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Abstract

In this paper, we consider a vehicle routing problem in which a fleet of homogeneous vehicles, initially lo-
cated at a depot, has to satisfy customers’ demands in a two-echelon network: first, the vehicles have to
visit intermediate nodes (e.g., a retail center or a consolidation center), where they deliver raw materials
or bulk products and collect a number of processed items requested by the customers in their route; then,
the vehicles proceed to complete their assigned routes, thus delivering the processed items to the final cus-
tomers before returning to the depot. During this stage, vehicles might visit other intermediate nodes for
reloading new items. In some real-life scenarios, this problem needs to be solved in just a few seconds or
even milliseconds, which leads to the concept of “agile optimization.” This might be the case in some res-
cue operations using drones in humanitarian logistics, where every second can be decisive to save lives. In
order to deal with this real-time two-echelon vehicle routing problem with pickup and delivery, an original
constructive heuristic is proposed. This heuristic is able to provide a feasible and reasonably good solution
in just a few milliseconds. The constructive heuristic is extended into a biased-randomized algorithm using
a skewed probability distribution to modify its greedy behavior. This way, parallel runs of the algorithm are
able to generate even better results without violating the real-time constraint. Results show that the proposed
methodology generates competitive results in milliseconds, being able to outperform other heuristics from
the literature.

Keywords: agile optimization; disaster management; two-echelon vehicle routing problem; biased-randomized algorithms

1. Introduction

Real-time optimization, where decisions need to be made in just a few seconds or even milliseconds,
has many application areas in logistics. For example, in the event of disasters, real-time optimization

∗Corresponding author.

C© 2020 The Authors.
International Transactions in Operational Research C© 2020 International Federation of Operational Research Societies
Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden, MA02148,
USA.

https://orcid.org/0000-0001-6529-0270
https://orcid.org/0000-0003-2678-4299
https://orcid.org/0000-0003-1392-1776
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fitor.12796&domain=pdf&date_stamp=2020-04-09


202 L. do C. Martins et al. / Intl. Trans. in Op. Res. 28 (2021) 201–221

can be a life-saving differential. In this context, last-mile distribution logistics is related to the delivery
of urgently needed goods to areas where roads are blocked by extreme weather events, disasters, or
traffic congestion.

A motivational example is the distribution of drugs with drones in disaster situations. When
disasters occur, an effective system of drug management should be established by health agencies in
order to (a) ensure the efficient, cost-effective, and rational use of the drugs; (b) prevent and reduce
excess mortality and morbidity; and (c) promote a return to normalcy (McConnan, 2004). This
distribution process is based on selection, procurement, distribution, and use of pharmaceuticals
in primary health care (Quick et al., 1997). We focus on the distribution stage in which urgently
needed items (e.g., drugs) must be delivered to an affected area after a disaster occurred. These items
should be delivered from a near pharmacy or laboratory (intermediate node) as fast as possible. On
the other hand, these intermediate facilities should be served from a central warehouse or depot,
which holds raw material used to fabricate the processed items requested by the final users.

Due to the resulting poor transportation infrastructure after a disaster event, the affected areas
might become no longer accessible by conventional cargo vehicles. Therefore, the use of drones
can be seen as an effective way of delivering life-saving treatments directly to disaster locations.
Examples of drone delivery applications can be found in health care delivery, which includes the
safe delivery of medicines, vaccines, defibrillators, blood samples, disease test samples, and test kits
in remote areas out of reach (Balasingam, 2017; Scott and Scott, 2017).

In city logistics, a variant of the classical and well-known vehicle routing problem (VRP) is the
two-echelon VRP (2E-VRP), which can be found in several transportation systems. This multilevel
distribution system combines two delivery levels, in which the first level addresses the delivery
from the depot to intermediate facilities, while the second level regards the delivery from these
intermediate facilities to final customers. In the presented problem, a set of intermediate facilities
(e.g., pharmaceutical laboratories, PLs) holds a limited inventory of drugs needed in the disaster
areas and must be served with raw material from a single distribution center or depot. On the other
hand, these intermediate facilities must serve as fast as possible a set of final delivery points in the
affected area. The same fleet of drones is employed in both delivery levels. Although the motivational
example for this paper is the drug distribution in disaster circumstances, similar problems can be
found in other situations, too.

To solve this problem in “real time” (i.e., a few seconds or even milliseconds), we propose a
fast constructive heuristic. This heuristic is then extended to a biased-randomized (BR) algorithm
as described, for example, in Grasas et al. (2017). Hence, we introduce the concept of “agile
optimization,” which refers to the massive parallelization of a BR version of a constructive heuristics.
Using parallel computing to solve real-life VRPs, the resulting methodology is able to provide in
milliseconds “good” solutions to medium- and large-sized instances (Juan et al., 2013b). The use of
BR techniques facilitates the design of powerful algorithms that can effectively be used to provide
real-time solutions in a range of situations that arise in dynamic and emergency contexts (Ghiani
et al., 2003).

