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Abstract

The profitability of customers for a business enterprise can be estimated by the so-called customer lifetime value
(CLV). One specific goal for many enterprises consists in maximizing the aggregated CLV associated with its set of
customers. To achieve this goal, a company can employ commercial actions (e.g., segmented or even fully person-
alized marketing campaigns), which are usually expensive. There is an economic trade-off between the investment
in marketing actions and the aggregated CLV that can be achieved, i.e.: the higher the marketing budget, the higher
the aggregated CLV that can be achieved. Hence, after reviewing the existing literature on optimization of the CLV,
this paper proposes an original model to optimize the aggregated CLV subject to an available marketing budget. A
solution to this problem is a selection of commercial actions to be deployed. The suggested model is inspired by
the well-known uncapacitated facility location problem, where facilities servicing customers represent commercial
actions, and the ‘distance’ from a customer to an action represents how close the action meets the customers needs
and interests (hence, the shortest the dinstance, the higher the increase in CLV that can be achieved). The afore-
mentioned concepts are illustrated with a case study example. Finally, a series of computational experiments show
the potential of the proposed approach when compared with a standard (non-algorithmic) one.

Keywords: intelligent marketing; customer lifetime value; algorithms in marketing

1. Introduction

In today’s competitive world, many managers consider customers’ satisfaction and retention as the basis
for loyal (long-term) relationships that can provide sustainable incomes over time. Customers’ satisfac-
tion alone does not necessarily lead to customers’ loyalty to the firm. Actually, some researchers suggest
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that customer’s satisfaction and loyalty are not always strongly correlated (Ganiyu et al., 2012). For non-
loyal customers, satisfaction is mostly based on the current transaction. For loyal customers, satisfaction
seems to be related to the accumulated experience (Yi and La, 2004). In principle, satisfied customers
are more likely to become loyal ones, who are also more likely to repurchase products or services from
an organization. Still, customers’ loyalty needs to be always promoted by means of commercial actions,
such as marketing campaigns, special offers, etc. (Chang, 2020).

Accordingly, many companies have traditionally used relationship marketing to build up and maintain
a base of committed customers (Garepasha et al., 2020). A long-term relationship with customers can
generate a competitive advantage for a company. For instance, it can help to disseminate their products
and services among potential customers via positive word-of-mouth actions. Therefore, the concept of
customer’s loyalty is central to relationship marketing (Hennig-Thurau et al., 2001). One of the first sec-
tors where customer loyalty emerged is the airline industry. Ever since, studies on customer expectations,
service performance perception, satisfaction, and loyalty have been extended to service organizations like
banks, insurance, hotels, etc (Ehigie, 2006; Mokhtar et al., 2018).

As suggested by Zeithaml et al. (2001), targeting loyal customers can make marketing spending more
effective. Selecting customers for targeting and determining the level of resources to be allocated can
result in a more efficient use of marketing actions (Rust et al., 2011). Moreover, to be competitive,
companies spend large budgets on building long-term relationships with their clients through different
marketing campaigns, i.e.: promotions, communications in different media, publicity activities, pub-
lic relations, etc. Thus, managers must decide how to allocate the resources they have to optimize the
spending and the customers’ retention. Marketing campaigns might influence individual customers’ loy-
alty value (CLV), which can be defined as “the margin of revenue or profit that a customer provides
during the time of her loyalty to the company” (Kumar et al., 2004). Therefore, managers should care-
fully design the marketing actions to be employed (von Mutius and Huchzermeier, 2021). In this paper,
we discuss how to optimize the aggregated CLV via an intelligent selection of marketing actions.

Figure 1 illustrates the trade-off between the activation of resources (e.g., customized marketing cam-
paigns, which tend to be costly) and the CLV. The left side of this figure shows a scenario with low
resource-activation costs, since only one generic commercial action is deployed. Still, this scenario also
shows low improvements in terms of CLV: we miss the potential increase in aggregated CLV that a
more customized set of commercial actions could have achieved. For each customer, the associated CLV
increase is assumed to be inversely proportional to the distance between the customer and the active
commercial action that is closer to her needs and interests. Hence, the right side of Figure 1 shows a
scenario with a higher aggregated CLV (since customers are ‘closer’ to the deployed actions) and also
higher activation costs (since more commercial actions are deployed).

