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1 Introduction

This document describes a theoretical proposal for creating an Automated Vir-
tual Data Integration system (AVDIS) based on current solutions. The proposed
AVDIS aims to solve or mitigate the main problems derived from data integra-
tion in data-intensive domains such as Genomics.

The methodology used to develop the research work is the Design Science Re-
search Methodology for Information Systems [17]. The selected DSRM involves
a rigorous process to design artifacts to solve observed problems, make research
contributions, evaluate the designs, and communicate the results to appropriate
audiences. It consists of six activities: Problem identification and motivation,
Define the objectives for a solution, Design and development, Demonstration,
Evaluation, and Communication.

Since the result of this research work is to propose a theoretical approach,
this document describes the following activities: problem identification and mo-
tivation, the definition of the objectives for a solution, and the design of the
solution. Therefore, after this introduction, Section 2 is focused on describing
the main problems found when integrating data based on the experience of the
PROS Research Center in the management of genomic data. Section 3 describes
the related works or proposals that try to address the problems found in data
integration. Section 4 describes the fundamental constructs required to design
a Virtual Data Integration System (VDIS) according to the tasks that must be
supported by the system. Section 5 describes the proposed framework for au-
tomating as much as possible these tasks and constituting the main result of this
research work, the AVDIS framework. The document ends with the conclusions
of the resulting research work.



2 Problem Statement

Genomic data management implies collecting, integrating, and querying many
data sources with different data schemas, quality, and formats. To deal with
genomic data, the PROS Research Center created the Delfos platform. Delfos
is made of four modules whose main tasks are to extract and integrate data
from different genomic repositories (Hermes module), evaluate the quality of
the genomic data and select high-quality information (Ulises module), store the
results in a database (Delfos module), and perform queries over the data (Sibila
module). The pipeline of the Delfos platform to manage genomic data is shown
in Fig. 1.
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Figure 1: Data management pipeline of the Delfos platform.

The process starts by performing a set of pre-defined queries over different data
sources using their available API/REST services. Once the data is retrieved
from the data sources, each dataset is transformed into a common format (the
Conceptual Schema of the Genome). After normalization, every element of each
dataset is compared to the elements of the other datasets to determine which
ones represent the same real-world entity. Finally, records are merged and
conflicts solved obtaining a single and integrated dataset. Once the integrated
dataset is obtained, a set of quality rules are applied to measure the quality
of each record. Then, a threshold is applied to obtain a filtered dataset with
high-quality results. This dataset is stored in the Delfos database (a relational
SQL database) that the user can query using the query system provided by the
Sibila module.

Although the Delfos platform has been satisfactorily used to manage genomic
data in multiple scenarios, the current approach used by the Hermes module



has some disadvantages and bottlenecks that require a different approach to
improve its efficiency and scalability.

Nowadays, data is extracted from the sources through a set of wrappers
specifically developed for each repository that uses the API/REST connections
provided. The advantage of this approach is that the retrieved data is always up-
to-date, the space required by the system is low since no source data is stored
locally, and only a subset of the source data is retrieved. Nevertheless, the
functionality of the system depends on the internet connection, the availability
of the service when the data source is queried, and the amount of data allowed to
be downloaded. Additionally, each time a new database is added to the system,
a new wrapper must be implemented along with the set of pre-defined queries
to extract the required data. This increases the efforts required for maintenance
and reduces the flexibility of the system to perform additional queries.

The normalization step takes the extracted data represented in a specific
format and uses a set of transformers specifically implemented for each reposi-
tory to transform the source schema into the common structure provided by the
Conceptual Schema of the Genome (CSG). This process is conceived to ease the
integration process. Nevertheless, the functionality of the system again depends
on the stability of the data source schema. If the source data schema changes,
the program in charge of transforming the data to the common format fails.
Also, if the CSG changes all the transforming programs affected by the change
must be updated. Additionally, if a data source is added to the system a new
transformation program must be implemented. This requires a deep study of
the source schema, to determine how the different concepts map with the con-
cepts represented by the CSG, and if the original data must be transformed,
which is commonly a very complex and time-consuming process.

When more than one data source is queried, the transformed datasets are
compared to evaluate the entity similarity and remove duplicates. This is a
pairwise process where each element of one dataset is compared to each element
of another dataset. This is feasible for small sets of records and a small number
of datasets. Nevertheless, genomic data is characterized by the huge size of the
datasets and the number of sources to integrate. Therefore, the entity similarity
process is commonly a time-consuming task that constitutes a bottleneck in the
Hermes module that reduces its scalability.