The paper is arranged as follows. Section 2 presents a literature review on related topics; Section 3
describes the addressed problem; Section 4 introduces the proposed solution method; Section 5
presents an analysis of the results and a comparison between the proposed heuristic and other
solving methods; finally, Section 6 highlights the main conclusions of this work and proposes some
lines for future research.

C© 2020 The Authors.
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2. Literature review

One of the first studies concerning two-level routing problems was presented by Jacobsen and
Madsen (1980) in order to solve the daily distribution of newspapers. However, only decades later,
Crainic et al. (2004) introduced the 2E-VRP, motivated using intermediate facilities to redistribute
goods where large trucks were not able to circulate due to physical limitations of the streets.
Consequently, the use of these intermediate facilities reduced the use of large vehicles by up to
72%. Years later, a study on the relationships between customer distribution, system layout, and
the associated costs of the distribution process for two-echelon distribution systems was provided
by Crainic et al. (2010). They measured and analyzed the impact of the number of customers,
the quantity and location of intermediate facilities, the customer distribution, and the relationship
between the first- and second-level costs on the total cost of distribution. The authors concluded that
opening facilities reduce the global cost until a minimum cost is reached, and from that minimum,
adding new ones increases the global cost. Different approximation methods have been proposed
to solve the 2E-VRP. Hemmelmayr et al. (2012) proposed an adaptive large neighborhood search
heuristic for solving the 2E-VRP. The authors developed new search operators based on the problem
structure and were able to outperform existing results from the literature. Additionally, a new data set
of large instances was proposed for the problem. More recent studies solve the 2E-VRP using hybrid
methodologies. Crainic et al. (2013) presented a combination of a greedy randomized adaptive search
procedure (GRASP) with path-relinking for solving the 2E-VRP while a combination of GRASP
with a variable neighborhood descent (VND) has been presented by Zeng et al. (2014). Both hybrid
methodologies were able to improve existing results in the literature. Recently, the 2E-VRP has been
studied by introducing electric vehicles for the second-echelon deliveries (Breunig et al., 2019). In
this case, a large neighborhood search metaheuristic was proposed to solve large-scale instances.

Another related problem is the VRP with pickup and delivery (VRPPD) and, in particular, the
VRP with simultaneous pickup and delivery (VRPSPD). The VRPSPD was first tackled by Min
(1989) for solving a real-life problem. The authors proposed a three-stage heuristic in order to
minimize the total travel time of the routes. First, the customers were clustered complying the
vehicle capacity per group. In the next step, one vehicle was assigned to each cluster, and finally,
a traveling salesman problem (TSP) was solved for each group. From this work, several heuristics
and metaheuristics have been proposed to solve the VRPSPD, which includes mainly the use of
hybrid methodologies such as tabu search with VND (Crispim and Brandão, 2005; Bianchessi
and Righini, 2007), ant colony optimization (ACO) with local search (Gajpal and Abad, 2009;
Çatay, 2010), and particle swarm optimization combined with local search and VND (Ai and
Kachitvichyanukul, 2009; Goksal et al., 2013), respectively. Finally, a parallel methodology based
on simulated annealing (SA) has been considered to solve the problem (Mu et al., 2016).

An integration of 2E-VRP with simultaneous pickup and delivery was recently addressed by
Belgin et al. (2018) who proposed a hybrid heuristic based on VND and local search to solve
medium- and large-sized instances of the problem. In this work, the same fleet of homogeneous
vehicles is employed to serve both delivery levels. However, a different vehicle capacity is imposed for
each service level. Although the previous paper addresses a similar problem to the one studied here,
our version is characterized by different constraints and decisions regarding the routing sequence,
including the use of the same vehicle capacity for both service levels. To the best of our knowledge,
the VRPPD in an omnichannel retailing context has been first introduced by Abdulkader et al.
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(2018) who proposed a two-phase heuristic and a multiant colony (MAC) algorithm to solve the
problem. The first phase of their heuristic is based on inserting customers into an initial route
consisting only of retailers and on correcting infeasible solutions. The second phase is based on
the well-known savings heuristic (Clarke and Wright, 1964). A complete set of instances has been
generated to test both approaches.

