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Abstract

This paper analyzes a stochastic version of the vehicle routing problem in
which customers’ demands are not only stochastic but also correlated. In or-
der to solve this stochastic and correlated optimization problem, a simheuris-
tic approach is combined with an adaptive demand predictor. This predictor
is based on the use of machine learning methods and Petri nets. The infor-
mation on real demands, provided by the vehicles as they visit the nodes of
the logistic network, allows for a real-time forecast of the demand, as well
as for an updated estimate of the correlation between them. A constrained
prediction is provided by our hybrid algorithm, which is able to forecast an
increase of 50% in the mean value of the demands of all nodes. With a very
limited amount of information and reduced computational requirements, our
algorithm provides a forecast with a high degree of reliability and a balanced
capacity to reject false positives as well as false negatives. To illustrate its
effectiveness, the methodology is applied to a wide range of benchmarks.
The results show the benefits of applying this methodology in a context of
correlated variation of the demands.

1. Introduction1

Vehicle routing problems (VRP) are very popular in logistics, since they2

constitute simplified models of real-world problems found in a wide range of3

application fields, from long-distance backhaul planning (Belloso et al., 2019)4

to home healthcare logistics (Fikar et al., 2016). VRPs have received much5

attention from the research community during the last decades (Laporte,6

2009). In their multiple variants, VRPs represent formidable challenges and,7

for this reason, significant research activity is currently devoted to obtain8

high-quality solutions using constrained computer resources and a limited9

time (Oyola et al., 2018). The statement of a VRP includes a depot, con-10

taining all available resources –such as products and vehicles–, and a number11

of nodes representing the customers’ facilities –where delivery services may12

be requested. Several available homogeneous vehicles depart from the depot13

to deliver a particular product to the customers. A given customer can be14

served just by a single vehicle. The costs of the distribution process are usu-15

ally proportional to the distance traveled by the vehicles. However, additional16

costs and penalties can be considered, such as those related to delivery time,17

the quality of service to the customers, or the number of required vehicles.18
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Different variants of the VRP aim at combining the description of relevant19

features from the real world with a limited level of complexity in the logistics20

model (Matei et al., 2015; Pop et al., 2013). One of these variants is the21

capacitated vehicle routing problem (CVRP), where the capacity of the de-22

livery vehicles is constrained. Another variant is the vehicle routing problem23

with stochastic demands (VRPSD). In the VRPSD, a particularly realistic24

and challenging feature, randomness, is introduced in the model of the lo-25

gistic system. In particular, a certain probability distribution represents the26

stochastic demands of customers, while the actual demand of a given node is27

only unveiled when the vehicle visits the customer. A methodology that can28

be applied to plan a set of routes for the vehicles consists of transforming the29

VRPSD into a VRP, by using one of the parameters of the probability distri-30

bution as deterministic demand –usually the mean or expected value of each31

random demand. A solution, valid for this deterministic VRP, can be taken as32

a possible solution for the VRPSD. The capacitated vehicle routing problem33

with stochastic demands (CVRPSD) is a variant of the VRP whose purpose34

is to find a set of routes for a fleet of homogeneous vehicles, with constrained35

capacity, to satisfy the stochastic demands of the customers (Marinaki and36

Marinakis, 2016). Other variants also consider stochastic travel and servic-37

ing times (Miranda and Conceição, 2016). The uncertainty associated with38

the demands of the customers may prevent a route to be completed in case39

that a given vehicle runs out of products before serving the last customer in40

the route. This event is called a ‘route failure’, and requires the implemen-41

tation of a certain corrective action, named recourse or recovery operation42

(Figure 1). The vehicle involved in a route failure may return to the depot,43

so it can be reloaded with products and resume the route at the node where44

the delivery was interrupted (Hernandez et al., 2019). This recovery process,45

called detour to depot, increases the costs associated with the solution in46

an amount that can be given by the distance traveled in the round trip to47

the depot plus a certain penalty, which can be added to the mentioned cost.48

Actually, in some cases the structure of the ‘penalty costs’ associated with49

a route failure might cause the objective function to become a non-smooth50

one, as discussed in De Armas et al. (2018).51

Other approaches can also be found. For example, a particular variant52

of the VRP, the chance-constrained VRP (CCVRP) does not specify the re-53

course actions in case the capacity of a vehicle is exceeded, but it is required54

that these actions are produced with a low probability. This approach sup-55

ports certain benefits, such as a more consistent service and a reduced need56
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Figure 1: An illustrative example of the problem considered in this study.

for complex and expensive recourse actions (Dinh et al., 2018). Usual as-57

sumptions on the stochastic demands of the customers in a VRPSD are their58

association with a specific probability distribution and their independence59

(i.e., they are assumed to be non-correlated demands). Some references, in-60

cluding the present research paper, deal with approaches not constraining the61

types of these probability distributions. Additionally, the research described62

in this paper considers correlated demands, which may present a common63

trend –such as a joint increase of their mean values. This behavior is very64

useful to represent certain features of real-world logistic systems, where de-65

mands of different customers may be correlated (Spliet et al., 2014). Common66

patterns in the behavior of different customers of the same product can usu-67

ally be found (Shi et al., 2016). Depending on the product to be delivered,68

diverse external factors, such as weather, festivities / holidays, crisis, fash-69

ion, price policies, rumors, panic, euphoria, imitation, shared information,70

etc., can lead to a correlated variation of the customers’ demands. Antici-71

pating any of these situations and predicting a potential correlation in the72

consumer demands may produce useful information for planning efficiently73

the routes in a CVRPSD. Some examples of systems that may experience this74

behavior are courier mail services to deliver and pick up mail or packages,75
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distribution of heating oil, and online dial-a-ride transportation systems. If76

