (Figure 4A). Among
resistance-altering features we found several regions known
to be associated with clinical isoniazid resistance, such as
katG, ahpC and its promoter region, and fabG1 and its
promoter region [68]. Our results were also consistent with
similar data from Xu et al [64], further confirming that
resistance-altering features are associated with isoniazid
resistance.

Figure 3. Isoniazid resistance is associated with
multiple genomic regions. Median fitness in the
presence and absence of isoniazid and median
resistance for all resistance-altering genes, ordered in
decreasing fitness in the presence of the antibiotic (red =
increased resistance, blue = decreased resistance). Most
genes that increased resistance when disrupted also had
a higher fitness in the presence of the antibiotic.
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Figure 4. Genes associated with isoniazid resistance
follow definite functional patterns. a) Classification of
all genes and intergenic regions in the M. tuberculosis
genome according to the effect of insertions on
resistance. Essential genes were obtained from DeJesus
et al [67]. b) Genes associated with increased sensitivity
were enriched in cell envelope genes (n= 130), while
those associated with increased resistance were enriched
in energy metabolism genes (n = 329). c)
Oxidoreductases were even more enriched in the final
candidates than they were in the genes detected with
functional genomics (n = 57 and 459). d) Cell wall
biosynthesis genes were enriched in features associated
to resistance both functionally and phylogenetically to
resistance.

Genes associated with altered resistance
follow definite functional patterns

We noticed that resistance-altering features tended
to group together on the genome. One explanation for this
observation is that functionally related genes sometimes
cluster in operons, so they can be transcribed together. To
test this we obtained the H37Rv operon annotations from
BioCyc [69] and used a sampling approach, finding that
significant genes clustered in operons more than expected
by chance in 100,000 random samples (388 transcription
clusters versus at least 395 in the simulations, p-value <
10-5). Particularly, two large operons were nearly entirely
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comprised of resistance-altering features (Fisher’s exact
test, p-value < 0.01): nuo and mce1. This proves that these
features are not randomly distributed around the genome
but show at least some functional relatedness to one
another.

We further hypothesized that resistance depends on
specific cellular processes. To test this at the most general
level, we compared the relative shares of both versions of
the TubercuList functional categories [70,71] in the
resistance-altering features with their global shares (Figure
4B). We found that although all categories were represented,
resistance-increasing features were enriched in energy
metabolism (Fisher’s exact test, p-value = 0.0029),
intermediary metabolism and respiration (Fisher’s exact test,
p-value = 0.012) and virulence genes (Fisher’s exact test,
p-value = 0.017) while sensitivity-increasing features were
enriched in cell envelope (Fisher’s exact test, p-value =
0.0002), and cell wall and cell processes genes (Fisher’s
exact test, p-value = 0.00001).

To further understand the genetic architecture of
isoniazid resistance, we conducted a pathway enrichment
analysis using data from both KEGG [72] and BioCyc using
resampling. Results were consistent using both databases,
and revealed that pathways associated with the mycolic
acids and cell wall biosynthesis were significantly enriched
among sensitivity-increasing features (1000 samples,
p-value < 0.05). This result is not surprising given that
isoniazid interferes with the biosynthesis of mycolic acids,
one of the main components of the bacterial envelope,
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although the main mycolate biosynthesis pathway itself was
not significantly enriched (p-value = 0.09). Finally, we
collated a dataset with all cell wall biosynthesis genes from
published sources [73] and confirmed that
sensitivity-increasing features were enriched in those genes
(Fisher’s exact test, p-value = 0.0001).

Resistance-increasing features were enriched as well
(Fisher’s exact test, p-value = 0.0069), but that depended
mainly on the mce1 operon as shown in Figure 4D. In
contrast, sensitivity-increasing genes can be found all over
the cell wall biosynthesis pathway, which demonstrates the
central role of the cell envelope in intrinsic resistance and in
isoniazid resistance in particular.

Among resistance-increasing genes, oxidative
metabolism was enriched as well (p-value < 0.001) with the
electron transport chain as the most enriched pathway
overall (p-value < 0.001). Additionally, nicotinate and
nicotinamide metabolism was enriched for both
resistance-increasing and sensitivity-increasing genes
(p-value < 0.02), suggesting that NADH metabolism might
be of importance. To ensure that the enrichment in oxidative
metabolism pathways did not depend entirely on the nuo
operon, we mined the genomic annotation for H37Rv from
the NCBI using the terms: oxidoreductase, oxidase,
reductase, redox, peroxidase, dehydrogenase, NAD, NADH,
NADP, NADPH, and we flagged any feature that contained
any of those terms in their name or function description as
redox-associated. We found that resistance-increasing
genes were significantly enriched in oxidative metabolism
genes (Fisher’s exact test, p-value = 0.03; Figure 4C). All
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these observations point to redox metabolism having a role
in isoniazid resistance.

A phylogenetic association test identifies
candidate regions associated with clinical
resistance

So far, we have successfully linked
resistance-altering features to isoniazid resistance at an in
vitro and functional level, but we still do not know what their
importance in a clinical setting is. We used a phylogenetic
test to identify regions associated with resistance in clinical
strains. We first set out to obtain a phylogeny that
encompassed tuberculosis strain variability using 4,762
globally-distributed, published M. tuberculosis complex
genomes with around 240,000 polymorphic sites
(Supplementary Figure 3). The dataset included 32% of
strains resistant to at least one drug. We reconstructed the
evolutionary history for each variable site inferring how many
substitution events had occurred and where in the
phylogeny they had taken place. Finally, we sought to
determine which regions in the whole genome are more
strongly associated with resistance by calculating the PhyC
parameter [74] which acts as an association test and
measures the degree of mutation accumulation for a
particular gene in predetermined branches of the phylogeny.
We first determined in which specific branches an antibiotic
resistance mutation had occurred using a comprehensive list
of resistance mutations based on PhyResSE [46] and
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ReSeqTB. We then tested which mutations tend to appear in
resistant versus susceptible subtrees by random sampling.

We identified 511 regions significantly associated
with antibiotic resistance in the phylogeny (p-value < 0.05).
Most of the top scoring regions were already known
resistance genes for first- and second-line antibiotics, which
shows that there are still many unidentified resistance
mutations in those genes. Some other top scoring regions
are known to be associated with compensatory mutations
which were also expected to appear after resistance
mutations to compensate for their cost. Thus, phylogenetic
association does a good job in identifying genes known to
be relevant to antibiotic resistance.

Novel isoniazid resistance determinants
were identified by combining functional
genomics and phylogenetic association

We combined our functional data on isoniazid
resistance with phylogenetic convergence results to look for
isoniazid resistance candidate genes. Our reasoning was
that if resistance-altering regions from our TnSeq experiment
accumulated changes specifically in association with
resistance mutations then they would probably be involved
in the evolution of isoniazid resistance. We found 57
resistance-altering features that had more mutations
occuring in resistant subtrees than expected (Table 1). Four
of them were well known isoniazid resistance determinants
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or associated regions (katG, ahpC and its promoter region
and the promoter region of fabG1) which still showed
association even though diagnostic mutations had already
been removed, thus confirming that the catalog of mutations
conferring isoniazid resistance in those features is far from
complete. This finding is in agreement with the frequent
identification of unidentified, but rare, mutations in katG
associated with isoniazid resistance in different settings
[36,75].

Table 1: Candidate genes. For intergenic regions, the
neighboring gene most probable to be regulated by
the region is given. IR: increased resistance; IR*:
probable increased resistance; IS: increased
sensitivity; IS* probable increased sensitivity.

Rv number Call
Name or
associated

gene
Function

Rv0001 IR dnaA
chromosomal replication
initiator protein, regulates
chromosomal replication

Rv0010c IS Rv0010c conserved membrane protein

IG_Rv0020c_Rv0021c IR fhaA

conserved hypothetical
protein, thought to be
involved in signal
transduction

Rv0134 IR ephF

epoxide hydrolase, thought to
be involved in detoxification
reactions following oxidative

damage to lipids

IG_Rv0237_Rv0238 IS* Rv0238
transcriptional regulator,

tetR-family
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Rv0392c IR ndhA

membrane NADH
dehydrogenase, transfer of
electrons from NADH to the

respiratory chain

Rv0450c IR mmpL4

transmembrane transport
protein, thought to be
involved in fatty acid

transport

Rv0740 IR Rv0740
conserved hypothetical

protein

IG_Rv0767c_Rv0768 IR aldA
aldehyde dehydrogenase

NAD-dependent

Rv0994 IR moeA1
molybdopterin biosynthesis

protein

Rv1022 IS lpqU lipoprotein

Rv1053c IR Rv1053c hypothetical protein

Rv1086 IS Rv1086

short-chain Z-isoprenyl
diphosphate synthase,

catalyzes the first committed
step in the synthesis of

decaprenyl diphosphate, a
molecule which has a central
role in the biosynthesis of

most features of the
mycobacterial cell wall

Rv1194c IR Rv1194c
conserved hypothetical

protein

IG_Rv1364c_Rv1365c IR* Rv1364c
conserved hypothetical

protein

IG_Rv1482c_Rv1483 IS* fabG1

3-oxoacyl-[acyl-carrier
protein] reductase, involved in
the fatty acid biosynthesis

pathway (first reduction step,
mycolic acid biosynthesis).

Secondary isoniazid
resistance gene

Rv1504c IR Rv1504c
conserved hypothetical

protein
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Rv1512 IR epiA nucleotide-sugar epimerase

Rv1692 IR Rv1692 phosphatase

Rv1767 IR Rv1767
conserved hypothetical

protein

IG_Rv1773c_Rv1774 IR* Rv1773c transcriptional regulator

Rv1780 IR Rv1780
conserved hypothetical

protein

Rv1830 IR Rv1830
conserved hypothetical

protein

Rv1836c IS Rv1836c
conserved hypothetical

protein

IG_Rv1843c_Rv1844c IR* guaB1
inosine-5-monophosphate

dehydrogenase

IG_Rv1900c_Rv1901 IS* cinA
competence

damage-inducible protein A

Rv1905c IR aao D-amino acid oxidase

Rv1908c IR katG
catalase-peroxidase-peroxyni

tritase T, main isoniazid
resistance gene

Rv1928c IR Rv1928c
short-chain type

dehydrogenase/reductase

Rv2021c IR Rv2021c transcriptional regulator

IG_Rv2208_Rv2209 IR Rv2209 conserved membrane protein

Rv2214c IR ephD

short-chain type
dehydrogenase, thought to
be involved in detoxification
reactions following oxidative

damage to lipids.

Rv2333c IR stp

conserved membrane
transport protein, involved in
transport of drug across the

membrane (export)

Rv2386c IR mbtI
isochorismate synthase,
involved in mycobactin
siderophore construction
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IG_Rv2427A_Rv2428 IS* ahpC

alkyl hydroperoxide reductase
C protein, involved in

oxidative stress response and
secondary isoniazid
resistance gene

Rv2428 IS ahpC

alkyl hydroperoxide reductase
C protein, involved in

oxidative stress response and
secondary isoniazid
resistance gene

IG_Rv2560_Rv2561 IR Rv2561
conserved hypothetical

protein

IG_Rv2709_Rv2710 IR* sigB RNA polymerase sigma factor

Rv2710 IR sigB RNA polymerase sigma factor

Rv2886c IR Rv2886c resolvase

Rv2994 IS Rv2994
conserved membrane protein,
could be involved in efflux

system

Rv3154 IR nuoJ
NADH dehydrogenase I chain

J

IG_Rv3210c_Rv3211 IR rhlE
ATP-dependent RNA

helicase, has a
helix-destabilizing activity

IG_Rv3213c_Rv3214 IS* gpm2 phosphoglycerate mutase

Rv3229c IS desA3
linoleoyl-CoA desaturase,

thought to be involved in lipid
metabolism

IG_Rv3260c_Rv3261 IR fbiA F420 biosynthesis protein

Rv3268 IS Rv3268
conserved hypothetical

protein

Rv3272 IR Rv3272
conserved hypothetical

protein

Rv3278c IS Rv3278c conserved membrane protein

Rv3490 IR otsA
alpha,

alpha-trehalose-phosphate
synthase, involved in
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osmoregulatory trehalose
biosynthesis

Rv3501c IR yrbE4A
hypothetical membrane

protein

Rv3600c IS Rv3600c
conserved hypothetical

protein

Rv3777 IR Rv3777 oxidoreductase

Rv3788 IR Rv3788 hypothetical protein

Rv3789 IR Rv3789 conserved membrane protein

Rv3843c IR Rv3843c conserved membrane protein

Rv3908 IR mutT4
conserved hypothetical
protein, possible mutator

protein

These candidate resistance features are functionally
diverse, showing the different ways in which M. tuberculosis
can adapt to antibiotics (Table 1). Looking the genome
annotation, the probable mechanisms operating here include
increased efflux/decreased influx of the antibiotic (mmpL4,
stp), altered transcriptional regulation (sigB), mycolic acids
biosynthesis (fabG1), changes in NADH balance (ndhA, nuoJ
among others) and increased mutagenesis due to changes
in DNA repair (mutT4), among others. Some of the candidate
features have no known function, which means that our
strategy allows for discovery of new resistance determinants
even if they are poorly characterized.

Only one of the candidate regions (fabG1) was
involved in cell wall biosynthesis pathways but a further 16
out of the 95 genes in cell wall biosynthesis pathways
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showed phylogenetic association with resistance, which is a
significantly enriched fraction (Fisher’s exact test, p-value <
0.016; Figure 4C). We do not have functional data for some
of these regions as they are essential and cannot tolerate
insertion, but mutations in these genes probably also affect
isoniazid resistance as they are in the same pathway as the
antibiotic target itself and our transposon sequencing data
show that cell wall biosynthesis pathways are enriched in
genes functionally associated with isoniazid resistance.
These results highlight the importance of cell wall
biosynthesis in isoniazid action and resistance,
demonstrating that functional genomics is a powerful tool for
discovering important pathways or even determining the
mode of action.

We found that 8 out of 42 candidate genes were
associated with redox metabolism. This result was mainly
due to resistance-increasing genes, which accounted for 7
of the 8 redox genes and represented a significantly
enriched fraction (Fisher’s exact test, p-value = 0.024; Figure
4C). In contrast, genes phylogenetically associated with
resistance as a whole were not enriched in redox genes (44
out of 377 genes; Fisher’s exact test, p-value = 0.09).
Additionally, 3 of the 15 candidate intergenic regions are
next to the start of a redox gene. These results confirm that
redox metabolism plays a clinically relevant role in the
evolution of isoniazid resistance.

Finally, we demonstrated that the resistance
phenotype inferred from the transposon sequencing assay
was associated with the expected change in sensitivity by
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determining the MICs for a representative sample of the
candidate genes using the resazurin microdilution assay
(REMA). For this experiment, we used BCG Danish insertion
mutants from the BCCM/ITM Mycobacteria Collection. Our
results showed that mutants with insertions in
resistance-increasing features had higher MICs than
mutants with insertions in either sensitivity-increasing
(Wilcoxon test, p-value = 0.0346) or non-significant
(Wilcoxon test, p-value = 0.0202) features (Figure 5). The
result remained significant even when IC50s were used
(Wilcoxon test, p-value = 0.0036 and p-value = 0.0202
respectively).

Figure 5. Boxplots of IC50 (left) and IC90 (right) values for a
collection of candidate gene insertion mutants on a BCG
background.

