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Abstract

Many supply chains are composed of producers, suppliers, carriers, and customers. These agents

must be coordinated to reduce waste and lead times. Production and distribution are two essential

phases in most supply chains. Hence, improving the coordination of these phases is critical. This

paper studies a combined hybrid flow-shop and vehicle routing problem. The production phase is

modeled as a hybrid flow-shop configuration. In the second phase, the produced jobs have to be

delivered to a set of customers. The delivery is carried out in batches of products, using vehicles

with a limited capacity. With the objective of minimizing the service time of the last customer,

we propose a biased-randomized variable neighborhood descent algorithm. Different test factors,

such as the use of alternative initial solutions, solution representations, and loading strategies, are

considered and analyzed.

Keywords: hybrid flow-shop problem, vehicle routing problem, biased randomization,

metaheuristics

1. Introduction1

In most supply chains, there is an increasing need to coordinate the efforts of suppliers, pro-2

ducers, and carriers to efficiently deliver products to customers, so that waste and lead times3

are reduced. The production and distributions phases are critical in any supply chain: finished4
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products are transferred from production centers to a warehouse or distribution centers by cargo5

vehicles. In order to enhance the operational performance, both phases need to be considered while6

optimizing operations. Still, due to the complexity of these phases, traditional approaches usually7

consider them as two isolated problems (Chen, 2010).8

In this paper, we offer a more holistic approach by considering the production and distribution9

phases altogether. This is the case, for example, of distributing medical tests or vaccines to local10

health centers –so they can be administrated to the population as soon as possible– while these11

items are being produced, in large quantities, at a central laboratory. Hence, the production phase12

is modeled as a hybrid flow-shop (HFS) environment, while the distribution phase is modeled as a13

vehicle routing problem (VRP). Accordingly, the combined problem can be referred to as a hybrid14

flow-shop vehicle routing problem (HFS-VRP). As shown in Figure 1, in the production phase a15

set J of jobs (items) are processed. Each job has to go through a set S of sequential stages. At16

each stage s ∈ S, a set Ms of parallel and identical machines are available to process the job. Given17

a job j ∈ J , its processing time in stage s ∈ S is given by pjs > 0. Regarding the distribution18

phase, a set C of customers and a single vehicle that makes multiple trips are considered. In each19

trip the vehicle deliveries a batch of jobs. Each job j ∈ J allows to a specific customer c ∈ C and20

occupies a volume of qj > 0, being Q� max
i∈J
{qj} the maximum loading capacity of the vehicle.21

In order to speed up the delivery process, finished items are grouped into batches that can be22

delivered to customers while the production system is manufacturing new ones. In this context,23

the goal is to minimize the total time elapsed since the start of the manufacturing process and24

the delivery of the last customer’s demand, i.e., the makespan of the hybrid problem. In order25

to solve the proposed HFS-VRP, three different and interrelated decisions have to be made: (i)26

determining the job sequence on each machine at the production phase; (ii) assigning the finished27

jobs to a proper batch for deliver; and (iii) determining adequate route for each trip of the vehicle28

in order to deliver jobs to customers.29

To the best of our knowledge, and despite its many applications in supply chain management,30

this is the first time that such a combined hybrid flow-shop and vehicle routing problem has been31

discussed in the scientific literature. To cope with the complexity of the HFS-VRP, we propose a32

biased-randomized variable neighborhood descend (BR-VND) metaheuristic. Additionally, a new33

set of instances, which are based on some well-known benchmark instances of both the HFS and34
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Figure 1: Combined production and distribution operations.

the VRP, are introduced.35

The rest of the paper is arranged as follows: Section 2 provides a short literature review on36

related research. Section 5 describes the proposed BR-VND algorithm. In Section 6, a series of37

computational experiments are preformed. Finally, Section 7 provides the conclusions of the work38

and proposes some open research lines.39

2. Literature Review40

The analysis of combined production and distribution processes has been quite common from41

a tactical and strategical points of view. Hence, many review papers have been published on42

these areas, e.g.: Thomas and Griffin (1996), Cohen and Mallik (1997),Vidal and Goetschalckx43

(1997), Erengüç et al. (1999), Sarmiento and Nagi (1999), Goetschalckx et al. (2002), Chen (2004),44

Meixell and Gargeya (2005), Olhager et al. (2015) and Koç et al. (2017). However, research at the45

operational level is much more recent and scarce, with just a few articles discussing the combination46

of production scheduling and vehicle routing operations (Chen, 2010).47

According to Karaoğlan and Kesen (2017), the integrated production scheduling and trans-48

portation problem can be classified into three categories, depending on the method employed for49

3



sorting the deliveries. The first category consists of simple methods like direct shipping, without a50

routing process: an order, a batch to a single client, or a batch to multiple customers delivered as51

soon as the production process is finished. Examples of the first category can be found in the works52

of Cakici et al. (2014) and Wang et al. (2016). The second category involves fixed transportation53

departure dates with a predetermined departure time for each vehicle, e.g.: Stecke and Zhao (2007)54

and Hajiaghaei-Keshteli et al. (2014). The third category consists of vehicle routing decisions to55

be made, involving the determination of departure times. A complete discussion on the integrated56

production scheduling and distribution operations can be found in Chen and Vairaktarakis (2005),57

Wang et al. (2015), and Moons et al. (2017). Our review will mainly focus on the third category,58

which is also the less studied one in the literature (Karaoğlan and Kesen, 2017).59

Li et al. (2005) considered applications where one manufacturing factory and one delivery pro-60

cess are studied. Two objectives were analyzed: the customer service level and total distribution61

costs. Customer service was studied with two different measures: mean completion time and62

makespan. Dispatching costs included fixed and variable costs, the latter depending on the trav-63

eled distance. The authors proposed several mathematical models and, when the problems could64

not be solved exactly, they proposed heuristic approaches to obtain near-optimal solutions. Li and65

Vairaktarakis (2007) solved a bundling operations problem in which two dedicated machines per-66

form two different tasks of the same job that can be executed in parallel. The job is finished when67

the two tasks are completed. Then, transportation is carried out by various vehicles. Decisions68

to be made are the sequencing of jobs into machines, the number of vehicles for transportation,69

and the routes they have to follow. The objective was to minimize the total cost of transportation70

and the waiting cost of customers. The authors proposed a polynomial-time algorithm and several71

heuristics to solve the problem. Armstrong et al. (2008) considered a single-machine problem in72

which jobs belonging to the same production order must be processed one after the other. Pro-73

duction orders had time windows for delivery, with no inventory allowed between the production74

and the transportation stages.75

Armstrong et al. (2008), Geismar et al. (2008) and Geismar et al. (2011) considered the produc-76

tion and distribution of perishable products, which require avoiding waiting times before delivery.77