The use of parallel computing is a breakthrough that allowed the resolution of larger and complex
optimization problems (Migdalas et al., 2013). Its combination with optimization has made it
possible to design powerful algorithms that can effectively be used to provide real-time solutions
in dynamic contexts (Ghiani et al., 2003). Several parallel and distributed computing approaches
have been already applied to different VRP variants. One of the studies regarding the use of parallel
and distributed computing for solving VRPs in real-time has been written by Juan et al. (2013b).
The authors pointed out potential applications of distributed computing to solve large-sized VRPs
with real-life constraints. They proposed a solution approach, which combines parallel computing,
simulation, and a BR heuristic for solving the VRP with stochastic demands. Recently, Rey et al.
(2018) proposed a hybrid methodology based on ACO and local search procedures. Different levels
of parallelism were tested, from the construction of TSP routes to the construction of a complete
VRP solution from each TSP route. The parallel computing power was employed to generate
high-quality solutions for the VRP.

Inspired by the works of Faulin and Juan (2008) and Faulin et al. (2008), which combined random
sampling with heuristics for solving VRPs, Juan et al. (2010) were the first to use skewed probability
distributions to bias the savings heuristic for solving VRPs. In their work, a geometric probability
distribution was employed during the constructive stage of the savings heuristic to assign a selection
probability to each candidate edge. Their methodology was improved in Juan et al. (2011) who
incorporated cache and splitting techniques to reduce computational times. Since then, the use of
BR techniques has been employed in solving different combinatorial optimization problems in areas
such as transportation (e.g., Calvet et al., 2016; Dominguez et al., 2016), scheduling (e.g., Martin
et al., 2016), or facility location (e.g., De Armas et al., 2017). Another class of BR algorithms,
known as biased random-key genetic algorithms (BRKGA), was introduced by Gonçalves and
Resende (2011) for solving combinatorial optimization problems. The idea behind these algorithms
is to bias the selection of parents for mating. The use of BRKGA has been recently addressed
for solving single-round scheduling problems (Brandão et al., 2015) and multiround scheduling
problems (Brandão et al., 2017). In both cases, the proposed biased methodology was able to
improve previously published best-known solutions.

Drones were initially used in military applications. However, their use in transportation has
become a challenging trend in supply chains, in which companies from different industries have
invested for delivery of goods, including food and medical products (Bamburry, 2015). When de-
signing a system for delivering drugs using drones, several aspects from the application and physical
limitations should be taken into account. From a physical point of view, Gatteschi et al. (2015)
provided a detailed overview of these aspects applied to drug deliveries. Limitations such as bat-
tery, velocity, and weight were pointed out by Wan et al. (2018) who proposed a new mechanism
designed to safely transport medical aids to the target area. From the application context, current
and potential applications in health care are discussed by Balasingam (2017) who describes regu-
latory limitations and future innovations in drone technology, such as diagnostic capabilities using
telemedicine to patients in hard-to-reach areas.

C© 2020 The Authors.
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Although the use of drones for commercial purposes represents a significant advance in logistics,
many technological and regulatory obstacles must be overcome. Several worst-case results regarding
the use of drones in VRPs have been proposed by Wang et al. (2017). These worst cases reveal the
benefits (amount of time that could be saved) of using drones combined with trucks instead of
using only a fleet of trucks. Later, the same authors extended their previous work by explicitly
considering limited battery life and cost objectives (Poikonen et al., 2017). Daknama and Kraus
(2017) also studied the use of trucks and drones to deliver packages. In this case, the authors limited
the number of packages that can be transported by drones at a time and imposed the return to a
truck in order to charge their battery after each delivery. Both studies concluded that combining
drones with trucks allows the truck to parallelize tasks, which represents a substantial improvement
that must be considered in delivery systems. Dorling et al. (2017) proposed two multitrip VRPs
for drone delivery, which minimize costs subject to a delivery time limit and minimize the overall
delivery time subject to a budget constraint, respectively. A cost function that considers the energy
consumption model and drone reuse was proposed and incorporated in an SA heuristic for finding
near-optimal solutions to practical scenarios. According to the results, the reuse of drones and the
optimization of battery size results in a substantial improvement in drone delivery VRPs.

3. Problem description

The problem addressed in this paper is based on the description presented by Abdulkader et al.
(2018). In their work, a central depot holds a set of products delivered from different suppliers.
This depot must serve a set of intermediate facilities (retail centers) using a fleet of homogeneous
delivery vehicles. Each facility has a specific demand from the depot and holds a specific and limited
inventory of each available item. These items are ordered by customers and should be delivered to
them by the same fleet of vehicles. The items at the facilities are considered to be different from
the products held at the depot for reasons of additional handling and/or packaging before being
shipped to customers. Therefore, the products held at the depot cannot be shipped directly to the
final delivery points.

