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In post-tonal theory, set classes are normally elements of Z12 and are characterized by their interval-class
vector. Those being non-inversionally-symmetrical can be split into two set types related by inversion,
which can be characterized by their trichord-type vector. In this paper, I consider the general case of set
classes and types in Zn and their m-class and m-type vectors, m ranging from 0 to n, which are prop-
erly grouped into matrices. As well, three relevant cases are considered: Z6 (hexachords), Z7 (heptatonic
scales), and Z12 (chromatic scale), where all those type and class matrices are computed and provided in
supplementary files; and, in the first two cases, also in the form of tables. This completes the correspond-
ing information given in previous publications on this subject and can directly be used by researchers
and composers. Moreover, two computer programs, written in MATLAB, are provided for obtaining the
above-mentioned and other related matrices in the general case of Zn. Additionally, several theorems on
type and class matrices are provided, including a complete version of the hexachord theorem. These the-
orems allow us to obtain the type and class matrices by different procedures, thus providing a broader
perspective and better understanding of the theory.

Keywords: Complementary order; normal order; interval-class vector; trichord-type vector; trichord-
class vector; type vector; class vector; type matrix; class matrix

1. Introduction

Tonal music is based on major and minor scales. They are heptatonic scales whose notes show
great acoustical affinity among them. Nowadays, the prevalent tuning system is twelve-tone equal
temperament (12-TET), which divides the octave into 12 equal parts, from which the notes of
any scale are taken. In the musical set theory, the notes are pitch classes that are represented by
integers of Z12, where 0 corresponds to note C and 11 to note B. Similarly, for the general case
when the octave is divided into n parts, the set theory in Zn can be used. From another point of
view, and following Tymoczko (2011, 4.1), the different heptatonic scales can be studied in a
simplified and unified way in Z7, considering the divisions of the scale unequally sized. In this
case, however, a chord type usually represents pitch-class sets with different sonorities.

Regarding atonal music, it is not based on major or minor scales, or their typical har-
monies, and some composers began to experiment with it by the early twentieth century.
In particular, Schönberg develops a composition technique based on 12-tone series, where
all notes are equally relevant (Perle 1991 [1962]). Around the same time, Hauer develops
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another 12-tone composition technique, based on so-called “tropes”, which are pairs of com-
plementary hexachords (Šedivý 2011). As a further development, O’Gallagher (2013) creates
a system for improvising with 12-tone rows, which are actually tropes made up from the
six “all-combinatorial” hexachords. Therefore, in these cases, the set theory both in Z12 and
Z6 are helpful. Morris (2007) gives a historical overview of the mathematics involved in the
development of the twelve-tone system, starting from the work by Babbitt (1955).

The study of pitch-class sets and set classes in a more general context was carried out by
Forte (1973), who published the first list of set classes in Z12, introducing his set-class names
and including the interval-class vectors, which list the 2-note set classes contained in each set
class. His work was continued by Rahn (1980) in a more formal mathematical language, whereas
Lewin (1987) is a significant work laying the foundations for a systematic study and giving
numerous relevant results. Straus (1991) is a primer on this subject under the name of atonal
set theory and Straus (2016) is an undergraduate textbook under the name of post-tonal theory.
Recently, Nuño (2021) arranged the set classes in Z12 in a compact periodic table and provided
a more detailed list of set classes and types, including the trichord-type vectors, which list the
3-note set types contained in each set type. As explained there, from these vectors it is easy to
obtain the corresponding trichord-class vectors.

In the light of the foregoing, in this paper the concepts of interval-class, trichord-type, and
trichord-class vectors, which correspond to cardinalities two and three, are extended to the
rest of cardinalities. To cover the general case, the study is carried out in Zn. But, due to its
major relevance, the particular case of Z12 received special attention and the corresponding m-
type and m-class vectors, for 0 ≤ m ≤ 12, after grouping them into appropriate matrices, are
given in a supplementary file. And the same has been done for the cases of Z6 and Z7; but,
because they are quite simple, the corresponding type vectors and matrices are also given in two
tables, which clearly show the full picture and, moreover, serve for illustrating part of the theory
here developed. As well, they are significant examples of n being composite and prime num-
bers. Furthermore, two computer programs, written in MATLAB, are provided for obtaining the
above-mentioned and other related matrices in the general case of Zn. For reasons of generality,
we will consider that, in all cases, the divisions of the octave are not necessarily equally sized.
The reader is assumed to be familiar with Forte names and set classes (Forte 1973), although
some of the main concepts are also explained here.

2. Basic concepts

A pitch class represents all pitches that are a whole number of octaves apart. If the octave is
divided into n parts, not necessarily equal, and here called steps, each pitch class can be repre-
sented by an integer of Zn. A pitch-class set is then a subset of Zn and can be represented either
by the corresponding set of integers or by the characteristic function. The number of pitch classes
in the pitch-class set is its cardinality. For example, in twelve-tone equal temperament (12-TET),
we have that n = 12, a step is a semitone, pitch class C is assigned the integer 0, and a pitch-class
set such as [G,B,D,F], that is, G7, can be represented either by the set of integers [7,11,2,5] or
by the characteristic function [001001010001] (both written here in square brackets), its cardi-
nality being 4. Additionally, it is common (and useful!) to envision those integers as hours on a
clockface, where “12” is substituted with “0”. The transposition and inversion operations1 in Zn

1 The transposition of a pitch-class set consists in adding the same integer to all its pitch classes. For example, in Z12,
by adding 3 to G7 = [7,11,2,5], we obtain [10,2,5,8] (mod 12), that is, B�7 (3 semitones above G7). And the inversion
of a pitch-class set consists in changing the sign of all its pitch classes. Thus, in Z12, the inversion of B�7 = [10,2,5,8]
is [-10,-2,-5,-8] or [2,10,7,4] (mod 12), that is, EØ. If we envision those integers as a set of hours on a clockface, the
inversion is simply obtained by turning them around the “0 – 6” axis (backside front).
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are defined in a similar way as in Z12, as well as the degrees of transpositional and inversional
symmetries.2 In the same way, given a pitch-class set, the pitch classes excluded in it compose
its complement. Therefore, the characteristic function of the complement is obtained from the
original one by simply substituting every 1 with a 0 and vice versa. As can easily be proved,
the degrees of transpositional and inversional symmetries of a pitch-class set, its inversion, and
its complement are the same. If n is even, the pitch-class sets with cardinality n/2 constitute a
special case and we will call them hemichords.

All pitch-class sets related by transposition form a set type or chord type. If the steps are
equally sized, all those pitch-class sets will have the same “sonority”. A chord type will be
represented by any of its pitch-class sets, either by its set of integers or its characteristic function.
Regarding the set of integers, it is common to choose them in increasing order, starting from
zero, and with the rest of them being reasonably low, which is known as the normal form. There
are actually two commonly used normal forms, one given by Forte (1973) and the other by
Rahn (1980), which in most cases are the same. This is the case for the previous example (G7),
where both normal forms are [0,3,6,8], which corresponds to A�7. Although the two normal
forms were defined for Z12, they can be generalized to Zn straightforwardly. A third option for
representing a chord type is to generalize the intervallic form given by Nuño (2021), which will
be the sequence of intervals, in steps, between every two adjacent pitch classes, including the
interval between the last and the first ones; or any of its circular shifts. In the current example,
it is {3,3,2,4} (here written in curly brackets) or any of its circular shifts. Note that the sum of
all integers in any intervallic form in Zn is, obviously, n. The least of all possible circular shifts
of an intervallic form, with respect to the lexicographic order, is the normal intervallic form.
In this case, {2,4,3,3}. The intervallic form has several important properties. Thus, given the
intervallic form of a chord type, it is simple to obtain the one of its inversion, its complement, and,
therefore, the inversion of its complement. Additionally, it allows to easily obtain the degrees of
transpositional and inversional symmetries. Examples are given in Nuño (2021).

