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Abstract: Removing or reducing noise in color images is one of the most important functions of
image processing, which is used in many sciences. In many cases, nonlinear methods significantly
reduce the noise in the image and are widely used today. One of these methods is the use of fuzzy
logic. In this paper, we want to introduce a fuzzy filter by using the fuzzy metric for fuzzy sets. For
this purpose, we define fuzzy color pixels by using the mean of neighborhoods. Due to the noise in
the image, we use the bootstrap resampling method to reduce the effect of outliers. The concept of
the strong law of large numbers for the bootstrap mean in fuzzy metric space helps us to use the
resampling method.
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1. Introduction

An essential task in image processing is the use of image noise reduction filters, which
is necessary for any computer vision system that uses images for automated analysis.
In fact, noise can cause problems in image processing tasks (such as edge detection, pattern
detection, etc.). Therefore, we should try to reduce the noise.

In recent years, the interest in using color images in various applications such as
medical diagnostics, GIS, etc., has increased significantly. Therefore, the use of filtering
and image noise reduction has been considered as a new field for applied research. It is
widely observed that there is a correlation between image channels. Therefore, color images
should be processed taking into account these correlations.

The vector approach is one of the most famous methods used in this field. Among the
methods that are used based on a strong statistical theory, we can mention the vector median
filter (VMF) and vector directional filter (VDF), which show good performance in image
filtering. Despite the good results in general, these techniques do not perform properly on the
edges and some details of the image and cause blurring of the image in these areas. To solve
this problem, recently, adaptive vector processing solutions have been used.

The concept of the fuzzy metric space was first defined by Kromasil and Michálek [1],
which gave a generalization of Menger’s probabilistic metric space [2]. This definition was
modified by George and Viramani [3]. This concept has been used in applied sciences such
as image noise reduction [4,5] and the perceptual color difference in [6,7]. Morillas et al.
used a fuzzy metric as a distance measure to reduce image noise. This fuzzy metric uses
two measures of similarity between color vectors and the spatial proximity of pixels in the
image to compare two pixels simultaneously.

In recent years, much research has been performed in this field. Gregori et al. [8] used
two different distance measures based on the fuzzy metric definition to filter image noise.
Furthermore, they [9] reduced the effect of noise in the images by using fuzzy averaging.
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Using fuzzy thresholding, Bandyopadhyay et al. [10] detected the noisy region of the image.
The fuzzy T-metric is another algorithm that was introduced by Ralevic et al. [11] and
showed good results in reducing image noise.

In this paper, we want to generalize Morillas’s method. Our most important tool
to achieve this goal is to convert image pixel values to fuzzy numbers. To do this, we
used the mean of the neighborhoods per pixel (as will be described in Section 6). We used
bootstrap resampling to calculate the mean to reduce the scatter created by the outlier data
(noise entered in the image). The bootstrapping resampling method introduced by Efron is
used for a variety of estimation problems. Since the strong law of large numbers (SLLN)
is particularly important in the bootstrap method, many researchers have studied and
researched this field (see Athreya [12] and Athreya et al. [13]). Ghasemi et al. [14] provided
a fuzzy metric space for the fuzzy set, which is a generalization of the fuzzy metric space
presented by George and Veeramani [3]. Furthermore, they generalized the SLLN into the
fuzzy metric space of the bootstrap mean. We used the SLLN concept in the fuzzy metric
space for the bootstrap mean introduced by Ghasemi et al. [14], in image noise reduction,
which is a generalization of Morillas’s approach [15].

In the following, some preliminaries are presented. In the next step, we introduce the
space of the fuzzy metric. In Section 4, we study the bootstrap mean in the fuzzy metric
space. The filtering images by the fuzzy metric is performed in Section 5. In the next step,
the proposed filter is introduced and examples are provided to compare the performance
accuracy with other methods.

2. Preliminaries

In this section, we introduce the concepts that we use in the following sections.
One of the definitions that is used in the fuzzy metric space is triangular norms

(t-norms for short), which was first defined by Schweizer and Sklar [16].

Definition 1 ([17]). A t-norm is a binary operation ∗ : [0, 1] × [0, 1]→ [0, 1], such that, for all
a, b, c, d ∈ [0, 1], the following four conditions must be met:

• a ∗ 1 = a;
• a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d;
• a ∗ b = b ∗ a;
• a ∗ (b ∗ c) = (a ∗ b) ∗ c.

