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Abstract
Chlorpyrifos (CP) is one of the organophosphate insecticides most used worldwide today. Although the main target organ
for CP is the nervous system triggering predominantly neurotoxic effects, it has suggested other mechanisms of action as
cytotoxicity and endocrine disruption. The risk posed by the pesticide metabolites on non-target organisms is increasingly
recognized by regulatory agencies and natural resource managers. In the present study, cytotoxicity and estrogenic activity of
CP, and its principal metabolite 3,5,6-trichloro-2-pyridinol (TCP) have been evaluated by in vitro assays, using two
mammalian cell lines (HEK293 and N2a), and a recombinant yeast. Results indicate that TCP is more toxic than CP for the
two cell lines assayed, being N2a cells more sensitive to both compounds. Both compounds show a similar estrogenic
activity being between 2500 and 3000 times less estrogenic than 17β-estradiol. In order to find new toxicity measurement
models, yeasts isolated from marine sediments containing CP residues have been tested against CP and TCP by cell viability
assay. Of the 12 yeast strains tested, 6 of them showed certain sensitivity, and a concentration-dependent response to the
tested compounds, so they could be considered as future models for toxicity tests, although further investigations and proves
are necessary.
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Introduction

Chlorpyrifos (CP) is one of the organophosphate insecti-
cides most used worldwide today. Its greatest use is in
agriculture on fruits, grains, vegetables, cotton, sugar cane,
and coffee (Solomon et al. 2014), although it is also used in
livestock, ornamental plants, and the grass of golf courses.
As a consequence of its widespread use as well as its
physical-chemical properties (solubility), it is easily washed
into ground and surface waters, even marine environment,

* Beatriz Jaramillo-Colorado
bjaramilloc@unicartagena.edu.co

1 Grupo de Investigación Microbiología y Ambiente, GIMA.
Programa de Bacteriología, Universidad de San Buenaventura,
Cartagena, Colombia

2 Grupo de Investigaciones Agroquímicas, GIA. Programa de
Química, Universidad de Cartagena, 130014 Cartagena, Colombia

3 Departamento de Biotecnología, Universidad Politécnica de
Valencia, 46022 Valencia, España

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-020-02315-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-020-02315-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-020-02315-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-020-02315-z&domain=pdf
http://orcid.org/0000-0002-6668-3188
http://orcid.org/0000-0002-6668-3188
http://orcid.org/0000-0002-6668-3188
http://orcid.org/0000-0002-6668-3188
http://orcid.org/0000-0002-6668-3188
mailto:bjaramilloc@unicartagena.edu.co


leading to accumulation in sediments given its hydro-
phobicity (Giesy et al. 1999; Gebremariam et al. 2012). The
main degradation product of CP is 3,5,6-trichloro-2-pyr-
idinol (TCP) (Xu et al. 2008) produced by hydrolytic and
photolytic mechanisms (Baskaran et al. 2003). TCP is more
water-soluble than the parent compound which provokes a
high mobility causing contamination in soils and aquatic
environments.

Insecticide action of CP is based on inhibiting acet-
ylcholine esterase activity. It produces an excess of acet-
ylcholine in the synapse resulting in hyperactivity, muscle
spasms which can lead to paralysis, respiratory failure, and
even death (Barron and Woodburn 1995; Slotkin
2004, 2005). Although the main target organ for CP is the
nervous system, triggering predominantly neurotoxic
effects, other mechanisms of action as cytotoxicity, effects
on synthesis of macromolecules (Qiao et al. 2001; Howard
and Pope 2002; Slotkin et al. 2008; Gupta et al. 2010) and
endocrine disruption (Viswanath et al. 2010; Ventura et al.
2012, 2016) have been suggested. There is evidence of
genotoxicity and mutagenicity of CP in numerous studies
carried out in rats, fish, toad, and human cells (Ojha and
Gupta 2015; Sandal and Yilmaz 2011; Muller et al. 2014;
Ezzi et al. 2016). The carcinogenic properties of CP have
been evidenced through a variety of epidemiological stu-
dies, particularly lung and rectal cancer (Alavanja et al.
2004; Lee et al. 2007). Likewise, CP has also been related
to breast cancer in rats and human cells (Nishi and Hundal
2013; Ventura et al. 2016, 2019), provokes abnormalities in
the immunologic system of workers and laboratory animals
(Gotoh et al. 2001; Navarro et al. 2001) and numerous cases
of reproductive toxicity have been reported (Nandi et al.
2009; Farag et al. 2010; Bernabò et al. 2011) such as ter-
atogenic effects in rats (Farag et al. 2003; Tian et al. 2005)
and abnormalities in human sperm cells (EPA 2008).