On the other hand, all pitch-class sets related by transposition or inversion form a set class or
chord class, which will be represented by any of its pitch-class sets. Thus, a chord class generally
consists of two types related by inversion, which we will call a and b, following Nuño (2021),
their sonorities being different. In this case, the least of the two normal forms or the two normal
intervallic forms, with respect to the lexicographic order, are, respectively, the prime form or
the prime intervallic form (which do not necessarily correspond to the same type!). But, when a
chord type and its inversion are the same, the chord type is inversionally symmetrical, thus being
actually a chord class. For simplicity, a chord type with cardinality c will be called a c-type, and
a chord class with cardinality c, a c-class.

3. Type and class vectors and matrices

The next definition is closely related to the embedding number introduced by Lewin (1987,
5.3.1), with the difference that here an “unweighted” version is also considered, which has
interesting properties and will be used for obtaining relevant results, such as Theorems 5.1 and

2 The degree of transpositional symmetry sT of a pitch-class set is the number of different transpositions by which
the pitch-class set maps into itself. It is at least 1 (which corresponds to adding the integer 0 to all its pitch classes),
but may be greater (up to n in Zn and necessarily a divisor of n). For example, in Z12, every augmented triad has
sT = 3 (C+ = [0, 4, 8] = E+ = G�+). And the degree of inversional symmetry sI of a pitch-class set is the number of
different transpositions, performed after an inversion, by which the pitch-class set maps into itself. It may be 0, but if it
is different from 0, then equals sT and the pitch-class set is said to be inversionally symmetrical. For example, in Z12,
every diminished triad has sI = 1 (Bdim = [11,2,5], whose inversion is [-11,-2,-5] or [1,10,7]; and, by adding 4 to all
the pitch classes, we obtain [5,2,11], which is again Bdim). As well, every major triad has sI = 0 and every augmented
triad, sI = 3.
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7.5. As well, it is easier to compute and two different mathematical expressions are provided for
obtaining it.

Definition 3.1 (Type and class contents): Let S and T be two chord types in Zn. The unweighted
type content of S with respect to T , R(S/T), is the number of times the former contains the latter,
multiplied by the degree of transpositional symmetry of T .

For example, if S is the diminished triad (3-type) and T the tritone (2-type), then R(S/T) = 2,
because a diminished triad contains one tritone and the degree of transpositional symmetry of a
tritone is two.

To provide a mathematical formula for computing R(S/T), let us use the same letters S and
T for representing the characteristic functions of the two chord types, and let c and m be their
corresponding cardinalities. Then, by defining

pm(j) =
n−1∑
k=0

S(k)T(k + j), j = 0, . . . , n − 1, (1)

where k + j is understood modulo n, R(S/T) will be the number of times pm(j) = m for j =
0, . . . , n − 1, which can be expressed as

R(S/T) =
n−1∑
j=0

⌊
pm(j)

m

⌋
, m �= 0,

R(S/T) = n, m = 0,

(2)

where “�x�” is the floor function (the greatest integer less than or equal to x, for x ∈ R).
Note that, if T has a degree of transpositional symmetry sT , then the same vector is used sT

times when computing pm(j) in (1). So, the actual number of times S contains T is R(S/T)/sT ,
which we will call the weighted type content or, simply, the type content of S with respect to T
(this is the Lewin’s embedding number “EMB(T , S)” for “CANON” being the group of transpo-
sition operations3). Thus, if S is the diminished triad and T the tritone (sT = 2), the type content
of S with respect to T will be R(S/T)/sT = 1, indicating that a diminished triad contains just one
tritone. As sT is required for obtaining the type contents, some immediate values of it are given
below:

sT = n for m = 0 or m = n,
sT = 1 for m = 1, m = n − 1, or if m is not a divisor of n,
sT = 1 for m = 2 or m = n − 2, except if n is even
and T = [0, n/2] or its complement, respectively, in
which cases sT = 2.

(3)

Alternatively, we can represent the chord type T by a set of integers [i1, · · · , im] (usually, in
normal form), which allows computing R(S/T) as

R(S/T) =
n−1∑
j=0

S(j + i1) · · · S(j + im), (4)

where j + ik , 1 ≤ k ≤ m are understood modulo n. The equivalence with the previous definition
is clear by substituting T(k + j) with T(k − j) in (1), which does not modify R(S/T) in
(2). In this case, for m �= 0, pm(j) = m, or equivalently �pm(j)/m� = 1, if and only if
S(j + i1) · · · S(j + im) = 1; and, if pm(j) < m, both �pm(j)/m� and S(j + i1) · · · S(j + im) are 0.

3 See Lewin (1987, 5.2.1, 5.2.2, and 5.3.1).
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Additionally, for m = 0, we define S(j + i1) · · · S(j + im) = 1. Equation (4) is equivalent to the
definition of “k-deck” given in Mandereau et al. (2011), with k = m.

Then, the following results are easily obtained:

R(S/T) = n for m = 0,
R(S/T) = c for m = 1,
R(S/T) = 0 for m > c,
R(S/T) = n for c = n,
R(S/T) = n − m for c = n − 1.

(5)

Similar definitions can be given for T being a chord class and S being either a chord class
or a chord type. Then, if T is inversionally symmetrical, the unweighted class content of S
with respect to T is equal to R(S/T) as defined in (1) and (2), or (4) (using any representa-
tive of S). Otherwise, it is equal to R(S/Ta) + R(S/Tb), Ta and Tb being the two types of chord
class T (using the same representative of S in both computations). In both cases, if we divide
R(S/T) by the degree of transpositional symmetry of T , sT , we will obtain the corresponding
(weighted) class content (if both S and T are chord classes, this is the Lewin’s embedding number
“EMB(T , S)” for “CANON” being the group of transposition and inversion operations4).

For the next definition, it is necessary to arrange all the different m-types in Zn, for which
there are several procedures (see below for the c-types). Determining the number of m-types
in Zn, Nn(m), as well as m-classes, Ñn(m), are not easy problems, but they are fully explained
and solved in Hook (2007). Evidently, the number of m-types in Zn equals the number of their
complements, that is, Nn(m) = Nn(m′), where m′ = n − m; and, similarly, Ñn(m) = Ñn(m′). As
well, the following results are easily obtained:

Nn(0) = Ñn(0) = Nn(n) = Ñn(n) = 1, n ≥ 0,
Nn(1) = Ñn(1) = Nn(n − 1) = Ñn(n − 1) = 1, n ≥ 1,
Nn(2) = Ñn(2) = Nn(n − 2) = Ñn(n − 2) = �n/2�, n ≥ 2.

(6)

From (6), non-inversionally-symmetrical chord classes can only appear for n ≥ 6. In these cases,
for every c, 3 ≤ c ≤ n − 3, there is at least one such chord class. It is the one with prime inter-
vallic form {1, · · · , 1, 2, n − c}, where the number of “1” is c − 2 and n − c ≥ 3, its Forte ordinal
being 2. Examples will be seen in next section for n = 6 and n = 7.

Definition 3.2 (Type and class vectors): Let S be a chord type and let Tl, 1 ≤ l ≤ Nn(m) be all
the different m-types in Zn, their degrees of transpositional symmetry being sm

l . The unweighted
m-type vector of S, Pm(S), is the vector whose elements are R(S/Tl), 1 ≤ l ≤ Nn(m). And the
(weighted) m-type vector of S, Vm(S) or mTV(S), is the vector whose elements are R(S/Tl)/sm

l ,
1 ≤ l ≤ Nn(m). Similar definitions can be given for Tl being chord classes and S being either a
chord class or a chord type. Then, the (weighted) m-class vector of S will be called Ṽm(S) or
mCV(S), its length being Ñn(m) (this is the “k-vector” defined in Mandereau et al. (2011), with
k = m). If both S and Tl are chord types or chord classes, the corresponding weighted vectors
are the Lewin’s “M-class vector”,5 with M = m.