84



Chapter 1

Novel isoniazid resistance determinants
explain resistance in phenotypically
resistant strains with no known mutation

Finally, we confirmed that mutations in candidate
genes are relevant to clinical resistance. We reasoned that if
our list of candidate genes plays a role in clinical resistance
we should detect an increment in the sensitivity values to
predict isoniazid resistance not explained by available
databases. We looked at a selected dataset of strains
obtained from the CRyPTIC consortium [58], enriched in
isoniazid-resistant strains with no known resistance
mutation (362 strains with known mutations, 82 with no
known mutation). We found that the sensitivity of candidate
genes was significantly greater than a random set of genes
both for strains with no known mutations (sensitivity = 0.59,
p-value = 0.019; Figure 6A) and for strains harboring
well-known resistance mutations (sensitivity = 0.46, p-value
= 0.027; Figure 6B). The result suggests that our list of
genes is indeed involved in isoniazid resistance in one way
or another. In both cases, any non-synonymous mutations in
known resistance genes were also included as candidates,
but they only contributed a small amount to the total
sensitivity. By including rare mutations in our candidate
genes list, we could increase global sensitivity from 93.1%
to 94.6%, or from 97.1% to 98.9% if we omit genotypes
with no clear prediction, further confirming that candidate
genes in our analysis are relevant to isoniazid clinical
resistance and could help explain uncommon resistant
phenotypes.
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Figure 6. Novel isoniazid resistance determinants
explain resistance in clinical strains. a) ROC curve for
the dataset of strains without known resistance
mutations. b) ROC curve for the dataset of strains with
known resistance mutations. The red portion of the curve
corresponds to candidate mutations in known resistance
genes. The black portion corresponds to candidate
mutations in novel drug resistance associated genes
found in this study.
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The resistance mechanisms involved seem to be
multiple and diverse. For instance, two of the genes with the
most mutations in resistant strains are dnaA and mutT4,
which are involved in DNA replication and may affect the
acquisition of resistance by increasing mutation rate or
indirect mechanisms such as decreasing expression levels
of katG [76]. Other interesting genes in the candidate set are
those encoding epoxide hydrolases (ephD and ephF), which
are involved in detoxification following oxidative damage to
lipids. Also, we find many putative candidate mutations in
genes involved in transport such as mmpL4 and stp which
can sometimes confer resistance to some antibiotics [77].
Finally, we find several genes with no known function that
are accumulating many non-synonymous mutations in
resistant strains. These results confirm that there are still
many unknown factors affecting the evolution of antibiotic
resistance in tuberculosis, even for a very well characterized
drug like isoniazid, and highlight the need for systematic
studies to uncover them.
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DISCUSSION

In this work we show how functional genomics
experiments have proven to be a very potent technique for
finding resistance determinants in M. tuberculosis, as they
allowed us to correctly identify five known isoniazid
resistance regions as well as discover many other candidate
resistance genes. Interestingly, out of these five previously
known regions only katG insertion mutants showed
increased isoniazid resistance, while mutants for the other
four regions had higher sensitivity instead. Thus,
sensitivity-increasing genes can also act as resistance
determinants depending on how mutations affect the protein
or its expression levels. One example would be the Rv2170
gene, which in our study increases sensitivity to isoniazid
and has been shown to confer resistance when its
expression is increased because it encodes an
acetyl-transferase that inactivates isoniazid [78]. Although
we could not find insertion mutants for target isoniazid gene
inhA due to its essentiality, non-essential genes in the
mycolic acids biosynthesis pathway were functionally more
associated with resistance than the rest of the genome,
showing that the target pathway can be identified even
when the target gene itself is essential. Functional genomics
also pointed to redox metabolism as a resistance
mechanism for isoniazid, confirming the usefulness of this
technique in highlighting resistance determinants not directly
tied to the drug’s mode of action and in helping complete
the resistance mutations catalog. Finally, combining
functional genomics with phylogenetic data allowed us to
pinpoint which regions and pathways were most important
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for resistance in clinical settings and to obtain a series of
candidate novel resistance determinants. This last step is
very important, it has been shown before that even the most
common clinical mutations to isoniazid are difficult to
recover in vitro [79]. Likewise, we find regions that have
been shown to affect resistance in vitro but are irrelevant in
vivo. For instance, the aforementioned Rv2170 has no
phylogenetic association with resistance according to our
results.

This chapter illustrates how functional genomics is a
powerful tool for detecting hundreds of genomic
determinants that can modify antibiotic resistance, but we
need a clinical readout to determine which of the genes have
real relevance to the evolution of antibiotic resistance and
the emergence of clinical resistance. Here, we have shown
how a systematic approach combining insertion mutants on
a genomic scale with phylogenetic association of clinical
mutations can reliably detect important resistance features,
uncover new resistance candidates and highlight relevant
pathways and potential cross-resistances, in this case those
most related to the mode of action for the first-line antibiotic
isoniazid. We also provide an example of how a thorough
understanding of the genetic architecture of isoniazid
resistance can help us to prevent its emergence. The
approach we describe can be used as a blueprint for
studying the genetics of resistance to other antibiotics or
describing lineage-specific differences, particularly to
provide much-needed knowledge regarding resistance to
new antibiotics.
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Genomic analyses of
Mycobacterium tuberculosis from
human lung resections reveal a high
frequency of polyclonal infections
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Chapter summary

Polyclonal infections occur when at least two
unrelated strains of the same pathogen are detected in an
individual. This has been linked to worse clinical outcomes
in tuberculosis, as undetected strains with different antibiotic
resistance profiles can lead to treatment failure. Here, we
examine the amount of polyclonal infections in sputum and
surgical resections from patients with tuberculosis in the
country of Georgia. For this purpose, we sequence and
analyze the genomes of Mycobacterium tuberculosis
isolated from the samples, acquired through an
observational clinical study (NCT02715271). Access to the
lung enhanced the detection of multiple strains (40% of
surgery cases) as opposed to just using a sputum sample
(0-5% in the general population). We show that polyclonal
infections often involve genetically distant strains and can be
associated with reversion of the patient’s drug susceptibility
profile over time. In addition, we find different patterns of
genetic diversity within lesions and across patients,
including mutational signatures known to be associated with
oxidative damage; this suggests that reactive oxygen
species may be acting as a selective pressure in the
granuloma environment. Our results support the idea that
the magnitude of polyclonal infections in high-burden
tuberculosis settings is underestimated when only testing
sputum samples.
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INTRODUCTION

How Mycobacterium tuberculosis evolves during the
infection and treatment of a patient and transmits is key to
understand phenomena like the spread of drug resistance.
So far, the diversity of the pathogen has been mostly
studied from sputum samples except for one study in the
context of HIV/TB co-infection [80]. However, individual
sputum samples may underestimate the true bacterial
diversity within the lung as they are likely limited to reveal
the coexistence of multiple M. tuberculosis strains in the
same patient. Generally, infections involving two or more
unrelated genotypes can be referred to as polyclonal (Figure
7). Polyclonal infections of Mycobacterium tuberculosis
complicate the diagnosis and treatment of tuberculosis,
particularly when the infecting strains differ in their antibiotic
susceptibility; which can lead to the total replacement of the
susceptibility profile during treatment or to heteroresistance
[81].

Polyclonal infections are also relevant to evaluate if
and how an initial TB infection protects from a second
infection. Recent experiments in macaques suggest that an
initial infection is highly protective against reinfection and
disease caused by the same M. tuberculosis strain [82].
However, whether the initial infection protects against
heterologous challenge with a different strain is unknown.
Until the advent of molecular epidemiology, the dominant
view was that primary TB episodes were due to endogenous
reactivation after years of latent infection. However,
progression to active disease occurs mainly in the first two
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years after infection [83], suggesting that many of the
episodes of TB following prolonged exposures are not due
to endogenous reactivation but to reinfection. Molecular
epidemiological studies also show that in high-burden
countries the rate of reinfection is higher than previously
recognized [84]. This is probably also true for
superinfections with strains resistant to the treatment being
used against the first infection.

The difficulty in identifying polyclonal infections is
particularly pronounced in high-burden MDR-TB countries.
Often, similar genotypes are responsible for a large
proportion of recent TB transmission, making it more difficult
to distinguish between these closely related strains when
they coexist in the same patient [85]. In addition, in the
context of drug resistance, patterns of within-host diversity
in sputum cultures may be biased towards drug-resistant
genotypes with high fitness. As a result, sputum-based
cultures may not reflect the true extent of the pathogen
diversity inside the patient lung. For obvious reasons,
studying M. tuberculosis directly from the lung is not usually
possible. There are however a few studies, some of them
based on post-mortem biopsies, which suggest that the
diversity of M. tuberculosis within the host is higher than
what can be detected in sputa [80,86]. In addition, bacterial
diversity within the lungs of TB patients may affect clinical
outcomes as TB drugs are known to differ in their capacity
to penetrate into the different types of lung lesions [87] or
into the variable immune microenvironments of individual
granulomas [88–90]. Therefore, the role of within-host
diversity in general and of polyclonal infections is pivotal to
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TB control as it has implications at many levels [91]. First,
effective treatment can be compromised [92]. Second,
public health interventions may need adjustments in settings
with high rates of exogenous reinfection [92]. And third, there
is a need to understand the role of M. tuberculosis strain
variation in the context of new vaccines and the factors
behind the limited success of the existing BCG vaccine
[93,94].

The country of Georgia has a yearly incidence of 80
TB cases per 100,000 population. Out of those, 14 are
MDR-TB cases (17.5%). Importantly, 12% among all new
cases are MDR-TB indicating that transmission plays an
important role in the epidemic of MDR-TB in Georgia [53,95].
Like in many countries of the former Soviet Union,
adjunctive surgical resections are sometimes performed in
patients not responding to treatment [96,97]. Utilizing these
resected lung tissue samples, we studied the diversity of M.
tuberculosis within different parts of cavitary lesions, and
compared it to the M. tuberculosis diversity seen in sputum
samples of the same patients. We achieved this using
culture-derived bulk sequencing of the bacteria and
detecting minority variants down to 3%.
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Figure 7. Theoretical scenarios for Mycobacterium
tuberculosis polyclonal infections. Blue represents healthy
patients and red represents infected patients. A) A transmission
event of two strains from an infected individual to another results
in two different genotypes being present in the same space or
sample. B) An infected patient on treatment clears infection and
gets infected again resulting in two different genotypes present
over time. C) An already infected patient gets superinfected with a
different genotype. The second genotype will either coexist with
the first one or replace it.
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In this work, we show a high frequency of polyclonal
infections and important differences between patients in
terms of genetic diversity in granulomatous lesions. Some of
these differences are driven by an increased mutational
supply mediated by host-derived Reactive Oxygen Species
(ROS). In most patients infected with multiple strains, these
strains differ in their drug resistance profiles. Furthermore,
the high genetic distance observed between two strains
infecting a given patient suggests an important role of strain
genetic diversity in establishing a polyclonal infection. Our
results represent a challenge for treatment and control of TB
in the setting and highlight a possible limitation of new
vaccines against TB.
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METHODS

Sampling

We included 275 TB patients in this study (257 with
diagnostic sputum and 18 with paired sputum and lung
tissue samples) with a total of 370 M. tuberculosis clinical
isolates from between January 9th 2013 and March 20th
2018 (see Figure 8 for details on the surgical cohort).
Sputum samples were collected according to standard
clinical practice. The surgical samples used in this study
were acquired within the framework of observational clinical
study NCT02715271, which is no longer recruiting, and
results are reporting on primary outcome #3. Consent to
publish clinical information potentially identifying individuals
was obtained. The main indication for lung surgery was the
persistence of abnormal lung lesions (predominantly
cavities) identified on chest X-ray (13/18), both in DS (3/13)
and MDR/XDR-TB (10/13), despite good treatment
adherence. Additional indications for surgery included
treatment failure (2.9%), complications of TB related to
pulmonary hemorrhage, spontaneous pneumothorax or
empyema [98]. Immediately after lung resection, samples
were removed from the following zone of obtention: cavity
center (C), cavity internal wall (I), cavity external wall (E),
visually healthy tissue around the cavity (H) and nodule (N),
placed in sterile tubes and sent to the National Center for
Tuberculosis and Lung Disease microbiological laboratory
for processing. In total we collected 219 single sputa, 38
pairs S1-S2 (serial sputa), 9 pairs C-S (caseum - sputum)
and 9 complete surgical sets (C, I, E, H, N, S).
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Figure 8. Details on the surgical cohort. A) Sampling sites for
the surgical cohort. B) Timeline of key events for the surgical
cohort. Treatment periods are depicted in red, sputum samples
dates in blue points and surgical samples dates in green points.
Starting case definition and treatment outcome are also
represented.
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Culture and drug susceptibility testing

Resected tissue samples were homogenized using
Minilys homogenizer, placed in both LJ and BACTEC 960
MGIT™ culture and processed as per manufacturer’s
instructions. Sputum samples were also cultured in both
media. All clinical isolates were confirmed for M.
tuberculosis complex (MTBC) using the standard
microbiological method [99,100]. All isolates underwent drug
susceptibility testing (DST) for first and second line drugs in
both solid (LJ) with increasing drug concentrations and
liquid media BBL® MGIT™, as recommended by the
manufacturer.

DNA extraction and sequencing

For both sputum and resected tissue cultures, after
reaching sufficient bacterial growth in LJ medium, plates
were thoroughly scraped to maximize diversity recovery for
bulk sequencing. DNA extraction was performed by
standardized protocol in the BSL-2+ laboratory from the AFB
positive culture. In short, bacteria were heated at 80°C for
20 min, centrifuged and resuspended in TE buffer [101].
Lysozyme, SDS and proteinase K were added in sequential
incubations. DNA was precipitated using chloroform-isoamyl
alcohol and isopropanol, and resuspended in TE buffer.
When there was no sufficient growth in LJ, the
CTAB/chloroform method was used for DNA extraction from
1mL of MGIT culture. The quality and quantity of DNA were
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analyzed with the help of spectrophotometers (Thermo
Scientific NanoDrop 2000 and Qubit 3.0). Extracted DNAs
were sent for whole genome sequencing to Broad Institute,
C-PATH, TGen North or Tuberculosis Genomics Unit
(IBV-CSIC). The average sequencing depth for this study
was 141X. The average sequencing depth for surgical
samples was 267X.

Bioinformatic analysis

Read preprocessing was done using fastp [102] to
scan reads and trim low-quality ends with a mean window
quality < 20. We then used Kraken [103] to taxonomically
classify reads by means of a custom database, only keeping
MTBC sequences to avoid false variants arising due to
contaminant DNA. Filtered reads were mapped with BWA
[104] to a predicted MTBC ancestor reference sequence
[105] using default parameters, and processed using
samtools [106] and Picard [107]. After that, we scanned for
optical and PCR duplicates to remove them, as this helps to
reduce the number of artifactual variants in low frequency
ranges. Variant calling for sputum samples was carried out
using the software and parameters from the calling module
of the pipeline validated for sputum sample cultures at the
IBV-CSIC (available at https://gitlab.com/tbgenomicsunit).

For a robust variant calling in surgical samples, we
used three different variant callers (VarScan2 [108], GATK’s
HaplotypeCaller [109], LoFreq [110]) and integrated SNPs
reported by at least two of them to get a high-confidence list
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of low-frequency variants. VarScan2 was run with
parameters ‘pileup2snp sample.pileup --min-coverage 20
--min-reads2 4 --min-avg-qual 20 --min-var-freq 0.01
--min-freq-for-hom 0.9 --strand-filter 1‘, GATK was run with
parameters ‘-T HaplotypeCaller -R ref.fasta -I sample.bam -o
sample.vcf --min-base-quality-score 20 -ploidy 1’ and
LoFreq was run with parameters ‘call-parallel --pp-threads
12 -f ref.fasta -o sample.vcf sample.bam’ and ‘filter -i
sample.vcf -v 20 -A 0.01 -Q 20 -o filtered.vcf’.

From the initial list of variants, we applied a mapping
filter that discarded variants which arose in repetitive
genomic regions like the PE/PPE families or phages [66]. To
establish a threshold that discarded additional false variants,
we performed a synthetic read simulation. Using the ART
software package [111], we got the quality distribution and
error profiles of our samples (using art_profiler_illumina with
default parameters), and simulated 100 sequencing runs
with the data (art_illumina -p -1 profile.txt -2 profile.txt -na
-iref.fasta -l 150 -f 1000 -m 280 -s 137 -o out.fas). By
analyzing simulations with the same pipeline, we defined a
~3% minimum frequency threshold to validate a variant in
surgery samples. In addition, we extended our mapping filter
to new regions that showed high-frequency SNPs in the
simulations and were due to systematic mapping errors to
the predicted ancestor, especially in Lineage 2 strains.
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Phylogenetic and population genetics
analyses

A maximum likelihood phylogeny of the 370 samples
in the dataset was constructed using IQ-TREE 2 [112] from
an alignment with gaps and no resistance SNP positions
(run parameters: ‘-m GTR -bb 1000’, meaning the use of a
general time reversible model with unequal rates and
unequal base frequencies, plus 1000 ultrafast bootstrap
replicates). Additionally, a NJ phylogeny was constructed
from the same alignment using MEGA [113] and
phylogenetic Hamming distances between pairs of samples
were extracted by parsing the branch lengths from the tree
using Python’s ete3 toolkit [114].