Armstrong et al. (2008) have included delivery time windows specified by the customer. Due to the78

limited resources of production and delivery processes, the whole demand cannot be met. Thus,79
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the decision is to select the subset of customers that can be served, such in a way that the total80

satisfied demand is maximized. To solve this problem, the authors proposed a branch-and-bound81

algorithm. Geismar et al. (2008) have included the vehicle routing problem in the decision pro-82

cess. Since this is an NP-hard problem, these authors developed lower bounds that were used by83

a two-phase metaheuristic algorithm. The first phase is a genetic algorithm (GA) that provides a84

local optimum sequence for completing the products of the selected customers. The second phase85

divides the sequence into various subsets and use the Gilmore-Gomory algorithm (Gilmore and86

Gomory, 1961) to order the sub-sequences. Geismar et al. (2011) studied the same problem but87

considering intermediate hubs, which cluster some customers. The objective here was to minimize88

the total cost of production and transportation operations, while respecting the product lifetime89

and delivery capacity of vehicles.90

Farahani et al. (2012) solved a cost minimization problem in the production and distribution91

scheduling of catering foods by employing an iterative hierarchical approach. In the first stage, the92

authors applied an aggregation procedure to create batches of orders with similar characteristics.93

Then, a block planning scheme is proposed to schedule the batches. Next, a heuristic is used to solve94

the delivery problem. Finally, the iterative approach is implemented to coordinate both schedules.95

Condotta et al. (2013) considers a single machine in the production stage, and a given fleet of96

vehicles with limited capacity to deliver final products. Jobs have a due date for delivery, and the97

goal is to minimize the lateness. A tabu search (TS) algorithm was proposed for obtaining partial98

solutions at the production stage. Later, the TS was hybridized with an optimal transportation99

schedule. Hajiaghaei-Keshteli and Aminnayeri (2014) proposed one heuristic procedure and two100

metaheuristics, GA and simulated annealing (SA), to maximize customer service at minimum total101

cost. Their GA obtained the best results, especially as the instance size increases.102

Low et al. (2014) considered the production of a variety of products associated with one cus-103

tomer as a batch. The batches might be delivered immediately after completion, or might be104

grouped with other batches for delivering to the corresponding retailers. An heterogeneous fleet of105

vehicles was considered to minimize total costs. They proposed a mixed-integer linear program-106

ming (MILP) model and two GAs. Kang et al. (2016) solved a real case from a semiconductor107

industry. Constraints, such as job clusters, production costs depending on the job clusters, setup108

costs, and transportation costs of multiple vehicles were considered. The authors proposed a MILP109
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model and a GA to minimize the total cost for large instances.110

Karaoğlan and Kesen (2017) proposed a branch-and-cut algorithm to minimize the makespan111

in the production of a single product with limited shelf life. For delivery purposes, there is only one112

single vehicle with limited capacity. Fu et al. (2017) analyzed the problem with unrelated parallel113

machines and job splitting during the production stage. The transportation stage included delivery114

time windows and the delivery of jobs in batches using heterogeneous vehicles. Two objectives were115

evaluated with the use of an iterative heuristic: the setup costs minimization at the production116

stage and transportation costs for delivery.117

3. Mixed Integer Linear Programming Model of HFS-VRP118

In this section, we propose a MILP model of the HFS-VRP. Firstly, the sets and parameters119

are defined, thence, the decision variables, objective function and constraints.120

Sets:121

J : jobs {1...n}122

S: stages {1...s}123

Ms: machines at stage s ∈ S {1...ms}124

R: trips (deliveries of batches) {1...r}125

C: customers {1...c}126

JCc: jobs of customer c ∈ C {1...jcc}127

Parameters:128

B: very big constant129

Pj,s: processing time of job j ∈ J at stage s ∈ S130

Q: capacity of vehicle131

qj : loading volume occupied by job j ∈ J132

TTc,a: travel time between customer c ∈ C ∪ {0} and a ∈ C ∪ {0} (where node 0 is he factory)133

Variables:134

Xj,h,s: binary variable that takes the value of 1 if job j ∈ J is processed before job h ∈ J at stage135

s ∈ S, and 0, otherwise136

Yj,s,m: binary variable that takes the value of 1 if job j ∈ J is processed on machine m ∈ Es of137

stage s ∈ S, and 0, otherwise138
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STj,s: continuous variable for the starting time of job j ∈ J processed on machine m ∈ Es of stage139

s ∈ S140

CTj,s: continuous variable for the completion time of job j ∈ J processed on machine m ∈ Es of141

stage s ∈ S142

SRr: departure time of trip r ∈ R of the vehicle143

CRr: completion time of trip r ∈ R of the vehicle144

TVc,r: time of arrival at customer c ∈ C ∪ {0} on trip r ∈ R145

Fc,a,r: binary variable that takes the value of 1 if customer c ∈ C ∪ {0} is visited before customer146

a ∈ C ∪ {0} in trip r ∈ R147

Wj,r: binary variable that takes the value of 1 if job j ∈ J is dispatched on trip r ∈ R148

Gr: binary variable that takes the value of 1 if the vehicle performs the trip r ∈ R149

Nc,r: binary variable that takes the value of 1 if the customer c ∈ C is visited on trip r ∈ R150

Cmax: makespan or maximum dispatching time of the jobs151

min Z = Cmax (1)

s.t.:152

∑
m∈Ms

Yj,s,m = 1 ∀j ∈ J, ∀s ∈ S (2)

CTj,s = STj,s + Pj,s ∀j ∈ J, ∀s ∈ S,∀m ∈Ms (3)

STj,s ≥ CTj,s−1 ∀j ∈ J, ∀s ∈ S, s > 1 (4)

STh,s ≥ CTj,s −B · (3−Xj,h,s − Yj,s,m − Yh,s,m) ∀j, h ∈ J, ∀s ∈ S,∀m ∈Ms, j 6= h (5)

STj,s ≥ CTh,s −B ·Xj,h,s −B · (2− Yj,s,m − Yh,s,m) ∀j, h ∈ J, ∀s ∈ S,∀m ∈Ms, j 6= h (6)

SRr ≥ CTj|S| −B · (1−Wj,r) ∀j ∈ J, ∀r ∈ R (7)