After similar entities are identified, they are automatically merged. Genomic
data sources are commonly of different quality and trusted data should come
from more accurate sources. Furthermore, genomics data are dynamic and often
evolve over time, and some data sources can copy from each other so errors can
be propagated quickly. Hermes is not currently able to solve all the conflicts
that may appear, and a manual repair process must be done in most cases to
obtain the integrated dataset.

Considering the mentioned problems, a new approach is required for the
Hermes module to:

e Avoid system dependence on internet connections and API/REST ser-
vices.



e Generalize the implementation to reduce the maintenance and implemen-
tation process required by wrappers and transformation programs.

e Improve the system’s flexibility to perform different types of queries.

e Improve the adaptability of the system to changes in the source schema
or the CSG.

e Ease the addition of new sources to the system.
e Improve the entity similarity evaluation and the integration processes.
e Improve the conflict-solving process.

To avoid Hermes depending on the connection to the API/REST services
provided by the data sources, the source data must be locally available to be
queried at any time. This reduces the currency of the data and increases the
storage size as long as new sources are required. Nevertheless, avoids crashes
and problems when retrieving huge datasets from the web. API and REST
services must be used only for those repositories that do not allow downloading
the complete content of their database.

To ease the addition of new sources, improve query flexibility, and reduce
the maintainability efforts, a virtual data integration approach can be helpful.
Virtual data integration systems rely on data as they are in their original sources,
build an intermediate infrastructure to provide virtual data integration, and
provide means to retrieve data at query time [9]. Following an incremental
approach can allow adding new sources to Hermes without affecting the already
existing ones.

To obtain the integrated dataset, Hermes can benefit from using an incre-
mental record linkage approach based on clustering techniques to reduce the
number of entities to be compared when measuring similarity. Finally, to im-
prove the conflict-solving process Hermes must consider data fusion techniques
that evaluate the accuracy, the freshness, and the dependence of the sources.

3 Related Works

Data integration encompasses three main tasks: schema integration, record link-
age, and data fusion. Much literature and solutions have been produced for each
of them but in an isolated manner. For schema integration, the most up-to-date
work is the one proposed by [9]. In this work, the authors propose a virtual
data integration system based on a bottom-up approach, where the structure
of the source schemas is extracted from the datasets and generates a globally
integrated schema. The authors also provide a fully automated and open-source
tool. This approach avoids the possibility of having a conceptual model of the
domain as the target schema. This is interesting when a domain conceptual
model is not known and an approximation is required to be built from the data.
Nevertheless, if the domain conceptual model is known and the sources need to



be integrated following the structure of this target schema to ensure semantic
integrity the approach does not provide a solution. The platform proposal pre-
sented in this document is based on this approach but extended to provide the
possibility of considering the domain conceptual model to ensure the semantic
quality of the data.

Record linkage and data fusion solutions are mainly focused on providing
algorithms such as the ones compared by [16] and [15]. These algorithms are
not fed with domain information, which means that it is quite complicated to
resolve data conflicts considering the characteristics of the data sources such as
currency, dependency, or reliability. The platform proposal presented in this
paper complements the schema integration with the record linkage and data
fusion tasks to provide an already treated dataset to the user as an answer to
the question performed over the system. It also includes domain knowledge
information about the data to improve performance and results during record
linkage and data fusion.

4 Virtual Data Integration System

As depicted in Fig. 2, a Virtual Data Integration System (VDIS) needs to
perform three levels of tasks [7,9]:

e Schema integration: First, a VDIS needs to resolve heterogeneity at the
schema level by establishing semantic mappings between the contents of
disparate data sources.

Incremental Record linkage: Second, a VDIS needs to resolve heterogene-
ity at the instance level by detecting records that refer to the same real-
world entity.

Data fusion: Third, a VDIS needs to combine records that refer to the
same real-world entity by fusing them into a single representation and
resolving possible conflicts from different data sources.
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Figure 2: Three levels of data integration in VDISs.

Schema integration and record linkage aim at removing redundancy and increas-
ing the conciseness of the data. Data fusion aims at resolving conflicts in data
and increasing the correctness of data [7].



