
21Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

Recibido: 13/03/2023
Aceptado: 07/07/2023

REVISTA DE TELEDETECCIÓN 
Asociación Española de Teledetección

(2023) 62, 21-38
ISSN 1133-0953

EISSN 1988-8740
https://doi.org/10.4995/raet.2023.19368

* Corresponding author: rodolfoquintanam97@gmail.com

Calibration of volumetric soil moisture using Landsat-8 and 
Sentinel-2 satellite imagery by Google Earth Engine
José Rodolfo Quintana-Molina1*, Ignacio Sánchez-Cohen2, Sergio Iván Jiménez-Jiménez2, 
Mariana de Jesús Marcial-Pablo2, Ricardo Trejo-Calzada1, Emilio Quintana-Molina3

1Natural Resources and Environment in Arid Zones Postgraduate. Chapingo Autonomous University-Regional University 
Unit of Arid Zones. Km. 40 Rd. Gómez Palacio Chihuahua Bermejillo, C.P. 35230, Durango, México.

2INIFAP-CENID RASPA National Center for Disciplinary Research on Water-Soil-Plant-Atmosphere Relationships, Right 
Sacramento Canal km 6.5, Industrial Zone, Gómez Palacio, CP. 35140, Durango, México.

3International Land and Water Management Program, Water Resources Management Chair Group, Wageningen University 
& Research, 6708 PB, Wageningen, Güeldres, Países Bajos.

Abstract: Water scarcity for agriculture is increasingly evident due to climatic alterations and inadequate 
management of this resource. Therefore, developing digital models that help improve water resource management 
to provide solutions to agronomic problems in northern Mexico is necessary. In this context, the objective of the 
present research is to calibrate the Optical Trapezoidal (OPTRAM) and Thermal-Optical Trapezoidal (TOTRAM) 
models to estimate the volumetric soil moisture at different depths through vegetation indices derived from 
Landsat-8 and Sentinel-2 satellite images using Google Earth Engine (GEE). Agricultural areas under gravity 
irrigation and rainfed runoff in the Comarca Lagunera, the lower part of the Hydrological Region No. 36 of the 
Nazas and Aguanaval rivers were selected for in-situ measurements. The OPTRAM and TOTRAM normalized 
moisture content (W) estimates were compared with in-situ volumetric soil moisture (θ) data. Results indicate that 
the predictions of OPTRAM errors using Sentinel-2 images showed RMSE between 0.033 to 0.043 cm3 cm-3 and 
R2 between 0.66 to 0.75, whereas Landsat-8 errors showed RSME from 0.036 to 0.057 cm3 cm-3 and R2 between 
0.70 to 0.81. On the other hand, TOTRAM errors showed RMSE between 0.045 to 0.053 cm3 cm-3 and R2 between 
0.62 to 0.85 through calibrations. This study made it possible to evaluate the most accurate combinations of the 
pixel distributions of each model and vegetation indices for the estimation of volumetric soil moisture within the 
different phenological stages of the crops.
Key words: Satellite images, models, vegetation indices, pixel distributions.

Calibración de la humedad volumétrica del suelo utilizando imágenes Landsat-8 y Sentinel-2 
mediante Google Earth Engine
Resumen: La escasez de agua para la agricultura es cada vez más evidente producto de las alteraciones climáticas 
y el inadecuado manejo de este recurso. Por ende, el desarrollo de modelos digitales que ayuden a la mejora del 
manejo de los recursos hídricos para proporcionar soluciones a los problemas agronómicos al norte de México 
es necesario. En este contexto, el objetivo de la presente investigación es calibrar los modelos Óptico Trapezoidal 
(OPTRAM) y Térmico-Óptico Trapezoidal (TOTRAM) para estimar la humedad volumétrica del suelo a diferentes 
profundidades a través de índices de vegetación derivados de imágenes de satelitales Landsat-8 y Sentinel-2 
utilizando Google Earth Engine (GEE). Áreas agrícolas seleccionadas bajo riego por gravedad y temporal por 
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1. Introduction

Soil moisture is considered a fundamental variable 
in hydrological processes such as infiltration, 
runoff, and evaporation (Vereecken et al., 2008; 
Rahmati et al., 2018) and agronomic processes 
such as crop yield and efficiency (Tollenaar & Lee, 
2002). Soil moisture is highly variable in time and 
space due to the heterogeneity of soil properties, 
topography, land cover, evapotranspiration, and 
precipitation uniformity (Santos et al., 2014). 
Field measurement of soil moisture is costly, 
time-consuming, and impractical for continuous 
temporal and spatial monitoring at different 
scales (Rahimzadeh-Bajgiran et al., 2013). Field 
sampling techniques such as Time Domain 
Reflectometry (TDR) and gravimetric can provide 
quantitatively accurate measurements of soil 
moisture, but with the disadvantage that they 
do not consider changes in spatial distributions 
across all soil surface features (Lakhankar et al., 
2009). Studies as Dobriyal et al. (2012) give a 
review available for estimating soil moisture 
and criteria for direct (gravimetric, neutron 
probe, time dominian reflectometry, tensiometer, 
etc.) and indirect (gamma ray attenuation, 
retome sensing, capacitance sensor, gypsum 
block, pressure plate, etc.) methods such as cost 
effectiveness, accuracy, spatial scale, response 
time and measured parameter. This study will be 
helpful for researchers in any field to select the 
appropiate method keeping in view the time and 
resources available to them in order to improve 
the productivity and water managment. Therefore, 
remote sensing (RS) through various techniques 
uses the optical, thermal, and microwave regions 
of the electromagnetic spectrum developed to 
estimate soil surface moisture (Wang & Qu, 
2009; Şekertekin et al., 2018). Microwave 

