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Abstract: It has been shown that the photonic bandgap of one-dimensional (1D) dielectric periodic
thin films can vanish at the first Bragg condition for TM modes. Here, we address the case of 1D pho-
tonic crystal slabs formed by a chain of high-index dielectric particles with transversal confinement
and show that the Bragg bandgap can vanish for both TE- and TM-like modes. Calculations using
plane-wave expansion and finite-difference time-domain methods confirm that the PBG vanishes.
PBG closure is explained as being a result of the interplay between the electric and magnetic dipole
resonances of the isolated nanoparticle with Bragg resonance, as confirmed by calculating the electric
and magnetic dipoles of the isolated nanobricks. This can be considered as a manifestation of the
metamaterial behavior of the 1D system when using silicon as an underlying material. Our finding
may have important consequences for the fields of photonic crystals and all-dielectric metamaterials.
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1. Introduction

The periodic modulation (period a) of the index of refraction of a dielectric medium
gives rise to photonic band gaps (PBGs) where electromagnetic propagation along the
direction of periodicity is forbidden [1]. If we consider a periodic medium formed by
periodic layers of indices n1 and n2, a so-called 1D photonic crystal, the lowest-frequency
PBG opens due to the splitting of the so-called dielectric and air bands at the Bragg
wavelength, defined as λ = 2na, where n ≈ n1+n2

2 . Interestingly, the width of the PBG
is directly proportional to the index contrast, as ∆n ≈ n1−n2

n . This essentially means that
the PBG arises even for minute values of ∆n, as in the case of fiber Bragg gratings used as
wavelength filters in telecom networks [2], and can become very large when high-index
materials—such as silicon—are used. Indeed, the existence of full, three-dimensional (3D)
PBGs in 3D photonic crystals can be explained as the overlapping of wide 1D-PBGs in
every possible spatial direction, i.e., for every possible wave vector k [3,4].

The first PBG is remarkably important in integrated guided optics since it is usually
the only one placed below the light cone [5,6]; therefore, it can give rise to localized modes
with large Q factor when defect-like cavities are created. In the integrated optics arena, the
confinement of light waves below the light line is achieved due to total internal reflection
in the two dimensions perpendicular to the propagation direction, in which the system
is periodic.

Recently, it has been shown theoretically [7] that the first (or Bragg) PBG can vanish in
a 1D periodic thin film, though only for TM modes (with the electric field perpendicular
to the film) and not for TE modes (with the electric field parallel to the film). This result
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is explained from the different boundary conditions to be satisfied by the electric and
magnetic fields when propagating along the periodic film. However, this study was two-
dimensional (2D) and did not include lateral confinement of the waves. From a practical
perspective, it would be interesting to see whether the closure of the PBG is also maintained
when transversal confinement via total internal reflection (TIR) is introduced, as in 1D
photonic crystal slabs [8] built in high-index films.

Here, we study a 1D photonic crystal with full transversal confinement formed by a
set of silicon nanobricks and show that the Bragg PBG for TE-like modes can vanish under
proper conditions. We choose this system because it allows for an easy analysis of the
unit cell and can be easily fabricated using standard silicon micro- and nanofabrication
tools, as shown in recent experiments [9–11]. Notably, interchanging the thickness and the
width of the nanobricks should also lead to the closure of the PBG for TM-like modes, in
contrast to the case addressed in [7]. To explain the closure, and since we cannot describe
the system analytically, we adopt a strategy different to [7] and consider the electric and
magnetic Mie resonances of the isolated nanobricks. Our results suggest that the interplay
between both Mie resonances and the Bragg resonance leads to PBG closure, resulting in a
metamaterial-like behavior of the periodic structure.

2. Results

We consider a periodic structure made of high-index (n = 3.5) nanobricks with the
dimensions of wx, wy and wz surrounded by air (see Figure 1a). The structure is periodic
along the z axis (period a), whilst confinement of guided waves in the x and y direction is
ensured by TIR. Figure 1b shows the photonic bands—calculated using the plane wave
expansion method—of the TE-like (or x-even parity) modes for wx = 220 nm, wy = 450 nm,
and a = 455 nm for three different values of wz. Notice that, due to the addition of the
confinement along the y direction, we cannot classify the guided modes into TE or TM since
the three components of the electric and magnetic fields are now present [12]. Nonetheless,
the modes are usually termed either TE-like (the main component of transverse field is Ey)
or TM-like (the main component of transverse field is Ex) in integrated optics due to their
resemblance to the 2D picture. When wz = 200 nm (blue curves), a wide TE PBG opens
between the dielectric and the air bands, as expected for high-contrast periodic systems [1].
The same happens for wz = 320 nm (red curves), though the PBG is redshifted because of
the larger amount of dielectric material in the unit cell.