Recently, several organizations as European Food Safety
Agency (EFSA), Plant, Animal, Food and Feed (PAFF)
Committee, Pesticide Action Network (PAN) or US EPA
have reviewed the use of CP, which has led many countries
to restrict or ban it. So, the European Union (EU) has
adopted the non-approval of the active substance CP (EC
2020); Canada proposed a ban of CP on May 31, 2019; in
USA, State governments have taken steps to regulate it
(Backstrom and Garson 2020). However, during many years
it has been one of the most common used organophosphate
pesticide (John and Shaike 2015), detecting its residues in
many agricultural commodities as vegetables and fruits
(Guerrero 2003; García et al. 2017; Rey et al. 2018). Its
extensive use in Colombia has led to the contamination of
aquatic systems, fresh and saltwater, sediments, and accu-
mulation in organisms (Tobón-Marulanda et al. 2012).

An important aspect of pesticides is derived from pos-
sible endocrine disruptor activity provoking effects in the

organism development. Since 2007, the year the United
States Environmental Protection Agency (US EPA) inclu-
ded the insecticide CP in a draft initial list of chemicals for
Endocrine Disruptor screening (EPA 2007), limited studies
indicate that CP may affect the endocrine system (De
Angelis et al. 2007; Viswanath et al. 2010; Ventura et al.
2012, 2016) but it still needs more evidence (Yu et al.
2015). Most of these studies, related to toxicity in humans,
depend to a great extent on the use of animals, but in recent
years there has been a clear tendency to replace these with
other studies that represent faster and cost-effective alter-
natives (Braconi et al. 2011; Heinonen and Tähti 2013).
One of the most common alternatives is the use of artifi-
cially grown cells which respond quickly to different
adverse environmental conditions. These in vitro tests are
inexpensive, easy to carry out and, can be used as pre-
liminary tests that can lead the scientist to decide whether
further testing is necessary (Meneau 2014; Mushtaq et al.
2018). Furthermore, they are useful for testing a large
number of samples (Aslantürk 2017). They can use cells
varying from microorganisms to mammalian and human
cells. The evaluation of cytotoxicity focus on simple tests,
where cell viability and/or proliferation of cells are mea-
sured. Chemical agents can affect cell health and metabo-
lism via different mechanisms such as membrane
destruction, inhibition of protein synthesis, irreversible
binding to receptors, inhibition of nucleic acid elongation,
and enzymatic reactions (Ishiyama et al. 1996; Aslantürk
2017). There are different classifications for cytotoxicity
and cell viability assays, the most used are according to
measurement types of endpoints (colorimetric fluorescence,
luminescent, etc.) (O’Brien et al. 2000; Hamid et al. 2004;
Rampersad 2012; Gilbert and Friedrich 2017), using a wide
variety of cells. In the cytotoxicity evaluation, cell lines
such as human kidney embryonic cells (HEK) and mouse
neuroblasts (N2a) have been used for neurotoxic and neu-
rodegenerative effects, being biological models of great
importance (LePage et al. 2005; Provost 2010; Wang et al.
2015; Qiu et al. 2016; Sindi et al. 2016; Acevedo et al.
2018). These cell lines has been chosen to assess organo-
phosphate pesticide toxicity, like parathion (Wang et al.
2019), paraquat (Cai et al. 2019) and CP (Van Emon et al.
2018).

Microbiological indicators (prokaryotic and eukaryotic
organisms) are also used widely in the study of environ-
mental contamination in order to determine viability of cell
cultures (Grela et al. 2018). Among them, yeast model
Saccharomyces cerevisiae is one of the most used. The
yeasts are potentially good models for assessing toxicity of
environmental pollutants (Ribeiro et al. 2000; Cabral et al.
2003; Papaefthimiou et al. 2004), they have similarities to
mammalian cells, especially regarding the functionality of
homologous proteins (Braconi et al. 2011). They are easy to
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maintain and culture, reducing the variability found with
more complex organisms (Esteve et al. 2009). In addition,
yeasts can provide information of direct relevance to other
eukaryotes and can be isolated from a wide range of
environments such as marine, anaerobic sediments and
contaminated sites (Baronian 2004). Given the high number
of yeasts that are likely to exist it is probable that wild-type
yeast will prove to be a considerable source of toxicity
indicators (Braconi et al. 2011). Short-term toxicity assays
based on the measurement of changes in yeast cultures to
estimate the impact of toxic compounds are used increas-
ingly. These assays are relatively simple, rapid, cost-
effective and require small sample volumes so they can
be of interest as alternative tools for preliminary screening
and for inclusion in a test battery. Fai and Grant
(2009a, 2009b) examined the effects of several fungicides
and other contaminants to a wide range of yeast species and
proposed the inclusion of the resorufin fluorescence inhi-
bition bioassay in a battery with other biomarkers in the
rapid screening of environmental samples.

More precise assays have been developed in order to
detect specific activities of chemical compounds such as
endocrine disrupting activity as a RYA (Recombinant Yeast
Assay) using a genetically modified S. cerevisiae strain
(Routledge and Sumpter 1996; García-Reyero et al. 2001)
that contains the human estrogen receptor (hER) gene in the
main chromosome linked to a reporter gene lacZ encoding
for the β-galactosidase enzyme which is produced and
secreted to the medium, and whose reaction specific reac-
tion is easy to follow using a convenient (chromogenic or
fluorogenic) enzyme substrate.