techniques have shown much greater potential 
in soil moisture monitoring, as microwaves 
can penetrate the vegetation canopy and cloud 
cover (Tabatabaeenejad et al., 2015). However, 
microwaves are unsuitable for small-scale 
applications due to their coarse resolution. On the 
other hand, the essential advantage of thermal and 
optical techniques over microwaves is that they 
provide a spatial resolution that can be used at 
small scales (Lakshmi, 2012). The Thermo-Optical 
Trapezoid Model (TOTRAM) developed by Moran 
et al. (1994) integrates the spectrum of vegetation 
indices (VI) with land surface temperature (LST) 
measurements. TOTRAM is applicable for crops 
entirely or partially covered by vegetation. More 
recently, different modifications to the traditional 
trapezoid model have been proposed (Mallick 
et al. 2009). Despite its success, the application 
of TOTRAM suffers from two limitations. The 
first limitation is that it requires satellite missions 
containing optical and thermal observations, while 
some satellites, such as Sentinel-2, do not provide 
thermal information. The second limitation is 
that LST requires individual parameterization 
for each observed date because LST depends not 
only on soil moisture but also on atmospheric 
environmental parameters such as near-surface 
air temperature, relative humidity, and wind 
speed (Pandey et al., 2021). Parameterization and 
calibration can be implemented agronomically for 
an entire crop season once prepared for a particular 
area. Because of the existing limitations, Sadeghi 
et al. (2017) proposed the Optical Trapezoid Model 
(OPTRAM), based on the linear relationship 
between soil moisture and reflectance transformed 
shortwave infrared (STR) in order to replace the 
LST of TOTRAM and can be implemented for soil 
moisture estimation using Sentinel-2 imagery. The 
OPTRAM model has been applied for agricultural 

escorrentías en la Comarca Lagunera, parte baja de la Región Hidrológica No. 36 de los ríos Nazas y Aguanaval 
fueron seleccionadas para mediciones in-situ. Las estimaciones del contenido normalizado de humedad (W) de 
OPTRAM y TOTRAM fueron comparados con datos de humedad volumétrica del suelo (θ) in-situ. Los resultados 
indican que las predicciones de los errores de OPTRAM utilizando imágenes Sentinel-2 mostraron RMSE entre 
0,033 a 0,043 cm3 cm-3 y R2 entre 0,66 a 0,75. Mientras, los errores de Landsat-8 mostraron RSME de 0,036 a 
0,057  cm3 cm-3 y R2 entre 0,70 a 0,81. Por otra parte, los errores de TOTRAM mostraron RMSE entre 0,045 a 
0,053 cm3 cm-3 y R2 entre 0,62 a 0,85 a través de las calibraciones. Este estudio permitió evaluar, las combinaciones 
más precisas de las distribuciones de los píxeles de cada modelo e índice de vegetación para la estimación de 
humedad volumétrica del suelo dentro de las distintas etapas fenológicas de los cultivos.

Palabras clave: imágenes de satélite, modelos, índices de vegetación, distribución de los píxeles. 
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drought control, soil moisture estimation and 
moisture monitoring in irrigated and rainfed crops 
(Mananze et al., 2019; Ambrosone et al., 2020).

The present investigation includes a two-year 
time series combination analysis of the pixel 
distributions of the relationships between LST 
and STR in conjunction with NDVI, SAVI, and 
MSAVI vegetation indices of surface irrigation 
and rainfed agriculture to calibrate and validate 
the normalized moisture content (W) through the 
OPTRAM and TOTRAM optical models. The W 
data were compared with measured volumetric 
soil moisture data (Ɵ) at 5, 10, and 20 cm 
depths. These analyses made it possible to know 
the vegetation index (VI), model (OPTRAM/
TOTRAM), and linear relationship (W-Ɵ) with the 
highest accuracy at different depths for estimating 
volumetric soil moisture.

2. Materials and methods

2.1. Study area

The study was performed in three agricultural 
areas of the Comarca Lagunera, the lower part 
of Hydrological Region No. 36, located in 
the southeast of the municipality of Mapimi, 
Durango, Mexico (Figure 1). Soil Texture Triangle 
developed by the USDA (U.S.D.A, 1977) and 
Bouyoucos method (Bouyoucos, 1936) were used 
for soil characterization using a composite soil 
sample for each area (Table 1). According to the 
Köppen classification modified by García (2004), 
Mapimi presents an arid and highly semi-warm 

climate with rainfall in summer. Precipitation 
occurs in violent downpours of short duration 
with an annual average of 264.2 mm with a 
maximum of 513 mm and a minimum of 81 mm. 
The yearly temperature is 20.8 °C with an average 
winter minimum of 3.9 °C and an average summer 
maximum of 36.1 °C (Montaña, 1988). The soils 
are characterized by low organic matter (OM), 
phosphorus (P), and calcium (Ca), high saline 
and sodium concentrations with soils types such 
as yermosol, xerosol, regosol and litosol (Ramírez 
and Pedroza, 2007), especially in the lower areas.