TVc,r ≥ TVa,r + TTa,c −B · (1− Fj,r) ∀c ∈ C,∀a ∈ C ∪ {0},∀r ∈ R, c 6= a (8)

TV0,r ≥ SRr ∀r ∈ R (9)∑
j∈Jc

Wj, r ≤ Nc,r ·B ∀c ∈ C,∀r ∈ R (10)

Nc,r ≤
∑
j∈Jc

Wj, r ∀c ∈ C,∀r ∈ R (11)
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∑
a∈C∪{0}a6=c

Fa,c,r = Nc,r ∀c ∈ C,∀r ∈ R (12)

∑
a∈C∪{0},a 6=c

Fc,a,r = Nc,r ∀c ∈ C,∀r ∈ R (13)

∑
c∈C

F0,c,r = Gc,r ∀r ∈ R (14)

∑
c∈C

Fc,0,r = Gc,r ∀r ∈ R (15)

∑
r∈R

Wjr = 1 ∀j ∈ J (16)

∑
j∈J

qj ·Wj,r ≤ Q ·Gr ∀r ∈ R (17)

CRr ≥ TVr ∀c ∈ C,∀r ∈ R (18)

SRr+1 ≥ CRr + TTc,0 −B · (1− Fc,0,r) ∀c ∈ C,∀r ∈ R, r < |R| (19)

Cmax ≥ CRr ∀r ∈ R (20)

Gr ≤ Gr−1 ∀r ∈ R, r > 1 (21)

Xj,h,s ∈ {0, 1} ∀j, h ∈ J, ∀s ∈ S (22)

Yj,s,m ∈ {0, 1} ∀j ∈ J, ∀s ∈ S,∀m ∈Ms (23)

Fc,a,r ∈ {0, 1} ∀c ∈ C ∪ {0}, ∀a ∈ C ∪ {0},∀r ∈ R (24)

Wj,r ∈ {0, 1} ∀j ∈ J, ∀r ∈ R (25)

Gr ∈ {0, 1} ∀r ∈ R (26)

Nc,r ∈ {0, 1} ∀c ∈ C,∀r ∈ R (27)

CTj,s ≥ 0 ∀j ∈ J, ∀s ∈ S (28)

STj,s ≥ 0 ∀j ∈ J, ∀s ∈ S (29)

SRr ≥ 0 ∀r ∈ R (30)

CRr ≥ 0 ∀r ∈ R (31)

TVc,r ≥ 0 ∀c ∈ C ∪ {0},∀r ∈ R (32)

Equation (1) represents the objective function, that is the minimization of the makespan, that153

is, the time in which the last job is delivered. Constraints set (2) specifies that each job can be154

assigned at only one machine at each stage. Constraints set (3) calculates the completion time of155
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each job at each stage. Constraints set (4) determines the minimum starting time of each job at156

each stage regarding the completion time of the job in the previous stage. Constraints sets (5) and157

(6) specify the minimum starting time of each job at each stage regarding the completion time158

of jobs processed before at the same machine. Constraints set (7) defines the minimum starting159

time of each (delivery of batch) regarding the maximum completion time of the jobs that are going160

to be dispatched on that trip. Constraints set (8) specifies the minimum time of the visit of a161

customer in a trip depending on the time of the visit of the previous customer in that trip, and162

the travel time between both customers. Constraints set (9) indicates that the time of the visit163

of the depot (node 0) in a trip is equal to the departure time of that trip. Constraints sets (10)164

and (11) guarantee that, if a job is dispatched on a trip, the customer who is the owner of that165

job is visited on that trip. Constraints sets (12) and (13) state that, if a customer is visited on166

a trip, that customer is a successor and a predecessor of another customer or depot. Constraints167

sets (14) and (15) ensure that each trip starts and ends at depot if the trip is performed (node168

0). Constraints set (16) guarantees that each job is dispatched in exactly one trip. Constraints169

set (17) assures that the volume capacity of the vehicle on each trip is not surpassed. Constraints170

set (18) calculates the completion time of a trip regarding the time of the last customer visited171

in that trip. Constraints set (19) states that the starting time of a trip is greater or equal than172

the return time of the vehicle to the depot after the previous trip. Constraints set (20) specifies173

that the completion time of the last delivery is greater or equal than the completion time of the174

last trip. Constraints set (21) controls the binary variables of trips, ensuring that only consecutive175

trips can be performed. Finally, constraints sets (22)-(32) define the domain of decision variables.176

3.1. Numerical Example of HFS-VRP Problem177

As mentioned before, the following three decisions have to be made in order to solve HFS-VRP178

problem: (i) determining the job sequence at the production stage; (ii) assigning the finished jobs179

to a proper batch for delivery; and (iii) defining the routing plan for the single cargo vehicle. In180

order to give a better understanding of the problem, Figure 2 provides the following example with181

6 jobs (n = 6) and 3 stages (s = 3), in which the first and third stages are composed of 3 machines182

each (m1 = 3 and m3 = 3), while the second stage is composed of a single machine (m2 = 1).183

1. At the HFS stage, each job is described by a tuple (j, cj , qj), in which j is the job identifier,184

cj is the customer who requires the job j, and qj is the loading volume of job j. For instance,185
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in tuple (1, 1, 10), the job 1 is requested by customer 1, and consists of 10 demand size units.186

Once processed in the first stage –with a completion time of 100 time units– the job 1 can187

be processed in the following stage from time 100, and so on. The remaining jobs follow the188

same interpretation.189

2. The second stage aims to join processed jobs into batches that meets the capacity constraint190

of the cargo vehicle. Each batch corresponds to one trip. In this example, the vehicle has191

a capacity of 50 demands units. A batch b are represented by the set of jobs and the tuple192

(CRb, TDb), where CRb and TDb represent the completion time and total volume of batch193

b, respectively. For example, the batch 1 is composed of jobs 3 and 2, has a completion time194

is 600 time units, and its total volume is 45 units.195

3. The last stage regards the vehicle routing process. For the first batch 1, the vehicle starts196

its delivery at time SR1, i.e., 600 time units. In this stage, each node is characterized by the197

tuple [TVc,b, RDc,b], in which TVc,b represents the arrival time at node c of batch (trip) b, and198

RDc,b represents the remaining loaded demand at node c of batch (trip) b. For instance, the199

vehicle arrives at the depot after delivering the jobs at time 820 with no loaded demand. For200

the next route, the delivery starts at time 820, since the vehicle arrives at the depot after201

batch 2 being ready for delivery at time 800, i.e., the max(800, 820). In case the vehicle is202

ready for delivery before the conclusion time of the batch, it must wait for the time needed203

for the batch to be ready and loaded. The same is done for the remaining batches.204