not predicted, a significant correlated increase in the demand values of the77

nodes in a CVRPSD may lead to distribution policies where the number of78

routes per solution is small and, hence, the cost of an aprioristic or planned79

solution is reduced. Nevertheless, it is likely for the demands to be larger80

than expected. That is why it is reasonable to assume that the number of81

route failures will rise. If the cost of a round trip to the depot or alternative82

recourse action is relatively high, the solutions obtained without prediction83

of the correlated variation of the demands are likely to be worse than if a84

forecast tries to predict this variation. As a consequence, the prediction of a85

potential correlation in the demands is a very promising area of research to86

generate low-cost and reliable solutions – i.e., solutions with a small number87

of route failures.88

The rest of the paper is organized as follows. Section 2 makes an overview89

of the main characteristics of the proposed solving methodology. Section 390

deals with the basic notation and assumptions in the problem that has been91

investigated. Section 4 discusses relevant scientific literature related to the92

CVRPSD and the proposed methodology, such as simheuristics, demand pre-93

diction, demand correlation, as well as machine learning and Petri nets in94

combination with simheuristics. Section 5 focuses on the fundamentals of95

the proposed methodology, while Section 6 details the structure, behavior,96

integration, and parameters of a Petri net predictor. Section 7 describes a nu-97

merical example, while Section 8 discusses the subsequent results. Section 998

is devoted to the conclusions and future work.99

2. Methodological Approach Overview100

As introduced in the previous section, considering VRPS with stochastic101

and correlated customers’ demands is the main target of this work. Provid-102

ing a solving approach for that VRP variant constitutes a novel contribution.103

The methodology proposed to solve the CVRPSD with correlated demands104

combines simheuristics (Juan et al., 2018) and a demand predictor. The lat-105

ter is developed as a discrete-event system, and modeled using the paradigm106

of Petri nets (Reisig, 2012). Simheuristics presents interesting advantages,107

such as: simplicity, efficiency, flexibility, a reduced parameter-setting stage,108

and the relaxation of most of the mentioned assumptions (Rabe et al., 2020).109

In particular, since simheuristics are based on simulation, they can cope110

with any probability distribution employed to model the random customers’111
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demands. Moreover, our approach will not require these demands to be inde-112

pendent. Additionally, the use of Petri nets to model the predictor provides113

the following properties to our methodology: relative simplicity, clarity, re-114

liability, and knowledge about the state of the predictor (David and Alla,115

2005). Another feature of Petri nets is their flexibility. As a consequence,116

an extended model with a higher functionality can be easily developed to117

implement a predictor with a more complex behavior than the simplified one118

presented in this research paper. Moreover, the forecast is developed thanks119

to the simulation of the Petri net, which consumes a negligible amount of120

computer resources.121

Hence, the main original contributions of this paper can been summarized122

as follows: (i) it proposes a predictor, based on a discrete-event system, for123

shared trends in correlated demands of the CVRPSD –this predictor will be124

able to represent the system structure and state; (ii) it designs a structurally125

simple and efficient Petri net, which is then integrated within a simheuristic126

framework to develop a learning methodology that allows for improving the127

quality of the solutions found in the presence of correlated demands; (iii) it128

proposes a methodology that uses the data provided by the vehicles –as they129

visit the different nodes–, to develop a continuously updated prediction on the130

demands of the remaining nodes in a route; (iv) it studies the feasible types of131

VRP and their circumstances, where the demand prediction can be applied132

successfully to improve the quality of the aprioristic solutions; and (v) it133

tests the proposed methodology into a large set of CVRPSD benchmarks,134

and analyze the impact of the Petri net predictor in the quality of the results.135

3. Basic Notation and Assumptions136

In the basic version of the CVRPSD, a typical instance i of the problem137

contains a set of ni + 1 nodes (numbered from 0 to ni). All the vehicles138

depart from the depot, node 0, to deliver products to the remaining nodes,139

which represent customers. In the traditional version of the problem, cus-140

tomers’ demands are deterministic and known beforehand. In the stochastic141

version, customers’ demands can follow different random variables, and their142

specific value for a given customer is only revealed when the vehicle visits143

the customer.144

The basic CVRPSD constitutes a simplified version of a real-life problem145

in which customers’ demands might share a common trend. Therefore, these146

demands might not be independent but, instead, correlated. Our methodol-147
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ogy provides a forecasting procedure that allows to compute efficient solutions148

in the case of correlated demands. In particular, two different scenarios are149

allowed. It is assumed that the demands of the nodes can either be: (i)150

uncorrelated –their value is obtained from a certain probability distribution,151

whose mean value is previously known; or (ii) correlated, in which case we152

assume an increase of 50% in the mean value of the probability distribution153

modeling the demand of each node. The specific scenario associated with a154

certain instance of the CVRPSD is not known beforehand. The forecasting155

system is in charge of predicting which scenario is active from the information156

of the real demands given by the vehicles as they visit the customers.157

The statement of the CVRPSD considered in this paper unveils the real158

demands of the nodes once the delivery vehicle visits the customer. Be-159

fore this visit, only their probability distributions and their mean values are160

known, as well as the real demands of the already visited nodes. The pro-161

posed methodology uses the information gathered during the time span of162

the instance. A forecasting mechanism to predict shared trends in customers’163

demands has been implemented in the code developed to solve the CVRPSD164

with correlated demands. It is based on a discrete-event system, applied for165

collecting information from the customers visited by the delivery vehicles.166

This information is used to forecast the trend followed by the demands of167

the remaining customers left to be visited. As long as each vehicle visits168

a node, the real demand is known. This information feeds the forecasting169

system, and the prediction is updated. The discrete-event system is modeled170

by a Petri net, and its state is updated every time a vehicle visits a customer.171