The main purpose of the present study is to contribute to
a greater knowledge of the toxicity of the CP and its major
metabolite TCP, through rapid in vitro tests using two
mammalian cell lines and yeasts isolated in our laboratory
from marine sediments exposed to CP with the aim of
providing new microbiological indicators for use in toxicity
tests. Likewise, with the intention of providing new data on
the potential estrogenic activity of the compounds, these
have been subjected to RYA tests.

Material and methods

Test compounds

Chlorpyrifos (CAS: 2921-88-2) (O, O-diethil O-3,5,6-tri-
chloropyridin-2-il phosphorothionate; CP) 99.7% analytical
standard and its metabolite 3,5,6-trichloro-2-pyridinol
(TCP) (CAS: 6515-38-4) 99.3%, analytical standard were
obtained from Sigma-Aldrich. Stock solutions of com-
pounds and dilution series were prepared in the appropriate
solvent or culture medium according to toxicity assays

performed. Water employed in the experiments was Milli-Q
grade. All reagents used were of analytical grade.

Cytotoxicity test with HEK293 and N2a cell lines

Cytotoxicity of compounds has been evaluated using two
cell lines, N2a (Mouse Neuroblastoma) and HEK293
(Human Embryonic Kidney) kindly provided by Biomedi-
cine Institute (Valencia, Spain). Assays are based in the
reduction of resazurin, by metabolic activity of cells,
transformed in resorufin, a highly fluorescent compound
which allowing spectroscopic measurement (Czekanska
2011). Culture cells were maintained in DMEM (Dubelc-
co’s Modified Eagle Medium) appropriately supplemented
with glutamine, penicillin-streptomycin and fetal bovine
serum and incubated at 37 °C, and 5% CO2 humidified
atmosphere (Koppikar et al. 2010). When cells achieve a
70–90% confluency, they were harvested by trypsinization
and counted. A suspension of 1 × 105 cells/mL was pre-
pared in DMEM supplemented, with which a tissue culture
plate was inoculated (100 µL/well). After 24 h, cells were
exposed to 5 µL of test compounds to obtain a range of final
concentrations of 6.3–1600 mg/L which were assayed in
quadruplicate. Negative controls and blanks were run
simultaneously. Plates were incubated again (24 h), the
medium was removed and 100 µL of 15 μM resazurin
solution in DMEM supplemented was added. Finally, the
plate was incubated for 4 h newly and fluorescence (Ex560/
Em590) was measured using a Tecan Infinite
M200 spectrofluorometer. All culture cell reagents and
plates were supplied by VWR® International Eurolab S.L.
(Barcelona, Spain). Results were expressed as percentage of
viability, used to calculate the IC50 (concentration that
inhibits cellular viability by half).

Toxicity test with marine yeasts

Isolation and conservation of marine yeasts

Yeasts were isolated from fresh sediment samples from nine
locations in Cartagena Bay (Colombia) (Fig. 1). Sediments
were collected with a dredger, Ekman type, in sterile con-
tainers, which were transported refrigerated to the labora-
tory where were kept at −20 °C until analysis. To isolate
yeasts the following procedure was carried out: 1 g of
sediment was suspended in 10 mL of 0.9% NaCl containing
0.05% Tween 20, homogenized in vortex for 2 min and
standing 2 min more for decanting particles, then 100 μL of
dilution were spread onto plates with MEA (Malt Extract
Agar, Difco) in triplicate and incubated at 25 °C for
5–7 days. Presumptive yeasts were subcultured on MEA
plates and identified by API 20 C AUX® System (BioMér-
ieux). Yeast isolates were cultured in tubes containing
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MEA, kept to 4 °C for further studies and preserved −80 °C
in MicrobankTM-Blue criovials (Pro-Lab Diagnostics).

Yeast viability test

One loop of yeast colonies grown onto MEA tubes was
cultured in 50 mL SD medium supplemented with glucose
(2% final concentration) and incubated overnight at 25 °C in
an orbital shaker (150 rpm). The resulting culture was
diluted with the same medium until an optical density of 0.5
(1 × 106 cells/mL) at 600 nm and used for the microplate
assay. Stock solutions of CP and TCP were prepared, at a
concentration of 250 mg/L, in SD medium with DMSO
(1%). Yeast culture was added to white flat bottom 96-well
microplates (Costar, Corning Inc., New York, USA) as
described below. First, plate was filled with 100 µL/well of
yeast culture; 100 µL/well of the stock solutions of CP or
TCP were added to the second row and 1:2 serial dilutions
were made by transferring 100 µL from the second to the
third row and so on until 1:64. For each yeast, four repli-
cates of controls (SD yeast culture) and four replicates of
serial dilutions of pollutants (CP or TCP solutions) were
made. The total volume per well was 100 µL. SD plus
DMSO control was also run in the last row.