4. Finally, the solution cost is given by the time in which the vehicle returns to the depot after205

delivering the jobs from the last batch. In this example, the integrated cost is 1210.206

4. Lower Bound for HFS-VRP Problem207

Considering the NP-hardness of the problem, we propose to calculate a lower bound for the208

problem, LBHFS−V RP , in order to evaluate the performance of our proposed algorithms. Since the209

deliveries of some finished jobs can be performed simultaneously with the production of other jobs,210

it can be said that the HFS stage is overlapped partially with the VRP stage. For that reason, the211

proposed LBHFS−V RP consists in the maximum of the following two partial lower bounds (33):212

(i) The LBHFS−V RPpart1 (Equation 34), which consists in adding the HFS lower bound proposed213

by Haouari and Hidri (2008) (35) and the traveling time of the nearest customer to the factory.214
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(ii) The LBHFS−V RPpart2 (Equation 42), which is obtained by the aggregation of a proposed215

lower bound for the multi-trip single VRP and the minimum summation of processing times across216

all jobs.217

LBHFS−V RP = max{LBHFS−V RPpart1 , LBHFS−V RPpart2} (33)

As stated, Haouari and Hidri (2008) proposed a HFS lower bound. This bound summed with218

the smallest traveling time from the factory to a customer gives a possible lower bound for the219

HFS-VRP (34). Equations 35-41, which were taken from Haouari and Hidri (2008), supports the220

calculation of LBHFS−V RPpart1 .221

LBHFS−V RPpart1 = LBHFS + min
c∈C
{TT0,c} (34)

LBHFS = max
2≤s≤|S|

{LB′s} (35)

LB
′
s = JL1,s−1 +

SPTs−1(|Ms|) +
∑

j∈J Pj,s +
∑

k∈Ms
JRk,s

|Ms|
(36)

LSj,s =


∑s−1

k=1 Pj,k if j ∈ J, s > 1

0 if j ∈ J, s = 1
(37)

RSj,s =


∑|S|

k=s+1 Pj,k if j ∈ J, j < s

0 if j ∈ J, s = |S|
(38)

JLl,s: the lth smallest value of LSj,s (39)

JRl,s: the lth smallest value of RSj,s (40)

SPTl,s(k): the minimum-sum of completion times of the k smallest (s− 1)-stage jobs LSj,s (41)

The lower bound that we propose for multi-trip single VRP LBHFS−V RPpart2 (42) is constructed222

considering that:223

(i) the total departing times from the depot to the first customer of the trips should be at least224

the minimum distance from the factory to a customer multiplied by the number of trips.225

(ii) the total traveling time of the vehicle should be at least the minimum travel time from the226

factory to a customer multiplied by two times the number of trips (departure and return of each227

trip). Nevertheless, this multiplication considers the last return to the factory, thence this distance228

should be subtracted once. Therefore, the total traveling time of the vehicle should be at least two229
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times the minimum travel time from the factory to a customer times the minimum number of trips230

minus the minimum travel time from the factory to a customer.231

(iii) the number of arcs visited between customers (that does not include the arcs that connect232

with the depot) is at least the number of customers minus the minimum number of trips |C|−MNT .233

Thence, the total traveling time across arcs is at least the sum of |C| −MNT smallest distances234

between customers.235

(iv) if the vehicle only has to do only one trip, then the traveling time is at least the sum of the236

minimum travel time from the factory to a customer with the |C| − 1 smallest distances between237

customers and with the LBHFS .238

Equations (43)-(46) support the calculation of LBHFS−V RPpart2 .239

LBHFS−V RPpart2 =

{
minc∈C TT0,c +

∑|C|−1
i=1 STTOi + LBHFS if MNT = 1

2 ·MNT ·minc∈C TT0,c −minc∈C TT0,c + minj∈J SUMPTj if MNT ≥ |C|,MNT > 1

2 ·MNT ·minc∈C TT0,c −minc∈C TT0,c +
∑|C|−MNT

i=1 STTOi + minj∈J SUMPTj if |C| > MNT > 1

(42)

MNT =

∑
j inJ qj

Q
: the minimum trips of the vehicle (43)

STTc = min
h∈C,h6=c

{TTc,h} (44)

STTOl: the l-th smallest traveling time of STT values (45)

SUMPTj =
∑
s∈S

Pj,s (46)

5. BR-VND Algorithm240

Since the HFS and the VRP are both NP-hard problems (Lenstra and Kan, 1981; Ruiz and241

Vázquez-Rodŕıguez, 2010), so it is the composed HFS-VRP. Therefore, the use of metaheuris-242

tic approaches becomes necessary to solve large-sized instances in reasonable computing times.243

Hence, we propose an algorithm that combines biased-randomization (BR) techniques (Gonzalez-244

Martin et al., 2012) with the well-known variable neighborhood descent (VND) framework. The245

latter is a variant of the variable neighborhood search (VNS) metaheuristic framework (Mladenović246

and Hansen, 1997). The VNS is an enhanced local search strategy that systematically explores247

the solution space by changing the neighborhood structure. The local optimum provided by one248

neighborhood structure is not necessarily the same as the one provided by another neighborhood249

structure. In this way, the search becomes more flexible by exploring different neighborhood struc-250

tures (Burke et al., 2008). The VND starts by employing an initial structure N1. The searching251
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process continues until no further improvement is reached. Then, a new neighborhood structure,252

N2, is explored. If a new local optimum is obtained, the VND returns back and starts again with253

N1. Otherwise, it continues with the next neighborhood structure, N3. This process goes on until254

the last neighborhood structure is reached. In our biased-randomized variable neighborhood de-255

scent (BR-VND) algorithm, we first create an initial solution, which is then iteratively improved by256

employing a set of neighborhood structures (Figure 1). More details on our algorithm are provided257

in the following subsections.258

Start

Construct initial 

solution

Local search N1

Better result ?

NoYes

Update the current 

solution with the 

best solution 

Local search N 2

No
End

Yes
Better result ?

No

Better result ?
Yes

Stop ?

No

Yes

Local search N 3

Figure 3: Flow-chart of the BR-VND algorithm.