The information provided by the Petri net is used to forecast the expected172

demands of the remaining nodes to be visited.173

The mechanism for forecasting the demand correlation can be applied to174

find a high-quality solution for different variants of the VRP, where the data175

obtained during the route execution could be applied in a subsequent route-176

planning stage. Some of these variants are the dynamic VRP (Ritzinger177

et al., 2015; Spliet et al., 2014), multi-trip VPR (Cattaruzza et al., 2016),178

VRP with time windows (Bräysy and Gendreau, 2005), as well as the periodic179

VRP (Campbell and Wilson, 2013).180

4. Modular Components of our Approach181

The proposed methodology is based in three fundamental topics: simheuris-182

tics –as a methodology to solve the CVRPSD–, machine learning –for devel-183
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oping an adaptive predictor of the demand–, and the paradigm of the Petri184

nets –as a formal language to describe the predictor.185

4.1. Simheuristics Applied to VRPs186

Simheuristic algorithms integrate simulation and metaheuristics in order187

to find good quality solutions for a problem in a short time (Rabe et al.,188

2020). They are specially designed to solve a wide range of combinatorial189

optimization problems that take into account real-life complexity and uncer-190

tainty (Pagès-Bernaus et al., 2019; Quintero-Araujo et al., 2019). In that191

sense, simheuristics can be seen as a natural extension of the metaheuris-192

tics concept (Ferone et al., 2019). In particular, the combination of Monte193

Carlo simulation (MCS) and metaheuristics has been successfully applied to194

obtain near-optimal solutions for different VRPSD variants. MSC allows de-195

termining the total cost of any planned solution, including the cost of the196

route failures and their subsequent recourse actions, as well as its reliability197

(Faulin et al., 2008). As a result, promising solutions can be provided, with198

the associated cost and reliability, for supporting the decision-making pro-199

cess. Hence, Gruler et al. (2017a,b) report successful approaches, based on200

simheuristics, to solve the route planning in waste collection management un-201

der uncertainty scenarios. Similarly, Reyes-Rubiano et al. (2019) tackles the202

routing of electric vehicles with limited driving ranges and stochastic travel203

times, Calvet et al. (2019) address the multi-depot vehicle routing problem204

with stochastic demands, while Gruler et al. (2018, 2020) propose simheuris-205

tic approaches for single- and multi-period inventory routing problems with206

stochastic demands.207

4.2. Demand Correlation in VRP208

Stochastic VRPs (SVRP) contain stochastic parameters, associated with209

certain probability distributions. VRPs with stochastic demands (VRPSD)210

is a particular case of SVRP, where the random variables are related to the211

demands of the customers (Hernandez et al., 2019). Additionally, dynamic212

and stochastic VRPs envisage the use of real-time information, acquired af-213

ter the creation of a planned solution, to update the routes to a new context214

(Ritzinger et al., 2015). In the VRPSD literature, it is usual to assume the215

demands of the customers to be independent (Oyola et al., 2018). However,216

this feature is not always found in real-world distribution problems. On the217

contrary, in many practical cases it is possible to find correlations between218
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the demands of the nodes. For example, Chiang (2007) presents the corre-219

lated VRP, where a correlation between the periodic demands of the nodes is220

considered in the solution of the problem. The consideration of this correla-221

tion contributes to the prediction of differences between the real aggregated222

demands of the planned routes and the capacity of the vehicles. Shi et al.223

(2016) consider a VRP with potential demands, soft time windows (VRP-224

PDTW), and split delivery (several vehicles can serve the same customer). In225

the analyzed scenario, it is considered probable that once a customer knows226

the initial demand of other customers, this customer could make some ad-227

justments to his or her own demand. The potential demand of a customer228

j is computed as a function of the difference between the initial demand of229

customer j and the ones of the remaining customers. This function can be230

linear, logarithmic, or semi-logarithmic, according to the authors. However,231

in most of the reported experimental tests, the authors generate the poten-232

tial demands randomly. Dinh et al. (2018) describe a methodology to solve233

the chance-constrained VRP, which is a VRPSD with a limited probability234

of exceeding the capacity of every vehicle. In their approach, correlations235

between random demands are allowed, although the probability distribution236

of the demands is unknown.237

4.3. Demand Prediction in VRPs238

It is not always possible to know in advance the effects of correlations239

in the variation of the real demands. For this reason, demand forecasting240

may be considered as a particularly critical source of information to produce241

high-quality planned solutions for the VRPSD, where there is a correlation242

in the stochastic demands. In the CVRPSD with correlated demands, some243

information might not be known during the construction stage of an aprior-244

istic or planned solution, despite this information can significantly influence245

the total cost (Ritzinger et al., 2015). Among the updated information that246

could be useful to plan the routes, we could consider travel times, service247

times, new or canceled customer requests, as well as customers’ demands248

(Zou and Dessouky, 2018). However, this information is not always available249

at the time, when the aprioristic or planned solution is constructed. As a250

consequence, it is of great interest to forecast the values of the unknown pa-251

rameters of relevance to the problem. In the literature, it is common to use252

historical data (Ehmke et al., 2012). Hence, Markov et al. (2016) present a253

methodology to solve a rich routing problem for collecting recyclable waste,254

where a daily demand is predicted by the statistical process of historical data255
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of waste level in containers, which was obtained via ultrasonic sensors. Zou256

