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Abstract

This paper analyzes the permutation flow-shop problem with delivery dates and cumulative payoffs (whenever
these dates are met) under uncertainty conditions. In particular, the paper considers the realistic situation in
which processing times are stochastic. The main goal is to find the permutation of jobs that maximizes the
expected payoff. In order to achieve this goal, the paper first proposes a biased-randomized heuristic for the
deterministic version of the problem. Then, this heuristic is extended into a metaheuristic by encapsulating it
into a variable neighborhood descent framework. Finally, the metaheuristic is extended into a simheuristic by
incorporating Monte Carlo simulations. According to the computational experiments, the level of uncertainty
has a direct impact on the solutions provided by the simheuristic. Moreover, a risk analysis is performed using
two well-known metrics: the value-at-risk and conditional value-at-risk.

Keywords: permutation flow-shop problem; stochastic processing times; deliver dates; cumulative payoffs; biased-
randomized algorithms; simheuristics

1. Introduction

In the permutation flow-shop scheduling problem with delivery dates and cumulative payoft (PF-
SPDP), a finite number of jobs j are processed, following the same order from a release date r;, by
a finite number of machines m. Each time a job finishes before a delivery date, a reward is obtained.
Hence, the main goal is to find the permutation of jobs that maximizes the total reward related
to the job completion times. Typically, job rewards are assigned following a decreasing stepwise
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function, that is, delivery dates define a series of time intervals, and the sooner a job is completed
the greater the associated reward. This problem was first studied by Seddik et al. (2013) who mod-
eled a book digitization service in a one-machine environment. Then, Pessoa and Andrade (2018)
extended the aforementioned problem into a flow-shop context, and proposed a mathematical for-
mulation and a set of heuristic and metaheuristic methods. As described in the previous references,
the problem is motivated by a book-digitization project in a library. The book digitization is a job
and this has to be processed in two consecutive stages (machines): digitization and segmentation.
Each book requires a given amount of time to be processed in each stage. Due to the operational
constraints in the library, not all books are available for digitization at the same time. Hence, a
release date is set for each one. This problem is modeled by taking into account two entities: the li-
brary, which establishes the delivery dates, and the digitization firm. Each delivery date is a reference
point for computing the payment: the sooner each book is processed the higher the corresponding
reward. We consider the problem from the point of view of the digitization firm, which wants to
maximize its profits.

Our paper takes one step forward and proposes a biased-randomized (BR) algorithm based
on the FF heuristic developed by Fernandez-Viagas and Framinan (2015). Our BR-FF algorithm
shows a remarkable performance when solving the benchmarks proposed in Pessoa and Andrade
(2018). This is coherent with previous results, in which BR algorithms have shown to be competi-
tive approaches for solving different flow-shop problems, including those with nonsmooth objective
functions (Ferrer et al., 2016). Since uncertainty is often present in many service and producing sys-
tems, the paper also considers a stochastic version of the PFSPDP, named PFSPDP with stochastic
times, in which processing times are modeled as random variables. In order to solve this stochas-
tic version, the previous BR-FF algorithm is first integrated into a variable neighborhood descent
(VND) metaheuristic framework. Then, the resulting BR-FF-VND metaheuristic is extended into
a “simheuristic” algorithm by combining the VND metaheuristic with Monte Carlo simulation.
Another significant contribution of this paper relates to the use of two risk metrics: the value-at-
risk (VaR) and conditional value-at-risk (CVaR). They are used to complement the simheuristics
approach, offering the decision maker an analysis about the worst expected cases concerning the re-
wards.

The remainder of the paper is distributed as follows. Section 2 contains a more detailed de-
scription of the problem under consideration. A literature review on related work is provided in
Section 3. Section 4 describes a BR algorithm for solving the deterministic version of the problem,
as well as its integration into a metaheuristic framework. Section 5 extends the previous meta-
heuristic into a simheuristic to cope with the stochastic version of the problem. The settings of the
computational experiments are provided in Section 6, while the actual experiments are discussed in
Sections 7 (deterministic variant) and 8 (stochastic variant). Finally, Section 9 highlights the main
contributions of this work and discusses some open research lines.

2. Problem definition

The deterministic version of the PFSPDP is described next. A finite set of n jobs, 7 = {1, 2,...,n}
is processed in a subsequent way by m machines M = {1, 2, ..., m}. For each job j € J and ma-
chine / € M, the processing time of job j in machine / is a known constant p;; > 0 (note that no
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Fig. 1. Example of a flow-shop scheduling with delivery dates.

uncertainty is considered in this deterministic version of the problem). Furthermore, let S (sched-
ule) be a finite set containing the times s, at which each job j starts being processed at each machine
[, that 18, S = {811, 812, -« +» 1> $21> 5225 « <« s S + + 5 Suls Su2s - - - » Sum ). Given a schedule S, the com-
pletion time of a job j in a machine / is given by c;; = s;; + pj;. For simplicity, let ¢; denote the
completion time of job j in the last machine m € M, thatis, ¢; = ¢j,.

The problem addressed in this work also considers release dates, r; > 0, in which job j be-
comes available to start being processed by machine 1. Additionally, a set of k delivery dates
D ={d, d>, ..., d} 1s given. Each job j has an associated reward, F(c;), which depends on the
time it is completed:

0if dk<Cj

1if d_y < Cj < d
Flep=1. (1)

kif 0<c¢; <d.

Hence, the goal is to obtain a permutation of jobs that maximizes the aggregated reward obtained,
that is, the objective function is max Z’}:l F(c;). To illustrate how the reward function works, con-
sider the following simple example (Fig. 1):

* The number of machines m = 2, the number of jobs n = 4.

e Releasedates:ri =14, 1, =2, r3=9,and ry = 7.

* Processing times: py;; = (5, 1), py = (3,2), p31 = (3, 6), and py = (6, 3).
* Delivery dates: d; = 10, d» = 20.