We parsed SNP files by means of a custom Python
script to obtain summary tables for each patient and a
general one collecting information about the different
numbers of fixed (fSNPs) and variable SNPs (vSNPs). All
figures illustrating diversity across sites by patient were
produced using R [115] and the ggplot2 package [116]. For
comparisons within a patient’s samples, we analyzed every
SNP in their samples and calculated the differences. This
was performed by means of an in-house Python script that
works with the SNP files for every patient, analyzing them
sequentially and establishing the population dynamic for
every variant based on their presence/absence and
frequency, obtaining stable, sporadic, ascending or
descending dynamics. The data was plotted using R and the
ggplot2 package as well. For multi-sample patients, PCAs
were produced with a matrix of SNP frequencies across all
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samples and the R’s affycoretools package using the
function ‘plotPCA’ for the first two principal components.
We also calculated the percentage of explained variation of
these two principal components using the ‘prcomp’
function.

Prediction of WGS-DST profiles and
comparison with culture DST

Using the SNPs obtained from the analysis of
genomic data, we performed an antibiotic resistance
prediction for every sample. For this, reliable catalogs of
resistance-associated variants were used, namely
PhyResSE [46] and ReSeqTB databases [117]. We also
considered as likely resistance variants any small INDEL
present in genes commonly associated with antibiotic
resistance. Once the predictions were obtained, we
systematically compared them to the available phenotypic
DST results to calculate matches and mismatches in the
surgery patients dataset. We then computed sensitivity and
specificity based on these coincidences and discrepancies.

Identification of polyclonal infections

Identification of polyclonal infections depends on the
distribution of the different genotypes among patients
samples (Figure 7). When two genotypes are in two samples
of the same patient, phylogenetic and genetic distances can
be used to differentiate them. This happens mostly in
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superinfection cases where one strain prevails over the
other. In contrast, when the different genotypes are in one
sample, as it happens when both genotypes coexist, then
deconvolution methods have to be applied to separate them
before calculating their genetic distance. Consequently, we
apply different methods to identify multiple strains
depending on the number of samples available from a
patient.

Identification of polyclonal infections in single
samples

Phylogenetic identification. We reasoned that a
single sample which shows evidence of two different
genotypes in the same isolate should have two
characteristics in a phylogeny. First, the sample should show
no terminal branch length. Terminal branch lengths represent
private fixed SNPs only present in the sample. When there is
polyclonal infection no private SNPs are seen as any SNP
not shared by the two genotypes will be at intermediate
frequencies. The second rule is that they should not be part
of a transmission cluster. It is known that transmission
clusters are enriched in strains that are zero SNPs apart from
other strains in the same cluster. Thus we required the
candidate polyclonal infection to be at least 20 SNP apart
from another sample in the dataset. We developed a Python
script able to analyze a phylogeny, extract branch lengths
using Python’s ete3 toolkit, calculate phylogenetic distances
between all samples, and identify terminal branches with 0
SNPs and more than 20 SNPs apart from any other isolate
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(Supplementary Figure 4). For this we generated a phylogeny
using a neighbor-joining approach and Hamming distance,
which represents branch length proportional to the absolute
number of observed differences. Given the low genetic
diversity of MTBC and that most positions are biallelic,
Hamming distances reconstruct reasonably well the overall
phylogeny with respect to maximum likelihood and it is
easier to parse. To show the accuracy and the limit of
detection of our approach we also generated in-silico mixes
of strains with increasing genetic distance between the pairs
selected (5, 10, 15, 20, 25 SNP) and added them to our
phylogeny to test the script.

Lineage markers identification. To test
coexistence of two strains in one sample, we checked the
appearance of any phylogenetic markers using a database
from the literature [118,119] by means of a custom Python
script. For samples that showed evidence of more than one
marker from different MTBC lineages at significant frequency
(>5%), a polyclonal infection was called by this method and
the estimated proportion of the involved genotypes was
defined by the approximate frequencies of their markers.

Deconvolution of individual genotypes. For those
cases in which we observed a polyclonal infection in just
one sample by either the phylogenetic or lineage markers
method, we established the proportions of the two strains in
the sample and deconvoluted both the individual genotypes
if their difference was big enough (eg. 80/20 proportions,
obtained by phylogenetic markers). By clustering the
frequencies of all variants matching the phylogenetic

108

https://paperpile.com/c/BhT5Xo/QHhx+Radv


Chapter 2

markers frequencies and assigning them to its
corresponding genotype, we could isolate both and
calculate their genetic distance. For this we developed an
in-house Python script that uses a phylogenetic marker
database from the literature [118,119] and takes the SNP file
from the sputum sample to perform the detection and
separation of both strains, computing their genetic distance
solely based on the number of differences.

Identification of polyclonal infections in multiple
samples

Phylogeny manual inspection. To identify
polyclonal infections happening in two different samples
from the same patient, we manually analyzed the phylogeny
looking for isolates of the same patient that sit in different
parts of the phylogeny. In addition, we recorded if samples
were placed close enough to other patients' samples in the
phylogeny to suggest a recent reinfection event involving
those two patients.

Analysis of frequency spectra differences. To
make the detection process systematic for those cases
where we had at least two samples (eg. sputum1-sputum2
or sputum-caseum), we developed Python and R scripts to
perform pairwise comparisons using SNP frequency
differences obtained from the sample’s genomic data,
generating differences profiles that were plotted using the
ggplot2 package. We generated simple XY plots in which
every point is a single variant determined by the frequencies
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in each of the samples involved in the comparison, and
calculated R2 as a measure of correlation (Supplementary
Figure 5). Polyclonal infections were almost always
associated with low values of this index, except in cases
where they were very subtle. We then proceeded to expand
on the analysis generating a density graph that plots the
distribution of SNP differences between the profiles. That is,
in which range of frequencies is the comparison more
enriched. This procedure allowed us to better define clonal
infections when the enriched range was at the very low
frequencies, and polyclonal infections when it was in the
intermediate variable frequencies or at high fixed
frequencies (Supplementary Figure 6).
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RESULTS

A high frequency of polyclonal infections in
MDR-TB patients from Georgia

A total of 370 M. tuberculosis cultured isolates from
275 patients were included in this study (Figure 9A). Lung
surgical samples from 18 patients were also available. For 9
patients, two samples were analyzed from sputum and
caseum, respectively, and for 9 others, we analyzed multiple
samples from cavitary granulomatous lesions, samples from
remote tubercular foci, and visually healthy lung tissue
surrounding the cavity. In addition, for 38 patients, we
analyzed two consecutive cultures from sputum samples. In
terms of drug resistance profiles, patient samples were 16%
pan-susceptible (44), 2% mono-resistant (3 mono-INH, 2
mono-SM, 1 mono-EMB), 2% poly-resistant (5), 41% MDR
(112), 24% pre-XDR (66) and 15% XDR (42).
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Figure 9. Phylogenetic diversity in Georgia and identification of
polyclonal infections. A) Phylogeny of all Georgian M.
tuberculosis isolates included in this study (L2 in blue, L4 in red).
Surgery patients are highlighted in different colors. Drug resistance
profiles are illustrated in the inner band (see legend) and
transmission clusters represented on the outer band were
estimated using a 10 SNP phylogenetic distance threshold.
Branch lengths and bootstrap values not represented. B) Curves
connecting patient samples located in distant places of the
phylogeny, suggesting polyclonal infections.
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In regards to the sputum and lung tissue M.
tuberculosis clinical isolates from patients undergoing
adjunctive surgical resection, a genome-based phylogeny of
all bulk-sequenced cultures revealed that for seven out of
eighteen cases, samples from the same patient did not
cluster together (Figure 9B). This strongly suggested the
presence of polyclonal infections. Patients harboring
different strains in different samples become evident when
considering pairwise genetic distances between these
strains. It has been suggested that >10 SNPs between
isolates of the same patient are unlikely to emerge by clonal
diversification from a single M. tuberculosis genotype [120].
For all seven patients in which the isolates did not cluster
together, the distance between the genotypes was much
higher than 10 SNPs (range 105 to 1,132 SNPs, Table 2). By
contrast, in the eleven patients whose isolates clustered
together, the pairwise SNP distance was between 0 and 2
SNPs (Wilcoxon Rank Sum Test; W 0, p-value 0.001). For
example, the caseum isolate from patient G019 clustered
120 SNPs apart from the sputum isolate of the same patient.
Extreme examples were patient G036 or G327, in which the
sputum and the caseum isolates belonged to different
lineages (L2 and L4, more than 1,100 SNPs apart). For three
patients, the isolates were not only located in different parts
of the phylogeny, but were also assigned to different
transmission clusters (Supplementary Figure 7). For patient
G324, whose surgical isolates clustered with the caseum
isolate from patient G327, the sputum isolate clustered with
patient G005 and G312 sputum isolates. Patients G019 and
G036 also had paired isolates clustering independently with
other isolates in the phylogeny instead of with each other. In
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total, we found 6 out of 7 polyclonal infection surgical
patients involved in recent transmission clusters
(Supplementary Figure 7). These values suggest that
superinfections are common among the MDR-TB population
of this setting.

For three surgery patients, the situation was even
more complicated. For those patients, we found instances of
polyclonal infections of two unrelated genotypes not only
between isolates of the same individual, but also within the
same lesion. For instance, patient G039 harbored two
genotypes in different parts of the same lesion (C, I, E, H),
while the nodule (N) and sputum (S) samples harbored a
single genotype. Deconvolution of the two genotypes
present in the caseum isolate (see Methods) revealed that
the genotype absent from the nodule and sputum belonged
to a different sublineage and was 105 SNPs apart. A similar
phenomenon was observed in patient G240, where two
genotypes coexisted in the granuloma center, but only one
was present in the sputum isolate and clustered with
another patient’s sputum isolate. Finally, patient G033 also
showed evidence of two genotypes belonging to different L4
sublineages, coexisting in the nodule and healthy tissue
samples.

Taken together, our results show that seven out of
the eighteen surgery patients (39%) showed evidence of
infection by two phylogenetically unrelated genotypes, either
in the same sample or in separate samples (Table 2). To
compare the high percentage of polyclonal infections in our
surgical dataset with the percentage expected when using

114



Chapter 2

only a single sputum diagnostic sample, we scanned for
possible polyclonal infections in 218 sputum culture positive
patients from the country of Georgia. As only one sample
per case was available we could only scan for cases of
mixed infection. We used two different methods to identify
co-existence of two different genotypes in single sputum
samples, including a phylogenetic-based approach
specifically designed for this analysis (see Methods). In total,
we identified 11/218 (5%) likely cases of co-existence in
these patients based on a single sputum sample.
Supporting this result, when we only took into consideration
the sputum isolates from surgery patients no mixed
infections were detected. This is in contrast with findings in
surgical samples where we identify three cases in which two
genotypes co-existed (17% in surgical samples vs 5% in
sputum samples from the general population; chi-square
4.39, p-value = 0.036). To increase the power to detect
additional polyclonal infections in the general population, we
analyzed a set of 38 patients with two consecutive sputum
samples (Supplementary Table 2) collected from days to
months apart (range 1-595 days). In total, we identified
seven patients out of the 38 (18.4%) with evidence of
polyclonal infection at some point during their TB disease.
This was lower than the frequency of polyclonal infections in
the surgical samples (39%) but higher than in the single
diagnostic sputum samples (5%). Despite limitations, this
suggests that the real extent of polyclonal infections cannot
be accurately estimated from a single sputum sample.
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Table 2. Summary of M. tuberculosis genotypes found in the
surgical cohort. Lineage (Lin.) and drug resistance profile (DRP) of
the different genotypes (G1, G2), with genetic distances (Dist.).
Genotype locations indicated with colors (green, G1; orange, G2;
purple, mix; grey, no sample available). C - caseum, I - inner wall,
E - external wall, H - healthy tissue, N - nodule, S - sputum.

Patient Infection G1
Lin

G1
DRP

G2
Lin

G2
DRP

Dist C I E H N S

G018 Clonal L2.2.10 XDR - - 0

G021 Clonal L2.2.10 Pre-
XDR

- - 0

G023 Clonal L4.2.1 Sus. - - 1

G025 Clonal L2.2.10 Pre-
XDR

- - 0

G031 Clonal L2.2.10 Pre-
XDR

- - 2

G032 Clonal L2.2.9 MDR - - 0

G034 Clonal L2.2.10 Pre-
XDR

- - 0

G035 Clonal L.2.2.9 Pre-
XDR

- - 0

G085 Clonal L2.2.10 Pre-
XDR

- - 2

G330 Clonal L2.2.10 Sus. - - 0

G335 Clonal L2.2.10 Sus. - - 0

G033 Polyclonal L4.3.3 Pre-
XDR

L4.2.1 Sus. 611

G039 Polyclonal L2.2.9 Pre-
XDR

L2.2.10 Pre-
XDR

105
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G240 Polyclonal L4.8 Sus. L4.8 Sus. 162

G019 Polyclonal L2.2.10 MDR L2.2.10 Pre-
XDR

120

G036 Polyclonal L2.2.9 MDR L4.8 Sus. 1132

G324 Polyclonal L2.2.10 Sus. L2.2.10 Pre-
XDR

128

G327 Polyclonal L4.3.3 Sus. L2.2.10 Pre-
XDR

1116

TB patients undergoing lung surgery show
complex infection scenarios

For nine surgery patients, several bacterial cultures
from different parts of the cavitary lesion could be analyzed
in detail, including caseum (C), inner wall (I), external wall (E),
remote nodule (N) and surrounding healthy tissue (H), in
addition to the diagnostic sputum culture (S). Analysis of the
M. tuberculosis genomic diversity within and around lesions
showed very different patterns across patients
(Supplementary Figures 8 and 9). Further details on the
surgical cohort are provided in Supplementary Note 1.
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Figure 10. Dynamics of polyclonal infection with two different
strains across the granuloma. A) Descriptive summary of patient
G039 genotypes frequencies and distribution across the lesion.
The PCA graph illustrates their separation: while the X-axis
explains ~90% of the variance, leaving N and S apart from the
rest, the Y-axis only explains ~5%, mainly defined by
low-frequency variants not shared by N and S (due to read depth
differences). B) Antibiotic resistance-associated mutations across
surgical and sputum samples for the two co-existing genotypes.
C) Deconvolution of the two genotypes by frequency patterns
clustering. Resistance-associated variants from B are represented
in purple. Unassigned subpopulations (in orange) are
low-frequency variants that we cannot assign to any of the two
genotypes, and shared fixed variants (in green) are common to
both genotypes. Abbreviations: C - caseum, I - inner wall, E -
external wall, H - healthy tissue, N - nodule, S - sputum.
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We chose patient G039 to illustrate how complex
infection and transmission patterns can be in a high-burden
MDR-TB setting. This patient showed a polyclonal infection
of two genotypes in the caseum, the inner and external wall
as well as in the healthy tissue, but not in the remote nodule
or sputum (Figure 10A). A detailed analysis of the SNP
frequencies suggested that there were two genotypes
coexisting in the caseum at a ratio of 80:20
(genotype1:genotype2). Tracking of variable positions across
samples of the patient revealed that this ratio varied. The
proportion of genotype 1 decreased as we moved out of the
caseum until reaching a ratio of nearly 50:50 in the external
walls and healthy tissue. The situation was reversed in the
remote nodule where genotype 2 was fixed at 100%
frequency. The sputum of the patient also contained
genotype 2 at a 100% frequency. Deconvoluting these two
genotypes was challenging as both belonged to the same
lineage 2 sublineage. We could extract the genetic base of
genotype 2 from the nodule as it represented 100% of the
culture but genotype 1 always existed as a mixture with
genotype 2 in the other samples. To deconvolute genotype
1, we assigned as a fixed SNP any position that was in the
caseum sample at above 75% frequency, thus reflecting the
expected frequency of SNPs associated with genotype 1.
Comparison with genotype 2 corroborated that both
genotypes belonged to the same lineage but different
sublineages (2.2.9 and 2.2.10), being only 105 SNPs apart.
The frequencies of genotype 1 and genotype 2 correlated
with resistance mutations to several antibiotics at the
corresponding frequencies (Figure 10B, 10C). Several of the
resistance mutations were the same in both genotypes,
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including those for isoniazid, rifampicin, ofloxacin and
kanamycin. The combined frequency of different resistance
mutations to ethambutol and streptomycin across the two
genotypes resulted in 100% of the culture being resistant to
those drugs. For other drugs like pyrazinamide, resistance
mutations were only found in genotype 1.