The covered plates were incubated on a shaking incu-
bator for 6 h at 25 °C. After this time, plates were taken out
and centrifuged at 1200 rpm. The aqueous content was
eliminated with a Pasteur pipette coupled to a vacuum
pump, and 100 µL of resazurin solution (12.5 µM in PBS)

were added to each well. Then, plates were incubated at
25 °C but the incubation time required to measure the effect
of compounds varied from one yeast species to another due
to the different capacity to reduce resazurin. As indicated by
Fai and Grant (2009a), the maximum resorufin fluorescence
inhibition relative to the control were used in comparison of
effects. Some species caused reduction of resazurin to the
pink resorufin and then to colorless and non-fluorescent
hydroresorufin in the first minute and another species
between 20 and 60 min of incubation. Fluorescence were
determined by the microplate reader Tecan Infinite M200 at
530 nm (λex) and 590 nm (λem). Cell viabilities were
reported respect to control using fluorescence data. For the
bioassay, sensitivity controls were performed using the salt
K2Cr2O7 (Sigma-Aldrich, Madrid, Spain) in the same con-
ditions. IC50 values of CP and TCP to yeast species were
calculated.

Recombinant yeast assay (RYA)

RYA was performed to assess estrogenic activity. It uses a
genetically modified strain of S. cerevisiae that contains the
human estrogenic hormone receptor gene. If the tested sub-
stances have estrogenic activity, they bind to hER, activating
lacZ gene, which expresses the β-galactosidase enzyme,
generating a reaction that is measured spectrophotometrically
by adding the appropriate enzyme substrate.

Recombinant Yeast Assay was performed as described by
Noguerol et al. (2006). Briefly, an overnight culture of yeast

Fig. 1 Sampling stations of sediments, Cartagena Bay, Colombia
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in SD medium [6.7 g/L of YNBAA/AS - yeast nitrogen base
without amino acids of Difco (Basel, Switzerland) and 5 g/L
of (NH4)2SO4] plus glucose, histidine and methionine was
used at a final optical density of 0.1 (600 nm). Assays were
conducted in a 96 well microplate. The first column was
filled with a 1:20 v/v dilution of compound to test in the
yeast culture and then diluted in a 1:2 series across the plate.
Assay concentrations of each compound was 8 mg/L. Col-
umns 10, 11 and 12 are filled with toxicity, positive
(17β-estradiol) and negative controls, respectively. Once
filled, plate was incubated during 6 h at 30 °C at 120 rpm in
orbital shake. The, in order to release active proteins from
cells, a Y-PER Yeast Protein Extraction Reagent (PIER-
CETM, Rockford, IL, USA) was added and further incubated
at same temperature during 30 min. Then, 50 µL of enzy-
matic substrate, previously prepared in an appropriate buffer
was added, and β-galactosidase activity was read by fluor-
escence using a spectrofluorometer (TECAN Infinite
M2000) at 360 nm excitation and 460 nm emission wave-
lengths. Fluorescence was recorded for 20 min (one mea-
surement per 42 s). Enzymatic activity was calculated as
slope of linear regression of fluorescence units plotted vs.
time, and, then a relative activity derived of positive and
negative controls was calculated. Estrogenic activity was
calculated from dose-response curve (β-galactosidase rela-
tive activity vs. chemical concentration) and expressed as an
apparent EC50 values for each compound. These values were
converted to EEQ, equivalents of estradiol using the fol-
lowing equation (Esteban et al. 2014; Balsiger et al. 2010),
where EC50 (17β-estradiol) is 72.73 × 10−6 mg/L (Piña et al.
2009) and C is the assay concentration of the compound:

EEQ ¼ EC50 17β� estradiolð Þ
EC50 compoundð Þ � C compoundð Þ:

Statistical analysis

Data were analyzed by using a one-way ANOVA followed
by a post-hoc analysis using the Fisher’s least significant
difference (LSD) test using Statgraphics program v.6.0. The
IC50 values were calculated using Probit analysis (SPSS
Statistics program v. 16.0). A p < 0.05 was taken to indicate
statistical significance.

Results and discussion

Cytotoxicity

The cytotoxic potential of CP and TCP, and an equimolar
mixture of CP:TCP (1:1) was also assessed by the Alamar
Blue assay using cell-based systems with two mammal
HEK293 and N2a cell lines. The exposure to these

compounds and their mixture produced a significant cyto-
toxicity on the cell viability (Figs 2 and 3).

As expected, the viability of cells decreased with
increasing concentrations of CP and TCP. The IC50 values
of pure compounds, with their 95% confidence limits, to
cell lines are presented in Table 1. CP and TCP at con-
centrations of 451 mg/L and 295 mg/L, respectively, gave
50% cytotoxicity with HEK293 and at concentrations of
90.0 mg/L and 61.6 mg/L, respectively, gave 50% cyto-
toxicity with N2a. IC50 values of the mixture CP:TCP (1:1)
were 71.8 (54.5–94.4) mg/L for HEK293 and 16.7
(12.3–21.4) mg/L for N2a.