Figure 1. Location of the municipality of Mapimi, Duran-
go, and agricultural areas (own elaboration).

2.2. Methods for calculating volumetric 
soil moisture in the field

The volumetric soil moisture data calculated by 
the gravimetric method (Dane & Topp, 2002) 
correspond to The Chapingo Autonomous 
University - URUZA fields (Figure 2a) and the 

Table 1. Characteristics of agricultural areas.

Chapingo Autonomous University- 
Regional University Unit of Arid Zones 
(URUZA) fields

Private fields near the Regional 
University Unit of Arid Zones 
(URUZA)

Private agricultural fields in Ejido 
“La Purísima”

Coordinates 103° 35’ 52” W longitude, 
25° 53’ 47” N latitude.

Coordinates 103° 36’ 12” W longitude, 
25° 53’ 8” N latitude.

Coordinates 103° 46’ 9” W longitude, 
25° 49’ 57” N latitude.

Self-consumption fodder sorghum crop 
(URUZA).

Growing forage sorghum for sale to 
dairies.

Monoculture of forage corn for self-
consumption.

Texture type sandy loam at 0-30 cm 
and 30-60 cm depth.

Texture type sandy loam at 0-30 cm 
and 30-60 cm depth.

Texture type loam at 0-30 cm and 30-
60 cm depth.

Surface irrigation agriculture with 
7.21 ha, irrigation of one watering 
and four irrigations from October to 
February.

Surface irrigation agriculture with 
9.05 ha, irrigation of one watering and 
four irrigations from March to August.

Rainfed agriculture with 1.62 ha, 
irrigation based on runoff from a 
hydrological basin from July to 
November.
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private fields near URUZA (Figure 2b). On the 
other hand, time domain reflectometry (TDR) 
method (Davis & Chudoviak, 1975) used a Decagon 
Devices ® ProCheck Version 4 and the 5TE sensor 
(calibrated in the laboratory with various type soil 
samples) to measure the volumetric soil moisture 
in the rainfed agriculture area with runoff from the 
private fields of Ejido “La Purisima” (Figure 2c). 
Additionally, three samples or measurements 
were collected randomly per point at 5, 10, and 
20 cm depth with separations of 10 to 30 m. These 
activities carried out on the days that Sentinel-2 
and Landsat-8 missions orbited over the studied 
areas.

2.3. Satellite data and image analysis

Sentinel-2 (S2) and Landsat 8 (L8) multispectral 
satellite images were acquired from the Google 
Earth Engine (GEE) platform satellite dataset 
catalogs (URL: https://developers.google.com/
earth-engine/datasets). S2 is divided into twin 
satellites A and B, incorporating extensive 
innovations such as broadband, high spatial (10 to 
60 m) and temporal resolution (10 days apart and 5 
together), and 13 multispectral images spanning the 
visible, NIR and SWIR electromagnetic frequency 

domains. L8 is composed of the Operational Land 
Imager (OLI) and Thermal Infrared Sensor (TIRS) 
with 11 spectral bands in the optical and thermal 
infrared domain, spatial resolutions of 30 to 
100 m, and temporal resolutions of 16 days.

A total of 119 Sentinel-2 and 39 Landsat-8 
cloud-free images available were used to develop 
TOTRAM and OPTRAM pixel distributions. 
Moreover, 21 Sentinel-2 and 7 Landsat-8 satellite 
images from 2022 were analyzed for each model’s 
calibration and validation of soil moisture 
(Table 2).

The flowchart of the S2 and L8 sequences of 
soil moisture estimation for TOTRAM and 
OPTRAM, and the analyzed satellite image sets 
are represented in Figure 3. The radiometric 
calibrations were performed within the GEE 
platform. For L8, the sets used have a radiometric 
calibration of their digital numbers (ND) for band 
10 (10600-111900 nm) of the Top of Atmosphere 
(TOA) data sets at brightness temperature (BT). 
Furthermore, surface reflectance data sets for S2 
are included in GEE; the scale factor with a value 
of 0.0001 was required for radiometric calibration. 
L8 surface reflectance data sets, two scale factors 
were required, 0.0000275 multiplying and 0.2 

Figure 2. (a) Chapingo Autonomous University- Regional University Unit of Arid Zones (URUZA) fields, (b) private fields 
near the URUZA, (c) Ejido “La Purísima” private fields, images extracted from Google Earth Engine.

https://developers.google.com/earth-engine/datasets
https://developers.google.com/earth-engine/datasets
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subtracting the digital numbers, and 0.0001 
multiplying to the emissivity band (USGS, 2022).

The reflectance of the red band [S2 band 
4 (664.5 nm-A and 665 nm-B), L8 band 
4 (636-673 nm)] and NIR band [(S2 band 
8 (864.8 nm-A and 833nm-B), L8 band 5 
(851-879 nm)] were used for the calculation of VI. 
The shortwave infrared band (SWIR) reflectance 
[S2 band 12 (2202.4 nm-A and 2185.7 nm-B), 
L8 band 7 (2107.4-2294 nm)] was used for STR 
calculation. Additionally, the Sentinel-2 SWIR 
band was reassembled automatically from 20 to 
10 m through the red and NIR bands in GEE.