Patient follow-up treatment can be
compromised by polyclonal infection

To analyze the role of polyclonal infections in drug
resistance, we used the available DST results for the surgical
cohort’s samples. First, we explored whether there was
variability within a patient in phenotypic DST results. In 13
out of the 18 surgical patients, the DST results did not
change across sites even when the sputum sample was
taken into account. In five patients, the DST profiles differed
across samples. Sometimes the difference involved only one
drug like OFX in G019 but on other occasions like patient
G327, the DST profile was fully reversed when comparing
the caseum and the sputum sample (from pre-XDR to
pansusceptible in this case). In other instances, we had
polyclonal infections like patient G033, in which the mix
between the two genotypes in H and N samples (susceptible
+ pre-XDR) resulted in an overall profile of pre-XDR masking
the second genotype. Although the number of patients was
low, three out of five patients with discrepancies in DST
versus genomic prediction had a polyclonal infection,
suggesting that these infections can mislead individual
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treatment of MDR-TB patients. For a comparison of
phenotypic and genotypic results as well as identification of
novel drug resistance markers see Figure 11 and
Supplementary Note 2.

Another complication might result from the
replacement over time of one strain by another, which may
compromise the treatment if no additional DST is done
during follow-up. In support of this notion, in all 4 patients
harboring different strains in temporally separated samples
(Table 2), the DST profile changed for several drugs. This
included cases that were susceptible in the first isolate but
MDR/XDR in the second isolate or vice versa, like patients
G324 or G327. This data shows that treatment based on the
results from one diagnostic sample can be misleading and
suggests the need for sequential testing of isolates under
programmatic conditions, especially in settings with a high
MDR-TB burden such as the country of Georgia.
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Figure 11. Comparison matrix of resistance prediction based on
genotype and drug susceptibility testing (DST). Legend shows
three different colors to explain matches and mismatches between
them. Blue means susceptibility match, red means resistance
match and purple means disagreement in which genomic data
failed to predict phenotypic resistance.
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Diversity within and around lesions reflects
host microenvironment pressures

For those patients with both surgical and sputum
samples and with no polyclonal infection detected, we
analyzed the M. tuberculosis genetic diversity across their
samples. The overall diversity of M. tuberculosis within
patients was well represented in sputum samples when
compared to the caseum sample (correlations >90%). We
then calculated the number of bacterial SNPs exclusive to
each sample. These are SNPs that have accumulated since
the divergence of the sample from the closest isolate in the
phylogeny. In general, patients with a high number of
exclusive SNPs in the lesions also had a high number of
SNPs in the sputum (R²=0.9623 between cavity centers and
corresponding sputa using exclusive SNPs and excluding
G021 which showed a high diversity only in sputum). Thus,
the general assumption that the M. tuberculosis diversity in
sputum samples is only a subset of the within-patient
diversity is not always true. Indeed, we saw patients in
which the sputum harbored exclusive SNPs not found in the
surgical samples and vice versa. TB patients widely differed
in the amount of within-host MTB genomic diversity, with
approximately half of the patients harboring almost no MTB
diversity (e.g. G031, G034, G035 with no low-frequency
SNPs; Figure 12A and Supplementary Figure 9), while others
showed a large diversity across sputum and surgical
samples (e.g. G023, G025 with >600 low-frequency SNPs;
Figure 12A and Supplementary Figure 9). However, the
comparison between sputum and surgery samples must be
taken with caution as the sputum and surgical samples were
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obtained at different time points and may also reflect the
sampling of different lesions.

Figure 12. Impact of the granuloma microenvironment on
within-host diversity. A) Average diversity of each patient's
surgical samples (measured by number of vSNPs and excluding
polyclonal infections, n=number of independent surgical samples
available for each patient, range 1-3). Data are presented as mean
values +/- SD. B) Pooled comparisons of ROS signature in the
different datasets. Categories include surgery specimens, sputum
samples from surgery patients, and serial sputum samples from
the same patient. C) Individual values of caseum and sputum from
surgery patients. Purple lines connect those patients whose
differences are statistically significant by two-tailed X² test.

Several selective forces, including the host response
and antibiotic treatment, may affect the diversity within
granulomas from the time of diagnosis to the time of
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surgery. It has been suggested that the host immune
system may exert a mutational pressure on the infecting
bacteria through the production of reactive oxygen species
(ROS). This has been demonstrated in single colony
analyses of cultured sputum samples showing that an
elevated mutational supply can be identified in
immunocompetent individuals but not in HIV-positive
individuals [121]. A hallmark of an elevated mutational rate
due to ROS is a mutational signature associated with
oxidative damage (increased changes C>T and G>A) [122].
It could be expected that such a ROS mutational signature
was amplified in surgical samples compared to sputum. As
our study was not based on single-colony sequencing but
on bulk sequencing, we reasoned that identifying variants
present in a few colonies in a culture should roughly
correlate with variants at very low frequency in bulk culture
sequencing. Thus for this analysis, we focused on variants
with frequency lower than 5% for samples with enough
depth of coverage, and excluding patients showing
polyclonal infection as frequencies in those cases are not
straightforward to interpret (total eligible patients n = 10).
Our analysis revealed that, as hypothesized, surgical
samples showed a stronger ROS mutational signature
compared to the sputum samples from the same patients
(21% versus 8.6%, pooled analysis, Figure 12B; chi-square
14.5, p-value <0.0001). As the sputum and surgical samples
were obtained at different time points, we also analyzed
patients with serial sputum samples to determine the effect
of time on the diversity observed in sputum. While there was
an effect of time (S1 3% vs. S2 5.9%; chi-square 22.3
p-value <0.0001), the magnitude of the ROS signature in
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serial samples was similar to that seen in sputum samples
from surgical patients (Figure 12B) but significantly lower
than in the surgical samples (chi-square p-value <0.0001 for
all comparisons against surgical samples). Some patients
had stronger ROS signatures than others (Figure 12C; 5 out
of 10 significant at the individual level, G021, G023, G025,
G031, G032; chi-square p-value < 0.05). This is in
accordance with results by Liu and colleagues [121], where
4 out of 18 cases showed a significant increase in
ROS-associated mutations. Thus, our results suggest that
the granuloma microenvironment can increase the
mutational supply for transitions during the within-host
evolution of M. tuberculosis.
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DISCUSSION

Studies on within-host diversity of Mycobacterium
tuberculosis are based on cultured samples and very few on
non-sputum samples, limiting our capacity to understand
diversity patterns at the site of infection. In this study, we
analyzed an 18-patient cohort, most of them MDR to
XDR-TB cases, with available lung surgical samples from
Tbilisi (Georgia). We performed bulk sequencing of cultured
bacteria from the surgical resections and sputum isolates of
every patient, finding an elevated percentage of polyclonal
infections with an impact on drug resistance in the surgical
cohort (39%), which cannot be attained by single sputum
samples. In addition, we demonstrate that patterns of
genetic diversity differ within lesions and across patients
suggesting a role of host immune microenvironments.

Our results are necessarily limited by the characteristics of
the epidemiological setting and the patients undergoing
surgery. Most of the patients who underwent surgery had
already been diagnosed at least as MDR-TB and did not
respond to treatment. This population is characterized by
substantial exposure to multiple antibiotics, a higher
frequency of prior TB disease, the frequent presence of
cavitary disease (associated with poor antibiotic
penetration), and sometimes prolonged hospitalization that
can increase the risk of superinfection. In addition,
diagnostic sputum and surgical samples have a several
months time difference, which limited some of our analyses,
but we tried to assess the effect of sampling time by
comparing our surgical dataset with the serial sputa dataset
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in which the time difference between samples is similar
overall. Also, even though we had access to surgery
samples, analyses were done on cultured-samples and not
directly on the surgery or sputum sample which can impose
different biases [123]. Finally, a possible limitation of this
study would be cross-contamination as an explanation to
the high frequency of polyclonal infections, although we
think it is highly unlikely for a number of reasons. First,
sample collection dates and processing dates from all
patients are not close in time thus they haven’t shared the
same space. Second, sample homogenization is carried out
in closed special, disposable tubes so that samples cannot
be mixed. Third, genotypes match their DST phenotypes in
nearly all cases, arguing against a general contamination
problem. Lastly, not all polyclonal infections are in a
transmission cluster and thus they don’t match any other
strain processed in the laboratory.

In this chapter, we have shown that surgical lung resections
from TB patients reveal a more complete picture of the
within-patient diversity of M. tuberculosis compared to
sputum samples. The high frequency of polyclonal infections
found may be related to the nature of our patient population,
yet this allowed us to study complex infection scenarios with
the potential to confound diagnosis and/or DST results, as in
many cases the two genotypes involved in the infection had
different drug resistance profiles. The surgery patients are
often in a transmission cluster suggesting that either there
are uncontrolled hotspots of transmission shared by
MDR-TB patients, there is increased host susceptibility to
reinfection by different genotypes, or both. The fact that
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polyclonal infections usually involve strains of different
lineages or sub-lineages suggests that vaccine preclinical
models must take into account the genetic diversity of the
bacteria to assess protection. Finally, as observed in
culture-based sputum studies [80,124,125], there are
profound differences in diversity between patients and here
we show that those differences can also be seen across
regions of the cavitary lesions and between patients. In
some patients, differences are driven by a mutational
signature associated with ROS and by treatment and
suggest a link between immune and drug resistance
selective pressures. Overall, our results exemplify a
challenge for tuberculosis treatment and control, highlighting
our knowledge gap on the natural history of the disease in
certain settings and the need for better patient follow-up in
high burden MDR-TB areas to halt the spread of resistant
strains.
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Chapter summary

Tuberculosis (TB) is the primary cause of death
among HIV-infected patients, especially in low-income
countries. The clinical manifestation of TB in HIV-infected
individuals is different from that observed in non-HIV
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patients, and in addition to poor treatment adherence in
these settings, several studies have also shown a decreased
antibiotic bioavailability in HIV+ patients, contributing to the
acquisition of drug resistance due to suboptimal levels of
drug circulation. However, evidence that associates HIV with
increased odds of developing antibiotic resistance and the
mechanisms by which this occurs are still unclear. In this
study, we analyzed a cohort of 23 HIV+ and 29 HIV- TB
patients from Mozambique by using deep-sequencing to
study the dynamics of early drug resistance acquisition, in
addition to performing 480 MIC determinations. By
investigating the 162 TB serial samples from the day of
diagnosis up to the first month of treatment, we detected a
significant accumulation of low-frequency mutations in
genes related to drug resistance for HIV+ individuals at
baseline and found evidence of a decreased capability to
eliminate the constantly appearing bacterial diversity over
the first month of treatment. This suggests lower immune
and treatment selective pressures acting over the bacterial
populations of the coinfected group, favoring the
appearance of low-level heteroresistance as an early
indicator of worse treatment outcomes. We were also able
to link low-frequency variants in our samples to subtle MIC
shifts, which appear associated with poorer outcomes. Our
findings give insight into the host-pathogen interacting
selective factors that contribute to higher rates of treatment
failure in TB-HIV coinfected individuals, and can help to
design better treatment regimes for these patients.
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INTRODUCTION

Human immunodeficiency virus (HIV) is the most
common comorbidity associated with tuberculosis, and it
has been reported that HIV-infected individuals are up to 30
times more likely to develop TB [51]. The two diseases
potentiate each other, speeding immune decay progress and
promoting disseminated or extrapulmonary TB [126]. Also,
the lower bacterial loads of HIV-coinfected individuals make
TB detection through sputum smear microscopy less
effective, and TB drugs combined with antiretroviral therapy
(ART) require careful monitorization to avoid side effects or
adverse reactions [127]. All of these factors, together with an
observed higher likelihood of antibiotic resistance alongside
HIV, makes coinfected patients have worse clinical
outcomes. However, whether HIV is a risk factor for the
arisal of drug resistance in TB has been an ongoing debate
for a long time, since findings on the association between
HIV and DR-TB across many studies have been inconsistent.

There is a lack of knowledge about how TB bacteria
interact with HIV+ hosts, specifically how the population
dynamics behave in the context of an immune-deficient
environment. In HIV+ patients, less immune cells in which
TB bacteria can replicate means a harder competition
between subpopulations, and this is an important point that
can differentiate coinfection from regular TB from an
evolutionary point of view. A hypothesis about drug
resistance arisal in this context starts with the appearance of
heteroresistance, a phenomenon in which a subpopulation
microevolves under the selective pressure of antibiotics
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[128]. This would be a temporary state that ends in fixation
of the subpopulation that achieves a mutation with the
lowest fitness cost and the highest level of resistance. An
early detection of heteroresistance can both provide insight
into how drug resistance develops within-patient and also
serve as a clinical tool to make treatment adjustments if
necessary. Even if the variants involved confere low-level
resistance through non-canonical mechanisms, they can
precede or facilitate the acquisition of a clinically-relevant
mutation that affects the ultimate drug target.

Mozambique is a country with a high incidence of
both TB and HIV, particularly the district of Manhiça, making
it a convenient location to recruit TB-HIV coinfected patients
to study the role of HIV in TB microevolution [129].
Therefore, here we sought to assess how antibiotic selective
forces shape and affect tuberculosis population dynamics
and diversity during the first month of treatment, in the
context of evaluating if HIV coinfection has any impact on
the early evolution of drug resistance. We did this using
deep whole-genome sequencing in serial TB samples from
two different cohorts from Manhiça: patients with TB and
patients with TB-HIV coinfection. We assess the genetic
diversity of the bacterial population, as it constitutes the
total variability contained in the sample, representing the
fundamental unit of change that determines the
microevolutionary potential of subpopulations. We
demonstrate that HIV+ patients have a decreased capacity
to eliminate TB diversity after 4 weeks of treatment. We then
focus on low-frequency variants arising in resistance-related
genes and perform MIC determination experiments to weigh
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the contribution of these mutations to MIC shifts, and
associate those to the outcome of the patient at the end of
the first month of treatment to point out that the most likely
mechanism for treatment failure in HIV+ patients has to do
with the early appearance of low-level heteroresistance that
persists after the first month of treatment.
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METHODS

Cohort recruitment and sampling

Patients were recruited in the district of Manhiça
(Mozambique) from March 2019 to March 2020, and serial
sputum samples were collected during the first month of
treatment (days 1, 7, 14 and 28). A total of 162 samples
were included in this study. These correspond to 52 different
patients that met all inclusion criteria to be analyzed: a valid
baseline sample, complete drug susceptibility at baseline
and no evidence of polyclonal infection. From the final 52
patients, 29 were negative for HIV and 23 were positive. The
HIV+ patients had a CD4 count lower than 500 cells per
microlitre, thus considered immunocompromised. All
sputum samples collected were sent to the Centro de
Investigação em Saúde de Manhiça (Mozambique) and
processed in their BSL3 facility, where an initial culture step
was performed before shipping the decontaminated cultured
isolates to the Biomedicine Institute of Valencia (Spain) for
further processing.

Culture and MIC determinations

All samples received from Mozambique were
cultured and amplified prior to DNA extraction in a BSL3 lab.
Cultures were performed in standard Middlebrook 7H10
solid medium (BD) according to the manufacturer’s
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instructions. For all baseline and last available samples from
each patient, MICs to six different drugs were also
determined (isoniazid, rifampicin, ethambutol, streptomycin,
levofloxacin and amikacin). We used the EUCAST protocol
[130] for this with a few modifications but the same plate
scheme. Briefly, each isolate was tested in a plate for the 6
antibiotics at the same time with microdilutions ranging from
8 different concentrations in Middlebrook 7H9-10% OADC
liquid medium. The inoculum was of 5·104 bacteria and it
was incubated at 37ºC for 7 days before the first reading.
Growth is visually assessed using an inverted mirror at day 7
and also at day 14. The MIC is the lowest concentration that
inhibits visual growth at day 14 and is expressed in mg/L. All
plates included an internal growth control, consisting of the
same strain at two different concentrations (same as test
and another at 100X dilution - GC100, GC1) and the plate is
considered valid for reading when growth is assessed in
GC1.