For example, in 12-TET there are six different 2-types, the dyads, which are actually chord
classes. Their degrees of transpositional symmetry are 1, except for the tritone, which is 2. And
the 2-class vector (2CV) is the well-known interval-class vector or ICV.

Vectors are here understood as column vectors, while row vectors are indicated by superscript
“t” (transpose). In fact, type and class vectors will normally be written as row vectors, that is,

4 See Lewin (1987, 5.2.1, 5.2.2, and 5.3.1).
5 See Lewin (1987, 5.3.3).
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Pt
m(S), V t

m(S) and Ṽ t
m(S). Logically, the sum of the elements of V t

m(S) or Ṽ t
m(S) equals the number

of combinations of c notes chosen m at a time, that is, ( c
m ), for c ≥ m.

Procedures for arranging the c-types. All the different c-types in Zn can be arranged by
following several criteria or a combination of them, the most common being:

Criterion 1: To arrange the c-types based on their own structures. Usually, by their normal
or normal intervallic forms, in increasing lexicographic order. It is common to first arrange
the c-classes and then split those being non-inversionally-symmetrical into two types. In any
case, the corresponding c-type vectors (weighted or unweighted) will only have one non-zero
element and are arranged in decreasing lexicographic order.

Criterion 2: To arrange the c-types based on their relations with other m-types, m < c. Usu-
ally, by their m-class or m-type vectors, in decreasing lexicographic order. Obviously, this
requires that those m-classes or m-types are previously arranged (normally, by Criterion 1).
Note that Criterion 1 can be viewed as a Criterion 2 with m = c.

For example, Forte (1973) arranges the 2-classes in Z12 by Criterion 1, using their normal forms
(which, in this case, is equivalent to using their normal intervallic forms), while for c ≥ 3 the
chord classes are arranged by Criterion 2 using the 2-class vector (2CV or ICV, there called
interval vector). The ties are the pairs of Z-related chord classes, which only appear for c ≥ 4
and one member of each pair is placed at the end of the corresponding group. In contrast, at
this point, Nuño (2021) arranges the two members of a Z-related pair by Criterion 2 using the
3-class vector (3CV, there called trichord-class vector or TCV), the first class being called hard
and the second soft. Then, the non-inversionally-symmetrical 3-classes are split into two types
and arranged by Criterion 1 (using any of the two forms); and, for c ≥ 4, the two types of the
same class are arranged by Criterion 2 using the 3-type vector (3TV, there called trichord-type
vector or TTV). In both cases, the first one is called type a and the second type b. Finally, there
is still one more tie: the two types of chord class 6-14, which have the same 3TV. Then, they
are arranged by Criterion 1 using the normal intervallic form (but, in this case, contrary to the
normal form!), which coincides, in this case, with Criterion 2 using the 4-type vector (4TV).
This is the procedure followed for developing both the detailed list and the periodic table of set
classes given in that work, and the one considered here in Sections 4 and 6.

Definition 3.3 (Type and class matrices): Let Sk , 1 ≤ k ≤ Nn(c) be all the different c-types and
Tl, 1 ≤ l ≤ Nn(m) all the different m-types in Zn. The unweighted type matrix Qc,m is the matrix
whose rows are the unweighted m-type row vectors Pt

m(Sk), 1 ≤ k ≤ Nn(c). And the (weighted)
type matrix Mc,m is the matrix whose rows are the m-type row vectors V t

m(Sk), 1 ≤ k ≤ Nn(c).
Note that the dimensions of both matrices are not c × m, but Nn(c) × Nn(m). Similar definitions
can be given for Tl being chord classes and Sk being either chord classes or chord types. If
both are chord classes, we will represent the corresponding (weighted) class matrix as M̃c,m, its
dimensions being Ñn(c) × Ñn(m).

Definition 3.4 (Weighting matrix): Let Tl, 1 ≤ l ≤ Nn(m) be all the different m-types in Zn,
their degrees of transpositional symmetry being sm

l . The weighting matrix Wm is a diagonal matrix
with dimensions Nn(m) × Nn(m), whose elements in the diagonal are 1/sm

l , 1 ≤ l ≤ Nn(m).
The weighting matrix allows us to relate matrices Qc,m and Mc,m as Mc,m = Qc,mWm.
Definition 3.5 (Type-adding and type-deleting matrices): Let Tl, 1 ≤ l ≤ Nn(m) be all the dif-

ferent m-types in Zn. The type-adding matrix Am is an “almost diagonal matrix” with dimensions
Nn(m) × Ñn(m) that, when right-multiplying a matrix like Mc,m, modifies it by adding every
pair of columns corresponding to the two types of the same chord class, leaving the rest of the
columns unchanged. As well, the type-deleting matrix Dm is an “almost diagonal matrix” with
dimensions Nn(m) × Ñn(m) that, when right-multiplying a matrix like Mc,m, modifies it by delet-
ing one column of each pair corresponding to the two types of the same chord class, leaving
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the rest of the columns unchanged. Logically, left-multiplying by the transpose of those matrices
(with the appropriate dimensions) has the same effect on the rows.

These matrices allow us to relate type and class matrices Mc,m and M̃c,m as M̃c,m = Dt
cMc,mAm.

Examples of weighting, type-adding, and type-deleting matrices, as well as their use, are given
by the end of Section 5.

Definition 3.6 (Full n-type and n-class matrices): In Zn, the full unweighted n-type matrix is
the square matrix consisting of submatrices Qc,m, 0 ≤ c ≤ n, 0 ≤ m ≤ n. And the full (weighted)
n-type matrix is the square matrix consisting of submatrices Mc,m, 0 ≤ c ≤ n, 0 ≤ m ≤ n. A
similar definition can be given for the full (weighted) n-class matrix, considering submatrices
M̃c,m.

Table 1. Chord types and type vectors and matrices in Z6. Columns (left to right): (1) Cardinality c and general ordinal.
(2) Extended Forte name. (3) Normal Intervallic Form (NIF). (4)–(10) m-type vectors, 0 ≤ m ≤ 6, and the corresponding
matrices. The rectangle shows the full 6-type matrix.
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Table 2. Chord types and type vectors and matrices in Z7. Columns (left to right): (1) Cardinality c and general ordinal.
(2) Extended Forte name. (3) Normal Intervallic Form (NIF). (4)–(11) m-type vectors, 0 ≤ m ≤ 7, and the corresponding
matrices. The rectangle shows the full 7-type matrix.

4. Application to Z6 and Z7

Tables 1 and 2 give the chord types and their type vectors and matrices in Z6 and Z7, respectively.
The information is given in several columns containing the following:
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1) Cardinality c and general ordinal. Chord types being inversionally symmetrical are indi-
cated by a hyphen after the ordinal. The degree of transpositional symmetry is given as a
superscript, when greater than one.

2) Extended Forte name, consisting of two numbers separated by a hyphen, the first one
being the cardinality and the second an ordinal for the chord classes, which is followed
by the type (a or b) when applicable. Both the chord classes and types are arranged as in
Nuño (2021) (see the previous section), with the difference that now there are no ties.

3) Normal intervallic form (NIF).
4) The rest of columns show the m-type vectors (mTV), 0 ≤ m ≤ n, and the corresponding

matrices. The rectangle shows the full n-type matrix.