If the binary operation ∗ is a continuous function on [0, 1] × [0, 1], then the t-norm is said to
be continuous.

A fuzzy set of Rp, p ≥ 1 is a function of u : Rp
→ [0, 1]. Here, supp u is the support of

u, where {x ∈ Rp
| u(x) > 0}. Furthermore, the α-level set for each fuzzy set u is defined by

Lαu = {x ∈ Rp
| u(x) ≥ α}, 0 < α ≤ 1.

Suppose F (Rp) is the collection of those fuzzy sets on Rp. Two fuzzy sets u and v are
equal, written as u = v, if and only if u(x) = v(x) for all x in Rp [18].

We denote d(u, v) as a metric in F (Rp), i.e., for u, v, z ∈ F (Rp):

• d(u, v) ≥ 0;
• d(u, v) = 0 if and only if u = v;
• d(u, z) ≤ d(u, v) + d(v, z).

Furthermore, the norm of u is defined ‖u‖ = d(u, I{0}), which I{0} is the indicator
function (the fuzzy set taking a value of one at 0 and zero for all x , 0).

Let Fc(Rp) be the collection of those fuzzy sets u : Rp
→ [0, 1] with the follow-

ing properties:

• Lαu is compact for all 0 < α ≤ 1;
• supp u is compact;
• {x ∈ Rp

|u(x) = 1} , ∅.
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3. Introduction to Fuzzy Metric Space

As we know, one of the important concepts in data mining, image processing, and
multivariate data analysis is the distance measurement criteria. Some distance measures
of the exact number are well established in the literature. Distances are calculated in an
imprecise framework, which creates logical problems due to ambiguity. In such cases, crisp
numbers are converted to fuzzy numbers.

Various definitions of the fuzzy metric space have been proposed by various
authors [19–21]. George and Viramani in [3] modified the concept of the fuzzy met-
ric space introduced by Kramosil and Michalek [1] and defined a Hausdorff topology on
this fuzzy metric space. In this definition, which we refer to in the following, M(x, y, t) can
be thought of as the degree of nearness between x and y with respect to t.

Assuming that X is an arbitrary non-empty set, M is a fuzzy metric (fuzzy set) on
X ×X × (0,∞) and ∗ is a continuous t-norm. In this case, the three-tuple (X , M, ∗) is
said to be a fuzzy metric space [3]. Here, if M(x, y, t) is symmetric with respect to x and y,
continuous on t, and satisfies the following conditions for all:

• M(x, y, t) = 1 if and only if x = y;
• M(x, z, t + s) ≥M(x, y, t).M(y, z, s).

M(x, y, t) is called a fuzzy metric and indicates the degree of closeness or similarity of
x and y according to t.

Example 1 ([3]). Suppose that (X , d) is a metric space, and we define a ∗ b = min{a, b} or
a ∗ b = ab and ∀x, y ∈X ,

M(x, y, t) =
ktn

ktn + md(x, y)
, k, m ∈ R+, n ≥ 1.

Then, (X , M, ∗) is a fuzzy metric space. Let us say now that M(x, y, t) is the standard fuzzy
metric induced by the d metric, whenever k = n = m = 1:

M(x, y, t) =
t

t + d(x, y)
, (1)

For the first time, the fuzzy normed space was defined by Saadati and Vaezpour [22].
Assuming that X is a vector space, N is a fuzzy set (fuzzy norm) on X× (0,∞), and ∗ is a
continuous t-norm, then the three-tuple (X, N, ∗) is called a fuzzy normed space.

Detecting and reducing the effect of noise in an image can be considered one of the
important applications of the fuzzy metric. Morillas et al. [15] used this metric to detect and
reduce noise in images and showed that this method has a better effect than other methods.
Actually, Morillas used the standard fuzzy metric as follows:

R(Fi, F j, t) =
t

t + ‖Fi − F j‖
,

where Fi = (F1
i , F2

i , F3
i ) are red (R), green (G), and blue (B) for each pixel of the image.

Now, if we have a fuzzy view of the colors and consider the value of each pixel as
a fuzzy number, the above method cannot be effective. In fact, the method presented by
Morrilas et al. [15] is suitable for when the value of each pixel is a crisp number, and if the
value of each pixel can be defined as a fuzzy number, this method cannot be used anymore.
In this case, the fuzzy metric for fuzzy sets should be used.