DNA extraction and sequencing

Cultures were thoroughly scraped to recover the
maximum amount of bacterial diversity and the recovered
material was inactivated at 90ºC for 30 minutes. DNA
extraction was performed on the NucliSENS easyMAG
platform using the manufacturer’s protocol. Libraries were
prepared using Illumina’s Nextera XT kit with the standard
recommended protocol, and sequencing was performed in a
NovaSeq instrument using an S2 flow cell to achieve a high
read depth for all samples, resulting in a mean of ~600X.
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Bioinformatic analysis

The analysis of deep-sequencing data was
performed following the same pipeline as Chapter 2. Briefly,
read preprocessing was done using fastp to scan reads and
trim low-quality ends with a mean window quality < 20. We
used Kraken to taxonomically classify reads and keep MTBC
sequences, and these filtered reads were mapped with BWA
to the predicted MTBC ancestor reference. For a robust
variant calling, we again used three different variant callers
(VarScan2, GATK’s HaplotypeCaller and LoFreq) and
integrated SNPs reported by at least two of them to get a
high-confidence list of low-frequency variants. To check the
exact parameters used with each caller, see Chapter 2,
Methods.

Following variant calling, we again applied a
mappability filter that discards variants which arise in
low-confidence genomic regions. We also performed
synthetic read simulations using the ART software package,
simulating 100 sequencing runs with the data. By analyzing
simulations, we defined a dynamic minimum frequency
threshold to validate a variant in each sample depending on
its read depth, up to 1.5% frequency for samples at or
above 1000X. We parsed variant files using custom Python
scripts to obtain summary tables for each patient collecting
information about the different numbers of fixed (fSNPs) and
variable SNPs (vSNPs). All figures illustrating diversity across
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time points by patient were produced using R and the
ggplot2 package.

A maximum likelihood phylogeny of the 162 samples
in the dataset was constructed using IQ-TREE 2 from an
alignment with gaps and no resistance SNP positions (run
parameters: ‘-m GTR -bb 1000’, meaning the use of a
general time reversible model with unequal rates and
unequal base frequencies, plus 1000 ultrafast bootstrap
replicates).

We used the amount of diversity detected in the
baseline sample vs. follow-up, regardless of the frequency,
for a COX regression model (proportional risk model) that
allows assessing whether the HIV cohort has a dynamic
significantly different from that of its control counterpart. The
calculations and graph were made using the survfit and
coxph of the survival and survminer packages in R.

Prediction of drug resistance profiles and
comparison with MIC determinations

With the variants obtained from the analysis of
genomic data, we performed an antibiotic resistance
prediction for every sample. Drug resistance prediction was
carried out using the 2021 WHO catalogue of mutations [49].
We also considered as likely resistance variants any small
INDEL present in genes commonly associated with antibiotic
resistance. We systematically compared predictions with the
MIC results to determine if samples were beyond the clinical
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breakpoint for all six antibiotics that were tested and
assigned candidate variants to try to explain higher MIC
values where it was possible. Additionally, we compared
each baseline MIC value to its follow-up to calculate the fold
change and define MIC shifts when those were higher than
2. We then aggregated the values of first-line antibiotics to
associate their average with the patient’s outcome defined
as in the Cox regression analysis.
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RESULTS

The study initially recruited 86 patients from the
district of Manhiça (Mozambique), although 23 were
discarded due to not having a valid culture from the day of
TB diagnosis or the culture being contaminated. Serial
sputum samples were collected at the day of TB diagnosis
and along the first month of treatment (days 1, 7, 14 and 28),
for a maximum total of four samples per patient. After
sequencing, another 11 patients were also excluded from
the dataset due to polyclonal infections or other anomalies.
The final dataset includes 52 patients having a valid sample
set for a total of 162 samples, with 29 patients being HIV-
and 23 HIV+. All included patients had a drug susceptible
sample at baseline and their treatment outcomes were
reported as cured. Figure 13 shows a phylogeny of this
dataset and its lineage distribution: 12 patients were L1 (7
HIV- and 9 HIV+), 9 L2 (6 HIV- and 3 HIV+), 2 L3 (both HIV+)
and 25 L4 (17 HIV- and 8 HIV+), with no noticeable lineage
bias towards any patient group.
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Figure 13. Phylogeny and lineage distribution of the dataset. a)
Maximum-likelihood phylogeny of the 162 samples included in the
dataset. b) Lineage distribution of the final included patients.
Colors represent MTB lineages (see legend).

HIV affects TB within-patient diversity and
the ability to reduce it

We initially assessed the overall diversity of each
sample as denoted by the number of variable SNPs (vSNPs,
frequency ~3% to ~97%) in the population. At very low
frequencies, which we were able to achieve thanks to our
high read depth across the dataset, this is a reflection of the
abundance of different subpopulations that are evolving
within-patient during the course of treatment (Figure 14A).
The overall diversity followed a decreasing dynamic across
the first month in both groups, although quantitatively the
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HIV+ group had a lower starting diversity than the HIV-
group (median 567 vSNPs for HIV- vs 358 vSNPs for HIV+,
T-test p-value 0.046). This difference is mainly driven by a
subset of HIV- patients that had a very high total diversity
not due to polyclonal infection. However, when looking at
the percentage of subpopulations -as vSNPs- that are
eliminated during the first month, there is a difference in the
rate at which each group loses this diversity. We performed
a Cox regression analysis defining a 90% initial diversity
reduction -or confirmed negative culture- as the outcome,
and the model yielded a +38% hazard ratio for the HIV+
group (Figure 14B). With this analysis we tried to determine if
diversity in patients with HIV is purified differentially as a
side effect of the patient's condition (longer treatments and
relapses) or if it is promoted by the comorbidity in itself. We
reasoned that despite the number of positive-culture
samples at the end of the first month being low, this result
suggests that, over this early stage of treatment, the HIV+
group has a reduced capacity to eliminate diversity, which
could translate into a worse prognosis.
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Figure 14. Overall diversity of the dataset and Cox regression
analysis. a) Genetic diversity of all samples at each time point,
denoted as the total number of vSNPs. b) Survival curve resulting
from the Cox regression analysis. Colors represent HIV- and HIV+
groups (see legends).

Heteroresistance is generated at low
frequencies under treatment selective
pressure

After assessing the overall diversity, we then focused
on diversity in resistance-related genes, a set of 58 genes
derived from the 2021 WHO drug resistance catalogue. We
looked at non-synonymous SNPs in genes such as katG or
rpoB along the serial samples and also observed a
decreasing dynamic of diversity during treatment despite
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that new low-frequency variants keep appearing (Figure
15A). We then tested if the accumulation of SNPs in this set
of genes was significant using permutation tests (n = 1000,
see Figure 15B for individual p-values). Although the total
diversity at day 1 was higher in HIV- patients, it was in line
with the rest of the genome, while HIV+ patients showed a
statistically significant accumulation of variants from the
start. Finally, both groups showed this enrichment starting
from day 7, once the treatment selective pressure starts
acting upon resistance-associated genes differentially from
the rest of the genome.

Finally, we calculated the dN/dS ratio of genes that
confer resistance to first-line antibiotics and examined their
trajectories during treatment for both groups (Figure 15C).
This ratio gives us an idea of adaptation or functional
constraint in protein-coding genes by quantifying the relative
excess or deficit of amino acid-replacing versus silent
mutations. Both groups of patients started with neutral
values but showed a rapid increase in genes related to
isoniazid (katG, ahpC, ndh) and ethambutol resistance
(embB) at day 7, illustrating how synonymous variants are
rapidly lost under the evolutionary pressure of antibiotic
treatment due to a selective sweep.
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Figure 15. Diversity and evolutionary trajectories of
resistance-related genes. a) Genetic diversity of
resistance-related genes from the 2021 WHO catalog, denoted as
the number of vSNPs. b) Distributions and real values (red lines as
the resistance-associated set) of the number of vSNPs in random
sets of genes. c) dN/dS trajectories across time for genes
associated with resistance to first-line antibiotic treatment.
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MIC shifts as early markers of treatment
failure

We determined the MIC of six antitubercular drugs
-isoniazid, rifampicin, ethambutol, streptomycin, levofloxacin
and amikacin- for the baseline sample and a follow-up
sample of every patient, depending on availability. We
successfully determined the MICs for the pair of samples in
40 out of the 52 patients, for a total of 480 MIC
determinations. The follow-up sample varies among patients
as they progressively become culture-negative along the
first month of treatment, or depending on the success of the
re-culture step before the MIC determination. The goal was
to detect slight MIC shifts over time that could be
associated with low-frequency variants that we identified in
many resistance-associated genes. Figure 16 illustrates the
MIC distributions for the antibiotics that we tested along
with the clinical breakpoints. We observed a slight but
general shift to higher concentrations in most antibiotics for
the follow-up samples compared to the baseline ones,
which supports low-level heteroresistance widely appearing
under early treatment selective pressures.
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Figure 16. Density distributions of MIC values for all samples
and antibiotics tested. Baseline samples MIC distribution in red,
and follow-up in blue. Red lines represent each drug’s clinical
breakpoint (rifampicin has two due to a recent update in the
concentration, from 0.5 to 1 mg/L).

In the 52 patients of the dataset, no associated
variant from the WHO catalogue was identified at high
frequency in any of the samples. We systematically
compared the available MIC values of every antibiotic from
baseline to follow-up, calculating their individual fold
changes. Then, for values equal or greater than 2 that define
positive MIC shifts, we searched for variants that could
explain them. Table 3 shows the MIC values determined for
all drugs, along with their fold change over time and variants
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that have no reported confidence score or its score is
“Uncertain” in the WHO catalogue that are present in
samples with MIC shifts for their respective antibiotics.

Table 3. Results of all MIC determinations and candidate
variants. Each patient is included with the MIC concentration for
each drug at baseline and follow-up, along with the fold change
resulting from the comparison. Variants are provided as
candidates to explain positive shifts. In the follow-up column,
yellow means the value is at the clinical breakpoint, and red means
that it is above it.

Patient Antibiotic
MIC

Baseline
MIC

Follow-up
Fold

Change
Candidate variants Other variants

P1

STR 0.5 0.25 0.5

INH 0.03125 0.03125 1

RIF 0.25 0.125 0.5

EMB 1 1 1

LEV 0.25 0.125 0.5

AMK 0.5 0.5 1

P2

STR 0.5 0.03125 0.0625

INH 0.03125 0.0078125 0.25

RIF 0.25 0.0625 0.25

EMB 1 0.5 0.5

LEV 0.25 0.03125 0.125

AMK 0.5 0.0625 0.125

P3

STR 0.5 - -

INH 0.03125 - -

RIF 0.25 - -

EMB 1 - -

LEV 0.25 - -

AMK 0.5 - -
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P4

STR 1 0.25 0.25

INH 0.03125 0.0078125 0.25

RIF 0.125 0.03125 0.25

EMB 2 0.5 0.25

LEV 0.25 0.03125 0.125

AMK 1 0.0625 0.0625

P5

STR 0.5 0.03125 0.0625

INH 0.03125 0.007 0.25

RIF 0.25 0.03125 0.125

EMB 1 0.125 0.125

LEV 0.25 0.0625 0.25

AMK 0.5 0.125 0.25

P6

STR 0.03125 0.125 4

INH 0.016 0.03125 2

RIF 0.016 0.5 32

EMB 0.125 0.5 4 embB_I16F (3.94%)

LEV 0.0625 0.5 8

AMK 0.03125 0.5 16

P7

STR 0.03125 - -

INH 0.03125 - -

RIF 0.25 - -

EMB 0.25 - -

LEV 0.5 - -

AMK 0.125 - -

P8

STR 0.008 0.0625 8

INH 0.007 0.007 1

RIF 0.016 0.125 8

EMB 0.125 0.5 4 embR_F376L (8.09%)

LEV 0.0625 0.5 8

AMK 0.03125 0.5 16
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P9

STR 0.03125 0.5 16 rpsL_IG_781479GT (4.94%)

Low-level
resistance:
dnaA_V98A
(7.26%)

INH 0.0078125 0.03125 4 katG_L634I (2.84%)

RIF 0.0625 0.25 4

EMB 0.25 1 4

LEV 0.03125 0.25 8

AMK 0.0625 1 16 murA_IG_1471660GA (2.58%)

P10

STR 0.5 0.03125 0.0625

INH 0.03125 0.0078125 0.25

RIF 0.25 0.03125 0.125

EMB 1 0.5 0.5

LEV 0.25 0.03125 0.125

AMK 0.5 0.0625 0.125

P11

STR 0.0625 0.016 0.25

INH 0.0078125 0.03125 4

RIF 0.03125 0.008 0.25

EMB 0.5 0.25 0.5

LEV 0.03125 0.03125 1

AMK 0.0625 0.0625 1

P12

STR 0.016 0.016 1

INH 0.016 0.03125 2

RIF 0.03125 0.03125 1

EMB 0.008 0.0625 8 embB_I16F (2.74%)

LEV 0.0625 0.0625 1

AMK 0.03125 0.03125 1

P13

STR 0.0625 1 16

INH 0.008 0.03125 4
fabG1_IG_1673380CG
(4.12%)

RIF 0.125 0.5 4 rpoB_L449Q (4.15%)

EMB 0.25 2 8 embA_V961D (2.49%)

LEV 0.25 0.5 2

AMK 0.25 1 4 murA_IG_1472226AG (2.76%)
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P14

STR 0.5 0.0625 0.125

INH 0.03125 0.008 0.25

RIF 0.25 0.0625 0.25

EMB 1 0.25 0.25

LEV 0.25 0.0625 0.25

AMK 0.5 0.0625 0.125

P15

STR 0.5 - -

INH 0.03125 - -

RIF 0.25 - -

EMB 1 - -

LEV 0.25 - -

AMK 0.5 - -

P16

STR 0.5 0.25 0.5

INH 0.03125 0.03125 1

RIF 0.0625 0.0625 1

EMB 1 1 1

LEV 0.25 0.25 1

AMK 0.5 0.5 1

P17

STR 0.5 1 2 Rv0681_V58L (2.03%)

Multi-drug
tolerance:
prpr_A273T
(2.68%)
Other:

pckA_V556A
(3.48%)

INH 0.03125 0.03125 1

RIF 0.25 0.5 2

EMB 1 2 2 embB_P12Q (2.75%)

LEV 0.25 0.5 2

AMK 0.5 1 2

P18

STR 0.5 - -

INH 0.03125 - -

RIF 0.25 - -

EMB 1 - -

LEV 0.25 - -

AMK 0.5 - -
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P19

STR 0.5 0.5 1

INH 0.03125 0.03125 1

RIF 0.25 0.5 2

EMB 1 1 1

LEV 0.25 0.5 2

AMK 0.5 1 2

P20

STR 0.125 0.0625 0.5

INH 0.0078125 0.03125 4

RIF 0.03125 0.016 0.5

EMB 0.5 0.125 0.25

LEV 0.03125 0.125 4

AMK 0.0625 0.125 2

P21

STR 0.03125 0.0625 2 Rv0681_V58L (2.21%)

Other: phoR_P70L
(99.55%)

Rv2781c_V124A
(99.87%)

INH 0.0078125 0.03125 4
fabG1_IG_1673380CG
(2.17%)

RIF 0.0625 0.25 4

EMB 0.5 0.5 1

LEV 0.03125 0.25 8

AMK 0.0625 0.25 4 murA_IG_1474425AG (2.51%)

P22

STR 0.5 1 2

Other:
idsA2_Q152S

(2.24%)
idsA2_R153P

(2.21%)
idsA2_V155G

(2.26%)

INH 0.03125 0.0625 2

RIF 0.25 1 4

EMB 1 2 2 embR_F376L (12.2%)