For this instance, which contains two delivery dates, the reward stepwise function has the follow-
ing configuration:

01if d2<Cj
F(CH)=31if di<c;<d 2)
2if 0 <c¢; <d,.
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As illustrated in Fig. 1, since job 2 has a completion time ¢, = 7 (which is lower than delivery
date d; = 10), there is an associated reward of two units. In addition, job 4 has a completion time
¢4 = 16 (which is lower than delivery date d» = 20), thus generating a reward of one unit. Also,
since jobs 3 and 1 have completion times beyond the delivery date d, = 20 (¢; = 22 and ¢; = 23),
no associated rewards are obtained. All in all, the accumulated reward in this case is three units.

3. Related work

A simple version of the problem described in Section 2 was initially addressed by Seddik et al.
(2013). These authors consider a single machine, being the problem known as the 1|7/ Z’}:l F(c)).
Later, Pessoa and Andrade (2018) extended the model to consider a flow-shop environment with m
machines, that is, F|r;, perm| Z'}:] F(c;). This section reviews some related work on the permuta-
tion flow-shop scheduling problem (PFSP), both in its deterministic and stochastic versions.

3.1. The deterministic PFSP with different time-related goals

Since the first formulation proposed by Johnson (1954), which aimed at minimizing the makespan
in two machines, other formulations were developed on the flow-shop scheduling problem consid-
ering heuristic and meta-heuristic methods. For complete reviews on deterministic flow-shop prob-
lems employing the makespan minimization criterion, readers are referred to Fernandez-Viagas
et al. (2017). Despite the makespan minimization has been the most popular goal in flow-shop
problems, other objective functions have been considered as well. Thus, Liu and Reeves (2001) pre-
sented the LR constructive heuristic to minimize the total flow time in a PFSP. Similarly, Framinan
and Leisten (2003) proposed another constructive heuristic for the same purpose. Also, Framinan
et al. (2005) compared several heuristics and proposed two new heuristics, which have proved to be
efficient to minimize the total flow time. A biobjective problem considering the minimization of the
makespan and the total flow time was tackled by Pasupathy et al. (2006). These authors proposed
a genetic algorithm (GA) to construct a Pareto frontier. Framinan and Leisten (2008) proposed
a new greedy algorithm based on the variable neighborhood search framework to minimize the
total tardiness. Nagano and Moccellin (2008) aimed at minimizing the flow time by proposing a
new heuristic and some local search procedures. Also aiming at minimizing the total flow time, an
iterated local search (ILS) was proposed by Dong et al. (2009). Laha and Sarin (2009) extended
and enhanced the heuristic proposed by Framinan and Leisten (2003) by modifying the selection
process of the jobs. Tasgetiren et al. (2011) expanded the discrete differential evolution algorithm
proposed by Pan et al. (2008) into a hybrid version, and introduced a discrete artificial bee colony al-
gorithm aiming at minimizing the total flow time. Della Croce et al. (2011) designed a metaheuristic
algorithm for minimizing the total completion time in a two-machine flow-shop problem. Pan and
Ruiz (2013) made a comprehensive evaluation of 22 heuristics, using as objective function the min-
imization of the total flow time. Fernandez-Viagas and Framinan (2015) proposed a new heuristic,
named FF, which was based on the LR heuristic by Liu and Reeves (2001). Lee and Chung (2013)
addressed an m-machine flow-shop problem with learning effects. The goal was to minimize the
total tardiness by proposing a branch-and-bound method and two heuristics. Molina-Sanchez and
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Gonzalez-Neira (2016) introduced a greedy randomized adaptive search procedure (GRASP) to
tackle the minimization of the total weighted tardiness.

Also to minimize the flow time, Abedinnia et al. (2016) introduced a constructive heuristic based
on the one proposed by Laha and Sarin (2009). Yu and Seif (2016) proposed a lower bound based
on a GA to minimize the total tardiness and maintenance cost. Rossi et al. (2017) sought to mini-
mize the total flow time by employing a new constructive heuristic based on the FF-NEH heuristic
introduced by Fernandez-Viagas and Framinan (2015). With the aim of minimizing the total com-
pletion time, Fernandez-Viagas and Framinan (2017) proposed a beam search based constructive
heuristic. The minimization of total tardiness was tackled by Fernandez-Viagas et al. (2018). More
recently, Rossi and Nagano (2019) tackled a mixed no-idle PFSP with sequence-dependent setup
times. With the goal of minimizing the total flow time, they proposed a new set of heuristics based
on the beam-search algorithm. Likewise, several matheurisitc algorithms were proposed and com-
pared to a GA by Ta et al. (2018), with the purpose of minimizing the total tardiness. Finally,
Andrade et al. (2019) proposed a biased random-key GA (BRKGA), with a feature called shaking,
to minimize the total completion time.