As explained above, for n ≥ 6 and every c, 3 ≤ c ≤ n − 3, there is at least one non-inversionally-
symmetrical chord class, whose Forte ordinal is 2. In these cases, they are 3-2 in Z6 (Table 1)
and 3-2 and 4-2 in Z7 (Table 2).

These tables provide all type contents of every chord type and can easily be verified. In a sense,
they are simplified versions of Z12 (which will be seen in Section 6). For example, the four basic
triads in Z12, which are the chord types 3-10 (diminished), 3-11a (minor), 3-11b (major), and
3-12 (augmented), in Z7 they all are the chord class 3-4. Regarding class vectors and matrices,
they are quite simple to obtain in these cases and some examples are given by the end of next
section. On the other hand, these tables are significant examples of n being composite and prime
numbers, and will also serve to illustrate the theory developed in next section.

5. Properties and examples

Type and class vectors and matrices, as well as full n-type and n-class matrices, have important
and interesting properties, which are described below. The first three follow from (3) and (5).

Property 1. All type matrices Mc,c are identity matrices and all type matrices Mc,m, m > c, are
zero matrices. Therefore, a full n-type matrix is lower triangular and all elements in its main
diagonal are equal to 1.

Property 2. In the first column of a full n-type matrix, we have matrices Mc,0, 0 ≤ c ≤ n, whose
elements are all equal to 1. In the last row, we have matrices Mn,m, 0 ≤ m ≤ n, whose elements
are equal to n/sm

l , 1 ≤ l ≤ Nn(m).
Property 3. In the second column of a full n-type matrix, we have matrices Mc,1, 0 ≤ c ≤ n,

whose elements are equal to c. In the last but one row, we have matrices Mn−1,m, 0 ≤ m ≤ n,
whose elements are equal to (n − m)/sm

l , 1 ≤ l ≤ Nn(m).
Property 4. As explained after Definition 3.2, the sum of the elements of every row in Mc,m,

as well as in M̃c,m, c ≥ m, is ( c
m ). Therefore, the sum of the elements of a row corresponding to

a cardinality c in a full n-type or n-class matrix is
∑c

m=0 ( c
m ) = 2c.

Theorem 5.1 (Complementary reciprocity): Let S and T be two chord types and S′ and T ′

their corresponding complements. Then,

R(S/T) = R(T ′/S′). (7)

Proof: Let c and m be the cardinalities of S and T , respectively, and c′ = n − c and m′ = n − m
those of S′ and T ′. Using (1) with S(k) = 1 − S′(k), T(k) = 1 − T ′(k) yields

pm(j) =
n−1∑
k=0

[1 − S′(k)][1 − T ′(k + j)] = n − m′ − c′ +
n−1∑
k=0

S′(k)T ′(k + j). (8)



Journal of Mathematics and Music 253

Defining

qc′(j) =
n−1∑
k=0

S′(k)T ′(k + j) =
n−1∑
k=0

T ′(k)S′(k − j) (9)

allows us to compute R(T ′/S′) as the number of times qc′(j) = c′ for j = 0, . . . , n − 1, that is,

R(T ′/S′) =
n−1∑
j=0

⌊
qc′(j)

c′

⌋
, c′ �= 0,

R(T ′/S′) = n, c′ = 0,

(10)

according to (2). Since, from (8),

qc′(j) = pm(j) − m + c′, (11)

the number of times qc′(j) = c′ equals the number of times pm(j) = m, both for j = 0, . . . , n − 1,
which gives (7).

This result allows us to relate the unweighted type matrices Qc,m and Qm′,c′ , but the next
definition is required.

Definition 5.1 (Complementary order): The chord types in Zn are arranged in complementary
order if we follow these steps:

1) Group the chord types by their cardinality c (1CV).
2) For 0 ≤ c ≤ �n/2�, arrange the chord types having the same cardinality by any criteria (see

the most common in Section 3).
3) For �n/2� + 1 ≤ c ≤ n, arrange the chord types having the same cardinality in the same

order as their corresponding complements, which were arranged in the previous step.

A similar definition can be given for chord classes.
Property 5. From Theorem 5.1 (Complementary reciprocity), if the chord types in Zn are

arranged in complementary order, then, excluding the hemichord types (c = n/2 or m = n/2,
which requires that n be even),

Qc,m = Qt
m′,c′ (12)

where superscript “t” means transpose. In particular, if m = c′, the square matrices Qc,c′ are
symmetric. And this is also true if c = c′ = n/2, since in this case the matrix is diagonal.

In general, however, (12) cannot be guaranteed if c = n/2 or m = n/2, because the hemi-
chord types are not necessarily self-complementary, although (7) is always applicable. Anyway,
excluding the hemichords, (12) is also accomplished if, for �n/2� + 1 ≤ c ≤ n, the two types of
every non-inversionally-symmetrical chord class are interchanged, as can be justified from the
next lemma. In fact, this was already done for Z7 in Table 2, where there are no hemichords.
Regarding Z6, the hemichords happen to be self-complementary, except the only two types a
and b, which are precisely the complements of each other (see Table 1). For these reasons, all
type matrices in Z6, as well as in Z7, satisfy (12).

The next lemma is given without proof, because it is evident by envisioning the chord types
as sets of hours on a clockface with n hours.

Lemma 5.1 (Type-content symmetry): Let Sa and Sb be the two types of a chord class and let
Ta and Tb be the two types of another (or the same) chord class. Then,

R(Sa/Ta) = R(Sb/Tb), R(Sa/Tb) = R(Sb/Ta). (13)

Definition 5.2 (Normal order): The chord types in Zn are arranged in normal order if we first
arrange them in complementary order and then, for �n/2� + 1 ≤ c ≤ n, we interchange the two
types of every non-inversionally-symmetrical chord class.
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This is the way the chord types in Z7 are arranged in Table 2 and those in Z12 will be arranged
in next section. Logically, regarding chord classes, there is no difference between normal and
complementary orders. Forte (1973) himself arranged the chord classes in this way.

Definition 5.3 (Left-weighted type and class matrices): Given an unweighted type matrix Qc,m,
its corresponding left-weighted type matrix is Lc,m = WcQc,m, where Wc = W t

c is a weighting
matrix. As well, the corresponding left-weighted class matrix is L̃c,m = At

cLc,mDm, where Ac

and Dm are a type-adding and a type-deleting matrices, respectively. Left-weighted matrices are
useful for simplifying some expressions.

Property 6: If the chord types in Zn are arranged in complementary or normal order, then,
excluding the hemichord types,

Mc,m = Lt
m′,c′ (14)

This is obtained by simply right-multiplying (12) by Wm, which is equal to Wm′ (because a chord
type and its complement have the same degree of transpositional symmetry).