In our application context, the depot holds raw materials, such as chemical and natural products,
required by PLs in order to manufacture drugs to be delivered to final points. These final points
can be seen as first-aid locations (FAL) in an area affected by a disaster. Each FAL is assigned to
emergency staff (doctors, nurses, etc.) that requires these processed items to attend the population in
an emergency situation. The delivery in both PLs and FALs is done by drones in order to allow the
transportation of goods to nonaccessible areas, where conventional cargo vehicles cannot arrive by
land. Sensors at PLs and FALs report in case of a disaster if a location is affected or not. They also
give information about the impact of the disaster. This provides the depot with a situation picture of
the affected areas. Needs for drugs are known in advance on the basis of an existing emergency plan
in case of disasters. Authorities must quickly react to this new information in order to guarantee a
fast delivery service. The affected area is a subset of the complete space, which might include some
PLs. In this case, these facilities are treated as FALs, which require their specific medical supplies
from an available nonaffected intermediate facility. Figure 1 provides an example of a scenario in
which sensors in the affected area communicate with the depot when a disaster occurs. This area is
composed of FALs and PLs. Each location is associated with a sensor. In this example, all affected

C© 2020 The Authors.
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Fig. 1. An example of a situation picture provided by the sensors.

nodes (including FALs and PLs) must be served from the three available PLs that, on the other
hand, must be served from the depot.

The drones are available and initially located at the depot. The capacity of drones is utilized
to perform the required delivery of raw material from the depot to intermediate points and then
to final points, in order to minimize the total transport time and guarantee the replenishment of
medical supplies.

The solution to this problem is given by a set of drone routes. Each drone starts from the depot,
visits a set of PLs and FALs, and returns empty to the depot. The goal is to minimize the total
duration of the delivery routes such that

� each route must start and end at the depot;
� the routes do not exceed the maximum tour length;
� each PL or FAL is visited by only one drone and only once;
� the total delivery demand from the depot to the PLs does not exceed the drone capacity;
� the total demand of an FAL to be served from the PLs with a certain drug cannot exceed the

available inventory of this drug at the PLs;
� the PLs designated to satisfy the demand of an FAL must be visited before the point and by the

same delivery drone;
� decisions on distribution plans need to be made in real time.

C© 2020 The Authors.
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Fig. 2. An example of a two-echelon distribution system.

The distribution network of this problem can be defined as a directed graph G = (V, A). The set
V is composed of the central depot (node 0), the set of PLs and the set of FALs. The PLs and FALs
are served by the same fleet of homogeneous drones with a certain capacity, which is available at the
depot at the start time t0. The complete mathematical formulation of this problem can be found in
Abdulkader et al. (2018). Figure 2 provides a route example for the disaster scenario presented in
Fig. 1. In this example, PL 2 serves FAL 7, while PL 3 serves FALs 9 and 6. It might be the case that
FAL 9 or 6 is served by PL 2. In this case, the same visit order would be preserved as the pickup
would be performed prior to delivery. In the second route, PL 1 serves FALs 4, 5, 10, 8, and 11. The
routes satisfy constraints on vehicle capacity, maximum tour length, and inventory availability.

4. Methodology

In order to solve the proposed two-echelon VRP in real-time, a fast heuristic is proposed and
then extended into a BR algorithm, which is executed using parallel computing techniques. The
hybridization of BR heuristics and parallel computing leads us to the concept of agile optimization.

C© 2020 The Authors.
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4.1. Agile optimization

Agile optimization has arisen as a new optimization concept for real-time decision making. It
refers to the massive parallelization of BR algorithms, which are extremely fast in execution, easily
parallelizable, flexible, and require the fine tuning of few, or even just a single parameter. The idea
behind this technique is to run in parallel several hundreds or even thousands of threads, each
thread being an execution of a BR heuristic. As a result, several alternative solutions are generated
in the same wall-clock time as the one employed by the original heuristic, that is, milliseconds in
most cases. Then, different solutions are provided—some of them outperforming the one generated
by the original heuristic—and the best solution is chosen. Using skewed probability distributions,
BR techniques employ the idea of introducing a biased (nonsymmetric) randomization effect into a
heuristic procedure. As a result, a deterministic heuristic—which is extremely fast in execution, even
for large-scale optimization problems—is extended into a probabilistic algorithm without losing the
logic behind the original heuristic.

Agile optimization represents a new optimization perspective that allows to find reasonably good
solutions for large-scale and NP-hard optimization problems in real time. This concept is also
necessary when dealing with dynamic systems (e.g., traffic, vehicles location, unexpected demands,
disruptions, etc.), where the environmental conditions are continuously changing and reoptimization
of the system is required every few minutes or even seconds.