3.2. The stochastic PFSP

In the real world, unforeseen events are often present in daily-life situations. Service and production
systems are not excluded from those situations. On the contrary, they are subject to uncertainties,
for example, machine failures, imprecise processing times, employee absences, material unavail-
ability, variations in demand, rush orders and order cancellations, changes in due dates, etc. The
literature on flow-shop problems with stochastic components is not as extensive as in the case of
the deterministic version. While in the deterministic version of the PFSP one assumes that the pro-
cessing time of a job j in a machine /, p;; > 0, is known in advance and cannot change over time,
in the stochastic version it is usual to model this processing time as a random variable, P;;, fol-
lowing a nonnegative probability distribution. By modeling processing times this way, it is possible
to incorporate the uncertainty that is present in real-life scenarios. However, the inclusion of ran-
dom variables in the optimization problem also increases its difficulty. Banerjee (1965) and Makino
(1965) were among the pioneers in the study of the PFSP with stochastic processing times. The
former aims at minimizing the probability of lateness in a single machine problem, with random
processing times following a known probability distribution. In order to do it, the author proposes
a decision rule for the single machine problem. The latter author aims at minimizing the expected
makespan considering that processing times follow exponential or k-Erlang probability distribu-
tions. He also proposes a sequence rule to find a solution in a scenario with two jobs and three ma-
chines. Dodin (1996) sought to minimize the expected makespan by representing processing times
as random variables following different probability distributions (uniform, normal, and exponen-
tial). Kamburowski (1999) drew up an approach aimed at minimizing the makespan in a scenario
with two machines and independent processing times. Later, Kamburowski (2000) expanded the
previous work to a scenario involving three machines. Gourgand et al. (2000) completed a review
about the stochastic flow-shop scheduling problem. Wang et al. (2005) also sought to minimize the
makespan while modeling processing times using uniform probability distributions and employing
a GA. With the same goal, Kalczynski and Kamburowski (2006) modeled processing times using
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Weibull probability distributions. Baker and Trietsch (2011) developed three heuristic procedures
for the two-machine permutation flow-shop problem with stochastic processing times. Choi and
Wang (2012) used a gamma probability distribution to model-processing times. Liefooghe et al.
(2012) proposed an indicator-based evolutionary algorithm to deal with a biobjective PFSP with
stochastic processing times. Baker and Altheimer (2012) evaluated and compared several heuris-
tic procedures for the stochastic version of the problem. Gonzalez-Neira et al. (2017) presented
an overview of PFSP variants with stochastic components. Gholami-Zanjani et al. (2017) intro-
duced robust optimization and fuzzy optimization to model the uncertainty of the input data, and
minimized weighted mean completion time in a PFSP considering setup and nondeterministic pro-
cessing times. Cui et al. (2018) analyzed a biobjective problem including the quality robustness
and solution robustness in environments subject to failure uncertainty, which was modeled using
Weibull probability distributions. Simheuristics have been recently used to cope with stochastic ver-
sions of flow-shop problems (Hatami et al., 2018). Finally, Framinan et al. (2019) explored the use
of real-time information to job rescheduling in a PFSP with stochastic processing times.

4. A biased-randomized algorithm (BR-FF) for the PFSPDP

In this section, a BR-FF is proposed for the deterministic version of the PFSP with delivery dates
and cumulative payoff. The algorithm is based on the constructive heuristic FF by Fernandez-
Viagas and Framinan (2015). This heuristic was also examined by Pessoa and Andrade (2018) who
showed their excellent performance when compared to other constructive procedures for the PF-
SPDP.

4.1. The FF heuristic

The FF heuristic can be considered as an improved version of the LR heuristic proposed by Liu
and Reeves (2001). A solution is built by allocating, at each iteration, an unscheduled job in the last
position of a partial solution, according to the index function &’ given in Equation (3):

, n—k—-2) , ,
F§jk = Tl Jk + AT/k’ (3)

where AT ].’k and IT ].’k are defined as follows:

/ "\ mxmax{ci_1); — ¢k, 0}
1T, = ¥
Jk Zi—b+k(m—z'+b)/(n—2) ®

i=2
A’]—vj/k - ij. (5)

At each iteration, the index function &’ is computed considering the weighted idle time, 7T /./k, be-
tween the last job in the partial solution—being represented as k—and each remaining job outside
the partial solution—being represented as j. Moreover, the index &’ approximate the makespan of
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the solution, ATj’k. The parameters a and b weight the idle time and makespan in the &’ function.
After &’ is computed, the jobs are sorted according to the ascending order of its &’ value. Then,
the job with the smallest &’ value is chosen and scheduled in the partial solution. In case of ties,
the job with the smallest value of 1 Tj’k is selected. Pessoa and Andrade (2018) proposed a slight
modification of the idle time (/ Tj’,\,) for the first machine, in order to consider the job release dates,
rj. In the new expression, max{c;_1); — ¢}, 0} was replaced by max{r; — ¢, 0}. Regarding the
PFSPDP, the authors show the superior performance of the FF heuristic when compared to other
traditional heuristics such as the release dates heuristic (Potts, 1985), the earliest completion time
heuristic (Ladhari and Rakrouki, 2009), the classical NEH heuristic (Nawaz et al., 1983), or the
iterated earliest completion time heurisic (Pessoa and Andrade, 2018).

4.2. Extending the FF heuristic to a BR-FF

We propose a BR extension of the FF heuristic, called BR-FF. Biased-randomization techniques
can be used to incorporate an oriented (non-uniform) random behavior into a base heuristic. This
random behavior, typically achieved with the use of a skewed probability distribution, allows for
encapsulating the modified heuristic into a multistart framework, thus exploring alternative paths
during the solution-building process. Still, due to the oriented nature of the randomization process,
each of these paths follows the logic behind the heuristic, that is, the most “promising” movements
receive a higher probability of being selected during the constructive process. As a result, each
time the BR heuristic is executed, chances are that the emerging solution outperforms the one
provided by the original heuristic. There is an additional benefit of applying biased-randomization
techniques to a constructive heuristic: the resulting procedure is able to quickly generate different
alternative solutions of reasonably good quality.

In our case, the biased-randomization effect has been applied to the job selection process. Thus,
while in the original FF heuristic the job with the smallest £&" value is always selected, in our BR-FF
a diminishing probability of being selected is assigned to each possible job in the list of jobs sorted
from lower to higher &’ value. This is achieved by employing a geometric probability distribution
with a single parameter 8 (0 < 8 < 1). Hence, the random behavior of the selection process de-
pends on the value of 8. As this value converges to 1, the selection behavior becomes more greedy
(i.e., as in the original heuristic). On the contrary, as this value converges to 0, the selection behavior
follows a uniform-random one. Intermediate values of 8 allow for considering randomization poli-
cies between both extremes, which makes the construction process more effective (Quintero-Araujo
etal., 2017).