4.1 Schema Integration

Schema integration for a VDIS must support flexible and on-demand extraction
of schemata from the sources and homogenization and integration into a global
schema [9]. Since schema integration and ontology integration areas have much
in common, the knowledge from both areas is combined to define an approach
for enabling schema integration. The general workflow of the schema integration
level covers the following main tasks [15]:

e Pre-processing: Since schemas are commonly expressed in different lan-
guages, a normalization step is necessary to translate them from one lan-
guage or formalism into a uniform representation without changing their
semantics.

e Schema matching: It generates correspondences between schemas, i.e. re-
lationships between one or more elements of one schema and one or more
elements of the other [2].

e Schema merging: It merges the input schemas into an integrated global
schema.

e Post-processing: It evaluates, repairs, and refines the resulting schema
by checking its consistency, and coherence, resolving its cycles and its
coherence and conservativity violations, and pruning its redundancies [15].

Having a conceptual model representing the knowledge to be integrated reduces
the tasks required during the schema integration. For example, the Conceptual
Schema of the Genome (CSG) constitutes a unified and verified global repre-
sentation of the genomic data. Therefore, the schema merging task and the
post-processing task are not required because there is enough knowledge about
the domain, and a new data schema is not needed. Only the mappings between
the source schemas and the CSG are required. If no domain schema is available,
the Schema merging and the Post-processing tasks are required to generate an
integrated model from the sources.

4.2 Incremental Record Linkage

Data sources may contain different, complementary, or additional information,
which together can provide more complete information. The goal of incremental
record linkage, also known as entity resolution, is to identify records that refer
to the same logical entity across different data sources. Incremental record
linkage procedures are needed when data sources cannot be linked via a unique
identification number and the remaining attributes of the entities must be used
[8].

Record linkage can be seen essentially as a clustering problem, where each
cluster contains records that correspond to a single distinct real-world entity [10]
and which general workflow has three main tasks:



e Blocking: This task aims to reduce the number of record pairs to be
compared by building an index or block key for each record. More details
about blocking techniques can be found in [5,16,19].

e Similarity computation: This task compares records of the same block
according to a set of matching rules and creates a similarity graph where
each node represents a record and each edge represents the similarity be-
tween two records. The similarity graph can be simplified by omitting
edges whose similarity is below a threshold.

e Graph clustering: This step clusters the nodes according to the results of
the similarity graph.

4.3 Data Fusion

Data fusion refers to resolving conflicts from different sources and finding the
truth that reflects the real world increasing the correctness of the integrated data
[8]. There are two types of data conflicts: uncertainty and contradictions [3,7].
Uncertainty is caused by missing information (null values or missing attributes
in a source) and contradiction is caused by different sources providing different
values for the same attribute of a real-world entity. These, are the two main
tasks that conform to the general workflow related to data fusion.

Conflicts can be ignored, avoided, or resolved. The approach presented
in this document proposes a conflict resolution strategy to reduce as much as
possible the production of inconsistent results when performing system queries.



5 A framework for Automating the Tasks of a
VDIS

In order to automate as much as possible the data integration process, each
of the three levels of tasks constituting the VDIS depicted in Fig.2 (Schema
Integration, Incremental Record Linkage, and Data Fusion) must be detailed to
specify the tasks to be performed and how they can be automated. Additionally,
the VDIS must have a Rewriting System to translate the user queries over the
global schema into queries over the corresponding data sources.
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Figure 3: VDIS constructs.

As shown in Fig.3, the Schema Integration level can be divided into the Pre-
processing and Schema Matching tasks, the Incremental Record Linkage level
can be divided into the Graph Clustering, the Similarity Computation, and the
Blocking tasks, and the Data Fusion level can be divided into the Uncertainty
Resolution and Conflict Resolution tasks.

5.1 Automating Schema Integration

The schema integration pipeline depicted in Fig.4 is based on the approach
proposed by [9]. The pipeline is divided into the Pre-processing, the Schema
Matching, and the Wrapper Generation tasks.

5.1.1 Pre-processing Task

The schema integration process starts with the pre-processing of the data and/or
meta-data associated with the data sources to be queried. Source data are com-
monly expressed in different formats (e.g., XML, JSON, CSV). Therefore, boot-
strapping and normalization tasks are necessary to infer the schemas from the
data sources and translate them from one language or formalism into a uniform
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Figure 4: Schema integration pipeline.

representation (or canonical data model) without changing their semantics. To
such an aim, [9] suggests representing the source schemas as typed graphs ac-
cording to a set of metamodels, one metamodel for each type of data source
format to be translated. As an example, Fig.5 shows the metamodel used to
create typed graphs from JSON data according to [9]. The XML and CSV
metamodels can be found in Appendix A.