and Dessouky (2018) propose a look-ahead dynamic partial routing for the257

VRP with dynamic customer requests. In particular, it uses historical data258

to predict if some dynamic customers will request a delivery service once the259

planning stage has finished. Ge et al. (2018) develops a methodology to solve260

the two-echelon VRP – a VRP with intermediary facilities to transship the261

freight among different vehicles. This methodology uses historical distribu-262

tion data of logistics companies, gathered from multiple delivery cycles, to263

forecast the demand of the customers. The historical demand data of each264

customer corresponds to a period of 30 days. Chiariotti et al. (2018) describe265

a methodology for the dynamic re-balancing of a bike-sharing system, which266

is tested using the data of the New York city system. In order to improve267

the estimation of the demand patterns, the authors propose to consider not268

only historical data but also current trends and weather data.269

4.4. Petri Nets Applied to VRPs270

Petri nets constitute a mathematical formalism especially suited to model271

and analyze discrete event systems, which may show complex behavior, such272

as concurrency and synchronization. A discrete-event system is a discrete-273

state and event-driven system, i.e., a system whose states present discrete274

values and may change after the occurrence of an event (Silva, 2018). The275

graphical representation of a Petri net provides with an intuitive and self-276

documented specification that describes explicitly the state of the modeled277

system (Silva, 1993). An equivalent matrix-based representation is appro-278

priate for computer simulation, where the application of simple rules allows279

to study the evolution of the Petri net in different scenarios. Petri nets280

count on a broad body of theoretical results, facilitating both, the structural281

and the performance analysis of a net. Structural analysis allows checking282

qualitative properties, such as liveness, deadlock-freeness, reversibility, and283

boundedness. Janssens et al. (2009) reports an application of Petri nets284

aimed at solving the routing and scheduling problems in scenarios with un-285

certain travel times, such as the vehicle routing problem with time windows.286

Latorre-Biel et al. (2016) propose a methodology to combine simheuristics287

with a Petri net model, applied to cope with instances of the CVRPSD. The288

routing problem in a smart city through the use of a colored Petri net model289

is addressed in Latorre-Biel et al. (2017) to develop a mesoscopic traffic simu-290

lator. Essani and Haider (2018) describe a methodology to solve the multiple291

traveling salesman problem through its transformation into a colored Petri292
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net. Finally, a Petri net model to describe the logistics in a smart factory in293

the frame of the paradigm of Industry 4.0 is presented in Latorre-Biel et al.294

(2018).295

5. Fundamentals of the Methodology296

Typically, a simheuristic algorithm starts with the calculation of a solu-297

tion for a deterministic version of the CVRPSD in the form of a CVRP. This298

deterministic solution distributes the nodes in routes, which are assigned to299

different delivery vehicles. The quality of one of these aprioristic solutions is300

then estimated by Monte Carlo simulation. Stochastic values for the demands301

of the customers are obtained, following a certain probability distribution,302

and the potential route failures are evaluated. As a result, an average value303

of the cost associated with the implementation of the planned solution can304

be calculated. A solution with high quality (low cost) can then be selected305

and implemented. The previously described approach has been modified to306

implement the forecast of a potential shared trend in the correlated demands307

of the customers. In this new approach, once a solution for the active in-308

stance of the CVRPSD has been chosen and its application starts, a Petri net309

for demand prediction is activated to receive the real demands of the nodes,310

as long as they are visited by the delivery vehicles. The state of the Petri311

net, as well as the correlation forecast, is updated every time that new data312

feeds the predictor. The application of this forecast to the calculation of a313

planned solution is carried out once the route execution stage of a solution314

to a previous instance of the CVRPSD has finished. In other words, the315

correlation forecast is used when all the customers have been served and its316

purpose is to calculate a solution for the next solving iteration. The correla-317

tion forecast provided by the Petri net is then used to update (if necessary)318

the mean values of the probability distributions associated with the nodes,319

which are used as deterministic values of the demands, when planning a new320

solution for the CVRPSD.321

Notice that the amount of information used by the Petri net predictor is322

just ni real numbers, where ni is the number of visited nodes in the execution323

of the routes of an aprioristic solution of the i-th instance of a CVRPSD324

(excluded the depot, node number 0). The Petri net predictor is integrated325

in the traditional simheuristic methodology as described in the following326

steps:327
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1. Use a simheuristic algorithm for solving a CVRPSD instance, i.e.: (i)328

solve the deterministic problem using average values; (ii) use MCS to329

evaluate each new ‘promising’ solution in a stochastic environment;330

and (iii) repeat the steps above while the termination condition has331

not been met yet.332

2. Apply the best solution to solve the active instance of the CVRPSD and333

feed the Petri net system to forecast the correlation among customers’334

demands.335

3. If necessary, re-compute the mean value of the demands associated with336

the different nodes, using the updated forecast of the Petri net.337

4. Repeat the entire process using the updated expected value for each338

demand.339

Algorithm 1 reports the pseudo-code of the approach. Moreover, Figure 2340

reports an example of solutions obtained by the Simheuristic. Figure 2(a)341

is a solution obtained after the execution of the BR-CWS algorithm. The342

solution is not locally optimum and is improved by localSearch, obtaining343

the solution in Figure 2(b). The last step of the Simheuristic consists in the344

evaluation of the solution in the stochastic environment through simulation.345

A possible realization of the process of simulation can be found in Figure 2(c).346

In this case, the real demands along the routes exceeded the capacity of the347

vehicles, and the routes have been repaired with two additional trips to the348

depot for a vehicle reload. The results obtained by the simulation are used349

by the Petri net to adjust the predictions and obtain more accurate solutions350

in successive iterations.351

6. The Petri Net Predictor352

The Petri net that is used to forecast a potential correlation between the353

demands of the nodes in a CVRPSD is an interpreted ordinary Petri net354

composed by 5 places and 6 transitions (David and Alla, 2005; Silva, 1993).355

In our case, the Petri net is non-pure and n-bounded (n = m0(p0), initial356

marking of place p0 of the Petri net predictor). It is not live, since, after357

the firing of a certain number of transitions, a deadlock is always reached358

no matter what the initial marking is. There are four structural conflicts in359

the Petri net (involving the output transitions of p0, p1, p2, and p3). The360

interpretation of the Petri net prevents the structural conflict associated to361

p0 from becoming an effective conflict, since the transitions involved in it,362
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Algorithm 1: Simheuristic and Petri net integration.