2.4. Estimation of land surface 
temperature (LST) using satellite 
imagery

Land Surface Temperature (LST) was estimated 
using the sensor temperature brightness (BT) in 
Kelvin degrees (K) (band 10) from the Landsat-8 
“Top of Atmosphere (TOA)-Reflectance” satellite 
datasets (Chander et al., 2009) and converted to 
Celsius (°C). Land surface emissivity (ST_EMIS 
band) from the “Surface Reflectance (SR), Level 2, 
Collection 2, Tier 1” satellite datasets (GEE, 2022) 
created from the single-channel algorithm 
and developed by The Rochester Institute of 

Table 2. Sampling dates and satellite images analyzed of the agricultural areas of the study.

Location Satellite No. images Acquisition date (Year 2022)
Rainfed agriculture- Ejido “La 
Purísima” fields

Sentinel-2 6 Feb. 16, Feb.21, Feb. 26, Mar. 06, Mar. 08, Mar. 11

Landsat-8 1 Mar.06

Surface irrigation agriculture- Chapingo 
Autonomous University- (URUZA) 
fields

Sentinel-2 11 Mar. 23, Mar. 31, Apr. 02, Apr. 05, Apr. 07, Apr. 15, 
Apr. 17, Jun. 14, Jun. 21, Jun. 26, Jul. 01

Landsat-8 4 Mar. 22, Apr. 07, Jun. 10, Jun.26

Surface irrigation agriculture- Private 
fields near the Regional University Unit 
of Arid Zones (URUZA)

Sentinel-2 4 Jul. 14, Jul. 16, Jul. 24, Jul. 31

Landsat-8 2 Jul. 12, Jul.28

Figure 3. Flowchart illustrating the sequence of steps performed in the Sentinel-2 and Landsat-8 data analysis for soil 
moisture (W) estimation with OPTRAM and TOTRAM.
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Technology (RIT) and The National Aeronautics 
and Space Administration (NASA) Jet Propulsion 
Laboratory (JPL) was implemented.

Consequently, combining the brightness 
temperature (BT) and the emissivity of the Earth’s 
surface (Stathopoulou & Cartalis, 2007) allow 
estimate LST, according to Equation 1. 

   (1)

Where Ts is the LST in degrees Celsius (°C), BT 
is the brightness temperature at the sensor, λ is the 
wavelength of the emitted radiation (nm should be 
converted to m) (Markham and Barker, 1985), ελ 
is the emissivity and ρ is defined in Equation 2.

  (2)

Where σ is the Boltzmann’s constant 
(1.38×10-23 J/K), h is the Planck’s constant 
(6.626×10-34 J s), and c is the speed of light 
(2.998×108 m/s) (Weng et al., 2004).

In addition, an extra formula adding a thermal 
band (band 10) created from the single-channel 
algorithm and developed by The Rochester 
Institute of Technology (RIT) and National 
Aeronautics and Space Administration (NASA) 
Jet Propulsion Laboratory (JPL) allows the 
estimation of LST, following Equation 3.

LSTNASA = (STB10)×(0.00341802)+(149) (3)

Where STB10 is the thermal band (°C) of the 
“Surface Reflectance (SR), Level 2, Collection 
2, Tier 1” satellite data sets from GEE platform 
catalogs.

2.5. Thermal-Optical Trapezoid Model 
(TOTRAM)

The Thermal-Optical Trapezoid Model, proposed 
by Moran et al. (1994) and Carlson et al. (1994), 
is based on the distribution of pixels within the 
LST-VI space. At present, the most commonly 
used vegetation index in TOTRAM model is the 
Normalized Difference Vegetation Index (NDVI), 
calculated by the difference in the amplitude of the 
regions of the reflectance values of the red (R) and 
near-infrared (NIR) spectral bands proposed by 
Rouse (1973), using Equation 4.

  (4)

In the early stages of crop growth, vegetation 
cover is scarce. Under these conditions, vegetation 
indices such as the Soil Adjusted Vegetation Index 
(SAVI), proposed by Huete (1988), incorporates 
an adjustment factor of “L” with an average value 
of 0.5, placed in the denominator of the NDVI 
equation (Equation 5).

   (5)

Whereas the Modified Soil Adjusted Vegetation 
Index (MSAVI2) proposed by Qi, (1994) using 
Equation 6, shows a better behavior than SAVI 
because it presents a greater sensitivity to bare soil 
and sparse vegetation since it takes into account 
the effect of soil brightness.

MSAVI2 =
(2 + NIR Band + 1) − (2 + NIR Band + 1)2 − 8(NIR Band − Red Band)

2
 (6)

The TOTRAM model is based on the linear 
relationship between surface soil moisture (Ɵ) and 
LST, represented by Equation 7.

  (7)

Where W is the normalized soil moisture content 
by the local minimum of dry soil moisture content 
(Ɵd) and the local minimum of wet soil moisture 
content (Ɵw). The terms LSTd and LSTw are the 
land surface temperatures in dry and wet soils, 
respectively. Where LSTd and LSTw are obtained 
by the LST-VI relationship (Figure 4) for a specific 
area. The upper part is considered the dry edge 
(Equation 8), and the lower part is considered the 
trapezoid’s wet edge (Equation 9), which are used 
to solve LSTd and LSTw within the VI.

  LSTd=id+sdVI (8)

  LSTw=iw+swVI  (9)

By combining Equations 7, 8, and 9, the soil 
moisture for each pixel can be estimated as a 
function of LST and VI, using the equation 10.