LEV 0.25 0.5 2

AMK 0.5 1 2

P23

STR 1 1 1

INH 0.0625 0.03125 0.5

RIF 0.5 0.5 1

EMB 4 4 1

LEV 0.5 1 2

AMK 1 2 2
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P24

STR 1 - -

INH 0.03125 - -

RIF 0.5 - -

EMB 2 - -

LEV 0.5 - -

AMK 1 - -

P25

STR 1 0.0625 0.0625

INH 0.0625 0.0078125 0.125

RIF 0.5 0.0625 0.125

EMB 2 0.5 0.25

LEV 0.5 0.03125 0.0625

AMK 1 0.0625 0.0625

P26

STR 0.0625 - -

INH 0.03125 - -

RIF 0.25 - -

EMB 0.25 - -

LEV 0.25 - -

AMK 0.25 - -

P27

STR 0.25 0.25 1

INH 0.03125 0.03125 1

RIF 0.5 0.5 1

EMB 2 2 1

LEV 0.25 0.25 1

AMK 1 1 1

P28

STR 0.5 0.25 0.5

INH 0.03125 0.125 4

RIF 0.25 0.0625 0.25

EMB 1 0.5 0.5

LEV 0.25 0.5 2

AMK 0.5 4 8
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P29

STR 0.016 - -

INH 0.016 - -

RIF 0.03125 - -

EMB 0.25 - -

LEV 0.0625 - -

AMK 0.03125 - -

P30

STR 0.5 1 2

INH 0.03125 0.03125 1

RIF 0.25 0.03125 0.125

EMB 1 1 1

LEV 0.25 0.25 1

AMK 0.5 0.5 1

P31

STR 0.5 0.25 0.5

Other:
pckA_E145V
(2.16%)

pckA_V556A
(2.68%)

INH 0.03125 0.03125 1

RIF 0.25 1 4 rpoB_V218L (2.55%)

EMB 1 1 1

LEV 0.25 0.25 1

AMK 0.5 0.5 1

P32

STR 0.016 - -

INH 0.016 - -

RIF 0.03125 - -

EMB 0.125 - -

LEV 0.0625 - -

AMK 0.03125 - -

P33

STR 1 - -

INH 1 - -

RIF 1 - -

EMB 2 - -

LEV 8 - -

AMK 4 - -
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P34

STR 0.015625 - -

INH 0.0078125 - -

RIF 0.0625 - -

EMB 0.5 - -

LEV 0.03125 - -

AMK 0.0625 - -

P35

STR 0.03125 0.5 16 Multi-drug
tolerance:
prpr_D401V

(2.58%) rnj_I156L
(2.87%)
Other:

idsA2_T326A(2.39
%)

pyrG_A462D
(2.23%)

pyrG_G444D
(2.57%)

INH 0.03125 0.125 4

RIF 0.0625 0.25 4

EMB 0.125 2 16 embB_I16F (5.52%)

LEV 0.0625 1 16

AMK 0.03125 1 32

P36

STR 0.5 0.5 1

INH 0.03125 0.0625 2

RIF 0.25 0.5 2

EMB 1 2 2 embR_F376L (11.65%)

LEV 0.25 0.25 1

AMK 0.5 1 2

P37

STR 0.125 0.125 1

INH 0.0625 0.0625 1

RIF 1 0.5 0.5

EMB 2 2 1

LEV 0.25 0.25 1

AMK 0.5 0.5 1

P38

STR 0.5 0.25 0.5

INH 0.03125 0.03125 1

RIF 0.25 0.5 2

EMB 1 2 2

LEV 0.25 0.25 1

AMK 0.5 0.5 1
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P39

STR 0.015625 0.03125 2

INH 0.0078125 0.03125 4

RIF 0.0625 0.03125 0.5

EMB 0.25 0.125 0.5

LEV 0.03125 0.0625 2

AMK 0.0625 0.03125 0.5

P40

STR 0.5 0.03125 0.0625

INH 0.0625 0.0078125 0.125

RIF 0.5 0.0625 0.125

EMB 1 0.5 0.5

LEV 0.5 0.03125 0.0625

AMK 1 0.0625 0.0625

P41

STR 0.5 0.0625 0.125

INH 0.03125 0.03125 1

RIF 0.25 0.016 0.0625

EMB 2 0.007 0.0035

LEV 0.25 0.25 1

AMK 1 0.125 0.125

P42

STR 0.5 0.03125 0.0625

INH 0.03125 0.0078125 0.25

RIF 0.25 0.0625 0.25

EMB 1 0.5 0.5

LEV 0.25 0.03125 0.125

AMK 0.5 0.0625 0.125

P43

STR 0.5 0.03125 0.0625

INH 0.03125 0.0078125 0.25

RIF 0.25 0.0625 0.25

EMB 1 0.5 0.5

LEV 0.25 0.0625 0.25

AMK 0.5 0.0625 0.125

159



Chapter 3

P44

STR 1 1 1

INH 0.0625 0.0625 1

RIF 0.5 0.5 1

EMB 4 4 1

LEV 0.5 0.5 1

AMK 1 1 1

P45

STR 0.5 0.03125 0.0625

INH 0.03125 0.03125 1

RIF 0.25 0.008 0.032

EMB 1 1 1

LEV 0.25 0.25 1

AMK 0.5 0.125 0.25

P46

STR 0.5 0.5 1

INH 0.03125 0.03125 1

RIF 0.25 0.25 1

EMB 2 2 1

LEV 0.5 0.5 1

AMK 0.5 0.5 1

P47

STR 0.5 1 2 Antibiotic
resilience:
resR_V167D
(2.88%)

Multi-drug
tolerance:
prpr_D401V
(19.78%)
Other:

pckA_V556A
(3.95%)

INH 0.03125 0.5 16

RIF 0.25 1 4 rpoB_Q975H (46.37%)

EMB 1 4 4 embR_F376L (9.72%)

LEV 0.25 4 16

AMK 0.5 4 8 murA_L67F (3.61%)

P48

STR 0.03125 0.03125 1
Low-level
resistance:

Rv0010c_A26S
(5.62%)
Other:

idsA2_R309G
(6.56%)

Rv2779c_Q165R
(4.42%)

INH 0.03125 0.03125 1

RIF 0.03125 0.5 16

EMB 0.0625 0.25 4

LEV 0.0625 0.25 4

AMK 0.03125 0.25 8
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P49

STR 0.5 - -

INH 0.03125 - -

RIF 0.25 - -

EMB 1 - -

LEV 0.25 - -

AMK 0.5 - -

P50

STR 0.5 0.125 0.25
Multi-drug
tolerance:
glpK_A460V
(34.68%)
glpK_D84E
(29.51%)
Other:

pckA_D368A
(32.62%)

INH 0.03125 0.5 16

RIF 0.25 1 4

EMB 1 2 2 embR_F376L (8.45%)

LEV 0.25 1 4

AMK 0.5 1 2 Rv0528_G478C (4.76%)

P51

STR 0.5 0.25 0.5

INH 0.03125 0.125 4

RIF 0.25 0.25 1

EMB 1 1 1

LEV 0.25 1 4

AMK 0.5 0.5 1

P52

STR 0.03125 - -

INH 0.03125 - -

RIF 0.03125 - -

EMB 0.125 - -

LEV 0.0625 - -

AMK 0.03125 - -
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We then tried to associate these shifts to the
patient's outcome at the end of the first month of treatment,
defined as in our previous Cox regression. A reduction of
90% of the initial observed diversity or a confirmed negative
culture at day 28 is considered a ‘positive outcome’, and
conversely, a positive culture with a smaller reduction is
considered a ‘negative outcome’. This is a proxy measure of
treatment efficacy during the first month, which is thought to
correlate with the final clinical outcome of the patient. For
calculation purposes, an overall MIC shift for the sample
was determined when the average fold change for isoniazid,
rifampicin and ethambutol was greater than 2, as the
patients were all receiving standard first-line treatment.
Using these criteria, 10 out of 12 patients that experienced
an MIC shift during early treatment failed to reduce their
overall initial diversity and remained culture-positive after a
month of treatment (Table 4). This is an early indicator of
likely treatment prolongation and perhaps eventual
treatment failure according to recent bibliography. As per
HIV status we see no bias in the ‘MIC shift’ category, yet we
can observe that for those patients that did not experience
MIC shifts, all HIV+ were negative outcomes, further
corroborating the result of our previous Cox regression
analysis. Comparing by outcome, even though the total
numbers are not statistically significant (chi-square p-value =
0.1115), just taking into account the HIV- cases for the
calculation (chi-square p-value = 0.0118) suggests there is
indeed an association of the MIC shift with the inability to
effectively reduce overall genetic diversity after a month of
antibiotic treatment. Finally, in quantitative terms we also
tested if the MIC shifts of both cohorts were different,
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obtaining a negative result (Wilcoxon test p-value = 0.8683).
The fact that the overall MIC shift distribution of both groups
is similar suggests that the variants that are being selected
under treatment pressure are not functionally different,
regardless of the patient’s immune status.

Table 4. MIC shifts correlate with the patient's outcome. At the
end of the first month of treatment we can appreciate differences
between groups in terms of diversity reduction.

Negative outcome Positive outcome

HIV- HIV+ Total HIV- HIV+ Total

No MIC shift 5 11 16 12 0 12

MIC shift 6 4 10 1 1 2
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DISCUSSION

The impact of HIV in drug resistance development in
TB has been a subject of debate for years, with many
inconsistent reports across studies and settings [52]. Here,
we evaluated its role in the early evolution of TB bacterial
populations by means of deep whole-genome sequencing.
To determine if HIV is associated with an early acquisition of
resistance to antibiotics, we gathered two cohorts of
patients with HIV and their respective control cases from
Manhiça (Mozambique). The samples were collected at day
1, 7, 14 and 28 after the start of treatment or until the
sputum culture became negative. We characterized the
overall genetic diversity in each sample as the number of
variable SNPs -or subpopulations- as a measure of the
evolutionary potential of the whole bacterial population. We
were able to reach very low frequencies of up to ~2% thanks
to our superior read depth across the dataset. The initial
analysis showed a higher overall diversity in HIV- patients,
although there was a decreasing dynamic along the first
month of treatment for both of the cohorts (Figure 14A).
However, when inputting the data into a Cox regression
model, we could appreciate that the HIV+ group had a
differentially lower ability to reduce this initial diversity
(Figure 14B). This can be used as an early surrogate of
eventual treatment failure as it translates into a higher
number of positive cultures after one month and, likely, the
need for longer treatments. Therefore, with increased
treatment lengths and as many studies have pointed out,
there is a higher chance for drug resistance to develop,
which is the main reason for treatment failure in most cases.
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Then, we focused our analysis just on
resistance-related genes from the 2021 WHO catalogue [49].
We found a similar pattern than with overall genetic diversity
in both groups, with decreasing dynamics along the month
of the study (Figure 15A). There are many low-frequency
variants detected in these regions, suggesting that the
generation of low-level heteroresistance is a common
evolutionary pathway to adaptation at a population level. We
then tested if there was a statistically significant
accumulation of variants in these genes vs. the rest of the
genome at every timepoint. This would confirm that these
regions are indeed functionally relevant under selective
pressure to adapt to the antibiotic treatment. The result of
the analysis was that for the HIV- group, the variant
enrichment becomes statistically significant starting at day 7
of treatment -which is expected- but the HIV+ group starts
at day 1 (Figure 15B). The implications of this result are not
fully clear, but it could be due to a transmission bias among
HIV+ patients as they tend to have a worse prognosis.
Additionally, we calculated the dN/dS trajectories of the
resistance-related genes illustrating how, as soon as
treatment starts, the evolutionary pressure it creates ends up
purifying most of the synonymous variants in
resistance-related genes for both groups (Figure 15C).

Finally, we sought to provide experimental evidence
for the population dynamics of the low-frequency variants
we detected in resistance-related genes. To do so, we
determined the MIC values of six different antibiotics for the
baseline and a follow-up sample, and tried to correlate the
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appearance of MIC shifts to these variants (Table 3). As
recent studies have shown, the emergence of low-level
heteroresistance is one of the mechanisms responsible for
treatment failure and it can be revealed by detecting subtle
MIC shifts below the clinical breakpoint [131]. This fact has
gained attention as it is completely missed by standard
diagnostic tools, and our results show that 12 out of 40
patients experienced an MIC shift to at least one of the
first-line antibiotics used in their treatment (Table 4). While
HIV+ patients were not a substantial part of this group,
15/16 had a negative outcome whether they experienced
MIC shifts or not, reinforcing the notion that they are more
likely to end up having worse prognosis and treatment
failure. These findings are probably part of the reason why
more HIV+ patients end up developing drug resistance.
Despite this cohort being very well controlled in terms of
treatment adherence and achieving a successful outcome,
we reason that many settings with both a high TB and HIV
burden have increased odds of resistance acquisition due to
the combination of both socioeconomic circumstances and
the biological impact of the coinfection [127]. Our results
highlight the importance of adapting treatment guidelines for
HIV+ patients developing TB in certain settings, providing
additional control measures and better follow-up to prevent
the emergence of drug resistance.
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General Discussion

GENERAL DISCUSSION

Drug resistance is one of the major health challenges
associated with the current tuberculosis epidemic. In some
regions up to 50% of tuberculosis cases are drug-resistant
and therefore impose a large economic burden on the
country and public health services. Thus DR-TB threatens to
hamper the progress in TB control that has been made in
the last 30 years. One of the biggest problems is that we are
largely unaware of the biological factors behind the epidemic
and therefore cannot make accurate estimates of how to act
in the future. In this dissertation we aimed to study DR-TB
from two different but related angles. From the bacterial
point of view, we have used large-scale genomic and
functional analyses to understand the genetic architecture of
isoniazid resistance, expanding our knowledge of the drug's
mode of action and making predictions of which regions of
the genome could be associated with resistance at the
clinical level. From the host's point of view, we have studied
the pathogen diversity and its interaction with the host at the
site of infection using lung surgical samples, and evaluated
the impact of an important comorbidity such as HIV on the
early appearance of resistance. In summary, we have sought
a better understanding of the bacterial and host factors that
impact DR-TB and will allow the development of new
diagnostic tools and epidemiological models to control
DR-TB in the future.

In Chapter 1, we have developed an evolutionary
functional genomics framework coupled with phylogenetic
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association to characterize the genomic architecture of
isoniazid resistance. We have seen many genes involved in
cell wall biosynthesis, including the mycolic acids
biosynthesis pathway, that have been highlighted by both
the functional and the phylogenetic approaches, even
though many of them are not used to predict resistance
(Figure 4D). This fits in with the idea that resistance depends
on more than the well-characterized diagnostic mutations
and that bacteria can also acquire low-level resistance
mutations or compensatory mutations. Given that isoniazid
specifically targets this pathway, it is plausible that
insertions in several genes in the pathway affect isoniazid
sensitivity. However, as the cell wall is the first barrier of
defense of the bacteria, it is difficult to determine whether
these genes are important for isoniazid resistance
exclusively or also for resistance to other antibiotics as well.
For instance, our data shows that inserting genes in the
mce1 operon increases isoniazid resistance. This operon is
proposed to be involved in the transport of cell wall
components and disrupting the operon is associated with
the accumulation of free mycolic acids [132–134]. This
points to a role in cell wall remodeling and recycling and
suggests that the operon can be involved in resistance to
other antibiotics as well. Other genes such as those in the
mycolic acid modification pathways are better candidates to
affect isoniazid resistance exclusively. In any case, we
expect many of the mutations in these genes to have low
diagnostic value even if they actually contribute to
resistance, which underlines the importance of systematic
studies to understand antibiotic resistance.
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Our analysis also highlighted genes involved in redox
metabolism, which has previously been associated with
isoniazid resistance [135]. This is in accordance with what is
already known about the action of the antibiotic, as NADH is
required for the formation of the isoniazid-NAD adduct.
Additionally, NADH and NADPH are necessary for the
activity of two genes in the FAS system, inhA and fabG1,
which we know to be isoniazid resistance genes. However,
as most of the oxidative metabolism genes we found to be
associated with resistance were not directly involved in any
of these pathways we concluded that this association
depends on NADH homeostasis. Previous findings have
suggested that NADH dehydrogenase gene ndh harbors
putative resistance mutations [68] and our results showed
that many similar genes could have such mutations as well.
For instance, we found that genes encoding NADH
dehydrogenases present in the electron transport chain,
such as several genes in the nuo operon and ndhA,
increased isoniazid resistance when mutated. It has already
been shown that inhibiting the action of these genes
increases intracellular levels of NADH [136] and that
mutations in the NADH dehydrogenase Ndh (isoform to
NdhA) lead to higher NADH levels and confer isoniazid
resistance, maybe by preventing inhibition of the InhA
enzyme [135]. Indeed, we found that mutations in nuoJ,
ndhA and ndh have phylogenetic association with
resistance, further confirming that NADH homeostasis plays
a clinically relevant role in the evolution of isoniazid
resistance. NADH can also affect resistance indirectly, as
several stress responses specifically use the NADH:NAD+
ratio as a trigger [137]. In many cases, these responses
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provide protection against antibiotic stress as well and are
triggered as a result of exposure to the antibiotic. We
identified several NADH sensors such as regX3, dosT and
pknG which were functionally associated with isoniazid
resistance. In addition to redox sensors, we also found other
genes related to detoxification that were associated with
resistance. For instance, insertions in genes involved in
mycothiol biosynthesis produced a more resistant
phenotype.