// Solve the deterministic version of instance i using

expected demands

1 initSol← CWS(i);

// Evaluate the solution in a stochastic environment

2 stochCost(initSol)← simulation(initSol, sSim)

3 bestSol← initSol;
4 while stopping criterion not met do
5 newSol← BR-CWS(i);
6 newSol← localSearch(newSol) ; // 2-Opt

7 stochCost(newSol)← simulation(newSol, sSim) ;
8 if stochCost(newSol) < stochCost(bestSol) then
9 bestSol← newSol

// Petri net simulation

10 Apply bestSol to solve active instance i;
11 foreach j = 1, . . . , ni do
12 Classify node j into type 1, 2, or 3 ; // see Section 6.2

13 Simulate the PN and qualitative forecast demand trend in
remaining nodes;

14 Update expected demands;
15 while more time available repeat from 1
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(c) Solution after simulation.

Figure 2: Example of solution.
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{t0, t1, t2}, are synchronized with the occurrence of external events. These363

external events are the visit of a new node in the application of a solution364

for the CVRPSD and its subsequent classification. The mentioned classifi-365

cation is performed according to the comparison of the real demand with366

the mean of the probability distribution of the node. Regarding the type of367

node, the guard functions will allow the enabling of a single transition in the368

set {t0, t1, t2}, assuming single server semantics: (i) C0 is a Boolean guard369

function of transition t0; it is active (true) after a vehicle has visited a certain370

node and its demand has been classified as showing a higher value than ex-371

pected; (ii) C1 is a Boolean guard function of transition t1; it is active (true)372

after a vehicle has visited a certain node and its demand has been classified373

as meeting the expected value; and (iii) C2 is a Boolean guard function of374

transition t2; it is active (true) after a vehicle has visited a certain node and375

its demand has been classified as showing a lower value than expected. Once376

one of these transitions has been triggered, the associated guard function is377

deactivated (false). The Petri net then evolves until a deadlock is reached,378

before a new external enabling is produced. As a consequence of the men-379

tioned interpretation of the Petri net, the other structural conflicts never380

become effective, since it is not possible for more than one of the transitions381

involved in each structural conflict to be enabled. Figure 3 depicts the Petri382

net in its initial marking.383

6.1. Description of the Places and Transitions of the Petri Net384

Figure 3 summarizes the main elements of our Petri net, whose details385

are presented next:386

• p0 represents the nodes to visit;387

• p1 and p2 represent, respectively, the excess of visited nodes with a388

stochastic demand that is identified as higher or lower than expected389

(regarding a certain window, quantified in a parameter of the Petri net,390

w, which needs to be tuned up);391

• p3 allows the detection of an excess of visited nodes with a stochastic392

demand that is identified as being different than expected, while p4393

represents a forecast of correlated variation of demands;394

• t0, t1, and t2 fire only if, after a node is visited, the stochastic demand395

is higher, equal, or lower than expected, respectively;396
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Figure 3: A graphical representation of the Petri net predictor.
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• t3 and t4 fire only if a correlation is not predicted yet but there is an397

excess of nodes visited with higher or lower demand than expected,398

respectively;399

• finally, t5 fires only if a correlation is already predicted and it is reg-400

istered simultaneously an excess of both types of nodes (with higher401

and lower demand than expected); this transition removes the marking402

representing the smaller excess of one of both types of nodes by can-403

celing a node of both types of nodes; after firing this transition there404

might be only one type of node in excess.405

6.2. Operation of the Petri Net406

The operation of the Petri net is performed in a series of steps, includ-407

ing a preliminary one required to furnish the forecast system with suitable408

information. This preliminary step makes use of the existing simheuristic al-409

gorithm. When the algorithm obtains the real demand of the j-th node (i.e.410

a delivery vehicle visits the node), this information is sent to the Petri net411

predictor so it can forecast a potential correlation in the real demands. This412

prediction might improve the estimation of the demands in the remaining413

nodes. Notice that 1 ≤ j ≤ ni, where ni is the number of nodes to be visited414

(excluding the depot, node number 0).415

1. The last visited node (node j) is classified by the Petri net into one of416

the following three types: (i) type 1, whenever the real demand of the417

node is higher than the expected demand; (ii) type 2, when the real418

demand of the node is exactly as expected; or (iii) type 3, whenever419

the real demand of the node is lower than the expected demand. This420

classification is applied by defining an interval around the mean of the421

probabilistic distribution that models the stochastic demand of the j-th422

node. The width of this interval depends on a parameter w. If the real423

demand of the j-th node falls inside this interval, this node would be424

considered as one of type 2. In case the real demand does not belong to425

this interval, the node would be of type 1 (higher-than-expected values)426

or 3 (lower-than-expected values).427

2. In order to simulate the evolution of the Petri net, we need to provide428

a marking describing the initial state of the net. If the node is not429

the first one to be visited in the application of the aprioristic solution,430

this initial marking is the final marking from the simulation performed431
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after the previous visit of a node by any of the delivery vehicles. This432