Algorithm 1 illustrates this procedure. It starts by gathering the information of the jobs in the
instance. The main loop add one job at a time to the emerging solution S, until all jobs have been
incorporated to the permutation. Inside this loop, the index & ;.k is calculated for each job. Then, the
jobs are sorted in ascending order by this index value. The BR selection procedure is employed to
select the next job to be added to the solution. Finally, the job selected is removed from the list of
unscheduled jobs.

As explained in Section 1, in addition to the use of BR techniques, we have also incorporated
a VND metaheuristic framework (Hansen and Mladenovic, 2003). Hence, the complete algorithm
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Algorithm 1. BR-FF algorithm

S—10
Spest +— S
L—{1,2,...,n}
foreach j € L do
| Compute £}k
end
Sort the jobs in L using ascending order by E} i
while elapsed < maxTime do
Leopy — L
while L, # () do
Choose, using biased randomization, a job index j* € Lcgpy
S — Sujy*
Lcopy = Lcopy \]*
end
if S improves Spes; then
| Sbest — S
end

o 0 NN BT R W N -

I I e e e =
NN R W N =S

end
return Speq;

-
e o

is denoted as BR-FF-VND. The VND framework adds some local search operators to the BR-
FF algorithm. In particular, two classical operators have been added: insertion and interchange.
The interchange operator swaps two jobs from the original positions, while the insertion operator
attempts to move a job to a new position that improves the solution.

5. Extending the BR-FF-VIND algorithm to a simheuristic

Since one of the main goals of this paper is to solve the stochastic version of the PFSPDP, this
section explains how Monte Carlo simulation has been integrated into the BR-FF-VND algo-
rithm in order to build a simheuristic. Considered as a special case of simulation optimization,
the simheuristic approach is not only able to deal with stochastic versions of most combinatorial
optimization problems but it also provides risk and reliability analyses on the stochastic solutions
it generates. Thus, simheuristic approaches have been gaining notoriety during the last years, being
presented in different fields such as waste collection management (Gruler et al., 2017), arc rout-
ing problems (Gonzalez-Martin et al., 2018), inventory routing problems (Gruler et al., 2020), and
facility—location problems (Pagés-Bernaus et al., 2019). As a novelty with respect to these previous
references on simheuristic algorithms, in this paper we also perform risk analyses based on two
well-known metrics: the VaR,and tCVaR,. These metrics contribute to provide more complete
information to decision makers.
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In this stochastic variant of the PFSPDP, the processing times of job j in machine / are modeled
as a random variable, P;;, which follows a given probability distribution. Despite our methodology
can use any probability distribution that fits the historical data, in our computational experiments
we have assumed that P;; follows a log-normal probability distribution with location parameter
wj; and scale parameter o;—actually, due to their flexibility, the log-normal and Weibull proba-
bility distributions are frequently employed in reliability analysis to model positive failure times.
In order to extend the deterministic instances in a natural way, we have assumed that E[P;;] = pj;.
Likewise, in order to analyze different uncertainty levels, we have assumed that Var[P;] =% - pj,
where /1 € {0.1, 0.5, 1.0, 2.0} is a design parameter. Equations (6) and (7) display, for the log-normal
probability distribution, the relationship between the location and scale parameters as well as its
expected and variance values:

1 Var[Pj/]
l/«jl:hlE[Pj/]_§ l—l—m (6)
J
o= {1+ )| o

In the deterministic PESPDP, the reward associated with a given permutation of jobs is generated
by the stepwise function provided in Equation (1). However, in the stochastic PEFSPDP the reward
associated with a given permutation is a random variable that will take a different value each time
the solution is tested in a real life or simulated environment. Hence, an estimate of the expected
demand associated with a given permutation will be given by the average reward obtained after
executing a sufficient number of simulation runs. Algorithm 2 depicts our Sim BR-FF-VND pro-
cedure.

The main ideas behind this algorithm are as follows: first, an initial solution for the deterministic
PFSPDP is generated by employing the BR-FF algorithm. This is considered as the best solution so
far. A fast simulation is performed to measure, in the stochastic environment, the reward provided
by the best solution so far. Then, the resulting solution is inserted in the pool of best solutions.
While the stopping criterion is not satisfied, a while loop is performed. This loop starts with the
generation of a new solution in the deterministic environment. This solution is then enhanced using
the VND component (local search operators). The A value checks the quality of this new solution
in the deterministic environment. If this new solution offers a higher reward than the current base
solution, the new solution is considered as a good candidate for solving the deterministic version
of the problem, as well as a promising solution for the stochastic version. Note that a correlation
between the best deterministic and the best stochastic solutions is assumed in our approach. In
order to estimate the quality of the new solution in the stochastic environment, a fast simulation
is run. If this new solution offers a higher expected reward than the current base solution (i.e.,
A’ > 0), the new solution is considered as a good candidate for solving the stochastic version and
the base solution is updated. Moreover, if this new solution shows a higher expected reward than
the current best solution, the latter is updated by the former, which is also inserted in the pool
of best solutions. Finally, the best solutions found are analyzed in more detail using an intensive
simulation (i.e., employing a larger number of simulation runs). This allows an increase in the
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Algorithm 2. Sim BR-FF-VND

1 initSol + BR-FF
2 bestSol « initSol
3 fastSimulation(bestSol)
4 insert(poolBestSol, bestSol)
5 baseSol « bestSol
6 while elapsed < maxTime do
7 initNewSol < BR-FF
8 newSol « initNewSol
9 while initNewSol.getReward > newSol.get Reward do
10 newSol «— localSearch.Interchange(initNewSol)
1 newSol < localSearch.Insertion(newSol)
12 end
13 A «— newSol.getReward - baseSol.getReward
14 if A > 0 then
15 fastSimulation(newSol)
16 A’ «— newSol.getStochReward — baseSol.getStochReward
17 if A’ > 0 then
18 baseSol «— newSol
19 if newSol.getStochReward > bestSol.getStochReward then
20 bestSol «— newSol
21 insert(poolBestSol, bestSol)
22 end
23 end
24 end
25 end
26 for solution € poolBestSol do
27 longSimulation(solution)
28 if solution.getStochReward > bestSol.getStochReward then
29 | bestSol < solution
30 end
31 end
32 return bestSol

accuracy of the estimated expected rewards associated with each solution and generate a final sort
of the best solutions based on this criterion.