After 24 h cells exposure, the metabolite TCP has been
found to be more cytotoxic than the parent compound CP

Fig. 2 Acute concentration-response experimental curves for CP, TCP
and CP:TCP mixture for HEK293 cell line

Fig. 3 Acute concentration-response experimental curves for CP, TCP
and CP:TCP mixture for N2a cell line
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and mixture was more cytotoxic than CP and TCP. After
exposed to CP at concentrations from 0 to 400 mg/L, the
viability of HEK293 cells decreased up to 45.8% slowly
but for N2a decreased rapidly until 16.0%. In the same
way, TCP at the same concentrations, produced a
decrease in viability of HEK293 and N2a up to 42.3% and
11.6%, respectively. In CP:TCP (1:1) exposure
(0–400 mg/L), the viability decreased rapidly, to 29.2%
for HEK293 and 8.3% for N2a. At concentrations of CP
and TCP from 0 to 100 mg/L, HEK293 cell viability
underwent a little variation; the same effect was observed
from 0 to 25 mg/L for N2a cells. Results obtained in
cytotoxicity assay indicated a greater tolerance of
HEK293 cells to CP, TCP and mixture in the concentra-
tion range of 0–1600 mg/L.

In this paper, cytotoxicity of CP and its metabolite TCP
was probed in two cell-based systems with mammalian
cells. Results indicate that TCP is more toxic than CP for
the two cell lines assayed. A different sensitivity was
observed between cell lines, being N2a cells more sensitive
which could be due to different mechanism of action of
compounds. A cytotoxicity test was performed by Álvarez-
Navarro (2017) on the same cell lines for the toxicity
screening of several environmental pollutants, also detect-
ing, a higher sensitivity for N2a cells. Similarly, Lovecka
et al. (2015) in a cytotoxic assay using the two cell lines
HEK293 and HepG2 exposed to herbicides, bromoxynil,
chloroxynil, and ioxynil, demonstrated a lower sensitivity
for HEK293.

It is known that the acute toxicity of CP is mediated
through inhibition of acetylcholinesterase by the pro-
duction of the active metabolite CP oxon (Barron and
Woodburn 1995; Mangas et al. 2016), but several studies
suggests that CP may influence cell replication and dif-
ferentiation directly (Das and Barone 1999; Dam et al.
2000; Qiao et al. 2001) which also extend to their major

metabolites CP oxon and TCP. The current work is
addressed in this line. Cell lines were selected as suitable
models for use with in vitro cytotoxicity assays because
are representative of two target tissues for many pesti-
cides. The mouse N2a neuroblastoma cell line has been
regularly used in neurotoxicity and pesticide research for
mechanistic and screening studies (Veronesi 1992;
Perreault et al. 2011; Pawlowiez et al. 2013; Pisapia et al.
2017). On the other hand, HEK293, human embryonic
kidney cell line, is widely used as in vitro model for
cytotoxicity assays to probe oxidative stress effects and
other related properties (Waly et al. 2013; Lovecka et al.
2015).

A high activity to arthropods and relatively low toxicity
to mammals in animal models has been largely probed for
CP (Giddings et al. 2014; Ezzi et al. 2016). Results
obtained here support this statement with IC50 values for
cell lines about 90 to 400 times higher compared to D.
magna (Echeverri et al. 2020) (Table 1). In addition, the
degree of cytotoxicity of several insecticides on human
cells (HEK293, HeLa and HepG2) reported by Yun et al.
(2017) was significantly lower than that on insect cells
(Tn5b1-4, Sf-9, and S2). In this paper, CP showed rela-
tively little cytotoxicity on HEK293 cells during 24 h
exposure. This might be related to the neurotoxic activity
of CP, resulting in a lower cytotoxicity expression on non-
neuronal cells.

Toxicity test with marine yeasts

Identification of marine yeasts

A total of 26 yeasts were isolated from marine sediment of
Cartagena bay (Colombia). Eleven marine yeasts were
randomly selected for toxicity bioassay. Their identification
is presented in Table 2.