  (10)

Ts =
BT

{1 + [( λBT
ρ )lnελ]}

ρ = h
c
σ

= 1 . 438 × 10−2 mK

NDVI =
NIR Band − Red Band
NIR Band + Red Band

SAVI = ( NIR Band − Red Band
NIR Band + Red Band + L )(1 + L)

W =
θ − θd

θw − θd
=

LSTd − LST
LSTd − LSTw

W =
id + idVI − LST

id − iw + (sd − sw)VI
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2.6. Optical Trapezoid Model (OPTRAM)

The OPTRAM model incorporate the linear 
relationship of STR-VI (Figure 4), developed 
by Sadeghi et al. (2017) as a physical model for 
the linear relationship between surface moisture 
content and the shortwave infrared (SWIR) band, 
transformed to reflectance (STR) (Equation 11).

 (11)

In the previous equation, STR is the SWIR 
transformed to reflectance, STRd and STRw are 
the local minimum and maximum STR of dry 
(Ɵd) and wet (Ɵw) soil moisture content. The STR 
proposed by Sadeghi et al. (2015) is related to the 
SWIR reflectance (RSWIR) (Equation 12).

 (12)

Where STRd and STRw are obtained by the 
relationship of the STR-VI for a specific area. 
The upper part is considered the wet edge 
(Equation 13), and the lower part is considered 
the trapezoid’s dry edge (Equation 14), which are 
used to solve STRd and STRw within the VI.

   (13)

  (14)

The combination of Equations 11, 13, and 14 is 
used to estimate soil moisture for each pixel as a 
function of STR and VI (Equation 15).

  (15)

3. Results

3.1. TOTRAM and OPTRAM 
parameterization

The TOTRAM (Equation 10) and OPTRAM 
(Equation 15) were parameterized based on the 
pixel distribution of the combination of surface 
irrigated and rainfed agricultural areas within the 
LST-VI and STR-VI spaces [LST/STR-NDVI 
(Figure 5), LST/STR-SAVI (Figure 6) and 
LST/STR-MSAVI2 (Figure 7)] respectively.

For OPTRAM in both missions (S2 and L8), 
the combination of pixel distributions within the 
STR-VI spacings are depicted in the upper part 
of Figures 5, 6, and 7, did not show a trapezoid-
like pattern or shape. In order to acquire edge 
parameters and estimate soil moisture, nonlinear 
alternatives between the ranges of 0 to 0.9 within 
the VI were implemented to obtain the best 
equations for each pixel distribution (Table 3).

On the other hand, the LST-VI spaces in TOTRAM 
were parameterized by a visual inspection of the 
combination of the pixel distributions (Carlson, 
2013), presenting a slightly trapezoid-like shape, 

W =
θ − θd

θw − θd
=

STR − STRd

STRw − STRd

STR = (1 − RSWIR)2

2RSWIR

STRw = iw + swVI

STRd = id + sdVI

W =
id + idVI − STR

id − iw + (sd − sw)VI

Figure 4. Parameters of the traditional termal-optical model [Eq. (10), TOTRAM] and the optical trapezoid model [Eq. 
(15), OPTRAM] and pixel distributions within the LST-VI and STR-VI spaces (own elaboration).
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represented in the lower part of Figures 5, 6, and 
7, implementing linear edges to obtain the best 
distribution equations (Table 4). However, the 

parameterizations between the dry edges of the 
LST-VI and LSTNASA-VI distributions showed 
a significant difference. The dry edge in the 

Figure 5. Pixel distributions of the combination of surface irrigated and rainfed agricultural areas within the STR-NDVI 
(OPTRAM) and LST-NDVI (TOTRAM) spaces; the red line represents the dry edge and the blue line the wet Edge (own 
elaboration).

Table 3. Best equations obtained for the wet (STRw) and dry (STRd) edges for the OPTRAM model.