When, analyzing the intermediate case (wz = 260 nm, black curves) we observe that the
PBG vanishes. This means that the PBG width is neither directly nor inversely proportional
to the parameter wz. To know more about this relation, we calculate the frequencies
of the dielectric and air bands at the boundary of the first Brillouin zone. Notice that
these frequencies establish the boundaries of the Bragg bandgap. The results, depicted in
Figure 1c, clearly show a crossing of the bands—or band flip [7]—delimiting the Bragg PBG
at wz ≈ 258 nm. This means that, counterintuitively, the PBG vanishes even though we have
a high-index contrast system. In general, an increase in wz results not only in a red-shift of
the bands but also in a modification of the width of the Bragg PBG that eventually closes.
To establish the effect of the period on PBG closure, we performed calculations for other
values of a. We observed that the PBG was effectively closed at wz = 248 nm for a = 430 nm
and at wz = 267 nm for a = 480 nm, meaning that the effect was also observed for other
periods of the lattice.

In comparison to the results in [7], we may argue that we now have TIR confinement in
the lateral direction, which resembles the TE case found there. Indeed, by interchanging wx
and wy in our periodic system (or rotating the structure 90◦ around the z axis), we should
find that the PBG closes for TM-like (or x-odd parity) modes, meaning that the first PBG
can be closed irrespective of the type of mode.
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Figure 1. (a) Sketch of the 1D periodic systems under study: a chain of high-index dielectric 
nanobricks. (b) Photonic bands for x-even parity (TE-like) modes for different values of wz. (c) 
Frequencies of the dielectric and air bands as a function of wz. Vertical arrows show the PBG for 
each value of wz (for wz = 260 nm a higher-order PBG is shown). The numerical simulations were 
performed for a 1D periodic chain of nanobricks with index n = 3.5 and dimensions wx = 220 nm, wy 
= 450 nm, a = 455 nm. The normalized frequency f’ is given in units of ωa/2πc, ω being the angular 
frequency and c the speed of light in vacuum. The normalized wave vector k’ is given in units of 
2πk/a. 
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We also tested the vanishing behaviour of the PBG using fully 3D finite-difference 
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the center of the waveguide) after transmission along a chain of 10 nanobricks using 
rectangular waveguides of width wx and thickness wy for different values of wz is shown 
in Figure 2. Normalization is performed with respect to the response of a single 
waveguide. Notice that intensities over 1 (0 dB) are because the electric field is monitored 
locally, so resonant effects (such as Fabry–Perot fringes close to the PBG regions) can lead 
to large local intensities, though the normalized transmitted power is always lower than 
1. In agreement with Figure 1b, whilst broad dips appear for wz = 200 nm and wz = 320 nm 
at the expected frequency bands, there is not any observable dip for wz = 260 nm (the fall 
in transmission above f’ = 0.37 corresponds to higher-order PBGs, as shown in Figure 1b). 

Figure 1. (a) Sketch of the 1D periodic systems under study: a chain of high-index dielectric
nanobricks. (b) Photonic bands for x-even parity (TE-like) modes for different values of wz. (c) Fre-
quencies of the dielectric and air bands as a function of wz. Vertical arrows show the PBG for
each value of wz (for wz = 260 nm a higher-order PBG is shown). The numerical simulations were
performed for a 1D periodic chain of nanobricks with index n = 3.5 and dimensions wx = 220 nm,
wy = 450 nm, a = 455 nm. The normalized frequency f’ is given in units of ωa/2πc, ω being the
angular frequency and c the speed of light in vacuum. The normalized wave vector k’ is given in
units of 2πk/a.

We also tested the vanishing behaviour of the PBG using fully 3D finite-difference
time-domain (FDTD) simulations. The normalized intensity (square of the electric field
at the center of the waveguide) after transmission along a chain of 10 nanobricks using
rectangular waveguides of width wx and thickness wy for different values of wz is shown in
Figure 2. Normalization is performed with respect to the response of a single waveguide.
Notice that intensities over 1 (0 dB) are because the electric field is monitored locally, so
resonant effects (such as Fabry–Perot fringes close to the PBG regions) can lead to large
local intensities, though the normalized transmitted power is always lower than 1. In
agreement with Figure 1b, whilst broad dips appear for wz = 200 nm and wz = 320 nm at
the expected frequency bands, there is not any observable dip for wz = 260 nm (the fall in
transmission above f’ = 0.37 corresponds to higher-order PBGs, as shown in Figure 1b).