Ghasemi et al. in [14] presented a definition of the fuzzy metric space for fuzzy sets,
which are a generalization of the fuzzy metric space [3]. The definition is as follows:

Definition 2 ([14]). Let X be an arbitrary non-empty set, F (X ) be the collection of those fuzzy
sets on X , and ∗ be a continuous t-norm. The three-tuple (F (X ), M

′

, ∗) is said to be a fuzzy metric
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space for fuzzy sets if M
′

is a fuzzy set (fuzzy metric for fuzzy sets) on F (X ) ×F (X ) × (0,∞)
satisfying the following conditions for all u, v, z ∈ F (X ) and t, s > 0:

• M
′

(u, v, 0) > 0;
• M

′

(u, v, t) = 1 for all t > 0 if and only if u = v;
• M

′

(u, v, t) = M
′

(v, u, t);
• M

′

(u, v, t) ∗M
′

(v, z, s) ≤M
′

(u, z, t + s);
• M

′

(u, v, .) : (0,∞)→ [0, 1] is continuous.

Example 2. Suppose that (F (X ), M
′

, ∗) is a fuzzy metric space for fuzzy sets, and we define
a ∗ b = min{a, b} or a ∗ b = ab and ∀u, v ∈ F (X ):

M
′

(u, v, t) =
ktn

ktn + md(u, v)
, k, m ∈ R+, n ≥ 1.

It is easy to show that (F (X ), M
′

, ∗) is a fuzzy metric space for fuzzy sets. Let us say now
that M

′

(u, v, t) is the standard fuzzy metric induced by the d metric, whenever k = n = m = 1:

M
′

(u, v, t) =
t

t + d(u, v)
, (2)

4. Bootstrap Mean in Fuzzy Metric Space

Efron introduced the bootstrap resampling method in [23], which is used to estimate
the statistical distribution based on independent observations. The bootstrap is a method
that, regardless of many hypotheses, brings the sample conditions closer to the community
conditions by creating many samples and obtains a more reliable estimate by considering
all the cases of sample formation. The bootstrap will take a sample by substituting the
original sample so that each sample taken by this method is independent, but has an equal
distribution. In other words, the samples taken by the bootstrap method have an equal
population distribution; however, each sample shall be independent of other samples.

Athreya in [12] presented the strong law for the bootstrap, then Athreya et al. [13]
presented the law of large numbers for bootstrapped U-statistics. In addition, Csörgo [24]
introduced the weak law of large numbers (WLLN) and the strong law of large numbers
(SLLN) for bootstrap sample means under minimal moment conditions. In this section, we
present an algorithm to remove or reduce noise in color images using the bootstrap in the
fuzzy metric space.

Let {Xk| k ≥ 1} be an infinite sequence of independent and identically distributed fuzzy
random variables defined on a probability space (Ω,A, P) and X1 be integrable. For each
n = 1, 2, . . . , let Yn,1, Yn,2, . . . , Yn,m(n) be the ordinary Efron bootstrap sample of size m(n)
where {m(n)} is a sequence of positive integers. The variables Yn,1, Yn,2, . . . , Yn,m(n) result
from sampling m times the sequence {X1, X2, . . . , Xn}with replacement such that, at each

stage, any one element has probability
1
n

to be picked [24].

Suppose that X̄∗n is the bootstrap sample mean where

X̄∗n =
1

m(n)

m(n)∑
i=1

Yn,i.

Klement et al. [25] provided limit theorems for fuzzy random variables. In fact,
they showed

d1(
1
n

n∑
i=1

Xi, E(co X1))→ 0, a.e.
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where E(co X1) is the expectation of a convex fuzzy random variable. Now, if we apply this
theorem for the bootstrap mean, then we have

d1(
1

m(n)

m(n)∑
i=1

Yn,i, E(co X1))→ 0, a.e.

Ghasemi et al. [14] showed with an example the use of the SLLN for the bootstrap
mean in the fuzzy metric space. They believed that, sometimes, the expert’s opinion may
be important in determining the magnitude or smallness of the distance. In this case,

M
′

d1
(

1
m(n)

m(n)∑
i=1

Yn,i, E(co X1), t)→ 1, a.e.