Landsat-8
Wet edges Dry edges

NDVI STRw = -318.38NDVI6 + 924.35NDVI5 - 1012.4NDVI4 
+ 541.32NDVI3 - 141.59NDVI2 + 18.16NDVI + 0.4325

STRd = 11.792NDVI3 - 10.195NDVI2 + 
4.2675NDVI - 0.1949

SAVI STRw = -2906.5SAVI6 + 5874.1SAVI5 - 4575.3SAVI4 + 
1760.9SAVI3 - 342.25SAVI2 + 33.231SAVI + 0.0648

STRd = 35.754SAVI3 - 31.486SAVI2 + 10.381SAVI 
- 0.7013

MSAVI2 STRw = -650.87MSAVI26 + 1365.1MSAVI25 - 
1136.4MSAVI24 + 495.61MSAVI23 - 108.31MSAVI22 + 
12.473MSAVI2 + 0.8403

STRd = 11.978x3 - 7.0858x2 + 3.2215x - 0.1144

Sentinel-2
Wet edges Dry edges

NDVI STRw = 274.49NDVI6 - 686.76NDVI5 + 675.38NDVI4 - 
323.06NDVI3 + 80.002NDVI2 - 8.5951NDVI + 2.0712

STRd = 26.568NDVI5 - 44.046NDVI4 + 
25.083NDVI3 - 3.3776NDVI2 + 0.3093NDVI + 
0.1686

SAVI STRw = 154.98SAVI5 - 201.9SAVI4 + 101.78SAVI3 - 
18.166SAVI2 + 2.0873x + 1.61

STRd = 85.568SAVI5 - 128.83SAVI4 + 70.095SAVI3 
- 14.705SAVI2 + 2.0199SAVIx + 0.0293

MSAVI2 STRw = 952.8MSAVI26 - 2026.9MSAVI25 + 
1698.8MSAVI24 - 704.93MSAVI3 + 156.02MSAVI22 - 
15.735MSAVI2 + 2.2834

STRd = 31.199MSAVI25 - 52.147MSAVI24 + 
33.236MSAVI23 - 7.6363MSAVI22 + 1.6994MSA-
VI2 + 0.0281
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LSTNASA-VI distributions presents an increase in 
the slope of the end part of the dry edge for ranges 
from 0.1 to 0.9 within the VI, as opposed to the 
LST-VI distributions, where the end part of the dry 
edge presents a very slight decrease in the slope at 
the end part.

3.2. Volumetric soil moisture 
estimations
The results indicate that calibrations of both 
models and validations of measured volumetric 

soil moisture data (Ɵ) compared with estimated 
data (W) at different depths of OPTRAM and 
TOTRAM using NDVI (Figure 8), obtained at 
10 cm of depth the most accurate linear relationships 
for OPTRAM in both missions (S2 and L8) with 
RMSE of 0.035 and 0.0444 cm3 cm-3; R2 of 0.7107 
and 0.7696, respectively. In TOTRAM, the LST-
NDVI and LSTNASA-NDVI relationships showed 
the most accurate results at 20 cm and 10 cm depth 
with RMSE of 0.0485 and 0.0484 cm3 cm-3; R2 of 
0.8404 and 0.7203, respectively.

Figure 6. Pixel distributions of the combination of surface irrigated and rainfed agricultural areas within the STR-SAVI 
(OPTRAM) and LST-SAVI (TOTRAM) spaces; the red line represents the dry edge, and the blue line the wet edge (own 
elaboration).

Table 4. Best equations obtained for the wet (LSTNASA/LSTw) and dry (LSTNASA/LSTd) edges for the TOTRAM model.

Landsat-8
LST Wet edges Dry edges
NDVI LSTw = 2.7322NDVI + 13.672 LSTd = -5.4645NDVI + 50.656
SAVI LSTw = 3.1746SAVI + 13.683 LSTd = -6.3492SAVI+ 50.635
MSAVI2 LSTw = 2.9412MSAVI2 + 13.706 LSTd = -5.8824MSAVI2 + 50.588
LSTNASA

NDVI LSTNASAw = 0.6849NDVI+ 15.918 LSTNASAd = 5.4795NDVI + 55.342
SAVI LSTNASAw = 0.7937SAVI+ 15.921 LSTNASAd = 6.3492SAVI + 55.365
MSAVI2 LSTNASAw= 0.7353MSAVI2 + 15.926 LSTNASAw = 5.8824MSAVI2 + 55.412
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Moreover, SAVI with OPTRAM (Figure 9) 
showed the most accurate linear relationships at 
20 cm and 5 cm depth (S2 and L8) with RMSE of 
0.0362 and 0.0359 cm3 cm-3 and R2 of 0.7469 and 
0.8045, respectively. TOTRAM the most accurate 
linear relationships (LST and LSTNASA) were 
obtained at 10 cm and 5 cm depth with RMSE 
of 0.0461 and 0.0513 cm3 cm-3; R2 of 0.8488 and 
0.7581, respectively.

Additionally, MSAVI2 with OPTRAM (Figure 10) 
comparisons showed the most accurate linear 
relationships at 20 cm depth for both missions 
(S2 and L8) with RMSE of 0.0339 and 0.428 
cm3 cm-3; R2 of 0.6973 and 0.7647, respectively. 
In contrast to TOTRAM, the most accurate linear 
relationships at 10 cm depth for both relationships 
(LST and LSTNASA) with RMSE of 0.0467 
and 0.045 cm3 cm-3; R2 of 0.8511 and 0.7457, 
respectively.

3.3. Soil moisture maps

The W maps were generated from the dates S2 
and L8 share the same satellite image acquisition 
day for each pixel distribution within OPTRAM 
and TOTRAM. The first date (Figure 11) of the 
Ejido “La Purisima” area comprises bare soil 
for all VI with ranges between 0.1 to 0.25. The 
OPTRAM model showed overestimations in 
W with values between 0.3 to 0.55 cm3 cm-3, 
even overestimating twice the measured data 
(Ɵ) at 20 cm depth for all distributions of both 
missions. The reason may lie in the combination 
of the pixel distributions of the agricultural types 
since both areas of surface irrigated agriculture 
have a larger irrigated area, observing more data 
from STR-VI relationships than those of rainfed 
agriculture and the dry/wet edges chosen. In 
addition, it was observed that at high STR (0.8-1) 
and low VI (0.1-0.25), soil moisture is more 
likely to be overestimated by the established 
edges. Because of this W obtained from the Ejido 

Figure 7. Pixel distributions of the combination of surface irrigated and rainfed agricultural areas within the STR-MSAVI2 
(OPTRAM) and LST-MSAVI2 (TOTRAM) spaces; the red line represents the dry edge, and the blue line the wet edge 
(own elaboration).
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Figure 8. OPTRAM and TOTRAM soil moisture estimates using NDVI compared to in situ measured data from surface 
irrigated and rainfed agricultural areas (own elaboration).