Table 1 IC50 (95% confidence
limits; p < 0.05) values
recompilation of the test
compounds

CP TCP CP:TCP (1:1)

HEK293 451 (360–580) 295 (247–357) 71.8 (54.5–94.4)

N2a 90.0 (73.6–109.8) 61.6 (55.3–68.4) 16.7 (12.3–21.4)

MY1 13.8 (12.3–15.3) 1.17 (0.57–1.95) –

MY2 14.9 (13.3–16.5) 2.9 (2.0–3.8) –

MY3 10.0 (8.5–11.7) 0.44 (0.14–0.94) –

MY6 26.3 (23.7–29.0) 0.80 (0.28–1.55) –

MY11 3.4 (2.8–4.1) 0.15 (0.03–0.41) –

CECT 1891 10.9 (9.7–12.2) 3.4 (2.3–4.7) –

A. fischeria 3.7 (2.5–6.0) 0.98 (0.73–1.35) 0.78 (0.57–1.12)

P. subcapitataa 4.9 (4.8–5.1) 0.29 (0.28–0.32) 0.022 (0.021–0.023)

D. magnaa 1.1 (0.7–1.5) 9.2 (7.3–11.4) 0.62 (0.48–0.78)

aEcheverri et al (2020)
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Effects of CP and TCP on marine yeasts

To investigate the capability of yeasts as bioindicators of
toxicity, a bioassay using the yeast isolates from marine
sediments were performed. Eleven marine yeasts and the
species CECT 1891 S. cerevisiae were exposed to different
concentrations of CP and TCP; viability of treated and
untreated organisms was assessed using resazurin method
(Figs 4 and 5). The maximum resorufin fluorescence inhi-
bition relative to the control was obtained usually within
20–60 min of incubation for MY1, MY2, MY3, MY6,
MY11 strains and CECT 1891 S. cerevisiae. The strains
MY4, MY5, MY7, MY8, MY9 and MY10 metabolized the
fluorescent resorufin to the transparent hydroresorufin
quickly, in the first minute and, at this time, effect could not
be observed at studied concentrations.

Experimental data with the six most sensitive yeasts to
CP and TCP are presented as concentration–response
curves (Figs 6 and 7). The IC50 values for both compounds
are presented in Table 1. MY3, MY6 and MY11 strains
were more sensitive to TCP than MY1, MY2 and CECT
1891 S. cerevisiae, being MY11 strain the most sensitive to
this compound, and CECT 1891 S. cerevisiae the most

Table 2 Identification of marine yeasts used in assay

Yeast Identification

MY1 Cryptococcus laurentis

MY2 Candida krusei/inconspicua

MY3 Candida famata

MY4 Rhodotorulla glutinis

MY5 Candida lipolytica

MY6 Candida krusei/incospicua

MY7 Candida sp.

MY8 Rhodotorulla sp.

MY9 Candida spherica

MY10 Candida famata

MY11 Rhodotorulla minuta

Fig. 4 Viability of marine yeast and CECT 1891 S. cerevisiae exposed
at different concentrations of CP (mg/L)

Fig. 5 Viability of marine yeast and CECT 1891 S. cerevisiae exposed
at different concentrations of TCP (mg/L)

Fig. 6 Acute concentration-response experimental curves for yeast
strains exposed to CP

Fig. 7 Acute concentration-response experimental curves for yeast
strains exposed to TCP
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resistant. For yeasts exposed to CP, MY1, MY2, MY3,
MY8 strains and CECT 1891 S. cerevisiae were more
resistant than MY11 strain. As observed, the latter showed
greater sensitivity to CP and TCP than the other yeast
strains, with IC50 values of 3.4 mg/L and 0.15 mg/L,
respectively. TCP was more toxic for yeasts than CP with
IC50 ranged from 0.15 to 3.4 mg/L for the former and from
3.4 to 26.3 mg/L for the latter. The yeast strains MY1, MY2
and CECT 1891 S. cerevisiae showed a similar sensitivity
to TCP; these same strains plus MY3 showed it against CP
with IC50 values from 1.17 mg/L to 3.4 mg/L and from
10.0 mg/L to 14.9 mg/L, respectively.

In order to assess sensitivity of resorufin inhibition
bioassay, response of most sensitive yeasts studied in this
work was compared with cytotoxicity assay and other
standardized tests (Aliivibrio fisheri, Pseudokirchneriella
subcapitata and Daphnia magna) (Echeverri et al. 2020).
There seemed to be considerable differences in sensitivity
between the cell lines and the other organisms (Table 1).
The bacteria A. fisheri, the cladoceran D. magna and the
yeast MY11 R. minuta were the most sensitive organisms to
CP, and A. fisheri, MY11 R. minuta and the alga P. sub-
capitata were to TCP. HEK293 and N2a cell lines were the
most tolerant to studied compounds with IC50 values ranged
from 61.6 to 451 mg/L. TCP was more toxic than CP for all
organisms and cell lines being IC50 0.15 to 295 mg/L and
3.4 to 451 mg/L, respectively.

Esteve et al. (2009) evaluated the metabolic activity of
yeast S. cerevisiae exposed to three pesticides and com-
pared the toxic effect with D. magna and A. fischeri stan-
dard bioassays. They concluded that the yeast bioassay was
96 times faster than the D. magna toxicity bioassay, but
had lower sensitivity; however, A. fischeri was the most
tolerant to pesticides. Several authors reported toxicity
values to several fungicides to D. magna between <0.01
and 4.3 mg/L (Ferrando et al. 1992; Freeman and Nizani
1997; Bartlett et al. 2001; Fai and Grant 2009b). In our
study, D. magna bioassay was more sensitive for the
insecticide CP than yeast, bacteria and algae bioassays,
which is evident considering its mode of action; however,
for TCP, the microcrustacean bioassay was the less sensi-
tive. Unlike CP, TCP does not inhibit acetylcholinesterase
activity (Qiao et al. 2001). CP and TCP toxicity on A.
fischeri was of the same order as the most sensitive yeast
MY11 R. minuta.