4.2. Heuristic

The proposed heuristic, henceforth named LH, is based on the aforementioned savings heuristic
and is composed of four stages as described in Pseudocode 1. The first stage (line 1) consists of
creating a dummy solution, which is composed of a set of “dummy” routes. Each dummy route is
designed to serve one node i ∈ V \{0}, which can be either an FAL or a PL. The route departs from
the depot to the node and then returns to the depot.

In the second stage (lines 4–19), these initial routes visiting individual nodes are merged using a
constructive heuristic. Initially, a list is constructed by considering all the possible pairs of nodes in
the problem (line 2). The savings value of an edge {i, j} is computed as si j = d0i + d j0 − di j . In the
first iteration, all edges from the list are eligible. This eligibility is related to constraints regarding
the PLs’ inventory. The list is initially sorted in descending order of the savings value (line 3) and
the edge with the highest saving is selected. At this stage, we restrict the selection of edges in order
to guarantee the assignment of a PL to each FAL in the problem. Hence, the selection is restricted
to eligible edges {i, j}, where node j is an FAL in a dummy route and i is a node in a route with a
PL that can supply FAL j (line 10). Figure 3 represents a merging case in which i is a PL that can
supply node j. In Fig. 4, on the other hand, i is an FAL in a route with a PL that can supply node j.
The two corresponding routes of an edge {i, j} can be merged if (i) nodes i and j are exterior to their
respective routes (a node is exterior to a route if it is adjacent to the depot); (ii) their respective routes
are different (i and j belong to different routes); (iii) the maximum traveled distance constraint is not
violated; and (iv) the vehicle capacity constraint is respected (line 11). This stage helps to assign each
FAL to a PL supplier. Hence, we avoid infeasible solutions in which some FALs are not assigned
to any PL. In our case, the selected edge is removed from the list L only if (a) the associated merge

C© 2020 The Authors.
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Pseudocode 1. LH

is completed or (b) at least one of the constraints (i)–(iv) is violated (line 15). Otherwise, the edge is
not removed from the list (line 17) since it could be used in an ulterior iteration if new inventory is
available after the incorporation of new distribution center to a route (line 12).

The third stage (lines 20–30) starts from the reduced list and attempts to merge all the available
possibilities. At this stage, all edges are eligible, that is, there is no restriction in the selection
regarding their types and characteristics (line 26), since all the FALs are already assigned to a PL.
At this stage, each selected edge is removed from the list, whether it is used or not. This process is
repeated until the list L is empty (line 20).

4.2.1. Local search
After the constructive stages, a fast local search (stage 4) is applied to improve the quality of
the solution (line 31). It consists of an adapted 2-opt movement plus a memory-based data

C© 2020 The Authors.
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Fig. 3. Merging between a dummy PL route and a dummy FAL route, in which the PL i supplies the FAL j.

Fig. 4. Merging between a nondummy PL route and a dummy FAL route, in which the PL assigned to FAL i supplies
the FAL j.

structure (hash map) that keeps the best-found route sequence for each set of nodes (Juan et al.,
2011). The 2-opt movement consists of swapping nodes inside each route. In our case, this move-
ment is restricted to swaps that do not violate the precedence order between customers and their
table suppliers.

4.3. Biased randomization

In order to extend the LH heuristic, its original greedy and deterministic behavior in the con-
struction stage is modified by introducing a skewed probability distribution in the selection process
(Pseudocode 2), which transforms the deterministic version of the algorithm into a probabilistic one
without losing the logic behind the original idea (Juan et al., 2013a). In our case, the BR behavior
is incorporated by employing a geometric distribution, which is controlled by a single parameter
β ∈ [0, 1].

Thus, in its extended version, BRLH, the selection of an edge from the sorted list is made
accordingly to the probability provided by the parameter β (line 3). In other words, when using the
geometric distribution, the edges at the top of the list are more likely to be chosen than those at
the bottom. Therefore, the greedy behavior is smoothed and the methodology is able to generate
different solutions, which allows the exploration of different solutions spaces when applying the
local search mechanism. In this regard, lines 5 and 21 of Pseudocode 1 are replaced by the method
brSelection (Pseudocode 2) in order to incorporate the BR strategy into the selection process. Note
that, in stage 3 of Pseudocode 1, all the edges of L are eligible, then l = |L| (line 2).

C© 2020 The Authors.
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Pseudocode 2. brSelection

Data: savings list L, parameter β ∈ [0, 1]
1 l ← getNumberOfEligibleEdgesFromList(L);
2 Randomly select position x ∈ {1, . . . , l} according to distribution Geom(β);
3 e ← selectTheXthEligibleEdgeFromList(x, L);
4 return e;

Finally, the resulting BRLH algorithm is embedded in a parallel framework to complete the agile
optimization approach. Therefore, multiple runs of the same instance are executed in a concur-
rent/parallel way using different seeds for the pseudo-random number generator. This is possible
due to the nonexistence of dependencies among the different runs. Hence, several solutions are
generated, and the one with the lowest cost is chosen.