Our goal is then to find a configuration of deployed commercial actions that maximizes the total CLV
for the firm while respecting a given budget threshold. Notice that we are making the following as-
sumptions: (i) the set of commercial actions that could be deployed is given (these actions could be, for
instance, a series of segmented campaigns proposed by the marketing department); (ii) the cost of de-
ploying each of the possible actions is known (e.g., this cost could be inferred from previous campaigns
of similar characteristics); (iii) for each customer, the increase in CLV associated with assigning a mar-
keting action to her can be estimated; and (iv) for a given mapping of deployed actions, each customer
will be assigned to the active action that achieves a higher increase in her CLV. Typically, historical data
can be used, in combination with predictive models (e.g., multiple regression ones), to estimate the im-



Fig. 1: A visual illustration of the trade-off between active resources and aggregated CLV.

pact on the aggregated CLV generated by the activation of different marketing actions. Notice also that
the aggregated CLV can be obtained by estimating the effect of the selected actions on each customer
type. Thus, customers are assumed to be classified / assigned into groups or clusters.

The main contributions of this paper are: (i) a discussion on the trade-offs between maximizing cus-
tomer lifetime value and minimizing the cost of deploying expensive commercial actions; (ii) a formal
model that describes the former trade-off as a variant of the uncapacitated facility location problem; (iii)
a biased-randomized algorithm (Quintero-Araujo et al., 2017) that is capable of solving the aforemen-
tioned optimization problem in short computing times; and (iv) a series of benchmark instances that can
be used by future researchers to test alternative solving approaches. Biased-randomized algorithms are
specially useful in practical applications for different reasons: (i) they are relatively simple to implement,
flexible, and intuitive for managers; (ii) they offer high-quality solutions to complex problems in short
computing times (e.g., in a few minutes or even less if parallel-computing techniques are employed); and
(iii) the setting of their parameters is typically quite simple and can be completed after some quick tests
(Dominguez et al., 2014). Hence, while developing our algorithmic approach, we have tried to balance
efficiency and simplicity, so the proposed algorithm can be employed in different real-life scenarios.
Also, to the best of our knowledge, this is the first work that models CLV management as a facility
location problem (Pagès-Bernaus et al., 2019), which introduces a novel view of this topic. Actually,
most of the existing studies consider CLV as an exogenous variable, i.e.: one that does not depend on
the marketing actions. Marketing resources are frequently allocated over the entire customer base rather
than across individuals or segments. However, in order to maximize the aggregated CLV, companies
need to consider how their customized marketing strategies can affect this variable. By segmenting cus-
tomers and allocating personalized marketing strategies to every segment, firms can enhance their return
in terms of aggregated CLV.

The remaining of this paper is structured as follows: Section 2 reviews the literature associated with



the CLV concept and how it can be estimated by employing different methodologies. Section 3 focuses
on previous work related to the optimization of the CLV. Section 4 formulates the optimization problem
considered in this paper as a variant of the well-known facility location problem. Section 5 proposes a
constructive heuristic, and then extend it into a biased-randomized algorithm, which allows us to gener-
ate better solutions in short computing times. Section 6 provides a case study to better illustrate the main
concepts behind our model with a numerical example. Section 7 describes a series of computational ex-
periments that have been carried out to illustrate the concepts introduced in this paper. Finally, Section 8
summarizes the main contributions and outcomes of this work.

2. Works Related to the Customer’s Lifetime Value

Customer’s lifetime value has been a popular research topic during the last decades. Some research
papers present a comprehensive review of CLV, its benefits, and its computation methods. CLV can
be defined as the present value of all the future cash flows attributed to a customer’s relationship with
an organization (Kumar et al., 2004; Verhoef and Lemon, 2013), and offers the advantage to assess
the financial value of each customer –with the aim of identifying the most profitable customers and
to nurture long-term relationships (Kumar et al., 2008). According to AboElHamd et al. (2020), CLV
is one of the most reliable indicators in direct marketing for measuring the profitability of customers.
It is also a core metric in customer relationship management, where a relationship is developed over
time based on a series of interactions between parties –customers and service providers. It deals with
increasing customer’s value and satisfaction, and also with guaranteeing a long-term profitability for the
firm. Thus, CLV can be considered at different levels, including: individual, segment, or cohort. CLV
can also be expressed as excess revenue over the cost of acquiring, servicing, and retaining a customer
(Berger and Nasr, 1998). It involves the study of defection rates, purchases, average spending, and cross-
buying behavior. CLV can be useful to improve market segmentation and resource allocation, evaluate
competitor firms, customize marketing communication, optimize the timing of product offerings, and
determine a firm’s market value (Gupta et al., 2004; Kumar et al., 2006).