5.1. Solution Representation and Loading Strategy259

We consider two different solution representations. The first one, SR1, is a complete sequence260

(permutation) of all jobs, and does not make any assumption about the assignment of jobs to261

customers. Hence, using this representation it is possible to consider n! different permutations.262
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The second solution representation, SR2, also employs a sequence of jobs. This time, however,263

jobs belonging to the same customer appear together in the sequence.264

The BR-VND starts by generating an initial solution. We consider biased-randomized ver-265

sions of the following constructive heuristics to generate this initial solution: the NEH heuristic266

(BR-NEH); the short processing time bottleneck heuristic (BR-SPTB); and the backward largest267

processing time bottleneck heuristic (BR-bLPTB). Each constructive heuristic is applied to solution268

representations SR1 and SR2. In order to load batches of jobs on a vehicle with limited capacity,269

we consider two different vehicle loading strategies. In the first one, V LS1, jobs are loaded by in-270

creasing order of completion times. Let us consider, for example, a single vehicle with a maximum271

capacity of 50 unit per trip, and 5 jobs (j1, j2, . . . , j5) with the following completion times (sec-272

ond element in the list) and volume capacities (third element in the list): {j1, 38, 15}, {j2, 24, 35},273

{j3, 31, 5}, {j4, 20, 10}, and {j5, 15, 30}. Thus, V LS1 will determine the following loading plan of274

jobs: {j5, j4} in trip 1, {j2, j3} in trip 2, and {j1} in trip 3. In the second loading strategy, V LS2,275

the goal is to load the maximum possible volume in each trip. Hence, when applying this second276

loading strategy to the previous numerical example, the loading plan will be as follows: {j5, j4, j3}277

in trip 1, {j2} in trip 2, and {j1} in trip 3. In order to investigate the effects of different initial278

solutions (IniSol) and loading strategies (V LS), we design twelve variants of the algorithm. These279

variants employ the same solution representation and have the same neighborhood structures, but280

they use different initial solutions and loading strategies.281

5.2. Generating an Initial Solution282

For the generation of the initial solution (IniSol), we propose the implementation of simple dis-283

patching rules, such as the shortest processing time (SPT) and longest processing time (LPT) ones,284

which are adapted to the HFS problem. Both the SPT and the LPT generate job permutations285

that are based on sorting the total processing time of jobs according to an ascending and a de-286

scending order, respectively. Once all operations of one job are completed on the production phase,287

the job can be delivered to its demanding customer. Therefore, a vehicle is loaded and routed.288

For the routing process, we employ a biased-randomized version of the popular savings heuristic289

(Quintero-Araujo et al., 2017). The biased-randomization processes employed in this paper, both290

during the scheduling and the routing phases, make use of Geometric probability distributions, as291

proposed in (Ferrer et al., 2016) for the scheduling and in Gonzalez-Martin et al. (2018) for the292
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routing.293

5.2.1. The BR-NEH Heuristic294

The first and second initial solutions are generated through the biased-randomized version of the295

NEH heuristic (Nawaz et al., 1983). The extension of the NEH to the HFS problem provides good296

results (Naderi et al., 2010). In the first initial solution, BR −NEH1, the biased-randomization297

process is applied to a job sequence β in order to generate a job sequence π. Then, a ‘shift-to-left’298

operator (Juan et al., 2014) is used to improve the current solution. In the second initial solution,299

BR − NEH2, the NEH heuristic and a biased-randomization processes are jointly applied to all300

jobs belonging to each customer c ∈ C. Hence, a partial job sequence πc is constructed for each301

customer c ∈ C via the biased-randomized NEH heuristic. Next, the list of customers is sorted302

by ascending order of their jobs’ makespan. A complete job sequence, πT , is obtained by putting303

together all the partial job sequences.304

5.2.2. The BR-SPTB Heuristic305

The idea of the third and fourth initial solutions make use of a biased-randomized version of the306

short processing time bottleneck heuristic proposed by Pan et al. (2014). In many cases, bottlenecks307

in a system are generated by a single component (Liao et al., 2012). As Paternina-Arboleda et al.308

(2008) mentioned, a stage is a bottleneck when it has the largest flow ratio between the workload309

and the total available capacity. The SPTB heuristic sorts jobs by their total processing time,310

from the first stage to the bottleneck one. To generate the third initial solution, BR-SPTB1, the311

biased-randomized process is applied to the job sequence. The fourth initial solution, BR-SPTB2,312

is similar to the second one –it also works separately with the jobs that belong to each customer.313

The only difference is that in BR-SPTB2 the partial job sequence for each customer is obtained314

via a biased-randomized version of the SPTB heuristic.315

5.2.3. The BR-bLPTB Heuristic316

The last two initial solutions are the BR-bLPTB1 and BR-bLPTB2, which make use of biased-317

randomized version of the bLPTB heuristic. In the BR-bLPTB1, the jobs are sorted by their318

total processing time, in descending order, from the bottleneck stage to the last stage. In the319

BR-bLPTB2, the biased-randomized heuristic is applied to jobs belonging to each customer.320

16



5.3. Neighborhood Structures321

Our proposed BR-VND algorithm employs three neighborhood structures for the first solution322

representation, SR1, and two for the second solution representation, SR2.323

5.3.1. The SR1 Neighborhood Structures324

Pseudo-codes 1 to 3 show the three proposed neighborhood structures. The first neighborhood325

for SR1 is referred to as LSC1 and attempts to improve the objective function by examining different326

complete job sequences. LSC1 provides a list of complete job sequences by removing a single job327

from πT and inserting it into all possible n − 1 positions of πT . The newly created job sequences328

are evaluated by assigning the jobs to the machines on the stages. If a new sequence provides a329

better objective function, then πT is updated and all jobs are reinserted again. Otherwise, the330

search continues with the next job. The second neighborhood for this solution representation,331

LSP1, works with partial job sequences: given a machine g in a stage k, it takes all jobs in πkg and332

inserts them, considering all possible positions, both in the same as well as in any other machines333

at the stage k. When all jobs in machine g are considered, the search is continued with the next334

machine in stage k and, once these have been covered, with the machines in the next stage. The335

last neighborhood for SR1, LSCS1, is similar to LSC1. It works over the jobs on a complete job336

sequence, πT . The complete job sequence for each stage k, πT (k) is constructed. It extracts and337

reinserts each job into all possible n− 1 positions of πT (k).338

5.3.2. The SR2 Neighborhood Structures339

The first neighborhood proposed for the SR2 solution representation, LSCS2, works over the340

jobs that belong to the same customer: given an entire sequence πT , it extracts all jobs associated341

with each customer as a block, and insert this block in all possible positions of πT . The second342

neighborhood designed for SR2, LSC2, is similar to LSC1 and works over the jobs on the complete343

job sequence πT . However, in the case of LSC2, all jobs belonging to a customer c ∈ C are extracted344

and inserted into all possible positions of the partial sequence associated with c.345
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Algorithm 1 Neighborhood structures, LSC1.