Figure 9. OPTRAM and TOTRAM soil moisture estimates using SAVI compared to in situ measured data from surface 
irrigated and rainfed agricultural areas (own elaboration).
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“La Purísima” area with rainfed agriculture 
was not considered for the validation due to the 
overestimates presented.

Likewise, TOTRAM for the LSTNASA-VI 
relationship showed the same behavior as 
OPTRAM, the overestimation is presented when 
the VI (0.1-0.25) and the LSTNASA temperatures 
(< 46°C) are low, possibly caused by the 
parameterization of its dry edge. Besides, It 
should be emphasized that LSTNASA reveals an 
increase of around 7-8°C over LST in each pixel. 
On the other hand, the LST-VI relationships did 
not present overestimations. Instead, they showed 
correct behavior throughout the calibration within 
the different depths due to the parameterizations 
of their edges.

On the second date, the gravity irrigation area 
of the Chapingo Autonomous University-
URUZA (Figure 12) presents VI ranges between 
0.1 to 0.45. The W maps in OPTRAM show a 
substantial similarity of W estimates for both 
missions with ranges between 0.1 to 0.3 cm3 

cm-3 and presenting significantly accurate VI-W 
relationships with STR levels between 0.4 to 0.6 
and VI between 0.1 to 0.45. In addition, it was 
observed that OPTRAM, employing Landsat-8 
observations, estimates more accurately the 
moisture of bare soils with conventional type 
tillage after their respective irrigations, observed 
in the third parcel (Figure12; sections c, h, and 
m) and occurs when VI is less than 0.15 and STR 
is higher than 0.48. In the other hand, TOTRAM 
in LST-VI and LSTNASA-VI relationships 
presented overestimations and homogeneity of 
W with values between 0.35 to 0.45 cm3 cm-3, 
overestimating the measured data (Ɵ) at 20 cm 
depth, caused by low temperatures for both 
relationships. Low temperatures are considered 
for LST less than 38 °C and LSTNASA less than 
46 °C for the established wet and dry edge 
parameters. If land surface temperatures and VI 
present low levels, soil moisture is more likely to 
be overestimated.

The third date (Figure 13), located in the same 
area as the second date, presented VI ranges 

Figure 10. OPTRAM and TOTRAM soil moisture estimates using MSAVI2 compared to in situ measured data from surface 
irrigated and rainfed agricultural areas (own elaboration).
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between 0.1 to 0.75. The OPTRAM model, 
through Landsat-8, presented overestimations 
in W within VI ranges between 0.4 to 0.75 
(second and third parcels, sections c, h y m), 
possibly caused by the high STR levels (higher 
than 1.6) and the parameterizations of the dry 
edge. On the other hand, Sentinel-2 did not show 
homogeneity in W but precise ranges between 
0.1 to 0.35 cm3 cm-3 within the same ranges 
of VI and fields as Landsat-8. The TOTRAM 
relationships showed homogeneity in W, with 
precise VI-W relations between 0.15 to 0.35 cm3 
cm-3, presenting LSTNASA and LST temperatures 
on bare soil (0.1-0.25) between 52 °C and 44 °C, 
and with dense vegetation (0.5-0.75) between 
44 °C and 36 °C, respectively.

4. Discussion

Studies for soil moisture estimation at different 
depths with bare, semi-bare, and vegetation-
covered soil have been developed in the near-past. 
Hassanpour et al. (2020) compare OPTRAM at 
two depths (surface and root moisture) through 
linear and nonlinear edge parameterization using 
three different pixel distributions (bare soil, 
vegetated soil and combined). In that case, the 
highest R2 was 0.803, and the lowest RMSE was 
0.030 cm3 cm-3, obtained on surface soil moisture 
using nonlinear edges from the bare soil pixel 
distributions. However, the combination of the 
distribution of soils with vegetation cover and 
bare soils obtained a slightly lower result in R2 

Figure 11. Location Ejido “La Purisima” Durango, Mexico; (a, f, k) NDVI, SAVI, and MSAVI2 obtained with Sentinel-2, 
respectively (date: March 06, 2022): (b, c) NDVI, (g, h) SAVI and (l, m) MSAVI2, W in OPTRAM for Sentinel-2 and 
Landsat-8, respectively. TOTRAM model, (d, e) NDVI, (i, j) SAVI, and (n, o) MSAVI2 for LST-VI and LSTNASA-VI 
relationships, respectively (own elaboration).
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Figure 12. Location Chapingo Autonomous University- Regional University Unit of Arid Zones (URUZA) Durango, 
Mexico; (a, f, k) NDVI, SAVI, and MSAVI2 obtained with Sentinel-2, respectively (date: April 07, 2022): (b, c) NDVI, (g, 
h) SAVI and (l, m) MSAVI2, W in OPTRAM for Sentinel-2 and Landsat-8, respectively. TOTRAM model, (d, e) NDVI, (i, 
j) SAVI, and (n, o) MSAVI2 for LST-VI and LSTNASA-VI relationships, respectively (own elaboration).