Property 7: If the chord classes in Zn are arranged in complementary or normal order, then,
excluding the hemichord classes,

M̃c,m = L̃t
m′,c′ (15)

This is obtained from (14) by left-multiplying by type-deleting matrix Dt
c, right-multiplying by

type-adding matrix Am, and taking into account that Dc = Dc′ and Am = Am′ .
Let us now give some examples. In Table 1, the chord types in Z6 are arranged in comple-

mentary (or normal) order; and, as observed above, all unweighted type matrices satisfy (12).
Therefore, they will also satisfy (14). Thus, for example, for c = 3, m = 2, and for c = 4, m = 3,
we have

M3,2 =

⎡
⎢⎢⎣

2 1 0
1 1 1
1 1 1
0 3 0

⎤
⎥⎥⎦ , M4,3 =

⎡
⎣2 1 1

1 1 1
0 2 2

0
1
0

⎤
⎦ . (16)

As the involved weighting matrices are

W2 = W4 =
⎡
⎣1 0 0

0 1 0
0 0 1/2

⎤
⎦ , W3 =

⎡
⎢⎢⎣

1 0
0 1

0
0

0
0

0 0 1 0
0 0 0 1/3

⎤
⎥⎥⎦ , (17)

we obtain

L3,2 = W3M3,2W−1
2 =

⎡
⎢⎢⎣

2 1 0
1 1 2
1 1 2
0 1 0

⎤
⎥⎥⎦ , L4,3 = W4M4,3W−1

3 =
⎡
⎣2 1 1

1 1 1
0 1 1

0
3
0

⎤
⎦ . (18)

Therefore, M3,2 = Lt
4,3 and M4,3 = Lt

3,2.
As well,

Q4,2 = M4,2W−1
2 =

⎡
⎣3 2 1

2 3 1
2 2 2

⎤
⎦

⎡
⎣1 0 0

0 1 0
0 0 2

⎤
⎦ =

⎡
⎣3 2 2

2 3 2
2 2 4

⎤
⎦ , (19)

which is symmetric, as stated in (12) for m = c′.
In Table 2, the chord types in Z7 are arranged in normal order; and, as observed above, all

unweighted type matrices satisfy (12). Therefore, they will also satisfy (14). Regarding matrices
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Wm, they are identity matrices, except for m = 0 and m = 7. Therefore, M3,2 = M t
5,4, M4,2 =

M t
5,3, and matrices M4,3, M5,2 are symmetric, as can be seen in the table.
To show how to obtain class matrices from type matrices, let us obtain, in Z7, class matrix

M̃5,3 from type matrix M5,3 and type-adding matrix A3:

M̃5,3 = M5,3A3 =
⎡
⎣3 2 2 2 1

2 2 2 1 3
1 2 2 3 2

⎤
⎦

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0
0
0

1
0
0

0
1
0

0
0
1

⎤
⎥⎥⎥⎥⎦

=
⎡
⎣3 4 2 1

2 4 1 3
1 4 3 2

⎤
⎦ . (20)

To obtain class matrix M̃4,3, we need, apart from M4,3 and A3, type-deleting matrix D4:

M̃4,3 = Dt
4M4,3A3

=

⎡
⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

2 1 1 0 0
1 1 0 1 1
1 0 1 1 1
0 1 1 2 0
0 1 1 0 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

2 2 0 0
1 1 1 1
0
0

2
2

2
0

0
2

⎤
⎥⎥⎦ .

(21)

Note that M4,3 is symmetric, but M̃4,3 is not.

6. Application to Z12 and software

For Z12, the information on chord types and their corresponding type and class vectors and
matrices is too large to give it in a table, as was done for Z6 and Z7. Thus, it is provided as
an Online Supplement, in a MATLAB file named “TwelveToneMatrices.mat”. It contains 234
matrices, whose names start with letter “T” (for “Twelve”) and, to avoid any misunderstanding,
integers 10, 11 and 12 are represented by letters A, B and C, respectively. The chord types are
defined in the following matrices:

Chord Types: TTx, 0 ≤ x ≤ C

These matrices have N12(x) rows and x + 1 columns. The first column contains the chord
type descriptors, which are real numbers, their absolute integer parts being the Forte ordinals of
the corresponding chord classes. When a chord class is Z-related to another one, its descriptor
is negative, otherwise positive. Non-inversionally-symmetrical chord classes are split into two
types, the descriptor of type a having a fractional part “.1” and type b, “.2”. For inversionally-
symmetrical chord classes, the descriptors are integer numbers. The rest of columns contain
natural numbers, which are the normal intervallic forms (for x ≥ 1).
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As can be seen, the chord classes and types are arranged as in Nuño (2021) (see Section
3), except for the Z-related pairs of 7- and 8-classes, where the hard and soft classes are inter-
changed. This only affects to 4 pairs of chord classes and makes all chord classes and types to be
arranged in normal order.

The following matrices are given in the same file:

Weighting Matrices Wx: TWx, 0 ≤ x ≤ C

Type-Adding Matrices Ax: TAx, 0 ≤ x ≤ C

Type-Deleting Matrices Dx: TDx, 0 ≤ x ≤ C

Type Matrices Mx,y: TMxy, 0 ≤ x ≤ C, 0 ≤ y ≤ x

Class Matrices M̃x,y: TNxy, 0 ≤ x ≤ C, 0 ≤ y ≤ x

The rows of matrices Mx,2 = M̃x,2 are actually the 2CV, which were first published by Forte
(1973), there called interval vectors. And the rows of matrices Mx,3 are the 3TV, which were
published by Nuño (2021), there called trichord-type vectors or TTV. Now, the rest of nTV and
nCV are given, thus completing the information for Z12.

Regarding the corresponding matrices for Z6 and Z7, they are given in other two MATLAB
files, named, respectively, “HexaToneMatrices.mat” and “SevenToneMatrices.mat”. The nota-
tion for the matrices in these cases is similar to the previous case, except that now their names
start with letters “H” (for “Hexa”) and “S” (for “Seven”) instead of “T”.

Apart from its relevance and usefulness in music theory and composition, these matrices can
also be used to verify and better interpret the theorems given in next section.

On the other hand, a program for computing type and class matrices is provided, its name
being “TypeClassMatrices.m”. It can be used for obtaining both the above results and other new
ones, as it is valid for any value of n. For running the program, the user has to supply two input
matrices, with names S and T, in the same directory as the program. They must have the same
format as matrices TTx described above. In each of these matrices, all chord types must have
the same cardinality, although it is not necessary to include all the different chord types with
that cardinality. However, types a and b of the same chord class must be included both jointly,
in consecutive rows, and their descriptors must only differ in the fractional parts “.1” and “.2”
(which can be assigned arbitrarily to the two types). Apart from this, the chord classes can be
given in any order and their descriptors do not need to include the minus sign for Z-related chord
classes. As well, the intervallic forms do not need to be normal. Then, the program gives the
(weighted) type matrix TM and (weighted) class matrix CM of chord types and chord classes in
matrix S with respect to those in matrix T.

Furthermore, a program for computing weighting, type-adding, and type-deleting matrices is
also provided, its name being “WADMatrices.m”, which is also valid for any value of n. Now,
the user has to supply only one input matrix, with name T, in the same directory as the program.
Its format must be as described in the previous paragraph, but in case it contains the chord type
with cardinality 0, the user also has to supply the value of n through the variable zn, in the
same directory as the program. Then, the program gives the weighting W, type-adding A, and
type-deleting D matrices related to chord types in matrix T.

By the end of the programs, all auxiliary variables are deleted, a list of which can be seen in
the last but one line of each program.

Both programs are self-explanatory and the user can easily adapt or modify them as desired.
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7. Theorems on type and class matrices

Theorems in this section provide relations among weighted and left-weighted type and class
matrices, which allow obtaining them by different alternatives.