The CLV is normally computed by looking at the future purchase potential, since customers grow in
number with time, thus resulting in higher revenue –and a reduction in cost-to-serve a customer (Reich-
held and Kenny, 1990). There are two basic approaches: (i) a historical approach that takes into account
data about previous purchases; and (ii) a predictive approach that applies algorithms to customer’s behav-
ior and predicts their future value. Berger and Nasr (1998) had presented general mathematical models
to compute the CLV based on a net contribution margin attained by a customer after acquisition. Case
examples are presented considering customer retention models (customers either remain or not with
the vendor) and customer migration models, i.e., customers switching between vendors (Dwyer, 1997).
Some authors propose to combine real-options analysis with the CLV computation to analyze whether
to abandon non-profitable customers for meaningful resource allocation. Others consider that CLV with-
out option analysis underestimates the customer value. Factors influencing CLV were identified through
Monte-Carlo simulations by Haenlein et al. (2006). In business-to-business relationships, CLV models
are suggested in consideration of the four different types of buyer-seller relationships, which are based on
a dependence distribution between buyers and sellers. Thus, for instance Roemer (2006) suggested CLV
models that are based on either the discounted future cash-flow method or on the discounted cash-flow



combined with options value or with possible customer’s strategies.
Borle et al. (2008) assessed the CLV of each customer at each purchase occasion using a hierarchical

Bayes approach. In the model, they included the purchase timing, purchase amount, and risk of defection
for each customer. Romero et al. (2013) used a partially hidden Markov truncated model to obtain more
accurate forecasts of future customer’s behavior. Their model included purchase incidence decisions,
besides considering novel factors such as dynamic purchase patterns, dependence between purchase fre-
quency and monetary value, and customers that can become active again after a few periods of temporary
inactivity. Khajvand et al. (2011) used CLV to segment customers in a health and beauty company. They
firstly employed the recency-frequency-monetary method. Then, they extended this method with an ad-
ditional parameter called ‘count item’.

Venkatesan and Kumar (2004) have analyzed how CLV is affected with the use of different channels of
communication. Models that are able to forecast the customer’s purchase frequency (and the associated
contribution margin) were suggested to predict the CLV. Rust et al. (2011) also analyzed how CLV-
based resource allocation helps to increase revenue without changing the amount of marketing resource
investments.

Ekinci et al. (2014a) focus on increasing profits by providing an optimal promotional plan. Their
approach was first to have clusters of customers based on their CLVs. Then, they assigned different
promotion campaigns to each cluster in order to optimize profit. Hence, these authors considered CLV
as an exogenous variable –at least in part–, which helps to find optimal promotion campaigns. They
conclude that, with better methods, CLV can be maximized with an appropriate resource-allocation
strategy, which is precisely the focus of our study. Ching et al. (2004) classified customers according
to their purchases to a given company. Then, the effect of different promotion scenarios on the CLV is
considered. In addition, the impact of the budget constraint is also studied. They use a Markov chain
to model the customer’s stochastic behavior, and they solve the underlying optimization problem by
employing either linear programming (infinite horizon) or dynamic programming (finite horizon). Their
model, however, does not consider personalized marketing campaigns nor large-scale scenarios with
thousands of customers and hundreds of possible customized campaigns, which are central aspects in
our study.