JSON Metamodel

Key hasValue DataType
name: String 1 1
hasKey Disjoint
Document hasValue Object Primitive Array
name: String 1 | name: String name: String
Disjoint
Number Boolean String
value: Number value: Boolean value: String

Figure 5: Metamodel used to represent JSON data. Adapted from [9].



The canonical schema can be represented as a Resource Description Framework
Schema (RDFS) according to another metamodel, as depicted in Fig.6.
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Figure 6: RDFS metamodel used to represent a canonical schema [9].

More details about the transformation rules required to build the RDFS graph
can be obtained from [9]. An example of the different schemas generated from
XML, JSON, and CSV data can be found in Appendix B.

At the end of the pre-processing task, the data from the data sources are
normalized and a canonical schema from each data source has been generated.

5.1.2 Schema Matching Task

Once the canonical schemas are generated, the next stage is identifying semantic
correspondences between elements of the canonical schemas and the unified
representation of the domain (e.g., the Conceptual Schema of the Genome).
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The schema matching process takes as input the set of schemas to match coming
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from the pre-processing task, and the specification of the global schema, and
returns a set of correspondences between entities (classes and attributes) which
constitutes an alignment. Fig.7 shows the specification of a global schema that
will be used as a running example.

The matching task can rely on measuring the similarity between entities
by combining three different metrics related to syntactic, semantic, and struc-
tural similarity [4]. Each correspondence commonly has as components the
unique identifier of the correspondence, the members of the correspondence, the
expressions required to express complex relations and transformations, and a
confidence measure assigning a degree of trust in the identified relation [15].
Correspondences can be described using EDOAL! (Expressive and Declarative
Ontology Alignment Language). Finally, a threshold is applied to the confidence
measure to determine the correspondences that will be included in the align-
ment. A simplified alignment between the JSON example of Appendix A and
the global schema of Fig. 7 can be found in Appendix C. Once the alignment
is finished, an integration graph containing the mappings between the source
schemas and the global schema is created.
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Figure 8: Example of integration graph.

Fig. 8 shows the integration graph resulting from the matching between the
examples of Appendix A and the global schema shown in Fig. 7.

Lhttps://moex.gitlabpages.inria.fr/alignapi/
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5.1.3 Wrapper Generation Task

The Wrapper Generation task consists of creating the programs that allow re-
trieving data from the sources. Following a Local as View (LAV) strategy, each
local schema is described as a function over the global schema, describing which
data of the global database are present in each source [13]. This strategy al-
lows adding sources to the system independently of other existing sources. The
wrappers translate queries over the global schema into requests understood by
specific data sources. The role of the wrappers is to allow the global schema to
see each data source as relational, no matter which actual format it uses [1].

JSON SCHEMA _ ~ -~ - - GLOBAL SCHEMA XML SCHEMA

Figure 9: Example of how wrappers cover different parts of the global schema
in an integration graph.

Fig. 9 shows how three wrappers cover different parts of the global schema in
the integrated graph. More details about the implementation of the wrappers
can be found in [1,13,14].

5.2 Automating Incremental Record Linkage

The Incremental Record Linkage is executed after a user executes a query on the
VDIS. The result of this query is a dataset containing the integrated data coming
from the sources and represented according to the global schema. The Incre-
mental Record Linkage pipeline depicted in Fig.10 is divided into the Blocking,
the Similarity Computation, and the Graph Clustering tasks.

5.2.1 Blocking Task

The record linkage process starts with an indexing technique commonly called
blocking, which splits the datasets into non-overlapping blocks, such that only
records within each block are compared with each other [5]. To such an aim,

12
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Figure 10: Incremental record linkage pipeline.

a classical blocking approach can be used since the description of the domain
knowledge is provided by the global schema (i.e., the CSG).

To build the blocks, a set of rules must be defined so an index or blocking
key is assigned to each record. This step requires domain knowledge to select
the most appropriate blocking keys. In this case, the CSG may contain the
definition of which attributes are required to identify an entity univocally or
they can be defined during the specification of the CSG by the domain expert.
For example, the set of rules to define the blocking keys for each entity of
the global schema shown in Fig. 7 could be R1 : gene — symbol and R2 :
location — chromosome U start U end. R1 defines symbol as the attribute used
as the blocking key for each gene entity and R2 defines the union of attributes
chromosome, start, and end as the blocking key to identify each location entity.