In addition to providing accurate estimates of expected rewards, the output provided by the
intensive simulation process can also be used to compute two well-known risk metrics: the VaR and
CVaR. We will compute these VaR,, and CVaR,, for « € {95%, 97.5%, 99%}. Generally associated
with a loss distribution, these risk metrics have been approached here in a revenue context. To this
end, we have followed the definition provided by Street (2010): CVaR, represents the conditional
expected value of the revenue left-side worst distribution scenario, below a given 1 — @ quantile,
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which is known as VaR,. The latter is conventionally defined as a maximum loss in a given 1 —
a quantile (Pflug, 2000). In other words, in a revenue distribution for o = 95%, VaRosy, is the
quantile of the 5% worst benefits. Meanwhile, CVaRysy, is the average of the 5% worst benefits.
Despite both metrics aims at measuring the risk associated with a probability distribution, the
CVaR,, developed by Rockafellar and Uryasev (2000) is considered to be a better risk metric than
the VaR,, since the former can be seen as a coherent measure with the four axioms defined by
Artzner et al. (1999): monotonicity, translation invariance, positive homogeneity, and subadditivity.
Thus, CVaR, is able to quantify events beyond VaR,, by representing the risks reflected at extreme
tails of the probability distribution.

6. Experimental settings

This section describes the instances, computational resources, and design parameters employed in
our numerical experiments.

6.1. Benchmark instances

In our computational experiments, we used the 150 instances introduced by Pessoa and Andrade
(2018). These instances, which are available at https://data.mendeley.com/datasets/m2wcd42pvy/
1, were randomly generated and are composed of a set of n = 100 jobs that need to be processed
by m = 2 machines. The deterministic processing times were randomly generated using an integer
uniform distribution in the interval [1,100]. The delivery dates were generated using the number k
of delivery dates, with k € {1, 2, 3, 5, 7, 10}. The first delivery date is set to d| = y - C,.ux/k, being
Cax the makespan. The remaining delivery dates are set as dy = k-d), with 1 <k <K and y €
{0.1,0.3,0.5,0.7, 1.0}.

Following Seddik et al. (2013), release dates were randomly chosen in the interval r;, =
[di_1,d_y +7-di_1], with dy =0, ke{l,2,...,K}, and r € {0.1,0.3,0.5,0.7, 1.0}. Instance
names can be read as k < k > a < y > r < r >. For example, instance £1041.0r0.1 has 10 deliv-
ery dates, y equals to 1.0 and r equals to 0.1

6.2. Computational environment and parameter settings

The proposed algorithms have been implemented using C++ programming language and executed
in an Intel Core {7—3960 CPU at 3.30 GHz and 24 GB RAM running on a Windows operating
system. We performed a simple experiment in order to identify the best values for the 8 parameter
employed during the biased-randomization process of the BR-FF algorithm. A total of 18 values
of B were tested, with a time limit of 60 seconds for each test. Also, as suggested in Pessoa and
Andrade (2018), the following values were assigned to the FF heuristic parameters: « = 4.0 and b =
0.0. For each value of 8, the percentage deviation between the proposed BR-FF heuristic and the
FF heuristic was computed. We consider BR-FF ..:q as the average of the best solutions provided
by a 8, and FF as the average of the solutions provided by the FF heuristic. Hence, the relative
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Fig. 2. Deviation of best solutions between the BR-FF and FF heuristics versus the 8 parameter.

Table 1

A comparison of algorithms for different computing times

Time Algorithm Deviation (%)

(minutes) FF (1) FF-GRASP(2) FF-ILS(3) BR-FF(4) BR-FF-VND (5 (2)(1) (3)-(1) @) G-
1 163.71 165.24 166.17 166.35 167.25 0.93 1.50 1.61 2.16

5 163.71 165.66 166.46 166.61 167.63 1.19 1.68 1.77 2.39
10 163.71 165.93 166.60 166.73 167.73 1.36 1.77 1.84 2.46
30 163.71 166.25 166.77 166.93 167.83 1.55 1.87 1.97 2.52

percentage deviation is computed as (BR-FF oyara— FFs01)/ FFgo. Note that a positive value of this
percentage means that BR-FF .,..q is, on average, a better solution than FFy.

Figure 2 illustrates the deviation between the FF heuristic and our BR-FF algorithm for different
values of B. For a 8 value of 0.45 and higher, the BR-FF is able to outperform the FF heuristic.
The best solutions are obtained for 8 = 0.95.

7. Testing our BR-FF in the deterministic scenario

According to the experiments carried out by Pessoa and Andrade (2018), the BRKGA and their
FF-based ILS are among the best approaches for solving the deterministic PFSPDP. The ILS
framework can be easily extended into a full simheuristic algorithm. For this reason, in this sec-
tion we compare the performance of our BR-FF-VND algorithm against the performance of the
FF heuristic (base solving method) and that of the FF-ILS metaheuristic.