3. Related Work on Optimizing the CLV

Any company pursues an optimal allocation of resources, considering both cost and revenue, to maintain
profitability and market performance (Kumar, 2006). Such an efficient allocation is required to balance
expenditure between acquisition of new customers with a low CLV and retaining old customers with a
high CLV (Gupta et al., 2006). With the goal of maximizing the CVL, Venkatesan and Kumar (2004)
proposes a genetic algorithm to assess a desired contact interval time for each individual customer. With
the same goal as before, Jonker et al. (2004) proposed a customer segmentation process. Fruchter and
Sigué (2009) identify, through optimal control theory of linear control systems, that the CLV can be in-
creased by a growth in trust and a decrease in opportunism between the buyer and the seller. Ekinci et al.
(2014b) try to increase the CLV by optimizing the type of promotion required for a customer segment.
Their approach is based on stochastic dynamic programming, as well as on classification and regression
trees. For a scenario with different types of products, these authors presented a promotional plan aimed



at maximizing the CLV. Ching et al. (2004) also suggested optimizing the CLV with a stochastic dy-
namic programming model. In case of promotions with no limits, the linear programming technique is
proposed, whereas a dynamic programming approach is considered in a situation with a limited number
of promotions. The authors have also included a budget constraint factor with application to real data.

Crowder et al. (2007) have given a framework to optimize the CLV considering some features. The
main one is the time duration of the probationary period, i.e., for how long a customer will be monitored
to know her profitability. The authors have taken into consideration the variability within individuals to
describe a stochastic behavior, as well as the variability among individuals. Blattberg et al. (2009) have
discussed conceptual issues towards the effect of various marketing elements, like price, promotion,
cross buying, multi-channels, RFM, and others towards CLV maximization. Ekinci et al. (2014b) have
presented a review on CLV optimization considering a specific marketing decision, such as promotional
budgets, sales-force allocation, product recommendation, customer acquisition, or retention rate.

AboElHamd et al. (2020) have reviewed traditional and dynamic programming models to maximize
the CLV, highlighting the advantages and disadvantages of these models. Some basic or traditional meth-
ods included in their study are: fuzzy systems, neural networks, system dynamics, and Bayesian deci-
sion theory. These are primarily based on CLV indicators like churn rate, retention rate, etc. Their dy-
namic programming algorithms include Markov decision processes, approximate dynamic programming
–which is also indicated as reinforcement learning–, and deep learning. AboElHamd et al. (2020) have
also proposed the use of deep learning for CLV maximization.

The existing literature presents an understanding of the CLV with its important place in customer
relationship management, as well as models to measure and maximize it. Most studies also conclude
that CLV contributes to customer segment development and resource allocation. Despite the amount of
literature on the variables taken into account to measure the CLV –such as expenditure rates, expenditure
by visits to online and offline shops, word-of-mouth, and repeat purchases, among others–, few studies
are focused on the optimization of the trade-off between the CLV and the marketing resources allocated
by brands. Hence, our study aims at filling this gap.

4. Problem Formulation

Let us consider a set of potential customers I , and a set of potential commercial actions J . Regardless of
the marketing plan, a customer will always be associated with one active action, the one with the highest
impact on her CLV. Hence, assigning a customer i ∈ I to an action j ∈ J has an impact bij ≥ 0 on the
associated CLV. Also, deploying each action j ∈ J has a cost cj > 0, and there is a maximum budget
cmax ≥ min{cj} available, i.e.: at least one marketing action can be deployed. Notice that, by varying
the budget, it is possible to obtain a Pareto frontier of optimal CLV versus budget. In this context, the
binary variable xij will take the value 1 if, and only if, customer i is assigned to action j, taking the
the value 0 otherwise. Similarly, the binary variable yj will take the value 1 if, and only if, action j is
deployed, taking the value 0 otherwise. Now, the optimization problem can be formulated as follows:



max
∑
i∈I

∑
j∈J

bijxij (1)

s.t.:
∑
j∈J

cjyj ≤ cmax (2)

∑
j∈J

xij = 1 ∀i ∈ I (3)

xij ≤ yj ∀i ∈ I, ∀j ∈ J (4)
xij ∈ {0, 1} (5)
yj ∈ {0, 1} (6)

Equation (1) is the objective function, which consists in maximizing the aggregated CLV obtained by
assigning each customer to one of the deployed commercial actions. Constraint (2) limits the total cost of
the deployed actions to the available budget. Constraint (3) guarantees that each customer is assigned to
exactly one commercial action. Constraint (4) ensures that a customer cannot be assigned to a non-active
action. Finally, constraints (5) and (6) define the binary character of the decision variables.