l = 1

while l ≤ n do

- Remove job a located at position l of πT

- Insert a into all n− 1 possible positions of πT

- Evaluate all obtained πT by assigning jobs to machines of the stages

if a better objective function is obtained then

- update πT

else

l = l + 1

end if

end while

6. Computational Experiments346

6.1. Generation of Instances347

As mentioned before, this is the first time that a combined hybrid flow-shop and vehicle routing348

problem is discussed in the scientific literature. So, no benchmark instances are available in the349

literature to experimentally evaluate the proposed solution approaches. Hence, a new set of in-350

stances, which are based on some well-known benchmark instances of both the HFS and the VRP,351

is introduced, by considering the four instance factors listed in Table 1.352

Instance type

Small Large

Instance factor Symbol Number of levels Values Number of levels Values

Number of jobs n 3 6, 8, 10 3 60, 80, 100

Number of stage s 3 2, 3, 4 3 5, 8, 10

Number of customer c 3 2, 3, 4 8 16, 19, 20, 22, 23, 31, 32, 33

Vehicle loading capacity v 2 20, 30 2 100, 200

Table 1: Instance factor for the small and large instances.

The number of identical parallel machines at each stage k ∈ S, mk is generated using a uni-353

form distribution U [1, 5]. Processing times of jobs on the HFS section are fixed to be integer354
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Algorithm 2 Neighborhood structures, LSP1.

k = 1

while r ≤ s do

g = 1, w ∈Mk, w 6= g

while g ≤ mk do

j = 1

while j ≤ |N(πkg)| do

- Remove job a located at position j of πkg

- Insert a into all possible positions of current πkg and other ρkw

if a better objective function is obtained then

- update πkg and other πkw

else

j = j + 1

end if

end while

g = g + 1

end while

k = k + 1

end while
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Algorithm 3 Neighborhood structures, LSCS1.

k = 1, t ∈ s, t ≥ k

while k ≤ s do

l = 1

while l ≤ n do

Obtain complete job sequence for stage k, πT (k)

- Remove job a located at position l of πT (k)

- Insert a into all n− 1 possible positions of πT (k)

- Evaluate all obtained πT (k) by assigning jobs to machines of the stages t

if a better objective function is obtained then

- update partial job sequences on machines at stage k and stages t

else

l = l + 1

end if

end while

k = k + 1

end while
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values from a uniform distribution U [1, 99], as commonly defined in the scheduling literature.355

The volume capacity of each job j ∈ N , lj is uniformly generated in the range of U [5, 10] for356

small instances and U [10, 30] for large instances. Since the customers should place in a certain357

geographic location, we have used some well-known set of benchmarks in the VRP literature.358

Eight VRP instances have been selected from a set of instances A,B,E and P , available at359

http://vrp.atd-lab.inf.puc-rio.br/index.php/en/. Regarding the number of the jobs, we360

have selected some acceptable instances where n > c. These instances are different among their361

scattered or clustered topology. In the case of small instances, the customer data was taken from362

the first customers of VRP mentioned instances. In particular, for small instances type, one test363

instance was generated for each combination of n, s, c, and v, obtaining a total of 54 small-sized364

instances. On the other hand, for large-sized instances, five test instances were created for each365

combination of n, s, c, and v, leading to a total of 720 large instances.366

6.2. Results of Small Instances367

The MILP model presented in section 3 was implemented in GLPK language with stooping368

criteria of 3600 seconds. Table 2 shows the results of the makespan of the best integer solution369

found after 3600s of running. As it can be seen in 75.92% of the small problem instances, i.e., 41 of370

the 54, no integer solution was found after one hour of execution. From the 13 instances in which an371

integer solution could be found, 9 of them were optimal. The table also presents the results of our372

proposed lower bound (LBHFS−V RP ), the percentage that the proposed LB is below the optimal373

value (LBDev) (47), the minimum value found by our BR-VND algorithm (MinBR−V ND), the374

minimum GAP of the BR-VND in comparison with the MILP model (GAPBRV NDMILP
) (48), and375

the minimum GAP of the BR-VND in comparison with the proposed lower bound (GAPBRV NDLB
)376

(49).377

LBDev =
LowerBoundsol −MILPsol

MILPsol
· 100% (47)

GAPBR−V NDMILP
=
BRV NDsol −MILPsol

MILPsol
· 100% (48)

GAPBR−V NDLB
=
BRV NDsol − LBHFS−V RPsol

LBHFS−V RPsol

· 100% (49)
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In the 13 instances with integer solution found by the MILP model, the LBHFS−V RP is below378

the MILP result in an average of 32.83% and the GAPBR−V NDMILP
is in average 8.22%. Specifi-379

cally, for the problem instance n = 6, s = 2, v = 30, c = 2, the BR-VND found the optimal solution,380

and for the problem instance n = 6, s = 3, v = 20, c = 4, the BR-VND found a better solution than381

the best integer solution reached by the MILP model after an hour of execution.382

For each of the 54 problem instances presented in Table 2, it is shown the minimum value383

found by our BR-VND algorithm (MinBR−V ND), resulted from the twelve different algorithm384

combinations. Since each instance is executed 5 times for each proposed algorithm, 3240 executions385

have been performed. The CPU times are not reported as they are so small. As a matter of fact,386

among the 3240 observed CPU times in the results, the maximum reported is 1.5 seconds. The387