Due to this feature, in the next section, we provide an algorithm for reducing image
noise using the bootstrap mean for pixels with a fuzzy value.

5. Filtering Images

Since the intensity of the darkness or lightness of the color can be fuzzy in nature,
in this section, we want to have a fuzzy look at the color of the pixels. To use this method,
which will be described below, we converted the crisp numbers for each pixel of the image
to a triangular fuzzy number. On the other hand, to calculate the distance and similarity
of these fuzzy pixels using a fuzzy metric, we need a metric that calculates the distance
between two fuzzy numbers (as introduced in Section 3). In the following, we explain the
required definitions and describe the approach.

The fuzzy metric filter developed by Morillas et al. [15] uses two operators to reduce
image noise, which is denoted by CFM. It measures the similarity of the pixels with the
help of an operator and uses the second operator to measure the spatial closeness of the
pixels in detecting the replacement value of the noisy pixel. The algorithm introduced in
this section has the same functionality as the previous method, except that our innovation
is to use the fuzzy metric for fuzzy sets and bootstrapping. Hence, the similarity operator
is the fuzzy metric for fuzzy sets, but the second operator, which measures the distance or
proximity of pixels, is unchanged and similar to the previous filter.

5.1. Fuzzy Similarity Value

In this section using a fuzzy metric, we measure the amount of fuzzy similarity between
the color vectors where the color in each pixel is expressed as a fuzzy number. This function
is defined as follows.

Suppose ũk = (ũ1
k , ũ2

k , ũ3
k) represents the color vector of the image pixels at position

k comprising its R, G, and B components, where ũi
k is a fuzzy number for each pixel and

represents red, green, or blue with a fuzzy number. Furthermore, c is a positive real
parameter used to control the spread of the function. This function, denoted by R, is
as follows:

R(ũi, ũ j) =
c

c + ‖ũi − ũ j‖
.

5.2. Fuzzy Spatial Closeness

For the case of fuzzy spatial closeness between pixels, we did exactly the same as
Morillas et al. [15]. Let us consider the pixels in an n × n filter window W represented
in Cartesian coordinates; thus, denote by i = i1, i2 ∈ Y2 the position of a pixel ũi in W



Appl. Sci. 2022, 12, 9445 6 of 14

where Y = {0, 1, 2, . . . , n− 1}. We consider the standard fuzzy metric S deduced from the
L∞ metric [15] given by

S(i, j, t) =
t

t + ‖i− j‖∞
,

where i, j ∈ Y2, t > 0, and ‖i− j‖∞ = max{|i1 − j1|, |i2 − j2|}. It can be easily seen that pixels
farther from the window center are less close overall to the rest of the pixels in the window.
It has been experimentally observed that the L∞ metric has a better result than the Euclidean
metric [15]. Thus, S(i, j, t) expresses the amount of fuzzy spatial closeness between color
pixels ũ1 and ũ2 with respect to the value of t. Here also, the parameter t is used to adjust
the importance given to the spatial closeness criterion. Now, considering that each pixel is
displayed as a three-component color vector RGB and location, so to achieve our purpose,
we used a combination fuzzy metric as follows:

BCFM(ũi, ũ j, t) = R(ũi, ũ j).S(i, j, t) =
c

c + ‖ũi − ũ j‖
.

t
t + ‖i− j‖∞

. (3)

If we identify each pixel ũi with ũi = (ũ1
i , ũ2

i , ũ3
i , i1, i2), then it can be proven that BCFM

is a fuzzy metric for the fuzzy set on X3
× Y2. This fuzzy metric expresses the degree of

similarity of color and the closeness of pixels.
For example, suppose we have:

‖ũi − ũ j‖ = d2(ũ, ṽ) = (

∫ 1

0
f (α)d2(Lαũ, Lαṽ)dα)

1
2 ,

and ũ, ṽ are two triangular fuzzy numbers as ũ = (a, sa)T, ṽ = (b, sb)T, then

d2(ũ, ṽ) = (

∫ 1

0
αd2(Lαũ, Lαṽ)dα)

1
2 = [(a− b)2 +

1
6
(sa − sb)

2]
1
2 . (4)

so BCFM will be equal to

BCFM(ũi, ũ j, t) =
c

c + [(a− b)2 + 1
6 (sa − sb)2]

1
2

.
t

t + ‖i− j‖∞
. (5)

In the following example, we assume that we have a fuzzy image matrix (which is
described in Section 6).