5. A Biased-Randomized Algorithm

In order to solve the optimization problem described in Section 4, we first propose a constructive heuris-
tic as described in Algorithm 1. The heuristic is designed to generate ‘good’ results –even for large
instances– in extremely short computing times. It starts from a hypothetical scenario in which all possi-
ble actions proposed by the marketing department have been initially deployed. Notice that this scenario
maximizes the CLV, but it might be unfeasible –since the cost of deploying all possible actions will
typically exceed the available budget. Hence, it will be necessary to deactivate some of the proposed
actions until we reach an affordable marketing cost. In order to select the right actions to deactivate,
an efficiency criterion is needed. Thus, given a deployed action, j ∈ J , the reduction in CLV associated
with its deactivation, rj > 0, is computed as the difference between: (i) the current CLV of the customers
assigned to j; and (ii) the CLV of the same set of customers once they have been reassigned to the best-fit
alternative actions –notice that different customers might be reassigned to different active actions. It is
possible then to define the efficiency of deactivating a deployed facility j, ej , as a linear combination of
two components. These are the inverse of the reduction in CLV, and the cost of deploying j, i.e.:

ej =
α

rj
+ (1− α) · cj , (7)

where α ∈ (0, 1] is a parameter that depends on the specific inputs of the instance data and has to be
determined experimentally. Notice that, in the particular case that all commercial actions have the same
cost (i.e., cj = c,∀j ∈ J), then α = 1 (in other words, only the inverse of the reduction in CLV will
be considered in that particular case). We can now consider a list containing all deployed actions sorted



from higher to lower efficiency. Then, the procedure will iteratively deactivate the next action in the list
until the remaining actions deployed fit into our marketing budget.

The input parameters of the previously described heuristic algorithm are the following ones: a vector
including the actions j ∈ J and their associated deployment cost (actions), a matrix containing the
impact over the CLV associated with assigning each customer i ∈ I to each commercial action j ∈ J
(impacts), and the budget available to deploy commercial actions (budget).

Algorithm 1 Constructive Heuristic
1: function heuristic(actions, impacts, budget)
2: sol← deployAllActions(actions, impacts) % initial solution with max CLV
3: for each action in actions do
4: efficiency(action)← computeEfficiency(action, actions, impacts)
5: end for
6: effList← sortList(actions, efficiency)
7: while effList 6= ∅ and cost(sol) > budget do
8: nextAction← extract(effList, 0) % extracts action in position 0
9: sol← deactivate(nextAction)

10: for each action in effList do
11: efficiency(action)← updateEfficiency(action, effList, impacts)
12: end for
13: end while
14: return sol

As explained in Ferone et al. (2019), a constructive heuristic such as the previously described can be
extended into a biased-randomized algorithm (Algorithm 2) by considering a multi-start framework and
introducing the following updates: (i) an oriented random selection of the next action to be extracted
from the efficiency list; and (ii) a local search process that helps to enhance the quality of the emerging
solution. Regarding the first update, the idea is to assign decreasing probabilities of being selected to
different elements in the sorted efficiency list. Thus, those actions with a higher efficiency will also be
the ones receiving the higher probabilities, and vice versa. This strategy allows us to run the randomized
heuristic multiple times, obtaining different solutions as a result –some of them of better quality than
the original one provided by the constructive heuristic. For introducing this random behavior, we made
use of a Geometric probability distribution with a parameter β ∈ (0, 1). As explained in Belloso et al.
(2019), values of β close to 0 lead to a uniform random selection of actions from the efficiency list.
On the contrary, values of β close to 1 emulate the greedy behavior of the original heuristic. Finally,
intermediate values explore different options by assigning higher probabilities of being selected to those
actions showing higher efficiency levels. Regarding the local search, the idea is to improve the solution
by exploring its neighborhood. In our case, we achieve this by randomly selecting two actions with
different status (one deployed and one deactivated), and and then switching their current status –i.e.:
deactivating the deployed one and vice versa. During each local search call, this swapping operation is
iteratively performed for a specified number of times (a design parameter). Any time a better solution is
found by applying the former local search, the current solution is updated.