Theorem 7.1 (Type matrix contraction): The type matrices satisfy the following relation

(
c − q
c − p

)
Mc,q = Mc,pMp,q, c ≥ p ≥ q (22)

(irrespective of how the chord types are arranged). This allows obtaining Mc,q from Mc,p.
Before giving the proof, let us analyze a particular case. For example, in Z7 let us consider

c = 5, q = 2, and p = 4. The left- and right-hand sides of (22) are, respectively (see Table 2),

(
c − q
c − p

)
Mc,q =

(
3
1

)
M5,2 = 3

⎡
⎣4 3 3

3 4 3
3 3 4

⎤
⎦ (23)

and

Mc,pMp,q =M5,4M4,2 =
⎡
⎣2 1 1 1 0

1 1 1 0 2
0 1 1 2 1

⎤
⎦

⎡
⎢⎢⎢⎢⎣

3
2

2
2

1
2

2
2

2
1

2
3

1 3 2

⎤
⎥⎥⎥⎥⎦=

⎡
⎣12 9 9

9 12 9
9 9 12

⎤
⎦ , (24)

which clearly coincide.
For the 5-type 5-1, the first row in M5,4, that is,

[
2 1 1 1 0

]
, lists the number of times

each 4-type is contained in 5-1. Its product with matrix M4,2 is the row vector
[
12 9 9

]
, which

lists the number of times each 2-type is contained in all those 4-types. This is different from the
number of times each 2-type is contained in 5-1, which are listed in the first row of M5,2, that
is,

[
4 3 3

]
. And this difference is just the factor 3. Let us see why. Each 2-type contained

in 5-1 will also be contained in all the 4-types in 5-1 formed by the 2 notes of the 2-type plus

two more notes from 5-1 (chosen from the remaining 3), which gives a total of

(
3
2

)
=

(
3
1

)
= 3

combinations. The same can be said for the 5-types 5-2 and 5-3, which explains the result. The
proof of the theorem is, simply, the generalization of this reasoning.

Proof. Let S be a c-type. The row vector V t
p(S) lists the number of times each p-type is con-

tained in S; and the product V t
p(S)Mp,q is the row vector listing the number of times each q-type is

contained in all those p-types. This is different from the row vector V t
q(S), which lists the number

of times each q-type is contained in S. And this difference is just a factor that can be obtained as
follows: any q-type contained in S will belong to as many p-types in S as can be composed with
the q notes of the q-type plus other p − q notes from S (chosen from the remaining c − q), which

gives a total of

(
c − q
p − q

)
=

(
c − q
c − p

)
combinations, provided that c ≥ p ≥ q. Therefore,

(
c − q
c − p

)
V t

q(S) = V t
p(S)Mp,q, c ≥ p ≥ q. (25)

And, by considering all the c-types in Zn, we obtain (22).
Note that no particular arrangement was required for the complements of the chord types.

Formula (25) for the particular case n = 12, p = 3, q = 2 was given by Nuño (2021).
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Theorem 7.2: The left-weighted type matrices satisfy the following relation
(

q − m
p − m

)
Lq,m = Lq,pLp,m, m ≤ p ≤ q (26)

(irrespective of how the chord types are arranged). This allows obtaining Lq,m from Lp,m.
Proof. Renaming in (22) c to m and right-multiplying by W−1

q gives

(
m − q
m − p

)
Qm,q = Mm,pQp,q, m ≥ p ≥ q. (27)

And, because Mm,pQp,q = Qm,pWpQp,q = Qm,pLp,q, left-multiplying (27) by Wm gives

(
m − q
m − p

)
Lm,q = Lm,pLp,q, m ≥ p ≥ q. (28)

Finally, interchanging m with q and considering that

(
q − m
q − p

)
=

(
q − m
p − m

)
, we obtain (26).

Lemma 7.1 (Class-content symmetry): From Lemma 5.1 (Type-content symmetry), if in matrix
Mp,q we add every pair of columns corresponding to the two types of the same chord class, that
is, we obtain Mp,qAq, then, in this resulting matrix, any two rows corresponding to the two types
of the same chord class are the same. Similarly, if in matrix Lq,p we add every pair of rows
corresponding to the two types of the same chord class, that is, we obtain At

qLq,p, then, in this
resulting matrix, any two columns corresponding to the two types of the same chord class are the
same.

Theorem 7.3 (Class matrix contraction): The class matrices satisfy the following relation
(

c − q
c − p

)
M̃c,q = M̃c,pM̃p,q, c ≥ p ≥ q (29)

(irrespective of how the chord classes are arranged). This allows obtaining M̃c,q from M̃c,p.
Proof. This result is similar to (22), but is not obtained straightforwardly from it and requires

further reasoning. First, right-multiplying (25) by type-adding matrix Aq yields

(
c − q
c − p

)
Ṽ t

q(S) = V t
p(S)Mp,qAq, c ≥ p ≥ q, (30)

Ṽ t
q(S) being the corresponding row of M̃c,q. Then, from Lemma 7.1 (Class-content symmetry),

in the resulting matrix Mp,qAq any two rows, say ia and ib, corresponding to the two types of the
same chord class, say i, are the same. Thus, when multiplying vector V t

p(S) by column j of matrix
Mp,qAq, the corresponding elements give

[V t
p(S)]ia [Mp,qAq]ia,j + [V t

p(S)]ib [Mp,qAq]ib,j

= {[V t
p(S)]

ia
+ [V t

p(S)]
ib
}[Mp,qAq]ia,j

= [V t
p(S)Ap]i[Dt

pMp,qAq]i,j = [Ṽ t
p(S)]i[M̃p,q]i,j

(31)

where Ṽ t
p(S) is the corresponding row of M̃c,p and type-adding Ap and type-deleting Dp matrices

were used. Thus, (
c − q
c − p

)
Ṽ t

q(S) = Ṽ t
p(S)M̃p,q, c ≥ p ≥ q. (32)

And, by considering all the c-classes in Zn, we obtain (29).
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Relations (22) and (29) for only one element of matrices Mc,q and M̃c,q, respectively, were
given by Lewin (1987, 5.3.5.2). Curiously enough, he gives a proof based on probability theory.

Choosing an arbitrary column of (26) and reasoning as in the previous proof, but interchanging
rows with columns, we obtain the next theorem.

Theorem 7.4: The left-weighted class matrices satisfy the following relation

(
q − m
p − m

)
L̃q,m = L̃q,pL̃p,m, m ≤ p ≤ q (33)

(irrespective of how the chord classes are arranged). This allows obtaining L̃q,m from L̃p,m.
Corollary 7.1 (Nesting): From (25), if two c-types have the same p-type vector, p ≤ c, then

they also have the same q-type vectors, 0 ≤ q ≤ p. From (32), the same applies for c-classes
and class vectors. These results are also given by Mandereau et al. (2011), but from a different
approach.

Corollary 7.2: From Corollary 7.1 (Nesting), if two c-types have different q-type vectors (q ≤
c), then all their p-type vectors, q ≤ p ≤ c, will also be different. The same applies for c-classes
and class vectors.

Theorem 7.5 (Type content of the complement): Let S and S′ be the characteristic functions
of a c-type and its complement, and let T be an m-type, m ≥ 1. Then,

R(S′/T) = (−1)mR(S/T) + (−1)m−1Pt
m−1(S)Vm−1(T)

+(−1)m−2Pt
m−2(S)Vm−2(T) + · · · − Pt

1(S)V1(T) + Pt
0(S)V0(T),

(34)

the last two terms being −cm + n. Of course, this can also be written in the compact form

R(S′/T) = (−1)mR(S/T) +
m−1∑
l=0

(−1)lPt
l(S)Vl(T), m ≥ 1. (35)

The case m = 1 is, simply, c′ = −c + n. And the case m = 0 also corresponds to (35) but without
the summation, that is, R(S′/T) = R(S/T) = n, which is not relevant.

Proof. Let T be represented by the set of integers [i1, · · · , im]. Then,

R(S/T) = ∑n−1
j=0 S(j + i1) · · · S(j + im),

R(S′/T) = ∑n−1
j=0 S′(j + i1) · · · S′(j + im).