average observed CPU time in all results is only 0.06 seconds.388

n s v c MILP Time(s) LBHFS−V RP LBDev MinBRV ND GAPBRV NDMILP
GAPBRV NDLB

2 20 2 282.44* 12.1 176.22 -37.61 296.29 4.90 68.14

2 20 3 396.02* 81.3 239.66 -39.48 416.63 5.21 73.84

2 20 4 370.40* 155.3 202.66 -45.29 442.3 19.41 118.25

2 30 2 451.07* 65.6 437.22 -3.07 451.07 0.00 3.17

2 30 3 272.81* 112.3 179.66 -34.15 291.9 7.00 62.48

2 30 4 311.41 3600.0 206.00 -33.85 347.18 11.49 68.54

3 20 2 - 3600.0 348.10 - 433.65 - 24.58

3 20 3 - 3600.0 381.22 - 468.5 - 22.9

6 3 20 4 492.88 3600.0 276.22 -43.96 486.41 -1.31 76.1

3 30 2 - 3600.0 303.22 - 542.07 - 78.77

3 30 3 294.24* 12.0 182.00 -38.15 357.77 21.59 96.58

3 30 4 421.28 3600.0 372.22 -11.65 424.03 0.65 13.92

4 20 2 388.58* 24.7 254.22 -34.58 427.65 10.05 68.22

4 20 3 - 3600.0 359.22 481.43 - 34.02

4 20 4 - 3600.0 306.66 500.24 - 63.13

4 30 2 346.07* 3.6 229.00 -33.83 404.21 16.80 76.51

4 30 3 388.90* 89.2 222.00 -42.92 423.23 8.83 90.64

4 30 4 - 3600.0 467.00 - 537.5 - 15.1

2 20 2 - 3600.0 282.10 - 534.22 - 89.37

2 20 3 - 3600.0 399.54 - 534.03 - 33.66

2 20 4 - 3600.0 301.10 - 470.02 - 56.1

2 30 2 - 3600.0 194.66 - 385.54 - 98.06

2 30 3 - 3600.0 337.22 - 417.13 - 23.7

2 30 4 - 3600.0 210.66 - 482.07 - 128.84

Continued on next page *Optimal solution
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Table 2 – continued from previous page

n s v c MILP Time(s) LBHFS−V RP LBDev MinBRV ND GAPBRV NDMILP
GAPBRV NDLB

3 20 2 - 3600.0 312.10 - 448.73 - 43.78

3 20 3 - 3600.0 238.66 - 450.2 - 88.64

8 3 20 4 - 3600.0 371.10 - 530.36 - 42.92

3 30 2 - 3600.0 231.66 - 434.69 - 87.64

3 30 3 - 3600.0 320.22 - 385.24 - 20.31

3 30 4 - 3600.0 251.66 - 381.06 - 51.42

4 20 2 520.51 3600.0 373.22 -28.30 532.24 2.25 42.61

4 20 3 - 3600.0 470.22 - 584.38 - 24.28

4 20 4 - 3600.0 353.10 - 620.77 - 75.81

4 30 2 - 3600.0 384.22 - 473.43 - 23.22

4 30 3 - 3600.0 317.66 - 527.48 - 66.05

4 30 4 - 3600.0 281.22 - 426.87 - 51.79

2 20 2 - 3600.0 382.54 - 565.22 - 47.76

2 20 3 - 3600.0 390.54 - 632.55 - 61.97

2 20 4 - 3600.0 407.54 - 587.16 - 44.08

2 30 2 - 3600.0 285.22 - 632.22 - 121.66

2 30 3 - 3600.0 324.22 - 427.24 - 31.78

2 30 4 - 3600.0 234.22 - 433.61 - 85.13

3 20 2 - 3600.0 567.22 - 596.07 - 5.09

3 20 3 - 3600.0 417.54 - 553.4 - 32.54

3 20 4 - 3600.0 533.22 - 640.28 - 20.08

3 30 2 - 3600.0 657.22 - 663.22 - 0.91

10 3 30 3 - 3600.0 347.22 - 468.43 - 34.91

3 30 4 - 3600.0 328.22 - 482.73 - 47.08

4 20 2 - 3600.0 528.22 - 593.22 - 12.31

4 20 3 - 3600.0 458.54 - 660.51 - 44.05

4 20 4 - 3600.0 559.22 - 714.47 - 27.76

4 30 2 - 3600.0 294.66 - 468.69 - 59.06

4 30 3 - 3600.0 612.22 - 620.22 - 1.31

4 30 4 - 3600.0 624.22 - 779.88 - 24.94

Average 3010.3 -32.83 8.22 51.95

*Optimal solution

Table 2: Results of MILP and proposed LB for small instances.

389

6.3. Results of Large Instances390

An experimental design was carried out to test the performance of the proposed algorithms.391

The experiment has considered the factors n, s, v, c, IniSol, SR, and V LS. The levels considered392
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for the factors n, s, v, and c were presented in Table1 for the large-sized instances. The levels393

of IniSol, SR, and V LS were those presented in Table 3. Therefore, the treatments of the394

experiment were 1728 and the observations per treatment were 25. Considering that the BR-VND395

is a stochastic algorithm, each one of the 720 large instances was run for five different replications.396

Thence, there was a total of 25 observations per treatment, since 5 instances were generated for397

each combination of n, s, v, and c, and each one of them was run 5 times. This represented398

a total of 43, 200 replications for the experiment. Each replication was limited to 40 × n × s399

milliseconds of running as stopping criteria. For each replication, we have calculated the GAP as400

GAP = ((Algorithmsol − LowerBoundsol)/LowerBoundsol) where Algorithmsol is the solution401

obtained by a given algorithm and LowerBoundsol is the lower bound obtained by applying the402

calculations presented on Section 4 for the corresponding instance.403

Table 3: Test factors for instances.

Test factor Symbol Number of levels Values

Initial solution IniSol 3 BR-NEH, BR-SPTB, BR-

bLPTB

Solution representation SR 2 SR1, SR2

Loading strategy V LS 2 V LS1 , V LS2

Table 4 presents a summary of results on the average GAP of proposed algorithms in comparison404

with the proposed lower bound. The results are categorized by all the instance factors, n, s, v405

and c. As shown in Table 4, from the descriptive point of view, the algorithm that combines the406

second solution representation SR2 with the second loading strategy LR2 and the initial solution407

BR-bLPTB is able to provide better solutions than the other ones, with a GAP of 17.91%. Besides,408

the algorithm with the worst performance is the one that combines SR1, LR2, and BR-SPTB, with409

a GAP of 21.98%. The behavior of the instance size factors, presented in Table 4, show that the410

problem becomes easier to solve when increasing the number of jobs (n), number of stages (s), and411

vehicle capacity (v). In the case of the number of customers (c), the best performance is presented412

in instances with 31 customers.413

Despite the overall average GAP being 19.75%, it should be highlighted that in 48.70% of the414

instances, the obtained average GAP is smaller than %5, and in 8.83% of the instances, the average415

GAP is between 5% and 10%.416

The algorithms’ CPU time consumption for large instances is summarised in Table 5, grouped417
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by the instance characteristics. The algorithms that use the first solution representation (SR1) use418

almost three times more CPU time than the algorithms that use the alternative solution represen-419

tation (SR2). The algorithm with BR-SPTB as the initial solution, SR1 as solution representation,420

and V LS2 as loading strategy, consumes an average of 42.18 seconds, the longest CPU time con-421

sumption compared to other algorithms. Moreover, notice how the CPU times clearly depend on422

the size of the instance (number of jobs n, number of stages s, and number of customers c).423