Once we understand which pathways are involved in
isoniazid resistance, we can start exploring them as targets
for future regimens. Many sensitivity-increasing features in
the cell wall biosynthesis pathway show increased
expression after exposure to isoniazid [138]. The insertion
probably compromises the strength and integrity of the cell
wall and makes those genes ideal targets for adjuvants that
help potentiate the action of the antibiotics or even for new
or repurposed therapies. For instance, peptidoglycan
biosynthesis gene ponA1 appears to be the target of the
repurposed ceftazidime-avibactam combination [139]. We
can also take advantage of the role of redox homeostasis in
the action of isoniazid to design treatments and strategies to
enhance the performance of the antibiotic. In their work,
Flentie et al. reported a new compound, C10, that appears
to revert the resistant phenotype of katG mutants and thus
prevents the selection of isoniazid-resistant variants. The
compound had been specifically selected to block tolerance
to oxidative stress and it was shown to both increase
sensitivity to isoniazid and promote the expression of energy
metabolism related genes. Here, we have provided
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experimental evidence of which specific genes can produce
a particular resistance phenotype and which of those are
relevant in clinical environments. We can now use this
experimental framework and extrapolate it to other
antibiotics, including recently-licensed drugs such as
bedaquiline and delamanid to design better treatments with
them, especially now that the WHO has recommended its
use in first- and second-line therapy.

A very powerful feature of functional genomics is that
it can be applied comparatively across strains and
antibiotics. For instance, functional genomics showed that
small genetic differences between characterized strains
could be linked to differences in relative importance or
essentiality of particular genes and in the way a strain
acquires antibiotic resistance [140]. When we use functional
genomics with different antibiotics we can find common
patterns of resistance across drugs, such as the existence of
an intrinsic resistome [64,141] and instances of
cross-resistance. In our data we found that the F420
biosynthesis genes fbiA-C, which are associated with
delamanid resistance [142], also confer isoniazid resistance
when inactivated by insertion. These cross-resistance
patterns are important as they inform us of the likelihood
that the bacteria can develop resistance to two antibiotics
that are administered in combination or sequentially, which
will ultimately impact treatment success.

By combining a functional and phylogenetic
approach we have shown that our candidate resistance
determinants could increase sensitivity up to 2%. While the
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impact at the population level seems minimal, the impact for
the patient is important as isoniazid resistance is a major
determinant for adverse clinical outcomes [143].
Furthermore, genome-wide association studies were unable
to reveal any of these targets when thousands of
genotypes-phenotypes [58] or detailed MIC measurements
[144] were implemented. In our approach we are able to
identify novel regions that are involved in isoniazid
resistance as they increase sensitivity in sets of
phenotypically resistant strains with no known causing
mutation. Nevertheless, the use of those regions to diagnose
isoniazid resistance leads to a decline in specificity
suggesting that not all mutations in the target genes are
involved in resistance. Furthermore, mutations in some of
the regions are predictive of resistance in strains with very
well characterized isoniazid resistance mutations suggesting
that in some cases they can act either as compensatory
mutations or early low-level, facilitating resistance mutations
that preceded the well characterized isoniazid resistance
mutations.

While it is certainly useful to identify new resistance
determinants, we have proved how vital it is to use actual
clinical data to discover relevant pathways and mechanisms,
and this has always been limited by the geographical bias in
the amount of sequencing data available. Despite having
been reduced in the last few years, there is an important
imbalance by which strains from low-burden countries are
vastly overrepresented in comparison with those from
high-burden TB settings. However, it is in those settings
where we see the highest number of rare drug resistance
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variants arising as a consequence of suboptimal treatment
adherence, difficulty in its access or other similar factors.
These variants often have higher fitness costs but are
allowed to thrive in the conditions we just described, and
they have increased chances of providing low-level
resistance via non-canonical mechanisms. In addition, these
types of settings also have a higher probability of multiple
transmission events and superinfections are more common,
resulting in complex cases. Consequently, if we want to
have a better representation of the array of possibilities in
which TB can acquire drug resistance, we need to recover
as much diversity as we can from high-burden settings and,
ideally, do it by sampling the actual site of the infection.

In Chapter 2, we explored the bacterial diversity of a
surgical cohort from Georgia, a high burden DR-TB setting,
thanks to access to different resected parts of the
granuloma geography. We showed distinct patterns of
diversity across individuals, and detected that seven out of
the eighteen patients (39%) had evidence of infection by two
phylogenetically unrelated genotypes, either in the same
sample or in separate samples. This represents a high
percentage when compared to the 5% found in single
sputum patients of this dataset and percentages described
by others [81]. Three surgical patients showed true mixed
infections (multiple genotypes co-existing) and four are likely
the result of superinfections due to multiple transmission
events. The high rate of polyclonal infections in these
patients suggests deficiencies in infection control in the
setting [145] and agrees with epidemiological and model
data showing that repeated exposure to infection as seen in
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high-burden settings increases the risk of reinfections,
disease progression and outbreaks [145,146]. In addition,
polyclonal infections in the surgical cohort usually involved
strains with different drug resistance patterns (5 out of 7
cases), a fact that can hamper successful treatment if not
assessed correctly [124]. There are several studies showing
that infection with multiple strains resulted in a poor
treatment outcome, since the presence of any undetected
resistance during standard treatment can propel the
acquisition of further drug resistance [92]. Importantly, in our
results polyclonal infections change, and many times fully
revert, the drug resistance profile of the patients. Thus,
follow-up DST samples should be implemented in these
settings for better patient management.

In Figure 7, we show the theoretical scenarios to
explain the natural history of infection for these patients. The
fact that in several cases the second isolate is in a
transmission cluster suggests that superinfection is one of
the most common mechanisms. However, we cannot be
sure if two strains were already infecting at baseline while
only one is detected in sputum as we don’t have access to
lung samples before treatment. Similarly, we cannot test the
hypothesis suggested from mice experiments that a
secondary infection drives progression of an asymptomatic
primary infection via immune response or by expression of
resuscitation-promoting factors [92,147]. However our
results contribute to the evidence from mice data [147] (but
not from macaques [82]) that reinfection with a second strain
can be common after a primary infection under certain
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circumstances and calls to re-evaluate the natural history of
TB in settings with rampant transmission.

The extent of polyclonal infections also has
consequences to understand the protective potential of
vaccines. Recent in vivo reinfection experiments suggested
that a first episode of TB was more protective against a
second episode than previously thought [85]. However, our
results suggest that in a high-burden setting this might not
be the case and future studies designed to corroborate this
observation will be needed. Differences may be related to
how well the experimental set-up recapitulates natural
infection in such settings. In the experiments on macaques
the same strain was used for re-challenge [82]. By contrast,
in our dataset we frequently observe different strains, usually
from different (sub-)lineages, infecting the same patient. In
fact we did not see polyclonal infections with strains less
than 100 SNP apart despite our phylogenetic approach
being designed to identify cases up to 20 SNP apart. This
raises the possibility that previous infection might indeed
protect against superinfection with the same or a very
similar strain, as observed in the macaque model. The
differences with animal experiments may also be related to
the nature of the re-challenge, as in TB transmission
hotspots, the exposure to second infections is recurrent
[148]. However, co-morbidities and social determinants may
also play an important part in susceptibility of the host to
second infections. Lastly, many clinical trials and vaccine
studies use sputum as their basis for distinguishing between
relapse and reinfection and our results suggest that it may
be a poor correlate to ascertain lung polyclonal infection.
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Beyond multiple genotypes, analysis of the genomic
diversity within and around lesions showed very different
patterns across patients. Some showed almost no diversity
while others were highly diverse. In some cases (notably
G-018) the distribution of drug resistance variants suggests
gradients of antibiotic concentration as have been described
in recent literature [28,87,149]. The fact that this pattern is
not observed in all patients, may be explained by different
pharmacodynamics, but also by the time difference until
resection between patients as the granuloma walls get
hardened over time. This would limit the penetration of
drugs inside, which could affect selective pressure and thus
the diversity we are able to recover from genomic data [87].
But drug pressure is not the only selective force that the
pathogen encounters during infection. It is known that
different immune-microenvironments exist within
granulomas [150]. Chief among macrophage defense
mechanisms is the production of reactive oxygen and
nitrogen species [151]. Looking at sputum cultures, it has
been proposed that an unintended effect of ROS is to
increase the mutation rate of the bacteria. Our data
corroborates those results showing that the mutational
signature of ROS -increased number of transitions- was
overall enriched in surgery samples compared to sputum
samples. A recent study suggests that transition bias is
linked to the acquisition of drug resistance variants [152]. It
is thus tempting to link ROS-increased mutational supply to
an accelerated acquisition of drug resistance mutations.
Combined analyses of the bacterial population in the lung
during infection in humans and relevant animal models [153],
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drug penetration and pharmacodynamics [28] and lesion
imaging [149] will help to better understand the bacterial
population diversity driven by host pressures, how it’s linked
to the emergence and selection of drug resistant
subpopulations and, ultimately, to relapses and treatment
failure in clinical settings.

So far we have seen how the identification of the
genomic drivers of resistance in tuberculosis and the correct
application of the tools at our disposal in complicated
settings are essential to build better epidemiological
predictive models and to develop population-specific
treatments. Until now, the socioeconomic determinants of
antibiotic resistance have received most of the attention as
major players in the MDR-TB epidemic. These factors, as we
have previously discussed, include nonadherence to
treatment and/or drug shortages leading to the acquisition
of drug resistance due to suboptimal levels of drug
circulation in the patient. However, host-pathogen
interaction factors are being increasingly recognized as key
players in this issue. Host factors implicated in a higher rate
of resistance acquisition include specific genetic
susceptibilities and comorbidities such as coinfection with
HIV, which has been one of the main drivers of the TB
epidemic since the resurgence of the disease in the 1980s
[51].

Some studies in certain settings have suggested an
association between HIV and DR-TB [52]. However, we do
not know if the association is directly promoted by the
comorbidity or if it is a secondary effect of the impact of the
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disease on the patient's evolution. In favor of the first
hypothesis, it has been shown that, on many occasions,
drug levels are suboptimal in HIV+ patients. In some cases
due to interactions with antiretroviral treatment, and in others
due to the particular microenvironment in the lung created
by the condition (small to no granuloma formation).
Whatever the cause may be, if drug levels are below the
clinical recommended concentration, the acquisition of drug
resistance mutations is evolutionary promoted. In favor of
the second hypothesis -drug resistance being a side effect
of the HIV condition- it is known that longer treatments and
relapses are linked to greater drug resistance rates as a
result of the increased difficulty in patient follow-up,
especially in low-income settings where there is still
significant social stigma. It is important to differentiate
between the two hypotheses because the second one
implies that drug resistance associated with HIV should be
controlled by tuberculosis control programs, while the first
hypothesis indicates that action on the global HIV epidemic
will have a net benefit in the future DR-TB burden.

In Chapter 3, we had the opportunity to test the
former two hypotheses by trying to estimate the emergence
rate of extremely low drug-resistance variants during
treatment and whether it is significantly different in patients
with and without HIV. For this, we recruited two cohorts of
patients in Manhiça (Mozambique) that were diagnosed with
regular TB infection or TB-HIV coinfection, and collected
four clinical samples during the first month of treatment to
delve into the evolution of the population’s genetic diversity
through deep whole-genome sequencing. The first analysis
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showed how there is a quantitative difference in the amount
of overall diversity between the two groups (Figure 14A).
While both dynamics are descending along the study period,
the diversity we recover from the baseline samples is
significantly higher in the HIV- group. This is explained by
the fact that bacillary loads in HIV-coinfected individuals are
usually lower due to their immune status having difficulties in
forming granulomas in which TB can replicate faster [154].
So less replication means a smaller bacterial population and
thus less chances for variants to randomly appear under no
selective pressure, correlating with our observation of less
overall genetic diversity.

However, while a lower diversity in HIV+ patients
could be an expected result, we chose to evaluate the rate
at which it disappears during the first month of treatment
and see if there was a difference between the two cohorts.
We defined an outcome of >90% initial diversity reduction
-or confirmed negative culture, theoretically representing a
100% reduction- for each patient to input the data into a
Cox regression model and build a survival curve from the
bacterial population’s point of view (Figure 14B). The result
was a 38% hazard ratio for HIV+ patients, suggesting that
their immune status may contribute towards a reduced
capacity of variant purification. This result has several
clinical implications. First, it supports the notion that HIV+
individuals have an observed worse prognosis, given that
despite starting from a smaller pool of diversity, they can
have problems to effectively reduce it even with the help of
antibiotics. Second, the fact that they have increased
chances to remain culture-positive after one month of

183

https://paperpile.com/c/BhT5Xo/5YMh


General Discussion

following the drug regime means that they could end up
having longer treatments, which in turn boosts the
probability to acquire drug resistance mutations and
eventually fail treatment. And third, this negative clinical
outcome may be predicted by an early assessment of the
patient’s initial diversity and its evolution as a tool to forecast
potential treatment failures.

Moving forward from the overall genetic diversity of
the samples, we shifted focus to analyze what was
happening in resistance-associated regions. The pattern of
population dynamics in these genes was similar to that of
the rest of the genome (Figure 15A), as we could detect a
good amount of variants -most of them at low-frequency-
that were present from the beginning and during the course
of treatment. We then investigated if there was an
enrichment of mutations in this group of genes compared to
the rest of the genome. Deploying a permutation test (Figure
15B) we identified a statistically-significant accumulation of
variants starting at day 7 for HIV- patients, while it happened
from the baseline sample for coinfected individuals. We also
characterized the dN/dS dynamics of first-line
resistance-related genes to confirm their evolutionary
trajectories during treatment (Figure 15C), finding similar
patterns between both cohorts. The ratios start at neutral
values, rapidly increase once the drug regime is initiated and
then start to go down again. We can appreciate a general
selective sweep of synonymous variants under treatment
pressure during these early stages that is similar regardless
of immune status. It is important to remark that resistance to
isoniazid has been reported as the first one to appear in
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most cases, as we see here, and there is also an arising
signal for ethambutol resistance, another antibiotic that
targets the cell wall biosynthesis like isoniazid. These results
as a whole bolster the conception of low-level
heteroresistance as an evolutionary mechanism of
adaptation under antibiotic selective pressure, where there is
a constant turnover of alleles until a subpopulation can
progress into clinical-level canonical resistance and
subsequent fixation [41]. This may happen directly by
acquiring a high-level resistance variant with little to no
fitness cost in a drug target or activator enzyme, or
progressing through consecutive but more costly mutations
that increase tolerance to the drug/s until the first scenario is
reached. In this context, a lower fitness cost of resistance in
the absence of adequate immune pressure for HIV+ patients
might explain the fact that we observe an enrichment of
variants at baseline for this group. It may also have to do
with different transmission dynamics or a broader infection
bottleneck, but in any case, further dedicated studies with a
bigger sample size would be needed to explore this finding.

We next sought to provide experimental evidence for
the variants that were apparently causing low-level
heteroresistance. To this end, we determined the MIC values
of six different drugs (isoniazid, rifampicin, ethambutol,
streptomycin, levofloxacin and amikacin) for the baseline
sample of each patient and a follow-up sample. Comparing
both time points allowed us to detect MIC shifts that
developed during the course of treatment. We then could
propose candidate variants appearing in those samples to
explain the shifts. In general, the MIC values are slightly
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shifted to higher concentration as treatment progresses
(Figure 16). Individually, examining Table 3, this is especially
true for some patients like P47 or P50, that even surpassed
the isoniazid clinical breakpoint to be considered resistant.
In most cases, MICs either remain unchanged or are
increased as a whole. However, a few cases experimented
positive shifts for one or more antibiotics while exhibiting
negative shifts for other/s (e.g. P11, P20, P28, P30, P50)
hinting at putative underlying mechanisms of collateral
sensitivity, a concept that is mostly unexplored in TB [155].