(36)

As S′(j) = 1 − S(j),

R(S′/T) =
n−1∑
j=0

[1 − S(j + i1)] · · · [1 − S(j + im)]. (37)

Calling, for simplicity, Sk = S(j + ik), 1 ≤ k ≤ m, considering them as the roots of a polynomial
of degree m, so that xm + A1xm−1 + A2xm−2 + · · · + Am = (x − S1) · · · (x − Sm), using Vieta’s
formulas relating the coefficients of a polynomial with its roots (see, for example, Bronshtein
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et al. 2007, 43–44), and taking x = 1, the expression in the summation in (37) can be written as

[1 − S(j + i1)] · · · [1 − S(j + im)] =
m∏

k=1

(1 − Sk) =
m∑

l=0

Al (38)

where
A0 = 1

A1 = −(S1 + S2 + · · · + Sm) = −
m∑

p=1
Sp

A2 = S1S2 + S1S3 + · · · + Sm−1Sm =
m∑

p,q=1
p<q

SpSq

A3 = −(S1S2S3 + S1S2S4 + · · · + Sm−2Sm−1Sm) = −
m∑

p,q,r=1
p<q<r

SpSqSr

...
Am = (−1)mS1S2 · · · Sm

(39)

Thus, substituting (38) in (37) gives

R(S′/T) =
n−1∑
j=0

m∑
l=0

Al =
m∑

l=0

n−1∑
j=0

Al (40)

Each coefficient Al, 0 ≤ l ≤ m, given in (39), involves all possible l-types chosen from
[i1, · · · , im], that is, from T . For example, the terms in A3 involve all the 3-types [ip, iq, ir] in
T (the condition p < q < r guarantees that the 3 notes are different and that no one combination
is repeated). Therefore, the summation

∑n−1
j=0 A3 in (40) equals, apart from the minus sign, the

sum of the unweighted type contents of S with respect to all the 3-types in T . And this can be
written as the product of row vector Pt

3(S) with column vector V3(T). The same applies to all
the summations

∑n−1
j=0 Al, the case l = m giving

∑n−1
j=0 Am = (−1)mR(S/T). Consequently, (40)

equals (35).
Formula (34) for the particular case n = 12, m = 2, that is, R(S′/T) = R(S/T) − 2c + 12 was

first published by Lewin (1960), who considered T as any interval from 0 to 11 semitones.
Theorem 7.6 (Complete hexachord theorem): The type vectors satisfy the following relation

V t
m(S′) = (−1)mV t

m(S) +
m−1∑
l=0

(−1)lV t
l (S)Lt

m,l, m ≥ 1. (41)

And, similarly, the class vectors satisfy the following relation

Ṽ t
m(S′) = (−1)mṼ t

m(S) +
m−1∑
l=0

(−1)lṼ t
l (S)L̃t

m,l, m ≥ 1. (42)

Proof. From Theorem 7.5 (Type content of the complement), and considering all m-types in Zn,
we obtain

Pt
m(S′) = (−1)mPt

m(S) +
m−1∑
l=0

(−1)lPt
l(S)M t

m,l, m ≥ 1. (43)

The product in the summation Pt
l(S)M t

m,l = Pt
l(S)(Qm,lWl)

t = Pt
l(S)WlQt

m,l = V t
l (S)Qt

m,l. So,
right-multiplying (43) by Wm gives (41). Then, right-multiplying (41) by Am, writing the product
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in the summation as V t
l (S)Lt

m,lAm = V t
l (S)(At

mLm,l)
t, using Lemma 7.1 (Class-content symmetry),

and reasoning as in Theorem 7.3 (Class matrix contraction), we obtain (42).
Equation (41) allows us to obtain the m-type vector Vm(S′) from Vm(S), although Vl(S),

0 ≤ l ≤ m − 1, are also required. This equation for the particular case n = 12, c = 6, m = 2, is
known as the “hexachord theorem”. And, for any n and c, but m = 2, it is known as the “general-
ized hexachord theorem”. In both cases, the values of s2

i , 1 ≤ i ≤ Nn(2), required for computing
W2 and then Lt

2,l, are given in (3). Rahn (1980, 105–107) gives these two theorems, but leaves the
proofs to the reader. In contrast, Blau (1999) gives interesting proofs based on geometrical rep-
resentations, as well as historical notes. On the other hand, Nuño (2021) gives the corresponding
formula for n = 12, any c, and m = 3. Now, a complete version of the hexachord theorem for
any n, c, and m, is given. This theorem, together with Corollary 7.1 (Nesting), provide other two
important corollaries:

Corollary 7.3: If two c-types have the same m-type vector, then their complements also have
the same m-type vector. The same applies for c-classes and class vectors.

Corollary 7.4: If all c-types with the same (m − 1)-type vector are arranged by their m-type
vectors in increasing or decreasing lexicographic order, then their complements will be arranged
by their m-type vectors in the same or reverse order, depending on whether m is even or odd,
respectively. The same applies for c-classes and class vectors.

For example, if we arrange the c-classes (which have the same 1CV) by decreasing 2CV, then
their complements will also be arranged by decreasing 2CV (because 2 is even). This is why a
chord class and its complement are assigned the same Forte ordinal (except for the hemichord
classes). In the particular case of Z12, it turns out that no more than two chord classes have the
same 2CV and each chord class has a unique 3CV. Thus, if two chord classes with the same 2CV
are arranged, for example, by their 3CV in decreasing lexicographic order and we call the first
one hard and the second soft, then the complement of the hard class will be soft and vice versa
(because 3 is odd). Additionally, every chord type in Z12 has a unique 3TV, except 6-14a and
6-14b. Thus, excluding these ones, the two types of the same chord class (which have the same
2CV or 2TV) can be arranged by their 3TV in decreasing lexicographic order. And, if we call
the first one type a and the second type b, then the complement of a type a will be a type b and
vice versa (again because 3 is odd).

Theorem 7.7 (Complementary hemichords): Let us consider Zn with n being even and let S
and S′ be two complementary hemichord types, their cardinalities being c = n/2. If they have
the same (m − 1)-type vector with m being even, then they also have the same m-type vector. The
same applies for complementary hemichord classes and class vectors.

Proof. If m − 1 > n/2, the (m − 1)- and m-type vectors are zero vectors, and the theorem,
although valid, is not relevant. And, if m − 1 ≤ n/2, from Corollary 7.1 (Nesting), S and S′

have the same l-type vectors, 0 ≤ l ≤ m − 1. Then, if we interchange S with S′ in (41), the
summations in both cases are the same. Thus, subtracting the two corresponding equations gives
V t

m(S′) − V t
m(S) = (−1)m[V t

m(S) − V t
m(S′)]. And, if m is even, that is, (−1)m = 1, we obtain

V t
m(S′) = V t

m(S). A similar proof can be given for class vectors using (42) instead of (41).
Corollary 7.5 (Complementary hemichords and Z-relation): If two hemichords, either types or

classes, are complementary, then they are Z-related. (In general, the reverse is not true). Conse-
quently, if a hemichord class is not Z-related to any other one, then it is self-complementary.

Proof. As S and S′ have the same 1CV (cardinality), they also have the same 2CV (because 2
is even), that is, they are Z-related.

In Z12, every group of Z-related 6-classes (hemichords) has two members: a hard and a soft
class (as explained just after Corollary 7.4). Since their complements are in the same group
(because they are Z-related to the former) and the complement of a hard class is soft and vice
versa, they are the complements of each other. But this is not applicable to 6-types, since there are
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many pairs being Z-related but not complementary.6 And the situation becomes more complex
for n ≥ 16, as Z-related groups with more than two classes appear (see, for example, the survey
by Jedrzejewski and Johnson 2013).

Corollary 7.6 (Self-complementary hemichords): If a group of hemichord types with their
complements have the same (m − 1)-type vector but they all have different m-type vectors, with
m being even, then they all are self-complementary. The same applies for hemichord classes and
class vectors.

For example, in Z12, the hexachord types 6-14a and 6-14b belong to a self-complementary
class and have the same 3TV. As they have different 4TV and 4 is even, they are self-
complementary.