Algorithm 2 Biased-Randomized Algorithm
1: function multi-start(actions, impacts, budget, maxTime, beta, nIter)
2: time← 0
3: bestSol← heuristic(actions, impacts, budget)
4: bestSol← localSearch(bestSol, impacts, budget, nIter)
5: while time < maxTime do
6: newSol← heuristic(actions, impacts, budget, Geometric, beta) % randomized version of heuristic
7: newSol← localSearch(newSol, impacts, budget, nIter)
8: if clv(newSol) > clv(bestSol) then
9: bestSol← newSol % choose the solution with the best customer lifetime value

10: end if
11: time← updateTime
12: end while
13: return bestSol

6. An Illustrative Example

In order to facilitate a better understanding of the methodology presented in the previous section, we pro-
vide a numerical example, which is also supported by Figure 2. To illustrate this example, we have used
a toy instance composed of 20 possible actions to be deployed, 20 customers, and a maximum budget of
$90, 623 to invest in the candidate actions. As depicted in Figure 2a, our algorithm starts with an ideal
scenario where all the possible actions are initially deployed, i.e, each customer receives her own fully
customized action. Notice that, although this strategy maximizes the CLV, the associated cost exceeds
the available budget. Thus, this initial solution is unfeasible. With the objective of generating a feasible
solution, the constructive heuristic will create a list of actions sorted by efficiency and will iteratively
deactivate actions until reaching a solution that satisfies the available budget. Figure 2b displays the first
iteration of the algorithm, in which action 4 is deactivated, obtaining a CLV of 19.0 with an associated
investment of $428, 301. Notice that each time an action is deactivated, the customers previously covered
by it need to be re-assigned other actions (the ones that closely meet their interests among the deployed
actions). In this case, customer 4 has been reassigned to action 2. Next, as the cost of the current solution
still exceeds the available budget, the algorithm performs a new iteration. Figure 2c shows this second
iteration, where action 13 has been deactivated and its associated customer has been reassigned to action
20. The resulting solution shows a CLV of 18.0 with a cost of $405, 940. This heuristic procedure will be
repeated until a feasible solution is found. Figure 2d shows the final solution generated by the heuristic,
which is a feasible one (its associated cost is $74, 583, which is lower than the budget). In this solution,
just three actions are deployed, and all the customers have been assigned to one of these actions (the best
one for them). However the CLV has decreased down to 3.07. In order to search for better solutions, the
multi-start biased-randomized version of the algorithm is employed. Figure 2e shows a partial solution
obtained by the biased-randomized algorithm after 5 seconds of computation. Finally, Figure 2f depicts
the final solution after 10 seconds of computation. This last solution shows a total of 6 deployed actions,
a CLV of 6.08, and a feasible associated cost of $83, 428.



(a) Initial solution with all actions deployed. (b) First step of the heuristic (deactivation of action 4).

(c) Second step of the heuristic (deactivation of action 13). (d) Final solution generated by the heuristic.

(e) Solution by the biased-randomized algorithm after 5 seconds. (f) Solution by the biased-randomized algorithm after 10 seconds.

Fig. 2: A case study illustrating the behavior of the proposed algorithm.



7. Computational results

The proposed approach has been implemented using Python 3.7 and tested on a workstation with a
multi-core processor Intel Xeon E5-2650 v4 with 32GB of RAM. To the best of our knowledge, there
are no benchmarks for the CLV problem. Accordingly, we have adapted the benchmark proposed by Ahn
et al. (1988), which was originally designed for the p-median problem, and later used in the context of
the facility location problem by Barahona and Chudak (2005). We have used the set of instances called
MED, since they are the largest and most challenging ones. Each instance is composed of a set of n
points, which are randomly chosen in the unit square. In our case, a point represents both a customer and
a possible action, and the corresponding Euclidean distance determines how close a customer’s needs
/ interests are from the corresponding action (i.e., as the distance between a customer and an action
approaches to zero, the more personalized the latter is with respect to the former). The set consists of
six different subsets, each with a different number of facilities and customers (500, 1000, 1500, 2000,
2500, and 3000), and three different opening cost schemes for each subset:

√
n/10,

√
n/10,

√
n/100,

and
√
n/1000, corresponding to 10, 100, and 1000 instance suffixes, respectively. In order to adapt these

instances to the CLV problem considered in this paper, we have carried out two additional modifications.
Firstly, when a customer i ∈ I is assigned to an action j ∈ J , the associated CLV is computed as follows:

bij =
1

1 + dij
, (8)

where dij refers to the Euclidean distance between both points (notice that by increasing the distance in
one unit, we guarantee that the denominator will never be zero). The main idea behind this equation is
to consider that the impact of an action over a specific customer is inversely proportional to the distance
between them, i.e.: a user will have a higher affinity for a campaign that is ‘closer’ to her needs and
interests. As a second modification, we have included a new parameter to these instances. This parameter
is the available budget, which has been set to 826,230 in our numerical experiments.