The blocking key can be based on a single record field (attribute), or the
concatenation of values from several fields. To overcome errors and increase
accuracy, several blocking keys based on different record fields can be generated
(i.e., blocking schema). For example, given a dataset corresponding to the
integration of the data sources described in Appendix B, the blocking schema S
used to index each record is defined as S — {R1, R2}. Matching records have
at least one blocking key in common and will be inserted into the same block
as shown in Fig. 11.

It is crucial that this calculation be scalable since it must be checked for all
pairs of records. When all records are indexed with their corresponding blocking

13



Record Fields Blocking Schema
ID | symbol alias_symbol chromosome | start end R1 R2
ID1 | AARSD1 MGC2744, AlaXp AARSD1
ID2 | PSEN1 14 73136417 | 73223691 PSEN1 14-73136417-73223691
ID3 | AARSD1 MGC2744, AlaXp AARSD1
ID4 | AARSD1 17 42950525 | 42964453 AARSD1 17-42950525-42964453
Block 1 Block 2 Indexed Data Structure
ID R1 R2 ID R1 R2 AARSD1 PSEN1
ID1 | AARSD1 ID2 | PSEN1 14-73136417-73223691 l
v
ID3 | AARSD1 D1 I'DZ |
ID4 | AARSD1 17-42950525-42964453 D3
D4

Figure 11: Example of blocking keys and how records are indexed and dis-
tributed in blocks.

keys, they are inserted into appropriate index data structures.

5.2.2 Similarity Computation Task

After blocking, all entities of a block are pairwise compared with each other. For
each entity pair, the similarity of their attribute values is calculated according
to a set of matching rules that specify the required minimal similarity for the
considered attributes. For example, using the blocks obtained in the example
of Fig. 11, for each pair of records r; and r;, some similarity rules could be
SR1 : rj.symbol == rj.symbol, SR2 : rj.chromosome == r;.chromosome,
SR3 : ri.start == rj.start, and SR4 : r;.end == rj.end. Therefore, the
similarity measure of each pair of records could be the sum of the similarity
rules. This step requires domain knowledge to define the similarity rules. The
similarity values are used in the following clustering step to decide whether or
not a pair of entities match.

The output of this task is the set of matching entity pairs together with a
similarity value per link. This output is stored as a similarity graph (see Fig.
12) where entities are represented as vertices and match links as edges [18].

Cluster 1
Block 1 //,Inn\\‘
Record 1 | Record 2 | Similarity [ .@ .@
ID1 ID3 4 Cluster 2

\
ID1 1D4 1 & y
ID3 1D4 1 " ’

Figure 12: Example of similarity graph and clusters for entities in block 1.
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5.2.3 Graph Clustering Task

Clustering algorithms typically try to group entities such that the similarity
between entities within a cluster is maximized while the similarity between
entities of different clusters is minimized [18]. Each cluster is represented by
a cluster graph with the clustered entities and intra-cluster similarity links. In
this work, we propose using the CLIP algorithm [18] for the graph clustering
stage. An example of the clusters created for block 1 is shown in Fig. 12.

5.3 Automating Data Fusion

Once the integrated data is clustered, the next level is to solve the conflicts
between the entities of each cluster to get a single merged entity. As shown in
Fig. 13, the Data Fusion pipeline is divided into the Uncertainty Resolution
and the Conflict Resolution tasks.

Level 3: Data Fusion

( Uncertainty Resolution )
{eHer {eHer {o¥ey
Exact Subsumed Complementary
Fusion Fusion Fusion
Conflict Resolution
e e———— @ PR
23 L
Merged Conflict Conflict
dataset Resolution Rules
. J

Figure 13: Data Fusion pipeline.
Once each cluster is processed, the results are joined to obtain the final dataset.

5.3.1 Uncertainty Resolution Task

Uncertainty resolution is based on solving the presence of null values or missing
attributes in one source. At this stage, the entities are represented according
to the global schema, which means that the missing attributes in a source are
represented as null values. Therefore, the strategy to solve uncertainty can focus
on solving the following scenarios [3]:

e Presence of exact tuples which requires identifying those entities having
the same values in all of the attributes.

e Presence of subsumed tuples, i.e. tuples having more null values.
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e Presence of complement tuples, i.e. tuples with null values and not con-
tradictions.