In order to determine if there is a significant statistical difference among the results of Table 4, a424

multifactor Analysis of Variance (ANOVA) was also carried out. The response variable is the GAP,425

and the control variables are n, s, v, c, IniSol, SR and V LS. We tested the three assumptions of426

ANOVA that are normality, homoscedasticity, and independence of residuals.427

Since in this experiment the hypotheses of normality and homoscedasticity of samples were not428

fulfilled, we have performed an ANOVA-Type statistic (Brunner et al., 1997), which is a rank-based429

test that does not consider the assumptions of normality and homoscedasticity. According to the430

ANOVA-Type, all main effects are statistically significant with p-values very close to zero (lower431

than 0.001). Moreover, 18 of the 21 double interactions were significant. Specifically, regarding432

solution methods, the interaction between V LS and SR, and the interaction between IniSol433

and SR, were statistically significant. According to the confidence intervals of rankings, with a434

confidence level of 95%, the best initial solution is BR−NEH, the best solution representation is435

SR2, and the best loading strategy is V LS1.436

As it is known, not necessarily the combination of the best levels of factors leads to the best437

results. Then, the performance of the algorithm using a different combination of these factors438

is also studied. This combination generates twelve different algorithm configurations. In order to439

determine which configuration performs better, it is necessary to carry out the analysis of the triple440

interaction of factors IniSol, SR, and V LS. According to the confidence intervals of ranks for the441

twelve solution methods, obtained from the ANOVA-Type statistic, all of the combinations that442

consider the SR2 as solution representation present, statistically, the best performance. Figure 4443

present the 95% Tukey confidence intervals for these configurations.444
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Figure 4: Means plot and 95% Tukey confidence intervals for different combinations of test factors

7. Conclusions and Future Work445

This paper considered a combination of the Hybrid Flow Shop (HFS) scheduling problem with446

the Vehicle Routing Problem (VRP). To the best of our knowledge, this is the first time in the447

academic literature that this problem is approached. The problem, denoted as HFS-VRP, consists448

of a production section with HFS configuration to process jobs and a set of customers with a449

defined batch of jobs demand, followed by a distribution process where one capacitated vehicle is450

available to deliver the finished batches of jobs to the final customers. The optimization objective451

is the minimization of the service time to the last customer, i.e. the makespan of the joint problem.452

As pointed out, this problem is of practical relevance, for example, to distribute medical tests or453

vaccines to local health centers, so they can be administrated to the population as soon as possible,454

while these items are being produced, in large quantities, at a central laboratory.455

To solve the problem, three stages were proposed. Firstly, the MILP model. Secondly, a first456

lower bound of the HFS-VRP problem. Thirdly, this paper proposed a Biased-Randomized Variable457

Neighborhood Descent (BR-VND) metaheuristic. Twelve different configurations of the algorithm,458

which consists of three methods of initial solutions, two solution representations, and two vehicle459

loading strategies, were developed. Since no benchmark data sets are not available, a complete set460
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of instances was generated to test these configurations, inspired by existing benchmarks of HFS461

and VRP from the literature.462

Computational evaluations were carried out in two phases. In the first one, the MILP model463

was executed for very small instances, in which 75% of them did not obtain an integer solution464

after 3600s of executions. The small instances that obtained a result after an hour of execution465

were compared with the proposed lower bound, obtaining that the lower bound is 32% lower, on466

average, than the objective function obtained for the best solution found by the MILP model.467

In the second phase, an experimental design was performed with 720 generated large instances,468

and the results were analyzed through the ANOVA statistical test. Seven factors, including four469

instance factors (number of jobs, stages, customers, and the capacity of the vehicle) and three test470

factors (initial solution, solution representation, and vehicle loading strategy) were considered in471

ANOVA as control factors. The response variable was the GAP versus the proposed lower bound.472

Results showed that all main effects are statistically significant. Due to the assumptions of the473

ANOVA were not fulfilled, the ANOVA-Type statistic was performed confirming the initial results474

given by the ANOVA. Particularly, instances with the highest level of stages (s = 10) presented475

the best GAP (14.99%). Also when the number of customers was set to c = 31, the average476

GAP was 9.92%. When the capacity of vehicles is 100, the GAP presents better performance than477

when it is set to 200. The computational analysis shows that BR-NEH initial solution, solution478

representation SR2, and loading strategy V LS1 perform statistically better than the others. It is479

important to note that, for 48.07% of the instances, the GAP was less than 5%.480

Future work could be directed to incorporate various vehicles in the routing to test the best481

configuration, not only in terms of makespan but also including due date related measures. Of482

course, some other solution procedures can be proposed and evaluated.483
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Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Comput. Oper. Res., 24(11):1097–1100.556

Moons, S., Ramaekers, K., Caris, A., and Arda, Y. (2017). Integrating production scheduling and vehicle routing557

decisions at the operational decision level: A review and discussion. Computers & Industrial Engineering, 104:224–558

245.559

Naderi, B., Ruiz, R., and Zandieh, M. (2010). Algorithms for a realistic variant of flowshop scheduling. Computers560

& Operations Research, 37(2):236 – 246.561

Nawaz, M., Enscore, E. E., and Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing562

problem. Omega, 11(1):91 – 95.563

Olhager, J., Pashaei, S., and Sternberg, H. (2015). Design of global production and distribution networks. Interna-564

tional Journal of Physical Distribution & Logistics Management, 45(1/2):138–158.565

31



Pan, Q.-K., Wang, L., Li, J.-Q., and Duan, J.-H. (2014). A novel discrete artificial bee colony algorithm for the566

hybrid flowshop scheduling problem with makespan minimisation. Omega, 45(Supplement C):42 – 56.567

Paternina-Arboleda, C. D., Montoya-Torres, J. R., Acero-Dominguez, M. J., and Herrera-Hernandez, M. C. (2008).568

Scheduling jobs on a k-stage flexible flow-shop. Annals of Operations Research, 164(1):29–40.569

Quintero-Araujo, C. L., Caballero-Villalobos, J. P., Juan, A. A., and Montoya-Torres, J. R. (2017). A biased-570

randomized metaheuristic for the capacitated location routing problem. International Transactions in Operational571

Research, 24(5):1079–1098.572
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