Table 1 reports the obtained results, where each row corresponds to a single instance. The first column
identifies the instance. The next two columns show the optimal results, which were computed using the
popular commercial solver IBM CPLEX. These values have been computed to explore the limits of the
maximum problem size that can be solved using exact methods, and to validate the quality of the results
provided by our approach. Notice that in the case of some instances (e.g., 2000-10), the optimal values
cannot be computed, in a reasonable time and standard memory resources, by using exact methods.
Hence, the importance of using heuristic-based approaches as the one proposed in this paper, specially
when dealing with real-life problems or large size. The next two columns in the table show the obtained
results provided by the basic constructive heuristic. Columns six and seven show the results provided
when the local search operator is added to the constructive heuristic. Likewise, the next two columns
show the results generated by the biased-randomized algorithm. Finally, the last three columns show the
gap with respect to the optimal values, which are computed as indicated in Equation (9).

Gap (cost, costoptimal) = 100 ∗
(
cost− costoptimal

costoptimal

)
(9)



The results show that the biased-randomized approach provides high-quality competitive solutions for
the CVL problem. Figure 3 depicts an overview of Table 1, which shows the performance of the different
versions of our algorithms. In this box-plot, the vertical axis represents the gap obtained with respect to
the optimum value, which represents the lower bound (LB). The results report that the greedy heuristic
presents the highest gaps, since it is a simple and extremely fast method that is intended to support real-
time decision making. On the average, it presents a gap of 7.9% with respect to the optimum values.
Notice that it employs an average computational time of just 3.1 seconds for the Python implementation
(which means that it can achieve an average far below 1 second when implemented in Java or C++).
When the local search is added to the constructive heuristic, the average gap with respect to the optimal
values is about 3.36%, which is noticeably lower than the previous one. Figure 4 illustrates the required
computational times to obtain the best-found solutions. Notice that the local search is a fast operator,
which increases the execution time with respect to the heuristic in just about 0.20 seconds. Hence, it
seems clear that adding the local search to the heuristic is a good design option. Finally, when the
heuristic is turned into a biased-randomized algorithm, our method is able to match –or remain very
close to– the optimal solutions for all the instances, obtaining an average gap around 0.46%. These
results highlight the effectiveness of our biased-randomized algorithm, which is able to provide near-
optimal solutions in an average computational time of 81 seconds –notice that this is a very competitive
time in comparison with the average time required by the exact method to reach the optimal values,
which is above 1.5 hours.
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Fig. 3: A comparison of solutions quality for different approaches.

8. Conclusions

In the context of intelligent marketing, this paper has analyzed the concept of customer lifetime value.
After reviewing existing work and definitions related to this concept, we have discussed several studies
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Fig. 4: A comparison of computational times for different approaches.

addressing the issue of maximizing this value under budget constraints. Then, we have proposed a model
for this optimization problem. Our model is inspired by the uncapacitated facility location problem, with
facilities playing the role of marketing actions, customers being represented by nodes, and the impact
level of each action on each customer’s CLV being defined by the inverse of the distance between the
customer and the action (i.e., the closer an action to a customer, the more it can have a positive impact
on her CLV).

Being a complex optimization problem, we propose a heuristic procedure to solve it in real time, even
in the case of large-scale instances. This heuristic is later extended into a biased-randomized algorithm,
which allows us to improve the quality of our results without significantly increasing computational
times. The quality of the marketing strategies proposed to maximize lifetime values are validated by
a direct comparison against optimal solutions generated after several hours of computation. As future
work, we are considering the following possibilities: (i) to test our approach in a real-life scenario,
contrasting our results with those obtained without using an algorithm-based approach; (ii) to consider
random impact levels instead of deterministic ones to make the problem even more realistic; and (iii)
to apply similar optimization approaches to other challenges in the fields of intelligent marketing and
e-marketing.
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