5. Computational experiments and results

The proposed methodology was tested on 80 instances proposed by Abdulkader et al. (2018). These
instances are different in the number of retail stores and customers. In our application context, the
retail centers, R, are equivalent to PLs and consumers, C, to the FALs. The first 20 instances are
considered small-sized and were optimally solved with Cplex. The remaining 60 instances are large-
sized instances that are different in the inventory scenarios of the retail centers (tight, relaxed, and
abundant). According to Abdulkader et al. (2018), for each scenario, the total network inventory is
computed as

� tight:
∑

i∈R

Iip =
∑

j∈C

Dj p + U [0.1, 0.2]
∑

j∈C

Dj p ∀p ∈ P; (1)

� relaxed:
∑

i∈R

Iip =
∑

j∈C

Dj p + U [0.5, 1.0]
∑

j∈C

Dj p ∀p ∈ P; (2)

� abundant: (at each retail store)

Iip =
∑

j∈C

Dj p ∀i ∈ R, ∀p ∈ P, (3)

where P is the set of heterogeneous products, R is the set of retail centers, C is the set of customers,∑
Iip is the total inventory available of a product p, and

∑
Dj p is the total online demand of a

product p.
The maximum tour length and the vehicle capacity are fixed to eight hours and 100 weight units,

respectively. Regarding the BR process during the solution-construction stage, after some initial

C© 2020 The Authors.
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Table 1
Comparison of results obtained by the different methodologies on solving small-sized instances

1 2 3 4 5
Avg.
Cost %SD Time gap

I |R| |C| BRLH′ BRLH BRLH′′ AH MAC (2) (2) (1, 2) (4) (5) (4-1) (4-2) (4-3) (5-1) (5-2) (5-3)

a1 3 6 398.3 386.9 386.9 479.2 386.9a 386.9 0.0% 0.0 0.0 <1 −17% −19% −19% 3% 0% 0%
a2 3 9 430.2 416.3 416.3 589.6 416.4a 416.3 0.0% 0.0 0.0 <1 −27% −29% −29% 3% 0% 0%
a3 3 12 476.2 438.3 427.7 512.3 424.3a 447.9 2.2% 0.0 0.0 <1 −7% −14% −17% 12% 3% 1%
a4 3 15 571.7 500.6 487.7 767.1 455.3a 513.0 2.4% 0.0 0.0 <1 −25% −35% −36% 26% 10% 7%
a5 3 18 714.3 675.6 661.0 936.2 601.4a 690.4 1.3% 0.0 0.0 <1 −24% −28% −29% 19% 12% 10%
a6 4 6 454.3 425.7 425.0 512.1 419.3a 435.8 2.1% 0.0 0.0 <1 −11% −17% −17% 8% 2% 1%
a7 4 9 463.5 455.9 455.9 688.4 455.9a 462.0 0.7% 0.0 0.0 <1 −33% −34% −34% 2% 0% 0%
a8 4 12 483.0 479.7 466.3 711.9 449.4 484.1 1.0% 0.0 0.0 <1 −32% −33% −34% 7% 7% 4%
a9 4 15 530.5 477.6 461.4 746.6 457.3a 518.5 4.7% 0.0 0.0 <1 −29% −36% −38% 16% 4% 1%
a10 4 18 718.9 608.5 602.8 740.8 514.4a 676.6 5.3% 0.0 0.0 <1 −3% −18% −19% 40% 18% 17%
a11 5 6 512.1 492.0 488.5 545.7 486.0a 495.7 1.1% 0.0 0.0 <1 −6% −10% −10% 5% 1% 1%
a12 5 9 688.9 624.8 624.8 882.0 624.8a 637.3 3.3% 0.0 0.0 <1 −22% −29% −29% 10% 0% 0%
a13 5 12 626.7 579.5 539.0 961.7 535.4a 618.6 3.0% 0.0 0.0 <1 −35% −40% −44% 17% 8% 1%
a14 5 15 739.1 680.2 656.8 838.9 605.0a 710.3 2.7% 0.0 0.0 <1 −12% −19% −22% 22% 12% 9%
a15 5 18 850.6 777.9 747.4 898.8 709.9 804.6 2.4% 0.0 0.0 <1 −5% −13% −17% 20% 10% 5%
a16 6 6 505.5 502.6 484.5 582.1 468.9a 505.0 0.2% 0.0 0.0 <1 −13% −14% −17% 8% 7% 3%
a17 6 9 500.3 481.0 468.6 609.0 468.6a 491.0 2.0% 0.0 0.0 <1 −18% −21% −23% 7% 3% 0%
a18 6 12 715.2 659.3 638.8 924.4 586.6a 670.1 1.2% 0.0 0.0 <1 −23% −29% −31% 22% 12% 9%
a19 6 15 796.9 767.2 751.5 964.1 750.9a 781.3 1.6% 0.0 0.0 <1 −17% −20% −22% 6% 2% 0%
a20 6 18 778.8 717.6 674.6 1005.7 601.7 743.3 3.3% 0.0 0.1 <1 −23% −29% −33% 29% 19% 12%
Average 2.0% 0.0 0.0 − −19% −24% −26% 14% 7% 4%