Detecting these subtle MIC shifts below the drugs
clinical breakpoint has been proven to serve as a predictor
for worse clinical outcomes [131]. However, as all patients in
this study were eventually cured, we examined the reduction
in overall genetic diversity as a surrogate for treatment
efficacy. Table 4 summarizes the result of classifying the 40
eligible patients according to the presence of a MIC shift to
first-line antibiotics and their outcome after a month of
treatment. As previously explained, these are defined as
‘positive outcome’ if the patient managed to reduce their
initial bacterial diversity at least 90% -or was
culture-negative at day 28- and ‘negative outcome’ if they
could not reduce it. 10 out of 12 patients that experienced a
MIC shift during early treatment had a ‘negative outcome’,
failing to reduce their overall initial diversity. Even in this
early stage of treatment, MIC shifts present themselves as a
promising indicator of the eventual clinical outcome of the
patient. These results illustrate the notion that there is a
percentage of patients that take longer than normal to
resolve the infection and they appear to be associated with
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higher genetic diversity of the bacterial population and
infrequent heteroresistance mutations that eventually drive
them towards treatment failure. This is an especially relevant
factor to take into account when testing the newer drug
regimes that are being sponsored by the WHO, which seek
not only to replace old drugs, but also to reduce overall
treatment time [11,12]. Rare mutations are probably
responsible for an initial worse response to any drug regime,
even though patients are eventually cured given enough
time.

In this dissertation, we have focused on the urgent
problem of drug-resistant tuberculosis and how it remains a
deadly disease in defiance of the strict measures taken
towards its treatment. The ongoing spread of DR-TB in many
regions of the globe is one of the most imperative and
crucial challenges to achieve global TB control. Weaker
healthcare systems in low-income settings, the amplification
of drug resistance through inadequate or suboptimal
treatment, and continued transmission are among the main
causes for this spread. Bacterial genomics has the potential
to revolutionize the diagnosis of DR-TB in the near future,
and it has already been implemented in some public health
systems like the UK or the Netherlands replacing standard
culture. Whether this reality can reach high-burden settings
depends on many factors both political and economic. Wet
lab and bioinformatic expertise need to be strongly
promoted by governments to nourish a solid foundation in
which to implement the new diagnostic techniques that
whole-genome sequencing enables. We have shown how an
early detection of drug resistance, either canonical or
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non-canonical, is pivotal to steer patient treatment in an
adequate direction, especially in MDR and XDR-TB cases
that pose a formidable challenge to clinicians. Timely
diagnosis reduces treatment time, ensures better clinical
outcomes and prevents further transmission and
superinfections. Likewise, we are living a paradigm change
by which host factors are increasingly studied and
recognised as key players in the success of DR-TB
treatment. Discerning the role of comorbidities traditionally
associated with tuberculosis will also bring us closer to
offering authentic tailored drug regimes to all patients. The
techniques and knowledge presented in this dissertation will
hopefully contribute towards these goals and serve as a
stepping stone towards improving the global control of
drug-resistant tuberculosis in the near future.
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CONCLUSIONS

1. Functional genomics allows an accurate detection of
antibiotic resistance determinants, target genes and
pathways, yet it is always necessary to compare with
clinical data to understand which regions are relevant
in vivo.

2. The remarkably complex mycobacterial cell wall is
essential for Mycobacterium tuberculosis success,
and the biosynthesis of mycolic acids in particular is
a key pathway in regards to isoniazid sensitivity that
contains a multitude of potential therapeutic targets
that are currently uninvestigated.

3. Redox metabolism is another less explored,
non-canonical and low-level resistance mechanism
with potential for new therapies. Subtle changes in
the NADH/NAD+ bacterial balance can provide the
necessary evolutionary space for clinical-level
isoniazid resistance to be developed.

4. The evolutionary functional genomics framework
presented in this dissertation can be applied to new
antibiotics early into their deployment to anticipate
their possible mechanisms of resistance in a
prospective manner.
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5. By carefully sampling TB lung lesions, we are able to
trace the changing dynamics of different bacterial
subpopulations across the geography of the
granuloma using genomics, providing a much more
complete picture of bacterial diversity than sputum
samples.

6. These surgical samples have revealed an elevated
number of polyclonal infections in Georgia, a
high-burden MDR-TB country, suggesting that we
are underestimating this phenomenon in other similar
settings.

7. Polyclonal infections can negatively impact treatment
outcomes if left undetected, as they often consist of
genetically distant strains that can have different
drug resistance profiles. Follow-up sputum analysis
would be recommended in high-burden MDR-TB
settings with significant transmission rates.

8. The immune pressure of the granuloma
microenvironment can create a distinct mutational
signature during the within-host evolution of
Mycobacterium tuberculosis as a result of an
accumulation of reactive oxygen species.

9. By investigating serial samples from TB-HIV
coinfected patients during the first month of
treatment, we detect a higher overall genetic diversity
in HIV- patients, which decreases along treatment
differentially for HIV+ patients. Immune deficiency
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appears to reduce the capacity for diversity reduction
and can be translated into worse clinical outcomes.

10. Using deep whole-genome sequencing, we can trace
the early appearance of heteroresistance as a result
of treatment selective pressure. There is a significant
accumulation of non-synonymous low-frequency
mutations in genes related to drug resistance.

11. Shifts in minimum inhibitory concentration during
early treatment can serve as a clinical tool to predict
a reduced capacity to eliminate bacterial diversity.
This, in turn, could be an indicator of worse
prognosis and eventual treatment failure.
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SUPPLEMENTARY
INFORMATION

Supplementary Figure 1. a) Coincidence in resistance-altering
features detected by functional genomics between our study and
that of Ehrt et al. b) Our resistance-altering features showed similar
phenotypes in Xu, W. et al. Chemical Genetic Interaction Profiling
Reveals Determinants of Intrinsic Antibiotic Resistance in
Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 61,
(2017).
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Supplementary Figure 2. a) The pool contains 10 times more
isoniazid resistant mutants than its parental clone. b) Throughout
the experiment, the frequency of isoniazid resistant mutants
increased specifically in populations treated with the antibiotic.
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Supplementary Figure 3. Global phylogeny generated with a
collated dataset from various sources.
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Supplementary Figure 4. Flowchart of phylogenetic identification
of polyclonal infections. A Python script loads a NJ tree and scans
for isolates that show terminal branch length equal to zero and
distance to other isolates higher than 20 fixed SNPs. An example
for one of the surgical patients is provided: the caseum sample
from patient G240 is a mix of their sputum genotype and G040.
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Supplementary Figure 5. Correlation between sputum and
caseum SNP frequencies for all surgery patients. Blue graphs
correspond to clonal infections and red graphs to polyclonal
infections. R² usually decreases when multiple genotypes are
involved in an infection. Abbreviations: PI, polyclonal infection.
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Supplementary Figure 6. Density profiles of SNP frequency
differences between sample pairs (sputum in blue, caseum in red)
in the surgery cohort. A) Different patterns reflect clonal infections
(all differences in very low frequency range) or polyclonal infections
(differences found in middle and/or high frequencies). B) Details on
how to interpret the density graphs. Abbreviations: PI, polyclonal
infection.
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Supplementary Figure 7. Timeline of surgical patients involved in
transmission clusters. The surgical patient is always depicted at
the bottom. If the paired samples belong to different clusters, they
are represented in two colors and patients of those two clusters
are in the same graph identified with colors (blue = sputum cluster,
green = surgical cluster).
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Supplementary Figure 8. Additional details on the surgical
cohort. A) Details on G033 genotype distribution. B) Example of a
set of SNPs in resistance-related genes that are originally above
3% frequency in the caseum sample and how we can trace their
frequencies across the rest of the lesion. As we validate those
variants as not spurious, it is highly likely that their detection in
samples below 3% is accurate. C) PCA analysis for all nine
multi-sample surgical patients. Abbreviations: G1, genotype 1; G2,
genotype 2; PI, polyclonal infection.
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Supplementary Figure 9. Exclusive SNPs among isolates of
surgery patients. Bars represent the percentage of the total private
SNPs, also noted in each individual graph. Each sample type is
divided into blue (SNP freq. >5%) and red bars (SNP freq. 3-5%).
Abbreviations: PI, polyclonal infection.
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Supplementary Table 1. Oligos used during the experiment for library preparation.

Oligo ID Sequence Modification Comment

Adap1_Lig TACCACGACCA 3'AmC7 Ligation to gDNA fragments

Adap2_NX_Lig
AGATGTGTATAAGAGACAGTGNNANNANNN
TGGTCGTGGTAT - Ligation to gDNA fragments

Adap2_NX_PCR
GTCTCGTGGGCTCGGAGATGTGTATAAGAG
ACAG -

Tn-Junction pcr,
complementary to Adap2

T7_NX_PCR
TCGTCGGCAGCGTCAGATGTGTATAAGAGA
CAGCGGGGACTTATCAGCCAACC -

Tn-Junction pcr,
complementary to T7 ending
sequence
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Supplementary Table 2. Details of serial sputa pairs dataset. * G297 was a special case in which both sputum
samples had three different genotypes at once (L4.3.3, L4.8 and L2 for S1; L4.3.3, L2.2.9 and L2.2.10), but only
one of them (L4.3.3) was a match.

Patient G1 G2 G1 Profile G2 Profile Distance Days Diff. Infection
G-065 L2.2.9 - Pre-XDR - 0 267 Clonal
G-069 L2.2.9 - MDR - 0 108 Clonal
G-078 L2.2.10 - MDR - 0 294 Clonal
G-128 L2.2.9 L1.1.1.1 MDR MDR 1740 318 Polyclonal
G-169 L4.3.3 L2.2.9 Susceptible XDR 1185 352 Polyclonal
G-205 L2.2.9 - MDR - 0 2 Clonal
G-208 L2.2.10 - Pre-XDR - 1 244 Clonal
G-209 L4.8 L2.2.10 Susceptible Pre-XDR 1168 101 Polyclonal
G-213 L2.2.10 - Pre-XDR - 0 595 Clonal
G-214 L2.2.10 - Pre-XDR - 0 57 Clonal
G-215 L2.2.9 - Pre-XDR - 0 190 Clonal
G-216 L2.2.10 - Poly-res - 2 91 Clonal
G-217 L2.2.10 - Pre-XDR - 0 247 Clonal
G-219 L2.2.9 - XDR - 1 28 Clonal
G-220 L2.2.9 L2.2.9 Pre-XDR - 10 431 Clonal
G-221 L4.3.3 - MDR - 0 62 Clonal
G-223 L4 L2.2.9 MDR XDR 1128 333 Polyclonal
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G-224 L2.2.10 L2.2.10 Pre-XDR Pre-XDR 1105 38 Polyclonal
G-225 L2.2.9 - MDR - 0 41 Clonal
G-227 L2.2.10 - Mono-INH - 1 92 Clonal
G-229 L4.6.2 - Susceptible - 0 31 Clonal
G-230 L4.8 - Susceptible - 0 13 Clonal
G-246 L4.2.1 L2.2.10 Pre-XDR XDR 811 24 Polyclonal
G-250 L2.2.10 - MDR - 0 41 Clonal
G-255 L2.2.9 - MDR - 0 75 Clonal
G-258 L4.8 - Susceptible - 2 125 Clonal
G-262 L2.2.10 - Pre-XDR - 0 95 Clonal
G-270 L2.2.10 - Pre-XDR - 0 97 Clonal
G-275 L2.2.9 - MDR - 0 45 Clonal
G-276 L2.2.10 - MDR - 0 39 Clonal
G-278 L2.2.10 - XDR - 3 122 Clonal
G-280 L2.2.10 - Pre-XDR - 0 3 Clonal
G-281 L2.2.9 - MDR - 1 123 Clonal
G-284 L2.2.9 - Pre-XDR - 0 70 Clonal
G-285 L4.2.1 - MDR - 0 266 Clonal
G-287 L2.2.10 - MDR - 0 68 Clonal
G-297 * * * * * 117 Polyclonal
G-315 L2.2.10 - Susceptible - 0 1 Clonal
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Supplementary Note 1: Additional details on surgical
patients

When analyzing the surgical patient dataset, we first
hypothesized that if there are gradients of drug penetration
across the lesion as reported in the literature, this may
translate into differences of MTB genomic diversity across
these positions in and around TB lesion, and that these
differences will be observed both in drug resistance
associated genes as well as across the whole MTB genome.
As shown in Supplementary Figures 8 and 9, there are
important differences in terms of diversity among patient
samples. In patient G018, most of the MTB diversity
accumulated in the granuloma center. When focusing on
exclusive SNPs, most of these were located in the center of
the lesion (127/215 SNPs or 59%). The caseum was mainly
dominated by variants at 3-5% frequency, suggesting that
these were relatively recent. By contrast, the rest of the
samples, including the sputum, showed a lower number of
low frequency variants, probably reflecting population
bottlenecks. In fact, the principal component analysis for
this patient (Supplementary Figure 8C) shows that the
diagnostic sputum sample was closer to the MTB diversity
seen in the sample from the nearby healthy tissue.
Additionally, the remote nodule from this patient did not
share many of the mutations found in the other samples,
which however, may be partially explained by a lower
sequencing depth. For this patient, we were also interested
in knowing how well the MTB diversity in the sputum sample
was represented by the variants in the surgical samples. For
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this analysis, we pooled all low frequency variants identified
in the surgical samples and compared them to the sputum
sample. Only 13 out of the 461 (2.8%) low-frequency
variants seen in the sputum were not present in any of the
surgical samples. Twelve of these thirteen variants were at
3-5% frequency, aside from one at 74%. In addition, we
found some mutations arising in the center of the lesion in
resistance-associated genes and not described before in
drug resistance catalogs. These cavity center mutations
were at very low frequencies in the sputum culture sample of
the patient, well below common detection thresholds
(Supplementary Figure 8B).

Some other interesting cases are patients G335, G324 or
G033. In patient G335, we detected just one genotype and
we could not find any drug resistance-associated mutation.
This is consistent with the phenotypic DST results of this
patient. The PCA showed that the sputum sample was
closer to the one from the cavity center, but the differences
across sites were minimal and most of the variants were
shared between samples (Supplementary Figure 8C). Patient
G324 was another case of polyclonal infection, with a
sputum sample harboring a different strain from the one
present in the other surgical samples. The PCA reflected
this, showing surgery samples separating along PC2 and
only the sputum isolate far away from them in PC1. We also
did not find any trace of the sputum strain in the caseum
when looking at low frequencies. Patient G033 was infected
with two different L4 sublineages (G1=L4.3.3, G2=L4.2.1) in
the nodule (90% G1, 10% G2) and healthy tissue (10% G1,
90% G2). The whole granuloma (C, I, E) was 100% G1
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(Supplementary Figure 8A). This was also reflected in the
PCA , where both of those samples did not cluster with the
other samples, nor with each other. Remarkably, G1 was
XDR while G2 was fully drug susceptible.

Supplementary Note 2: Genomic predictions vs DST
accuracy evaluation

Predictions of the phenotype for first line drugs using
sequencing data and available catalogs (see Chapter 2,
Methods) was overall accurate in this dataset (sensitivity
0.938, specificity 0.994, see Figure 10). Most drug
resistance-associated mutations for first line drugs were
already fixed in the population (frequency > 90%) as
expected for patients that have undergone surgery after
failing their first line treatment. In addition, eight variants
present in catalogs were below standard levels of detection
(frequency < 10%), however they were always concomitant
to other known variants for the same drug so they do not
explain potential disagreements between genotype and
phenotype. Genotype failed to predict some of the
phenotypic DST results. These include one kanamycin, 5
ethambutol, 3 para-aminosalicylic acid, 2 streptomycin and
1 capreomycin discrepancies. We suggest that two new
mutations (2747471AG, folC I43T; 3073679CA, intergenic
dfrA-thyA) might explain PAS resistance not detected by
available catalogs, as both of this genomic features have
been described to be involved in the drug metabolism.
Further studies would be needed to assess the role of these
mutations. We were not able to pinpoint any mutations to
explain the rest of the discrepancies.
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