The challenge in solving uncertainty is how to resolve these conflicts efficiently
and in a meaningful way. To such an aim, relational attributes such as join and
union have been traditionally used. The presence of exact tuples is basically
a redundancy-solving problem. For example, the full disjunction operator is a
variation of the join operator that maximally combines tuples from connected
relations while preserving all information in the relations [6].

Name Age | Room
Alice 23 A764
Charles | 32 S432

Alice 23
Alice 23 | AT764

W N =

Table 1: Example dataset with duplicated records.

The result of applying full disjunction to Alice records in table 1 would be the
first record. This operator solves the presence of subsumed and complement
tuples while preserving uniqueness.

5.3.2 Conflict Resolution Task

Conflicts or contradictions are caused by different sources providing different val-
ues for the same attribute of a real-world entity. Solving contradictions requires
considering the accuracy, the freshness, and the dependence of the sources. This
information is domain-dependent which means that requires expert knowledge
to define the conflict rules and information about the source of each record.

Name Age | UserID | online_time | Department | Source
1 | Alice 23 A764 1:02:33 D1 Source_1
2 | Charles | 32 S432 4:20:02 D2 Source_2
3 | Charles | 32 S432 4:20:02 D3 Source_3
4 | Alice 23 A764 2:02:46 D1 Source_4

Table 2: Example of a dataset with conflict records.

The conflict rules define the actions to be performed in the following scenarios:

e The conflict requires computing a new value (e.g., max, min, merge, or
join). In this case, the formula to compute the new value is required. For
example, when merging Alice records in table 2, a rule for the value of the
online_time column could be online_time = MAX (online_time) and the
result would be record 4.

e The conflict requires selecting one of the provided values according to the
priority of the sources. For example, when merging Charles records in
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table 2, if source 3 has more accurate data for a user department a rule
for the Department column could be Department = Department WHERE
Source == “Source_3” and the result would be record 3.

At the end of this task, the dataset is ready to be sent to the user as a result of
the performed query.

5.4 Rewriting System

The user interacts with the VDIS by executing queries over the global schema
and getting the corresponding answers. To achieve this functionality, user
queries must be translated into a set of specific queries over the sources, con-
sidering the particular data schema of each source. Therefore, the system must
provide the required rewriting algorithms. Examples of rewriting algorithms
can be found in [11,12].

The Rewriting System uses the wrappers created during the Wrapper Gener-
ation stage to extract the required data from the sources. After the Incremental
Record Linkage and the Data Fusion levels, the data is returned to the user as
the answer to the query.

6 Conclusion

Genomic data management implies collecting, integrating, and querying many
data sources with different data schemas, quality, and formats. To deal with ge-
nomic data, the PROS Research Center created the Delfos platform. Although
the Delfos platform has been satisfactorily used to manage genomic data in
multiple scenarios, the current approach used by the Hermes module has some
disadvantages and bottlenecks that require a different approach to improve its
efficiency and scalability. To ease the addition of new sources, improve query
flexibility, and reduce the maintainability efforts, a virtual data integration ap-
proach can be helpful. To obtain the integrated dataset, the platform can
benefit from using an incremental record linkage approach based on clustering
techniques to reduce the number of entities to be compared when measuring
similarity. Finally, to improve the conflict-solving process the platform must
consider data fusion techniques that evaluate the accuracy, the freshness, and
the dependence of the sources. To ensure its usefulness and applicability, the
entire process must be as much automatic as possible.

Based on the current state of the art, this document describes a theoretical
proposal for creating an Automated Virtual Data Integration system (AVDIS).
The proposed AVDIS aims to solve or mitigate the main problems derived from
data integration in data-intensive domains such as Genomics.
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Metamodels to build typed graphs from JSON,
XML, and CSV data

JSON Metamodel

Key hasValue DataType .
name: String 1 1

hasKey Disjoint

Document hasValue Object Primitive Array

name: String 1 | name: String name: String
Disjoint
Number Boolean String
value: Number value: Boolean value: String

Figure 14: Metamodel used to represent JSON data. Adapted from [9].
XML Metamodel

) DataType
Key | g hasValue yp
haskey name: String 1
hasAttribute Diskeint
Document hasValue Object Primitive
name: String 1| name: String
Disjoint
Number Boolean String
value: Number value: Boolean value: String

Figure 15: Metamodel used to represent XML data.