aOptimal solutions provided by Abdulkader et al. (2018).

tests, we randomly selected the parameter β in the interval [0.45, 0.75]. The number of parallel
runs was fixed with 64 (each run using a different seed for the pseudo-random number generator).
For each instance, a total of 10 repetitions were performed in order to collect statistical data. The
performance of the heuristics was measured by means of the percentage gap between the best-found
solution using that methodology, that is, the one with the lowest cost value, and the best-found
solution obtained with the alternative solution methodology. Thus, the lower the gap is, the better
the performance of the method is. The solution cost is given in travel time (in minutes). The entire
algorithm was coded in Java and the tests were performed on an Intel Core i7-8550U processor with
16 GB of RAM.

Table 1 presents the results obtained by our BR heuristic (BRLH) on the set of small-sized
instances. Our results are compared with those obtained by the two approaches proposed by Ab-
dulkader et al. (2018), that is, the two-phase heuristic (AH) and the metaheuristic (MAC), besides
the results obtained by the BRLH when only a single thread/run is available (BRLH′). A different
BRLH version was similarly considered by allowing the method to generate solutions during a
limited amount of time and then returning the best-found solution when this stop criterion is met
(BRLH′′). For each instance, the following information is provided: the solution cost obtained by
the different methodologies (BRLH′, BRLH, BRLH′′, AH, MAC), the average cost, and percentage
standard deviation (%SD) of our results, the CPU time (in seconds) required by each methodol-

C© 2020 The Authors.
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ogy, and their gaps. While negative gaps between methods A and B (A–B) correspond to worse
solution costs obtained by solving methodology A, positive gaps correspond to better solutions
obtained by method A. Since BRLH′ differs from BRLH only in the number of parallel runs,
their CPU time is aggregated in a single column. In the case of BRLH′′, the maximum execution
time was set to five seconds. According to Abdulkader et al. (2018), the CPU time required by
both AH and MAC methods to generate the solutions was less than one second. Nevertheless,
we have freely implemented the AH heuristic in order to collect the CPU time in our machine
environment, which is less powerful than their one. When comparing our solution method with
those proposed by Abdulkader et al. (2018), we are able to find results, on average, 24% better
than the AH, column gap (4-2), and 7% worse than the MAC, column gap (5-2). In terms of
CPU time, our results are quite competitive mainly when compared with the ones from the AH
method, which require the same computational time but are significantly worse. Although our
method requires basically the same CPU time as MAC for solving these small instances, this is
not the case when larger sized instances are considered, in which MAC time is orders of magni-
tude larger than the one requested by our BRLH. Comparing with the optimal solutions provided
by Abdulkader et al. (2018), our methodology is able to find four optimal solutions. By allow-
ing five seconds during the execution of our methodology, the resulting BRLH′′ is able to find
six optimal solutions and five near-optimal solutions (solutions up to 1% worse than the optimal
ones), column gap (5-3), being only 4% worse than the MAC results, and 26% better than the AH
results, column gap (4-3). Analyzing the single thread version of our BRLH, its results are, on
average, 14% worse than MAC, column gap (5-1), but approximately 19% better than the alterna-
tive AH heuristic, column gap (4-1). Regarding the variance of our results, the average standard
deviation is 2%.

Another characteristic that directly influences the performance of our methodology is the number
of threads, that is, its number of parallel runs. Therefore, in order to verify the behavior on different
hardware settings that are characterized by a different number of threads, our BRLH was tested on
settings consisting of 1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, and 4096 threads. Figure 5 presents
the convergence of the solutions when compared with the MAC solutions. By increasing the number
of threads, our methodology is able to find up to nine optimal solutions when using more than 1024
threads, achieving a positive average gap of 3.6%.