All instances were run using each of the solving approaches, allowing up to one minute per in-
stance and approach. As shown in Table 1, the FF-ILS method by Pessoa and Andrade (2018)
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Fig. 3. Box-plot of the percentage deviation AvgDev (%) and BestDev (%).

offered the worst average of best solution values (166.17). Our proposed methods, BR-FF and
BR-FF-VND, report averages of 166.35 and 167.25, respectively (i.e., they improve the FF-ILS
by 0.11% and 0.65%, respectively). In addition, a GRASP-based algorithm (Resende and Ribeiro,
2016) has also been implemented from the FF constructive method. This FF-GRASP provides re-
sults that improve the ones obtained with the FF heuristic. However, these results are somewhat
below the ones given by the FF-ILS algorithm. Detailed results regarding all instances are shown
in the supplementary material (Villarinho et al., 2020) at https://data.mendeley.com/datasets/
82ykchstgh/4.

An additional experiment was carried out to compare the solutions generated by each algorithm
with the ones provided by the FF heuristic. For each instance, two indicators were computed: (a) the
best percentage deviation, BestDev (%); and (b) the average percentage deviation, AvgDev (%). For
each instance, the former measures the percentage gap between the best found solution using a new
algorithm—of the 10 runs executed per instance—and the solution provided by the FF heuristic.
Similarly, the latter measures the percentage gap between the average solution value—computed
from the 10 runs—and the solution value provided by the FF heuristic. Table 2 shows the obtained
results for a total of 30 randomly selected instances that were run for one minute each.

Figure 3 depicts a box-plot of both percentage deviations, AvgDev (%) and BestDev (%). The
AvgDev (%) box-plot shows that the FF-ILS has a similar expected value (2.24) to the BR-FF
(2.09). The same can be observed for the BestDev (%).

Our proposed BR-FF-VND shows the higher deviations of AvgDev (%) and BestDev (%), with
an average of 2.94 and 3.53, respectively. Moreover, this algorithm also shows the highest average
of the best solutions (167.25) among the methods analyzed. When compared to the FF-ILS, our
BR-FF-VND provides higher rewards for 59.33% of the instances.
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Table 2
Results for one minute and 30 randomly selected instances

FF FF-GRASP FF-ILS BR-FF BR-FF-VND
Instance BestSol ~ BestDev  AvgDev  BestDev ~ AvgDev  BestDev ~ AvgDev  BestDev  AvgDev
k1a0.3r0.7 46 0.00 0.00 2.17 2.17 2.17 2.17 2.17 2.17
k1a0.5r0.7 65 0.00 0.00 0.00 0.00 1.54 1.54 0.00 0.00
k1a0.5r1.0 59 0.00 0.00 0.00 0.00 1.69 1.69 1.69 1.02
k1a0.7r0.1 80 0.00 0.00 0.00 0.00 0.00 0.00 1.25 0.37
klal.0r1.0 94 0.00 0.00 3.19 3.19 3.19 3.19 4.26 3.30
k2a0.1r0.1 27 3.70 1.48 3.70 1.85 7.41 4.07 7.41 4.44
k2a0.5r1.0 85 0.00 0.00 1.18 1.18 1.18 1.18 1.18 1.18
k2al1.0r0.1 151 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
k2al.0r0.3 149 0.00 0.00 0.67 0.67 0.67 0.67 0.67 0.67
k2al1.0r0.7 150 0.00 0.00 0.00 0.00 0.67 0.67 0.67 0.13
k3a0.1r0.5 35 8.57 4.57 8.57 5.43 8.57 6.00 8.57 6.29
k3a0.1r0.7 37 0.00 0.00 0.00 0.00 5.41 3.51 2.70 2.16
k3a0.3r0.5 82 0.00 0.00 1.22 1.22 3.66 2.56 3.66 2.56
k3a0.5r1.0 117 0.00 0.00 1.71 1.71 2.56 1.88 2.56 2.14
k3a0.7r0.7 156 0.64 0.06 1.92 1.92 2.56 2.18 2.56 2.50
k5a0.5r0.5 191 0.00 0.00 0.52 0.52 1.05 1.05 1.57 1.20
k5a0.5r1.0 178 0.00 0.00 0.56 0.56 1.12 1.07 1.12 0.96
k5a0.7r0.1 218 0.00 0.00 0.46 0.46 0.92 0.87 0.92 0.73
k5a0.7r0.3 228 0.00 0.00 0.00 0.00 0.44 0.44 0.44 0.44
k5a0.7r0.5 220 0.00 0.00 0.00 0.00 0.45 0.45 0.91 0.73
k7a0.3r0.1 159 3.77 1.01 4.40 2.08 5.66 491 6.29 491
k7a0.510.1 245 0.00 0.00 0.82 0.82 0.82 0.82 1.63 0.90
k7a0.5r0.3 256 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
k7a0.7r0.5 306 0.00 0.00 0.33 0.33 0.33 0.33 0.65 0.36
k7a0.7r1.0 295 0.00 0.00 0.00 0.00 1.36 0.98 1.36 0.81
k7al1.0r1.0 330 0.00 0.00 0.30 0.30 0.00 0.00 0.30 0.30
k10a0.3r0.1 246 1.63 0.44 1.63 1.26 3.66 3.13 3.66 2.89
k10a0.3r0.5 217 1.38 0.34 1.84 1.84 3.23 2.58 3.23 2.53
k10a0.3r0.7 216 0.93 0.13 0.93 0.93 1.39 1.25 1.85 1.20
k10a0.5r0.3 330 0.30 0.03 0.91 0.91 2.12 1.36 1.82 1.45
Average 165.60 0.70 0.27 1.23 0.98 2.13 1.69 2.17 1.61

In summary, according to the experiment results, our BR-FF-VND is able to outperform other
state-of-the-art algorithms for the deterministic PEFSPDP. Hence, it can be considered as a good
candidate to be extended into a simheuristic. With the purpose of analyzing the performance of
the proposed methods when more computational time is available, new tests were run. These tests
used 5, 10, and 30 minutes, respectively (Table 1). Note that, regardless of the computational time
employed, the BR-FF-VND algorithm shows a better average performance than the FF-ILS one.