The next theorems are derived from Theorem 7.6 (Complete hexachord theorem) and require
that the chord types and chord classes are exclusively arranged in complementary order, which
is indicated by an asterisk on the corresponding matrices. Accordingly, these theorems are not
generally valid for the hemichords. In these cases, however, (41) and (42) are always applicable.

Theorem 7.8: Let the c′-types be arranged in complementary order with respect to the c-types
and let Mc,m and M ∗

c′,m be two type matrices. These matrices are related by

M ∗
c′,m = (−1)mMc,m +

m−1∑
l=0

(−1)lMc,lL
t
m,l, m ≥ 1, (44)

where matrices Mc,l and Lt
m,l , 0 ≤ l ≤ m − 1, are also required. Normally, this theorem is used

for c′ > c. Similarly,

M̃ ∗
c′,m = (−1)mM̃c,m +

m−1∑
l=0

(−1)lM̃c,lL̃
t
m,l, m ≥ 1. (45)

Proof. Formula (44) is directly obtained from (41), and (45) from (42).
Formula (44) for the particular case n = 12, m = 3, was given by Nuño (2021).
Theorem 7.9: Let the m′-types be arranged in complementary order with respect to the m-types

and let Lc,m and L∗
c,m′ be two left-weighted type matrices. These matrices are related by

L∗
c,m′ = (−1)n−cLc,m + (−1)n

n∑
l=c+1

(−1)lM t
l,cLl,m, c ≤ n − 1, (46)

where matrices Ll,m and M t
l,c, c + 1 ≤ l ≤ n, are also required. Normally, this theorem is used

for m′ < m. Similarly,

L̃∗
c,m′ = (−1)n−cL̃c,m + (−1)n

n∑
l=c+1

(−1)lM̃ t
l,cL̃l,m, c ≤ n − 1. (47)

Proof. Considering that the c′-types are arranged in complementary order with respect to the
c-types, relating all of them by (43), and taking into account that Mm,m is an identity matrix, we

6 For example, 6-11a and 6-40a, or 6-12b and 6-41b. A special example is 6-14a and 6-14b, the chord class 6-14 being
self-complementary.
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can write

Q∗
c′,m =

m∑
l=0

(−1)lQc,lM
t
m,l (48)

(which is also valid for m = 0). Transposing this matrix equation, applying (12) and (14), and
using index l′ = n − l in the summation, yields

Q∗
m′,c =

n∑
l′=m′

(−1)n−l′Lt
l′,m′Ql′,c′ (49)

By interchanging m′ with c, therefore considering that the m′-types are arranged in complemen-
tary order with respect to the m-types, and renaming l′ as l, we obtain

Q∗
c,m′ =

n∑
l=c

(−1)n−lLt
l,cQl,m (50)

Now, left-multiplying by Wc, the product in the summation becomes WcLt
l,cQl,m =

Wc(WlQl,c)
tQl,m = WcQt

l,cLl,m = (Ql,cWc)
tLl,m = M t

l,cLl,m. Thus, taking into account that M t
c,c is

an identity matrix and writing (−1)−l = (−1)l gives (46).
Then, left-multiplying (46) by At

c, the matrix product in the summation is At
cM t

l,cLl,m =
(Ml,cAc)

tLl,m. From Lemma 7.1 (Class-content symmetry), any two columns of (Ml,cAc)
t, say

ja and jb, corresponding to the two types of the same chord class, say j, are the same.
Thus, reasoning as in Theorem 7.3 (Class matrix contraction), but interchanging rows with
columns, we obtain that (Ml,cAc)

tLl,m = (Ml,cAc)
tDlAt

lLl,m = (Dt
lMl,cAc)

tAt
lLl,m = M̃ t

l,cAt
lLl,m. So,

right-multiplying by Dm = Dm′ gives (47).
Theorem 7.10: Let the c′-types be arranged in complementary order with respect to the c-types

and let Mc,m and M ∗
c′,m be two type matrices. These matrices are related by

M ∗
c′,m = Mc,m

⎡
⎢⎢⎣(−1)mIm +

m−1∑
l=0

(−1)l(
c − l
c − m

)Mm,lL
t
m,l

⎤
⎥⎥⎦ , c ≥ m ≥ 1, (51)

where Im is the identity matrix of size Nn(m). Now, the required matrices are Mm,l and Lt
m,l,

0 ≤ l ≤ m − 1. Normally, this theorem is used for c′ > c.
This theorem is obtained by simply substituting (22) in (44). As well, by substituting (29) in

(45), we obtain

M̃ ∗
c′,m = M̃c,m

⎡
⎢⎢⎣(−1)mĨm +

m−1∑
l=0

(−1)l(
c − l
c − m

)M̃m,lL̃
t
m,l

⎤
⎥⎥⎦ , c ≥ m ≥ 1, (52)

where Ĩm is the identity matrix of size Ñn(m).
Formula (51) for the particular case n = 12, m = 3, was given by Nuño (2021).
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Theorem 7.11: Let the m′-types be arranged in complementary order with respect to the m-
types and let Lc,m and L∗

c,m′ be two left-weighted type matrices. These matrices are related by

L∗
c,m′ =

⎡
⎢⎢⎣(−1)n−cIc + (−1)n

n∑
l=c+1

(−1)l(
l − m
c − m

)M t
l,cLl,c

⎤
⎥⎥⎦ Lc,m, m ≤ c ≤ n − 1, (53)

where Ic is the identity matrix of size Nn(c). Now, the required matrices are Ll,c and M t
l,c, c + 1 ≤

l ≤ n. Normally, this theorem is used for m′ < m.
This theorem is obtained by simply substituting (26) in (46). As well, by substituting (33) in

(47), we obtain

L̃∗
c,m′ =

⎡
⎢⎢⎣(−1)n−cĨc + (−1)n

n∑
l=c+1

(−1)l(
l − m
c − m

)M̃ t
l,cL̃l,c

⎤
⎥⎥⎦ L̃c,m, m ≤ c ≤ n − 1, (54)

where Ĩc is the identity matrix of size Ñn(c).

8. Conclusions

The concepts of embedding number and M-class vector introduced by Lewin are here extended
to type and class matrices, which provide a broader overview of the type and class contents
of chord types and chord classes, respectively. The corresponding full pictures are given by
the full n-type and n-class matrices. The results for the particular cases of Z6 (hexachords), Z7

(heptatonic scales), and Z12 (chromatic scale) are given in supplementary files; and, in the first
two cases, the type matrices are also given in the form of tables. Therefore, this information
can directly be used by researchers and composers; but, additionally, two computer programs,
written in MATLAB, are provided for obtaining the above-mentioned and other related matrices
in the general case of Zn. Furthermore, all this material can be used for better interpreting and
understanding the properties and theorems here included.

Theorem 5.1 (Complementary reciprocity) served to show the symmetry relation between
weighted and left-weighted type and class matrices, thus giving rise to several properties in
Section 5. As well, it led to the definitions of complementary and normal orders, which are
key concepts in this study. Theorems 7.1–7.4 (Type and class matrix contractions) allow us to
obtain the weighted and left-weighted type and class matrices recursively, and provide a simple
way to derive the nesting property (Corollaries 7.1 and 7.2). Theorems 7.5 and 7.6 give a com-
plete version of the hexachord theorem (valid for any n, c, and m), supplemented by Corollaries
7.3 and 7.4. Theorem 7.7 reveals a curious property of complementary hemichords, which is
supplemented by Corollaries 7.5 and 7.6. Finally, Theorems 7.8–7.11 (based on Theorem 7.6)
relate type and class matrices of chord types and chord classes with those of their complements.
All these theorems and corollaries show different alternatives for obtaining the type and class
matrices, thus providing a wider and deeper insight of the whole theory.
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