Example 3. Suppose the following matrix (Figure 1) is equal to the pixel values of a part of an
image on a gray scale. For each pixel, the amount of gray is expressed as a symmetric triangular
fuzzy number.

Figure 1. The 3× 3 neighborhood for 165.

We want to use BCFM to estimate the value of 165 in the above matrix. Now, using
Equation (5), we calculated the value of each pixel in the neighborhood of 165 and considered the
pixel that has the largest BCFM as the best alternative to the value of 165.

Note that in Figure 2 the maximum value in matrix BCFM is 4.0756, which corresponds to
pixel number (3, 2). Therefore, the value of this pixel, (162, 0.1), can be chosen as the best alternative
to the 3× 3 neighborhood matrix center.
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Figure 2. BCFM matrix.

To express the accuracy of this method, we assumed that a noise is added to the image so that
the neighborhood matrix is as follows (Figure 3):

Figure 3. Matrix neighborhood with noise.

The maximum value in matrix BCFM (Figure 4) is 3.5294, which corresponds to the pixel
number (2, 3). Therefore, the value of this pixel, (159.0.6), is the best estimate for the center of the
3× 3 neighborhood matrix.

Figure 4. BCFM matrix.

6. Fuzzy Amount of Pixel’s Color

One of the important points in using the algorithm presented in the previous section is
to assign or calculate a fuzzy number for the color of each pixel. Since the color value of
each pixel is expressed as a crisp number, different approaches to their fuzzy expression
can be suggested, which can provide a field of study for future research. For a better
explanation of the subject, it should be noted that just as the colors of a rainbow cannot
be easily separated and the colors are slowly converted, the difference between the color
of a pixel and the color of its neighborsis difficult. Fuzzy sets can easily do this, while in
existing algorithms, a non-negative integer is considered for the color of each pixel.

Our approach in this paper is to use the neighborhoods of a pixel to express the fuzzy
color of the desired pixel. In other words, we assumed that the color of each pixel is an
asymmetric triangular fuzzy number, the color of each pixel being determined by the
degree of membership 1 and its left or right width by the mean of k means generated by the
bootstrap resampling method where k is the number of sampling repetitions of the desired
pixel neighborhoods. We used the bootstrap resampling method to reduce the effect of the
outliers in the selected window. One of the main reasons for using the bootstrap is that this
sampling is based on the sample we have. Often, this sample is the only source we have
for research, and this adds to the importance of the bootstrap method. Since the bootstrap
reliability improves with the number of bootstrap repetitions, we can obtain a more reliable
estimate of the mean value of the central pixel neighborhoods by increasing the number
of samples.

The bootstrap method provides an estimate of a quantity of a population. This is
achieved by collecting small samples repeatedly, calculating the statistics, and averaging
the calculated statistics. This procedure can be summarized in the following terms:

• Select a number of bootstrap samples to perform;
• Select a sample size;
• For each bootstrap sample:

a Draw a sample with replacement with the chosen size;
b Calculate the statistic on the sample;

• Calculate the mean of the calculated sample statistics.
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For example, if the image is grayscale, we have only one color number for each pixel.
Consider a 3 × 3 window of its neighborhoods of each pixel (except in the pixels of the
image margin), and calculate the mean of the bootstrap means.

The obtained number is a triangular fuzzy number with a right or left width. For ex-
ample, suppose the pixel color is 50 and the mean of the bootstrap means is 60. Consider
the color of a pixel as a fuzzy number (50, 0, 10), with the left width of zero (because the
mean of the bootstrap means is larger than the desired pixel) and the right width of 10
(which is equal to the difference between the pixel value and the mean of the bootstrap
means). In the next example (Morillas et al. [15]), we give a more detailed description of
the algorithm.

Example 4. Suppose the following matrix is equal to the values of the pixels in the image on a
grayscale (Figure 5).

Figure 5. (a) image on a grayscale. (b) Matrix of image.

Now, if there is noise in the image, we can eliminate the noise using the fuzzy approach.
Suppose we replace the middle pixel of the image (165) with the value of 0, what is shown in Figure 6.

Figure 6. Pixel matrix with noise.