Sensitivity of the type yeast CECT 1891 S. cerevisiae to
CP was not significantly different from the mean of CP IC50

values of six most sensitive yeasts (MY1, MY2, MY3,
MY6, MY11 and CECT 1891). Instead, this type yeast was
2.3 times more tolerant than the average for TCP. The mean
yeast IC50 values for CP (13.2 mg/L) and TCP (1.5 mg/L)
were 4 and 10 times higher than CP and TCP IC50 of the
most sensitive yeast MY11, respectively (Fig. 8).

Although, S. cerevisiae is an experimental model pro-
posed by several authors for assessing effects of environ-
mental contaminants to non-target fungi because wide
distribution, fast growing cells, ease of cultivation, no
pathogenic and fully sequenced genome (Kitagawa et al.
2003; Papaefthimiou et al. 2004; Fay and Grant 2009a)
there are another yeast species that could been used in
environmental studies (Baronian 2004; Fai and Grant
2009a; Vadkertiová and Slavikova 2011). In this study,
MY11 showed a high sensitivity to studied compounds
comparable to sensitivity of A. fischeri and P. subcapitata
(Fig. 8). Nevertheless, further assays were necessary to
establish MY11 as representative yeast in a battery of
toxicity tests to assess environmental contaminants.

The yeast bioassay has been sensitive giving inhibitory
concentrations comparable to lower IC50 values of several
fungicides reported in the literature for S. cerevisiae and
other fungi (Zerva et al. 1996; Freeman and Nizani 1997;
López et al. 2003). We found that CP and TCP toxicity, as
mean of IC50 of the yeast species, were one hundred thirty
(CP) and fifteen (TCP) fold higher than the lowest IC50

value founded by the authors above mentioned.

Estrogenic activity of compounds

The estrogenic activity of the selected compounds was
determined by RYA. Dose-response curves were obtained
for every compound and are presented in Fig. 9 as plots of
relative β-galactosidase activity, in arbitrary units, vs.
compound concentration. Results showed that both com-
pounds were able to bind to the estrogen receptor with
similar affinities. Table 3 shows the 50% effective con-
centration (EC50) values for each compound, calculated
using standard linear regression methods as well as the
lowest concentration at which estrogenic activity was

Fig. 8 Comparison of yeast system model with other assayed organ-
isms, exposed to CP and TCP. Box-plots represent IC50 values of
yeasts MY1, MY2, MY3, MY6, MY11 and CECT 1891
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detected (CL). Both compounds show a similar estrogenic
activity as verified from EC50 values. In order to compare
with 17β-estradiol standard, equivalents were calculated
(EEQ) as described in point 2.4 of Material and methods
section. These values represent the concentration of
17β-estradiol that elicit the same response as the compounds
at initial assay concentration. In terms of relative potency,
the studied compounds represent between 2500 and 3000
times less estrogenicity than17β-estradiol. On the other
hand, CP and TCP caused estrogenic activity at con-
centrations as low as 0.04 mg/L and 0.07 mg/L, respec-
tively, whose estrogenic activities correspond to 14.5 ng/L
and 25.5 ng/L of EEQ, respectively, values below of EC50

of 17β-estradiol (72.73 ng/L). However, considering that
CP and TCP are detected in the water bodies at levels
ranging from 0.5 µg/L to 700 µg/L (Mazanti et al. 2003;
Bonifacio et al. 2017), endocrine disruption activity should
be considered for a complete risk assessment in environ-
mental samples suspected of containing CP and TCP. RYA
has been demonstrated to be an excellent tool for screening
of natural samples for their content of substances with
estrogenic activity (García-Reyero et al. 2001, 2005; Brix
et al. 2010).

The endocrine disruption activity of CP has been evi-
denced in recent years through studies varying from in vivo
and in vitro assays until epidemiological studies. Several

investigations describe CP as a potent antiandrogenic com-
pound (Usmani et al. 2003; Joshi et al. 2007; Viswanath
et al. 2010), impairing reproductive capacity in men. Recent
epidemiological studies have demonstrated significant asso-
ciations between maternal and paternal exposures to CP and
testicular damages (Uchendu et al. 2013). Estrogenic activity
of CP has been also verified by means a several studies:
Ventura et al. (2012) demonstrated that CP at environmental
concentrations promotes breast cancer cell proliferation
through estrogen receptor (ER-α). Other authors also found
it to be estrogenic using Chinese hamster ovarian cells
(Kojima et al. 2004). Thyroid effects have also been
demonstrated, causing harmful effects on brain development
of fetus (Ghisari and Bonefeld 2005). Haviland et al. (2010)
detected increased thyroid hormone levels in CP exposed
female mice, whose learning behavior was consequently
altered. Furthermore, the presence of CP residues in food has
been widespread interest, considering that low doses could
alter the function of the hormonal system in human and
wildlife, leading to adverse effects (Yu et al. 2015).