To obtain further insights about the closure of the Bragg PBG, we obtained the main
components of the transverse electric field at k’ = 0.5 for the dielectric and air bands at
different values of wz. The results are illustrated in Figure 3. For wz = 200 nm, the dielectric
band is characterized by a z-even parity transverse electric field (Ey) closely resembling an
electric dipole pointing along y. The air band shows an opposite behavior in terms of parity,
and the electric field patterns corresponds to those of a magnetic dipole oriented along x
(the magnetic field pattern is not shown here for the sake of simplicity). For wz = 320 nm,
the situation completely reverses; now, the dielectric (air) band has a magnetic (electric)
dipole character. Therefore, it is the transition from electric to magnetic Mie resonances of
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the isolated nanobricks that explains the closure of the Bragg PBG. Indeed, the bandgap
is closed because, for certain dimensions of the system, the Mie electric and magnetic
resonances of the isolated nanobrick become degenerate at a frequency within a Bragg PBG.
The band flip can also be observed in the Supplementary Visualizations 1 to 12, which show
the evolution of the Ey and Hx fields when propagating along a chain of ten nanobricks
at frequencies corresponding to the dielectric band, the bandgap and the air band and for
wz = 200 and 320 nm, respectively.
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frequencies when wz increases and disappears at wz ≈ 260 nm.
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To support this explanation, we calculated the frequencies of the electric and magnetic
dipole responses of isolated nanobricks as a function of wz, following the approach in [13].
The results, depicted in Figure 4, show that, for small values of wz, the frequency of the
electric dipole is smaller than that of the magnetic dipole, and this feature is inherited by
the dielectric and air bands when the periodic system is formed. When wz increases, the
frequency of the magnetic dipole decreases faster than that of the electric dipole, resulting in
the crossing of the Mie resonances, which are related to the band flipping and PBG closure
in the periodic system. Indeed, even though we have only studied the effects of the wz
variation for simplicity, we can state that, for a given target frequency, there will be a triplet
of (wx, wy, wz) values for which the electric and magnetic dipole resonances are degenerate.
Therefore, it will be always possible to design a 1D periodic system with a closed bandgap
at a certain wavelength. Moreover, if the degeneracy is achieved for a nanobrick with
wx = wy, the Bragg PBG will be closed for both TE and TM modes simultaneously as a
result of the symmetry of the system.
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Figure 4. Calculation of the electric (orange) and magnetic (green) dipole frequencies of an isolated
nanobrick as a function of wz obtained from a multipole decomposition. The red and blue curves
show the frequencies of the maximum Ey and Hx at the nanobrick center when the nanobrick is
embedded in a waveguide gap (illumination and collection using the TE-like mode of the waveguide
ports). Inset: scheme of the illumination of the silicon nanobrick for each result.

Notice that the crossing of the electric and magnetic dipole of the isolated nanobricks
takes place for a wz value smaller than that obtained for the PBG closure. However, this can
be explained because the isolated nanobrick is surrounded by a vacuum; when forming the
chain part of the field, the electromagentic field penetrates the neighbouring nanobricks,
resulting in a perturbation of the modes. To account for the additional presence of dielectric
material, we calculated the frequencies of the electric and magnetic dipoles corresponding
to the maximum of the electric field and the magnetic field at the center of the nanobrick,
respectively; this occurred when a single nanobrick was embedded in a waveguide gap of
a length equal to a (see Figure 4, inset). The results, also shown in Figure 4, indicate that,
now, the flip frequency is red-shifted and the crossing point shifts to larger values of wz.
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3. Discussion and Conclusions

Our results highlight the importance of the properties of the isolated unit cell when
forming 1D lattices of high-index dielectric materials [14]. Noticeably, when the Mie
resonances of the unit cell dominate over the periodic response, the structure could, in
principle, be considered as an all-dielectric metamaterial [15]. However, looking at the
classification proposed in [16], the PBG closure takes place just when the Bragg wavelength
equals the electric and magnetic dipole wavelengths, meaning that we are just at the
frontier separating the photonic crystal and metamaterial phases. Indeed, in the 2D periodic
systems arranged in a square lattice studied in [16], which require very large indices to
reach the metamaterial phase, the use of a hexagonal lattice [17] would allow one to
obtain a “metamaterial” behavior in 2D silicon photonic crystals. Our results show that
such metamaterial behavior naturally arises in a realistic 1D photonic crystal made of
silicon nanobricks at bands placed below the light cone, which would ensure lossless
performance. This behavior is manifested by the fact that the overlapping of the electric
and magnetic dipolar Mie resonances closes the Bragg PBG, which is the fundamental
feature of a photonic crystal.

In summary, we have shown that the interplay between the electric and magnetic
dipole resonances of a single nanobrick can lead to the closure of the Bragg PBG for guided
modes when forming a 1D photonic crystal. This result is somewhat counterintuitive
since, in principle, any 1D periodic lattice should induce a forbidden band for waves
propagating in the direction of the periodicity. Even though we have analyzed a very
simple structure, the performance should be the same if the unit cell supports electric and
magnetic resonances so that a band flip might arise under certain conditions. Noticeably,
the PBG only vanishes for a perfect photonic crystal, so any tiny perturbation can open
the PBG. This could be used to build active or tunable devices where the properties of
a single nanobrick can be actively modified using electrical, optical or even mechanical
means. Our finding could lead to advances in the design of subwavelength integrated
photonic devices [18] for application in signal processing, communication systems or bio-
and chemo-sensing. Notably, the resulting devices could be easily manufactured using
mainstream silicon photonic technology.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/photonics9100691/s1. Visualizations S1 to S12 are animated movies
of the propagation of the electric and magnetic field along a chain of 10 nanobricks for different
frequencies and values of wz.
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