Figure 13. Location Chapingo Autonomous University- Regional University Unit of Arid Zones (URUZA) Durango, 
Mexico; (a, f, k) NDVI, SAVI, and MSAVI2 obtained with Sentinel-2, respectively (date: June 26, 2022): (b, c) NDVI, (g, 
h) SAVI and (l, m) MSAVI2, W in OPTRAM for Sentinel-2 and Landsat-8, respectively. TOTRAM model, (d, e) NDVI, (i, 
j) SAVI, and (n, o) MSAVI2 for LST-VI and LSTNASA-VI relationships, respectively (own elaboration).
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of 0.75 and higher in RMSE of 0.036 cm3 cm-3. 
The parameterized edges and dates chosen for 
developing the pixel distributions showed good 
accuracy for estimating surface soil moisture 
between 0 and 5 cm depth. The Optical Trapezoid 
Model (OPTRAM) can be parametrized 
universally. Babaeian et al. (2018) evaluate how 
the parametrization of OPTRAM works for long 
periods of time (several decades). Especially 
relevant for soil moisture and agricultural drought 
in response to climate change implementing 
analysis of MODIS satellite observations from 
2001 to 2017.The OPTRAM soil moisture 
estimates were compared with missions as 
the Soil Moisture Active and Pasive (SMAP), 
the Soil Moisture Ocean Salinity (SMOS) and 
the Advance Scatterometer (ASCAT). The 
performance of OPTRAM is comparable with 
the ASCAT, but slightly less accurate than SMAP 
and SMOS. Evaluation results indicate RMSE 
and R between 0.050 and 0.085 cm3 cm-3 and 0.1 
to 0.70, respectively.

Besides, studies have parameterized edges 
nonlinearly for soil moisture estimation in 
TOTRAM; Mallick et al. (2009) estimated the 
volumetric surface moisture (Ɵ) in cultivated 
soils from selected agricultural regions in India. 
Nonlinear trends in dry edge at high NDVI ranges 
and a sloping wet edge were found. However, 
the hypothesized linear dry and horizontal wet 
edge combination provided better results. On 
the other hand, Sadeghi (2017) compared the 
performance between OPTRAM and TOTRAM 
in two watersheds in Arizona and Oklahoma, 
United States of America, revealing that the 
RMSE of TOTRAM are slightly better for daily 
comparisons than those of OPTRAM in most 
cases. As a matter of fact, TOTRAM was able 
to capture the temporal variation of mean soil 
moisture across watersheds but failed to capture 
the detailed spatial variability of soil moisture 
and stating the strong relationship between 
volumetric soil moisture (Ɵ). Highlighting the 
temporal dependence due to changes in ambient 
atmospheric parameters and concluding the 
feasibility of a universal calibration for OPTRAM 
but not for TOTRAM.

The two-year time series combination analysis of 
pixel distributions for OPTRAM and TOTRAM 
at different depths of the study presented accurate 

soil moisture estimates for bare soils and the 
presence of vegetation cover. The difference 
between the models is centered on the VI, STR, 
and LST ranges. As shown in Figures (11, 12, and 
13), OPTRAM is susceptible to different ranges 
between STR and VI, showing overestimates 
due to increasing STR (>0.8) and low VI (<0.20) 
levels and high STR (>1.6) with high VI (>0.5) 
levels. Whereas TOTRAM is susceptible to low 
levels of LST in bare soils as shown in Figure 12, 
overestimating soil moisture in low levels of LST 
and VI. There are significant differences between 
OPTRAM and TOTRAM for soil moisture 
estimation, but OPTRAM was more accurate for 
soils with VI ranges less than 0.5 than TOTRAM, 
and TOTRAM was more accurate for VI ranges 
greater than 0.5. In this case, possible reasons 
that affected could lie in time series distributions, 
edge parameterizations, exposure of soil moisture 
to solar radiation, furrow spacing, vegetation 
ratio, and crop dates.

5. Conclusions

This study observed the uses of each model for 
soil moisture estimation in partially dry bare 
soils, wet bare soils using surface irrigation 
with conventional tillage, and soils covered 
by dense vegetation. The OPTRAM model 
obtained the most accurate linear relationships 
(W-Ɵ) using SAVI at 20 cm with Sentinel-2 and 
5 cm with Landsat-8, estimating soil moisture 
more accurately in partially dry and wet bare 
soils using conventional tillage irrigation for 
soil management. In comparison, TOTRAM 
using Landsat-8, obtained the most accurate 
linear relationship at 10 cm depth by LST-VI 
relationship implementing MSAVI2, estimating 
soil moisture more accurately with higher 
vegetation cover. As a result, SAVI and MSAVI2 
obtained the best results because the locations 
presented slightly wider spacing between furrows 
than average, resulting in a greater presence of 
the effect of ground gloss. However, the pixel 
distributions and edges selected for OPTRAM 
soil estimation were not feasible for any depth 
and vegetation index within rainfed agriculture 
with runoff. In contrast, TOTRAM correctly 
estimated soil moisture for surface irrigation and 
rainfed agriculture with runoff at different depths. 
The models can be used for different vegetative 
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stages and VI levels. Initially, OPTRAM showed 
higher accuracy at lower ranges and TOTRAM 
at higher crop VI ranges. In sum, due to the 
spatial variability and atmospheric changes of 
the environment at different times of the year. 
An alternative for improving soil moisture 
estimation by implementing time series could 
be the separation of the vegetative stages of the 
crops. The separation between the vegetative 
stage would provide completely different edges 
and ranges without incorporating STR, LST, and 
VI that has not been present in the chosen growth 
stage to avoid overestimating soil moisture when 
STR increases or LST decreases.
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