Studies performed on animals stand out, however, these
in vivo assays are time-consuming and laborious. Taking
account endocrine disruption is a form of toxicity that it is
often difficult to prove, it is necessary that a number of
in vitro assays be proposed to be used as a first screen for
endocrine disruptor (Bishop and Willett 2014). Most of
these trials fall into three categories (Kinnberg 2003): (1)
estrogen receptor (ER) competitive ligand binding assays
that measure the binding affinity of a chemical for the ER;
(2) cell proliferation assays that measure the increase in
cell number of estrogen sensitive cells (E-screen); and (3)
reporter gene assays that measure ER binding-dependent
transcriptional and translational activity. The features,
performance, and use of these assays in screening for
estrogenic activities of endocrine disruptors have been
reviewed and discussed elsewhere (Zacharewski 1998;
Andersen et al. 1999; Fang et al. 2000; Kinnberg 2003). Of
the three types of in vitro assays, type 3, reporter gene
assays, have more advantages compared to the others: ER
competitive assays (1) are significantly less sensitive, and
cell proliferation assays (2) are more time consuming.
However, reporter gene assays are considered more spe-
cific and reliable for a first level screening of estrogenic
activity. Furthermore, it can be carried out with mamma-
lian or yeast cells, although former have the main draw-
back that their cells are more difficult and expensive to
culture and are more susceptible to cytotoxic effects.
Recombinant yeast assay (RYA), classified as type 3
assays, can be considered as a robust, rapid, and sensitive
tool for assessing of putative endocrine disruption activity
in environment as well as in the screening of the new
chemical compounds at moderate cost (Noguerol et al.
2006; Brix et al. 2010).

Fig. 9 Acute concentration-response experimental curves for CP and
TCP in Recombinant Yeast Assay (RYA)

Table 3 Estrogenic activity of compounds by RYA

Compound EC50 (mg/L)a CL (mg/L)b EEQ (mg/L)c

CP 0.20 0.04 2.9 × 10−3

TCP 0.23 0.07 2.5 × 10−3

aEC50, ligand concentration giving 50% of the maximal response
bCL, lowest concentration with estrogenic activity
cEEQ (estradiol equivalents), concentration of 17 β-estradiol that elicit
the same response as the compound at initial assay concentration
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CP was included in lists of chemicals for screening
endocrine disruptor activity (EPA 2007; EC 2002).
Although, endocrine disruptor activity of CP has been
shown by some authors as above mentioned, international
organizations as EPA (EPA 2015) and EFSA (EFSA 2019)
have stated it still needs more evidence to prove that CP is
an endocrine disruptor. Although, results obtained here
indicate a weak estrogenicity of the tested compounds
compared to estradiol, they must be considered in further
risk assessment studies since they are ubiquitous and may
accumulate in organisms at high concentrations, enough to
induce similar effects to estradiol.

Conclusion

In summary, this study was conducted with three in vitro
model systems. The suitability of mammal cell-based assays
has been investigated. The variability of cellular responses
observed in this work supports the need to use cell lines
representative of different target tissues for chemicals and
environmental pollutants, such as HEK293 and N2a. Yeasts
are widely distributed and play important roles in the eco-
systems. Moreover, they are easy to maintain and cultivate
in laboratory. Koch et al. (1993) has already proposed
yeasts as alternative toxicity models and more recently,
several authors support it (Ribeiro et al. 2000; Cabral et al.
2003; Braconi et al. 2011, 2016). Present results also sug-
gest yeast as a reliable model for a preliminary screening for
environmental pollutants toxicity, although further investi-
gations and proves are necessary in order to establish its
accuracy and precision. Recombinant yeast assay (RYA)
showed a slight estrogenic activity of CP and TCP so it can
be considered as an alternative to in vivo assays. RYA has
been used to demonstrate estrogenic activity of both, indi-
vidual compounds, and environmental samples (García-
Reyero et al. 2005; Puy-Azurmendi et al. 2014). And it is
aimed to the rapid screening for potential ligands for hor-
mone receptors and to the identification of endocrine dis-
ruption signals at lower concentrations and shorter
exposition times (Piña et al. 2009).

On the other hand, results also confirm the need to study
the toxicity not only parent compounds but also their
metabolites as we can see with the metabolic product TCP,
which was more toxic than CP. Additionally, levels that
produce toxic effects of CP in all model systems assayed
here were higher than environmental concentrations repor-
ted by some authors in water bodies (Mazanti et al. 2003;
Bonifacio et al. 2017).
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