8. Testing our simheuristic in the stochastic scenario

As explained in Section 6, the aforementioned instances were generalized using the log-normal
probability distribution to model-processing times. Then, we solved the stochastic version of the
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Table 3
Best and average deviations with respect to BR-FF-VND after 10 runs for 30 randomly selected instances—low variability
scenarios

PFSPDP PFSPDPST PFSPDP PFSPDPST
BR-FF-VND SimBR-FF-VND (& = 0.1) BR-FF-VND SimBR-FF-VND (4 = 0.5)
Instance BestSol BestDev (%) AvgDev (%) BestSol Best Dev (%) AvgDev (%)
k1a0.1r0.5 21.00 —0.07 —0.38 21.00 —-1.29 -2.71
k1a0.1r0.7 17.00 —0.02 —0.37 17.00 —1.35 —2.33
k1a0.7r0.1 81.00 0.00 —0.69 81.00 —0.41 —1.17
k1a0.7r0.3 81.00 0.05 0.01 81.00 —0.19 —0.31
k1a0.7r0.5 80.00 0.00 0.00 80.00 —0.26 —0.38
k2a0.3r0.1 72.00 —0.15 —-1.07 72.00 —1.64 —-1.72
k2a0.3r0.3 68.00 —0.02 —0.30 68.00 —0.85 —1.34
k2al1.0r0.7 150.00 0.46 0.41 150.00 0.01 —0.05
k2al.0rl1.0 142.00 —0.15 —0.46 142.00 —0.70 —1.01
k3a0.1r0.1 39.00 0.11 0.01 39.00 —0.56 —0.81
k3a0.1r0.3 33.00 —1.04 -3.99 33.00 -3.29 —6.51
k3a0.3r1.0 87.00 0.30 —0.71 87.00 —0.92 —1.68
k3a0.5r0.1 128.00 —0.03 —0.12 128.00 —0.56 —0.87
k3a0.5r0.3 130.00 —0.36 —0.82 129.00 —0.52 —0.74
k5a0.1r0.3 58.00 0.64 0.33 58.00 —1.56 —1.73
k5a0.5r0.3 186.00 0.06 —0.04 186.00 —0.45 —0.63
k5a0.7r0.7 234.00 —0.08 —0.53 234.00 —0.83 —1.19
k7a0.7r0.7 302.00 —0.07 —0.87 302.00 —0.62 —1.50
k7a0.7r1.0 299.00 —0.03 —0.48 299.00 —0.85 —1.25
k7a1.0r0.1 395.00 —0.04 —0.11 395.00 -0.19 —0.44
k7a1.0r0.3 351.00 0.03 —0.06 351.00 —0.11 —0.21
k7al1.0r0.5 344.00 —0.02 —0.21 344.00 —0.37 —0.49
k7a1.0r0.7 355.00 —0.12 -0.27 355.00 —0.52 —0.74
k7al.0rl.0 331.00 —0.04 —0.07 331.00 —0.25 —0.37
k10a0.1r0.1 110.00 0.14 —1.78 110.00 -2.14 —3.68
k10a0.1r0.3 109.00 0.07 —0.72 109.00 —2.00 —2.86
k10a0.1r0.5 121.00 0.20 —0.41 121.00 —2.04 —2.73
k10a0.1r0.7 96.00 —0.04 -1.77 96.00 —2.48 —3.31
k10a0.1r1.0 99.00 —0.18 —2.74 99.00 —1.61 —4.28
k10a0.3r0.1 256.00 0.09 —0.85 256.00 -1.19 —2.04
Average 159.17 —0.01 —0.64 159.13 -0.99 —1.64

Note:. PFSPDPST, permutation flow-shop scheduling problem with delivery dates and cumulative payoff

problem by employing the Sim-BR-FF-VND simheuristic introduced in Section 5. Different levels
of uncertainty have been considered, that is, & € {0.1, 0.5, 1.0, 2.0}. Tables 3 and 4 show detailed
results for the considered uncertainty levels (low (0.1 and 0.5) and high (1.0 and 2.0), respectively),
where (a) BestDev (%) refers to the percentage deviations between the best solutions found by the
SimBR-FF-VND (for the stochastic version of the problem) and the best solutions found by the
BR-FF-VND (for the deterministic version); and (b) AvgDev (%) refers to the percentage deviations
between the respective average values. These results are then summarized in Fig. 4 and detailed
in the supplementary material (Villarinho et al., 2020) available at https://data.mendeley.com/
datasets/82ykchstgh/4.
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Table 4
Best and Average deviations with respect to BR-FF-VND after 10 runs for 30 randomly selected instances—high vari-
ability scenarios