To convert the color matrix of pixels, it is necessary to select each pixel and its nearest neighbors
(a 2× 2, or 2× 3, or 3× 2 matrix for the side pixels and a 3× 3 matrix for the other pixels, similar to
Figure 7). Then, using bootstrap sampling, we obtain the mean of the neighborhoods. Now, if the
mean of the neighborhoods is smaller than the center pixel, the pixel becomes a triangular fuzzy
number the left width of which is equal to the difference of the pixel with the mean and the right
width of which is equal to 0, and if the mean is greater, it is the product of the fuzzy number with
the right width. After calculating the left or right width of each pixel, the results can be seen in
Figures 8 and 9.

Figure 7. Neighbors of each pixel.
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The left width is as follows.

Figure 8. Left width of the fuzzy matrix.

Figure 9. Right width of the fuzzy matrix.

Now, we eliminated the noise by performing the algorithm described in this section. We know that

‖ũi − ũ j‖ = d2(ũ, ṽ) = (

∫ 1

0
f (α)d2(Lαũ, Lαṽ)dα)

1
2 ,

and ũ, ṽ are two asymmetric triangular fuzzy numbers as follows:

ũ = (a, sla, sra)T,

ṽ = (b, slb, srb)T,

where sl is the left width and sr is the right width. Then,

d2(ũ, ṽ) = (

∫ 1

0
αd2(Lαũ, Lαṽ)dα)

1
2 = (

1
4
(slb − sla)2 +

1
2
[(a− b) + (slb − sla)]2

−
2
3
(slb − sla)[(a− b) + (slb − sla)]

+
1
4
(srb − sra)

2 +
1
2
[(a− b) − (srb − sra)]

2

+
2
3
(srb − sra)[(a− b) − (srb − sra)])

1
2 .

and BCFM will be equal to:

BCFM(ũi, ũ j, t) =
c

c + d2(ũ, ṽ)
.

t
t + ‖i− j‖∞

. (6)

Now, the estimate of the noisy pixel for 10 repetitions in bootstrap sampling is shown in Figure 10:

Figure 10. Image matrix after noise reduction.
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It can be seen that the value of this pixel (162) is the best estimate for the center of the matrix,
which was 165 as the actual value. That is, while using the median filter, the alternative value
will be equal to 157. Of course, it should be noted that to achieve a convergence in estimation, it is
necessary to increase the number of iterations.

In the following, as a real example, we removed the noise from the gray and color
images. First, for the gray image, we examined the lung CT scan image related to the
COVID-19 virus. Then, we used the images of Lenna and Baboon for the color images.
For each image, we compared the result of the filter presented in this paper with the median
filter and CFM using the mean absolute error (MAE) and peak signal-to-noise ratio (PSNR).

Example 5. A lung CT scan is a common imaging tool for diagnosing pneumonia. CT scans
provide high-quality images of lung tissue, and the radiologist can quickly determine the extent of
lung involvement with the disease. A CT scan of the lung reveals common radiological features
in patients with COVID-19 pneumonia. Noise in medical images can make it difficult to diagnose
COVID-19. In this section, we remove the noise from the lung CT scan image in a patient with
the COVID-19 virus by using the BCFM filter. To show the power of the BCFM filter for fuzzy
sets in noise removal or reduction, we first added noise (salt and pepper of 5 and 10 percent) to the
initial image.

After using the filter, the results are in Figure 11 and Table 1. As we can see in Table 1, the
BCFM filter has the lowest MAE and the highest PSNR among the three filters BCFM, CFM, and
Median. Furthermore, as the number of bootstrap samples increases, MAE and PSNR will converge
to the minimum and maximum values, respectively.

Figure 11. 1. Original COVID-19 image. 2. Noisy image after adding noise. 3. BCFM filtered image
for n = 10 bootstrap resampling.

To better compare the two methods CFM and BCFM, we can use the probability density graph
of images. Figure 12 shows the density of the original image in black, CFM in green, and BCFM in
red. Whichever density of green or red is closer to the density of black indicates the better performance
of the method.

Careful examination of the densities shows that, except in the range of 0 to about 30, the red
density is closer to black, and in general, it can be said that the red density performs better in most
places or is similar to the green density. To better illustrate this point, we see a slice of the graph in
Figure 13.