requirement is based on the fact that the demand forecast is updated433

with the cumulative information provided by the nodes as they are vis-434

ited. The simulation of the evolution of the Petri net starts when any435

of the three transitions {t0, t1, t2} is triggered. These transitions clas-436

sify a new node into one of the three types mentioned in the previous437

step. This simulation finishes when there is not any enabled transition438

(deadlock). Once the evolution of the Petri net reaches a deadlock,439

it is possible to forecast the trend of the correlated demands of the440

nodes. In our methodology, the forecast is computed by comparing441

the number of visited nodes –with a detected change of trend– with a442

threshold, t. If this threshold is exceeded, then a shared increase in443

the correlated demands of the non-visited nodes is predicted. Other-444

wise, the forecast is that no change is expected. This threshold is a445

parameter of the forecast system that should be set. The simulation of446

the Petri net predictor requires two inputs: the real demand of a node447

and an initial marking. Additionally, the simulation of this Petri net448

leads to two outputs: (i) the qualitative forecast of the trend followed449

by the correlated real demands of the remaining nodes; and (ii) the450

final marking of the simulation of the Petri net –before the following451

simulation sequence– as a consequence of visiting another node.452

3. Return to the initial step until all nodes have been already visited.453

4. Compute the updated value of the expected demands on the nodes to454

be visited as a consequence of the qualitative forecast of the Petri net455

simulation. If there is a prediction of a real demand increase, this step is456

implemented by modifying accordingly one of the statistic parameters457

of the probability distribution associated with the real demands. For458

example, the average value can be used for this purpose.459

5. Once all the nodes have been visited, an aprioristic solution can be460

carried out. For this purpose, the updated values of the expected de-461

mands in the non-visited nodes can be used. This step might imply a462

change in the delivery strategy applied so far.463

6.3. Parameters of the Petri Net464

As already mentioned, the Petri net predictor makes use of two parame-465

ters. The first one is the interval around the expected values of the customers’466

demands. Hence, once a node is visited and its real demand is revealed, this467

value is compared to the expected one. If the real demand falls inside this468
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interval, we assume that the demand of the present node has not changed.469

On the contrary, if the real demand falls outside the interval, we assume that470

there is a variation in the customer’s demand. This interval is quantified by471

a parameter w ∈ [0, 1] as follows: let us consider E[X] as the mean of a prob-472

ability distribution and Di the stochastic demand of the i-th node. Then, w473

defines an interval [E[X] · (1− w), E[X] · (1 + w)]. The second parameter is474

the overall excess of one of the three types of nodes among the visited ones,475

t. This potential excess leads the Petri net to forecast a certain trend in the476

correlated demands. Let us consider that ni+1 is the number of nodes in the477

i-th instance of a CVRPSD with m sequential solving iterations. Also, let us478

assume that the current marking of place p4 is m(p4), being m0(p0) = ni the479

initial marking of p0. Then, we consider a threshold given by a real number480

t in[0, 1]. Now, whenever m(p4) ≥ (i/m) · t ·m0(p0) we can assume that there481

is a correlated increase in the demands of the nodes. Under the assumption482

of correlation, a quality parameter, Q1(w, t), is computed as an average of483

all instances tested: Q1(w, t) = R11
R11+R10

, where R11 denotes the number of484

correct predictions (i.e., the correlation value is 1 and the predicted response485

is 1), and R10 is the number of incorrect ones (i.e., the correlation value is486

1 and the predicted response is 0). Likewise, under the assumption of no487

correlation, a quality parameter Q2(w, t) is computed as an average of all488

instances tested: Q2(w, t) = R00
R00+R01

, where R00 denotes the number of cor-489

rect predictions and R01 is the number of incorrect ones. An average value490

of both quality parameters, Q1(w, t) and Q2(w, t), is obtained as follows:491

QT (w, t) = Q1(w,t)+Q2(w,t)
2

. Finally, an additional parameter QB(w, t) is also492

defined to quantify the balance of successful prediction rates –both when a493

correlated increase in the demands exists (Q1) and when it does not (Q2).494

Specifically, it is computed as: QB(w, t) = 1
|Q1(w,t)−Q2(w,t)| .495

6.4. Example of Application496

In order to illustrate the proposed methodology, an example based on in-497

stance A-n32-k5 (available from https://bit.ly/3eGxGx9) is considered. In498

this example, there is one depot and 31 additional nodes with demands,499

whose mean values are known beforehand and constrained to the interval500

[1, 24]. Additionally, there are 6 delivery vehicles, each of them with a ca-501

pacity of 100 units. An initial solution, composed of 6 routes, is computed502

using a simheuristic algorithm. In this solution, the first route is defined503

by the sequence of nodes (24, 21, 22, 5, 16). Node 24 has an average demand504

of 24, while the real demand –unveiled once the vehicle reaches the node–,505
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takes the value of 49.37. This information is sent to the Petri net predictor506

by means of the guard functions of transitions t0, t1, and t2, which classify507

the node by comparing the real demand with a window, w, around the mean508

value of the demand. Let us consider w = 0.4. Then, an upper limit of this509

window, given by the value mean(1+w) = 24(1 + 0.4) = 33.6, is compared510

to the value 49.37 (real demand). Since the latter is higher than the former,511

the firing of transition t0 increases the marking of place p1, which represents512

the number of nodes with a demand above the window.513

The next two nodes present a real demand of 30.5 and 13, respectively.514

However, their expected demands are 12 and 4, respectively. Hence, both515

nodes increase the marking of p1. However, the fourth node, number 5,516

presents a real demand of 1.38, and an average demand of 7. In this case517

mean(1−w) = 7(1 − 0.4) = 4.2, which is the lower limit of the window518

around the mean value, is higher than the real demand. As a consequence,519

the Petri net increases the counter of nodes with a demand below the window520

by firing transition t2 and, as a consequence, increasing the marking of place521

p2. At this point, the Petri net removes a token from p1 and another one522

from p2, since t5 is enabled . In this predictor, the pairs of nodes –one523

with a real demand above the window and another below it–, do not have524

any influence in the prediction. Only the excess of one type of nodes may525

influence the prediction itself by firing either t3 or t4 to add a token to p4.526