PFSPDP PFSPDPST PFSPDP PFSPDPST
BR-FF-VND SimBR-FF-VND (& = 1.0) BR-FF-VND SimBR-FF-VND (4 = 2.0)
Instance BestSol Best Dev (%) AvgDev (%) BestSol BestDev (%) AvgDev (%)
k1a0.1r0.5 21.00 —2.60 —3.96 21.00 —4.48 —5.57
k1a0.1r0.7 17.00 —2.94 -3.29 17.00 —4.50 —4.91
k1a0.7r0.1 81.00 —0.83 —1.55 81.00 —1.46 —2.08
k1a0.7r0.3 81.00 —0.52 —0.71 81.00 —1.06 —1.25
k1a0.7r0.5 80.00 —0.62 —0.82 80.00 —1.25 —1.41
k2a0.3r0.1 71.00 —0.62 —0.88 71.00 —1.39 —1.62
k2a0.3r0.3 68.00 —1.60 —2.01 68.00 —2.42 —-2.93
k2al1.0r0.7 150.00 —0.21 —0.32 150.00 —0.65 —0.74
k2al.0r1.0 142.00 —1.18 —1.44 142.00 —1.76 -2.02
k3a0.1r0.1 39.00 —1.53 —-1.92 39.00 —3.01 —3.46
k3a0.1r0.3 33.00 —4.86 —8.03 33.00 —7.08 —10.00
k3a0.3r1.0 87.00 —2.01 —2.60 87.00 -3.29 —3.94
k3a0.5r0.1 128.00 —1.04 —1.40 128.00 -1.72 —2.15
k3a0.5r0.3 129.00 —1.13 —1.35 129.00 —1.94 -2.15
k5a0.1r0.3 58.00 —3.65 —4.06 58.00 —6.08 —6.68
k5a0.5r0.3 186.00 —1.00 —1.20 186.00 —1.76 —-1.97
k5a0.7r0.7 234.00 —1.45 -1.71 234.00 —2.10 —2.36
k7a0.7r0.7 302.00 —1.11 —2.02 302.00 —1.94 -2.73
k7a0.7r1.0 299.00 —1.55 —1.80 299.00 —2.11 —2.43
k7a1.0r0.1 395.00 —0.49 —0.74 395.00 —0.91 -1.17
k7a1.0r0.3 351.00 —0.27 —0.40 351.00 —0.52 —0.64
k7al1.0r0.5 344.00 —0.64 —0.79 344.00 —1.06 —1.23
k7al1.0r0.7 355.00 —0.77 —1.04 355.00 —1.14 —1.44
k7al1.0r1.0 331.00 —0.53 —0.62 331.00 —0.86 —0.99
k10a0.1r0.1 110.00 -3.71 —5.15 110.00 —5.68 —6.93
k10a0.1r0.3 109.00 —3.54 —4.61 109.00 —5.44 —6.68
k10a0.1r0.5 121.00 —3.52 —4.34 121.00 —5.54 —6.33
k10a0.1r0.7 96.00 —3.81 —4.45 96.00 —5.50 —6.13
k10a0.1r1.0 99.00 —2.67 —5.39 99.00 —4.24 —-6.93
k102a0.3r0.1 256.00 —2.17 -2.92 256.00 —3.41 —4.21
Average 159.10 —1.75 —2.38 159.10 —2.81 —3.44

In effect, Fig. 4 shows that the uncertainty level directly impacts the stochastic rewards: for a
low level of uncertainty (4 = 0.1), BestDev (%) shows an expected value close to 0 (0.044); on the
contrary, as the uncertainty level increases the values BestDev (%) diverge from the deterministic
ones. A similar effect can be observed for the AvgDev (%) values.

Since risk analyses have an important role in the quantification of the worst possible scenarios,
we expanded our simheuristic approach to consider a full risk analysis via the quantification of
the VaR, and CVaR,,. Thus, for example, in the case of instance k10a0.3r0.1 and uncertainty level
h = 1.0, Fig. 5 portrays the VaR,, and CVaR,, values associated with three confidence levels, @ €
{95%, 97.5%, 99%}. Note that this instance has an expected reward of 250.44. The VaR,, could be
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Fig. 4. Percentage deviation of BestDev (%) and AvgDev (%) to BR-FF-VND in the deterministic environment.
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Fig. 5. Conditional VaR for instance k10a0.3r0.1 using different levels of « and # = 1.0.
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Fig. 6. Behavior of the VaRys,, and CVaRysy, on different levels of uncertainty, for instance k10a0.1r0.3.

interpreted as the worst scenario of a reward for a level of confidence «. In this case, the associated
rewards would be 241, 239, and 235, respectively. Likewise, the CVaR, can be interpreted as the
average of the worst rewards for a level of confidence «. In this instance, the associated values are
238.10, 235.76, and 233.30, respectively.

Figure 6 depicts the behavior that has been observed across all the instances for the different
values of «. Note that, as the level of uncertainty is increased, it has an impact on the processing
times variability. This, in turn, influences the stochastic rewards generated, since more jobs will
finish later on the last machine. Hence, the values of both risk metrics are reduced as the level of
uncertainty increases.

9. Conclusions

This work analyzes a stochastic version of the PFSPDP. This problem is motivated by a real-life case
regarding the books digitization in a library. In order to address this challenge, the FF heuristic,
proposed by Fernandez-Viagas and Framinan (2015), was first extended into a BR algorithm (BR-
FF). Next, a VND metaheuristic framework is incorporated to the BR-FF algorithm. Finally, the
BR-FF-VND is extended into a simheuristic algorithm by integrating a Monte Carlo simulation
component into it. This allows us to solve both the deterministic version of the PFSPDP and its
stochastic counterpart with random processing times.
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An extensive set of experiments was carried out to test the quality of the proposed algorithms.
The solutions provided by our BR-FF-VND algorithm for the deterministic version of the prob-
lem are shown to be competitive when compared with the recently published work by Pessoa and
Andrade (2018). Moreover, our simheuristic approach is the first in the literature dealing with the
stochastic version of the PFSPDP. The numerical experiments allow us to study how the level of
uncertainty affects the solutions obtained for the stochastic version of the problem. In addition,
the worst-case scenarios were analyzed using two well-known risk metrics: the VaR and CVaR.
As expected, an increase in the level of uncertainty has an impact on the tails of the probability
distribution used to model stochastic processing times. This pattern affects the rewards computed
by the VaR and CVaR, since both risk metrics consider the behavior of the rewards in the tails of
the distribution.

Several research lines can be considered for future work, among them: (a) to consider a biob-
jective formulation of the problem, where both expected reward and solution risk are simultane-
ously optimized and the associated Pareto frontier is explored; (b) to incorporate other sources
of randomness in the PFSPDP, such as machine breakdowns; and (c) to analyze the performance
of our BR algorithm when more complex functions are employed to model rewards by meeting
deadlines.
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