CSV Metamodel
Key hasValue
Primitive
name: String 1
hasKey
Disjoint
Document hasValue Object Number Boolean String
name: String 1| name: String value: Number value: Boolean value: String

Figure 16: Metamodel used to represent CSV data.
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B Example of data transformation into canoni-
cal graphs

JSON_Example.xml Typed Graph RDFS Graph
H JSON_Example o '
Ht Document e 1
. " ", Nl H
' ‘gene™: { v ooman !
i "symbol": "AARSD1", [ '
. "y PR " 01 Nl H
H "alias_symbol": [ i :
: MGC2744", naskey i Range ;
' "AlaXp” ‘gene o o '
H 1 Key e :
H } hasvalue . omsin—Datai——Dona 1
el P e [ e e ]
H i ! '
H i ) e Kl 1
' Key Key ey i H
' vsfae vastoe [ :
H v ¥ e H
: mm._.[ stng ]‘_mv.m._[ Al ] " :
: aray e H
b : IR ;

Typed Graph RDFS Graph
H XML_Example a '
. : : -
1 <gene symbol="AARSD1" location="17G21.31"> } st . o |
1 <alias_symbol> v !
H <symbol> MGC2744 </symbol> o :l Range. Range H
H <symbol= AlaXp </symbolS Object . 9 o :
t <lalias_symbol> s [ l o l !
1 <lgene v v :
I ne 02 I A '
: el an J it e e e )
H S N ey i oaten coan Dotan '
: ¢ P F . I | i :
; ()= ) M)l [ ) Joom ]
: m{m mln, nas%m o aehge aonge '
| == =04 = =
H T T . 1
et ey Y oomain
: na,mb.[ g ]H,mh[ oo ] o R :
' I |

CSV_Example.csv Typed Graph RDFS Graph
: 'CSV_Example’ " : H
: Document . !
H hastae i :
H P H
! symbol chrom  start end o1 H o H
1 AARSD1 17 42950525 42964453 Object v !
| H ooman omar 1
: wlo - o M i . :
: v ) v ) : [ symoa ][ avom ][ st ][ ena ]
H o enrom S - v :
: ) | - - :
: T ‘ ‘ v Range Range !
: nasvalve nasvaue nasvaive hasvae 1 4 H
| i e

Figure 17: Example of the different schemas generated from data in JSON,
XML, and CSV formats.
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C Simplified example of an alignment using EDOAL

<align:Alignment>
<align:level>2EDOAL</align:level>
<align:ontol>
<align:Ontology rdf:about="JSON_Canonical_Schema"></align:0Ontology>
</align:ontol>
<align:onto2>
<align:Ontology rdf:about="Global_Schema"></align:0Ontology>
</align:onto2>
<align:map>
<align:Cell>
<align:entityl><edoal:Class rdf:about="JSON_Canonical_Schema#gene"
/></align:entityl>
<align:entity2><edoal:Class rdf:about="Global_Schema#gene"
/></align:entity2>
<align:relation>=</align:relation>
<align:measure rdf:datatype="&xsd;float">1.0</align:measure>
<edoal:transformation>...</edoal:transformation>
<edoal:linkkey>...</edoal:linkkey>
</align:Cell>
</align:map>
<align:map>
<align:Cell>
<align:entityl><edoal:Relation
rdf :about="JSON_Canonical_Schema#gene;symbol"
/></align:entityl>
<align:entity2><edoal:Relation
rdf : about="Global_Schemat#gene;symbol" /></align:entity2>
<align:relation>=</align:relation>
<align:measure rdf:datatype="&xsd;float">1.0</align:measure>
<edoal:transformation>...</edoal:transformation>
<edoal:linkkey>...</edoal:linkkey>
</align:Cell>
</align:map>
<align:map>
<align:Cell>
<align:entityl><edoal:Relation
rdf :about="JSON_Canonical_Schema#gene;alias_symbol"
/></align:entityl>
<align:entity2><edoal:Relation
rdf :about="Global_Schematigene;alias_symbol" /></align:entity2>
<align:relation>=</align:relation>
<align:measure rdf:datatype="&xsd;float">1.0</align:measure>
<edoal:transformation>...</edoal:transformation>
<edoal:linkkey>...</edoal:linkkey>
</align:Cell>
</align:map>
<align:Alignment>
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