Due to the satisfactory performance of our BR approach in small-sized instances, the BRLH
was also tested in solving large-sized instances. Apart from the approximation methods (AH and
MAC) proposed by Abdulkader et al. (2018), our results are compared with those obtained by the
deterministic version of our heuristic (LH). Tables 2–4 present the obtained results on inventory
scenarios of tight, relaxed and abundant, respectively.

Now, this first analysis aims to quantify the improvement when employing the use of agile
optimization in the deterministic version of our proposed methodology. As we can see in column
gap (1-3) of Tables 2, 3 and 4, which compares our both methodologies, with the use of agile
optimization, the resulting heuristic is able to improve its deterministic version at between 8% and
11%, without increasing the required CPU time. This particularity of our methodology, which
refers to parallel executions of BR algorithms, allow us to generate multiple alternative solutions
in the same clock time. Comparing the results obtained by LH with those produced by the two-
phase heuristic, column gap (5-1), our results are between 12% and 16% better even without
considering any stochasticity in the search-guidance process. When comparing the results generated
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Fig. 5. Comparison between BRLH and MAC on solving small-sized instances with a different number
of parallel runs.

by our BRLH with those generated by the AH methodology, column gap (5-3), our approach
can improve at least 19% of the solutions on abundant inventory scenario and between 24% and
25% on the remaining ones. Now, comparing the BRLH results with the best-known solutions,
column gap (6-3), our results are at most 18% worst on average (considering all the solutions).
However, the average CPU time required by the MAC is hugely more extensive than ours, which
does not represent a suitable time for our application context that requires solutions in extremely
short computational times. Note that for some instances, MAC is able to generate noticeable better
solutions in reduced computing times (less than a minute). However, this is only the case for small
instances. In the abundant inventory scenario, our methodology is only 9% worse, being able to
find a new best solution for instance b42. When comparing the BRLH′ results, its performance
is, on average, 24% worse than MAC, column gap (6-2), but approximately 19% better than the
AH heuristic, column gap (5-2). Regarding the BRLH′′, an average improvement of about 5%
is achieved, when comparing against MAC, column gap (6-4), with respect the BRLH, column
gap (6-3). Regarding the variance of our results, the average percentage standard deviation varies
from 1.2% to 1.5%. Additionally, all the average values are below the solution cost obtained by
the AH heuristic. These last two analyses allow us to certify the robustness of our proposed
methodology, which is capable of generating good solutions with a small variance of the cost of
the solutions.

Figures 6 and 7 present the convergence of BRLH large-sized instances solutions when comparing
with the methodologies of AH and MAC, respectively, for each inventory scenario. As we can see,
the convergence behavior is similar for all inventory scenarios when comparing with both solution
approaches (AH and MAC). By increasing the number of threads, our methodology is able to
reach up to 27% of improvement when comparing with AH, being only 8% worse than MAC’s
results.
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Fig. 6. Comparison between BRLH and AH on solving large-sized instances with a different number of parallel runs.

Fig. 7. Comparison between BRLH and MAC on solving large-sized instances with a different number of parallel runs.

6. Conclusions

In this paper, we proposed a BR algorithm to solve a 2E-VRP. In our case, this problem is motivated
by the distribution of drugs with drones in disaster situations, where the affected areas might become
no longer accessible by conventional cargo vehicles. This might be the case in rescue operations in
humanitarian logistics, where every second can be decisive to save lives. Therefore, our methodology

C© 2020 The Authors.
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must be able to provide good solutions in a very short computational time. The concept of agile
optimization was introduced in order to meet this goal.

As results show, the use of BR techniques together with parallel computing is able to improve
about 10% the solutions of the deterministic version of our heuristic, without increasing the required
wall-clock time. This is an attractive characteristic of the proposed approach, which allows us to
take advantage of the current devices, which are more and more efficient nowadays.

In general, our methodology showed to be very competitive when solving both small- and large-
sized instances. At this point, we contrast with the alternative solution methods that are efficient
but require high computational times to provide high-quality solutions. In both set of instances,
small- and large-sized, we were able to find results in real-time (within milliseconds) that were
quite close to the best-known solutions. Particularly, in the abundant inventory scenario of large-
sized instances, our methodology was able to generate a new better solution than the best-known
solution. Increasing the number of parallel threads, the performance of our BR heuristic is even
better. However, it is a limitation that depends on hardware settings.

Future works include reacting to unexpected events during the planning of the routes, such as
to include new emergency locations, to consider the unavailability of stock caused, for instance,
by the expansion of the disaster, etc. However, changes in the problem formulation are required
in order to deal with this dynamic information and to propose an efficient solution methodology.
When incorporating new information, our methodology becomes capable of dealing with the world
dynamism, which is continuously changing and being affected by external circumstances and events.
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