Table 1. Comparison of the performance of noise reduction filters for the COVID-19 image.

Noise Percentage Filter Evaluation Median Filter CFM Filter
BCFM Filter

n = 10 n = 20 n = 50

5 MAE 5.0347 1.009 0.7990 0.7948 0.7935
5 PSNR 22.5748 24.2157 24.7815 24.7672 24.7862
10 MAE 5.4470 1.7251 1.5781 1.5621 1.5610
10 PSNR 21.8976 22.7346 23.0609 23.0460 23.0580

Note: n is the number of bootstrap resampling.
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Figure 12. Density graph of the original, CFM, and BCFM images.

Figure 13. A slice density graph of the original, CFM, and BCFM images.

By observing the image details and examining the pixels, it is observed that BCFM has a softer
approach to image details than CFM. In other words, the modified image loses more detail by the
CFM method, and this can be a reason for the better performance of BCFM.

Example 6. In this example, we compared the performance of the BCFM filter in color images with
other methods. For the performance comparison, we used the MAE and PSNR for different densities
of noise for the test images.

Here, we added 5 and 10 percent noise (salt and pepper) to the images of Lenna and Baboon.
The results of the BCFM filter with the number of bootstrap samples being 10, 20, and 50 are reported
in Figures 14 and 15 and Tables 2 and 3.

Figure 14. 1. Original Lenna image. 2. Noisy image after adding noise. 3. BCFM filtered image for
n = 10 bootstrap resampling.
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Table 2. Comparison of the performance of the noise reduction filters for the Lenna image.

Noise Percentage Filter Evaluation Median Filter CFM Filter
BCFM Filter

n = 10 n = 20 n = 50

5 MAE 2.2008 0.3244 0.2871 0.2862 0.2851
5 PSNR 28.2372 32.2956 32.5741 32.6900 32.6968
10 MAE 2.3839 0.5766 0.5513 0.5500 0.5498
10 PSNR 27.2823 30.3462 30.5876 30.6003 30.6152

Note: n is the number of bootstrap resampling.

Also, for the image of Baboon, the results are as follows:

Figure 15. 1. Original Baboon image. 2. Noisy image after adding noise. 3. BCFM filtered image for
n = 10 bootstrap resampling.

Table 3. Comparison of the performance of the noise reduction filters for the Baboon image.

Noise Percentage Filter Evaluation Median Filter CFM Filter
BCFM Filter

n = 10 n = 20 n = 50

5 MAE 4.5121 1.1825 1.0452 1.0422 1.0406
5 PSNR 24.7003 27.9888 28.3880 28.3888 28.4157
10 MAE 4.6989 1.5336 1.3862 1.3841 1.3799
10 PSNR 24.3602 27.0842 27.4901 27.4877 27.4813

Note: n is the number of bootstrap resampling.

Figure 16 shows how MAE and PSNR converge to the minimum and maximum values as the
sample size increases, respectively.

Clearly, Tables 2 and 3 also confirm the results shown in Example 5 for color images.

Figure 16. (a) MAE of the Baboon image with 10 percent noise. (b) PSNR of Baboon image with
10 percent noise
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7. Conclusions

Colors are one of the places where the fuzzy concept can be greatly used. If we express
the color of each pixel as a fuzzy number in an image, we can separate the color of the
pixels more accurately. In this paper, we introduced an approach to determine the fuzzy
color value of each pixel and reduce the noise of an image by using convergence in the
mean bootstrap (according to the SLLN in the fuzzy metric space [14]).

In fact, the BCFM filter relies on the SLLN for the bootstrap mean [14], eliminates noise,
and as shown in the results, performs better than the CFM and Median filters.

Two reasons can be considered the main factors improving the results. The first reason
can be seen in the use of the fuzzy color pixel approach, which, according to the expressed
triangular fuzzy number for each pixel, finds a more accurate mean of the central pixel
neighborhoods of each window. The second reason for the performance improvement can
be expressed by using the bootstrap mean to calculate the mean of the neighbors, which, by
increasing the sample, reduces the effect of outliers (noisy pixels) on the mean. In 2007,
Morillas et al. [15] compared the CFM filter to other methods, and the results showed
that CFM performed better than the other filters. In this paper, we compared the BCFM
filter with CFM, which shows the better performance of the BCFM filter compared to the
other methods.
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