Once all the nodes have been visited and the real demands are known, the527

Petri net generates a prediction by taking into account the marking of p1 or528

p2, representing the excess of nodes with a demand higher or lower than the529

expected one. The final value of p1 is mf (p1) = 8. A threshold t = 0.2 is530

defined to compute 0.2 · 32 = 6.4, the minimal value in p1 and p2 required to531

predict a correlated variation in the demands. Notice that 32 is the number of532

nodes in the network. In this example mf (p1) = 8 > 6.4. Therefore, the Petri533

net predicts a correlated increase in the demand values. This prediction can534

be used to compute a new solution to the CVRPSD for subsequent deliveries535

of products to the nodes.536

7. Numerical Experiments537

In order to test the proposed methodology and evaluate its performance,538

a set of numerical experiments have been carried out. Following the approach539

employed in Gonzalez-Martin et al. (2018) for the arc routing problem, the540

classical VRP benchmarks have been extended into stochastic ones by using541
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random demands instead of the deterministic ones. In addition, expected542

values of these demands have been increased by 50% to represent the cases543

in which a correlated increase of the real demand is produced. In particular,544

53 classical VRP instances have been transformed into VRPSD instances545

by changing the deterministic demands into random demands following an546

exponential probability distribution. The entire dataset can be found at547

https://bit.ly/3eGxGx9. The expected values of these random demands548

are given by the original deterministic demands. Thus, for every instance an549

(aprioristic) and deterministic solution has been obtained by using the VRP550

algorithm proposed in Quintero-Araujo et al. (2017). Next, this solution has551

been run in a simulation environment to generate observations of the random552

demands, which were then used to feed the Petri net predictor. As a result,553

a forecast on the trend followed by the potentially correlated demands has554

been obtained. This forecast may predict either that the mean values of the555

demands remain constant or that they have been increased by a 50% percent-556

age. Next, this forecast has been applied for computing a new deterministic557

solution. In summary, a simheuristics approach has been combined with the558

Petri net predictor to get a stochastic solution for each instance.559

Every instance has been solved in four different scenarios. Scenarios 1560

and 2 consider that the actual demands are not increased in a correlated561

way, while scenarios 3 and 4 assume that the real demands are increased562

by 50% in a correlated way with respect to their original values. While563

in scenarios 1 and 3 the applied methodology does not rely on the Petri564

net predictor, this predictor is employed in scenarios 2 and 4. Tables 1565

and 2 show the results obtained after solving the instances in each of the566

aforementioned scenarios. The values included in these tables are described567

next: (i) planned solution is the cost of the deterministic solution, based on568

the knowledge of the position and deterministic demands of each node; (ii)569

stochastic cost refers to the additional cost generated by the extra trips to570

the depot after a route failure occurs; (iii) total cost is obtained by simply571

adding the two previous costs; (iv) number of routes refers to the number572

of independent sequences of nodes created in the planned solution, where573

each route is assigned to a different vehicle; (v) route failures refers to the574

number of round trips to the depot that have been completed by the vehicles575

for reloading – i.e., after having run out of products before finishing their576

routes; (vi) forecast refers to the prediction produced by the Petri net for a577

particular solution, where a single forecast is considered for each CVRPSD578

instance and scenario –if a correlation is predicted, it takes the value 1,579
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being 0 otherwise; (vii) the percentage of variation of the total cost, (%tc),580

compares the total costs of a planned solution when the Petri net predictor581

is applied and when it is not, i.e., %tc =
(

TC(PN)i−TCi

TCi

)
· 100; and (vii) the582

percentage of variation of the route failures, (% rf ), compares the number of583

route failures of a planned solution when the Petri net predictor is applied584

and when it is not, i.e., %rf =
(

NRF (PN)i−NRF i

NRF i

)
· 100.585

8. Analysis of Results586

Tables 1 and 2 include the main results obtained in our numerical tests.587

The type of forecast produced by the Petri net, as well as its resulting ac-588

curacy, are relevant to understand these results. The ‘Forecast’ column in589

Table 1 represents the prediction outcome of the Petri net. Table 1 corre-590

sponds to the scenarios where the nodes do not present a correlated increase591

of the demands. For this reason, a success in the prediction is represented592

by 0 in Table 1, while a value of 1 indicates a wrong prediction (false pos-593

itive). In Table 1 there are 45 predictions that are correct and 8 that are594

wrong. The success rate is 84.9%, which corresponds to an expected value595

of 84%, achieved in the tuning process of the Petri net parameters, where596

QT (w, t) = 0.84. Table 2 refers to tests performed under the assumption597

that there is a correlated increase in the demands of the nodes. Hence, the598

‘Forecast’ column in Table 2 shows the predictions of the Petri net, which599

can be right (1) or wrong (0 or false negative). There are 45 correct fore-600

casts and 8 incorrect ones, which are the same figures shown in Table 1.601

Thus, the success rate is 84.9%. The detection of false positives (Table 1)602

and false negatives (Table 2) is balanced, since the forecast provided by the603

Petri net presents a similar success rate, both with and without correlation in604

the nodes’ demands. This result could have been expected from the quality605

parameter QB(w, t).606

Tables 1 and 2 allow to compare the solutions obtained from the applica-607

tion of simheuristics. This version of simheuristics implements a particular608

Petri net predictor to forecast the stochastic demand of the nodes. In these609

instances, the behavior of the correlated demands, which can be predicted, is610

constrained to just two possibilities: (i) the mean value of their probability611

distributions are kept constant; or (ii) this value can be increased by a 50%612

percentage. Each row in Table 1 provides the solutions obtained in both613

cases, depending on whether the forecast of the Petri net predictor is applied614
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or not to the calculation of the aprioristic solution. Notice that there is not615

any instance where there is a shared increase in the correlated demands. The616

values in the rows, where the prediction of the Petri net is right (0), have617

no significance here, since the algorithm is exactly the same regardless of618

whether the Petri net predictor has been used or not. In these cases, the619

differences in the results are a consequence of the stochastic nature of the620

demands. Furthermore, the computational cost of implementing the Petri621

net prediction is negligible compared to the application of the simheuristic622

algorithm.623

From Table 1, it can be concluded that the use of a Petri net predictor624

leads to worse results in a certain percentage of the false positives, where625

these false positives are in turn the 15.1% of the total instances solved. This626

result could have been expected, since false positives tend to lead to solu-627

tions with a higher number of routes. As a consequence, they are expected to628

present higher costs in the planned solutions, as well as a smaller number of629

route failures –which, in turn, leads to smaller stochastic costs. These slightly630

worse results from the use of a Petri net predictor are clearly compensated631

by the better results obtained when there is an increase in the correlated632

demands. Thus, the effectiveness of the application of a Petri net predictor633

is shown in Table 2, which contains solutions obtained in scenarios, where634

the nodes present a correlated increase in demands. Notice that the forecast635

of the Petri net presents a positive impact in the majority of the solutions,636

since a successful prediction would allow to find more realistic aprioristic637

solutions. In the same way, Table 2 contains some values lacking significance638

for the analysis aimed at this section. These values, 8 in total, correspond639

to wrong forecasts of the Petri net (false negatives or forecast R10), since640

the planned or aprioristic solutions are computed with the same knowledge641

on the demands of the nodes and the same solving methodology –regardless642

of whether a Petri net is employed or not. Furthermore, all those solutions643

in Table 2 whose forecast have been correct correspond to 45 out of the 53644

instances. They also present smaller total stochastic costs and a smaller num-645

ber of route failures. The improvement in the total cost ranges from 1% to646

9%, depending on the instance, while the route failures are reduced between647

11% and 63%. Figure 4 shows a comparison between the standard approach648

(base scenario, represented by the horizontal line y = 0) and the enriched649

approach with the Petri net prediction. Notice that, when no correlation650

exists, the average gap in total cost between both approaches is quite small651

(0.68%). In other words, the Petri net predictor offers no advantage over652
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the traditional method. However, in a scenario with correlation this situa-653

tion changes. Now, the average gap is negative and larger in absolute value654

(−3.52%), which shows how the use of our Petri net predictor can provide655

noticeable reductions in total cost when correlation exists. A similar effect656

can be observed for the route failures indicator: in absence of correlation, our657

Petri net predictor does not provide any noticeable advantage over the tra-658

ditional method (average gap of 4.05%). However, when correlation exists,659

our approach contributes to significantly reduce the number of route failures660

(the average gap is now about −28%).661

Figure 4: A comparison of the standard approach and the one using Petri nets.

9. Conclusions and Future Work662

In real logistic networks, which inspire the definition of vehicle routing663

problems (VRP) in most of its variants, there are some features that are664

not usually considered in stochastic VRP models. One of these features is665

the potential correlations among customers’ demands. As a consequence of666

these correlations, the real demands might present common variations. A667

Petri net predictor has been implemented to forecast the correlated behavior668

of the demands in a simple scenario, where the probability distributions669

26



representing the demands are constrained to two possibilities: their mean670

value can be constant or they can experience a correlated percentage increase671

of 50%. This simplified scenario facilitates the illustration of the structure672

and operation of this predictor, its application, and the interpretation of the673

results.674

A set of instances have been solved in scenarios with correlated increase675

of the demands and without it, as well as with the application of a Petri676

net predictor and without it. The results of the tests lead to the following677

conclusions:678

1. False positives present a reduced impact on the quality of the solutions679

since: (i) forecasts with false positives have an effect on just about 15%680

of the solutions –in case demands are not really correlated; (ii) not all681

forecasts with false positives have led to solutions with higher costs;682

and (iii) only half of the tests correspond to a correlated increase in683

demands –thus, the false positives affect about 7.5% of the total number684

of tests.685

2. False negatives do not imply a reduction in the quality of the solutions,686

since their only effect is to lose the opportunity to improve the solution687

obtained using the Petri net forecast.688

3. Under the correlated scenario, using our Petri net predictor provides689

better solutions in about 85% of the cases.690

All in all, the Petri net predictor has been successfully employed to solve691

VRP instances with stochastic and correlated demands. In addition, the692

implementation of the Petri net predictor can be done without assuming a693

high computational effort. Moreover, this predictor only requires a limited694

amount of information, which facilitates its implementation in practice.695

Several research lines still remain open for future works. Among them:696

(i) to develop an alternative solving approach, based on the combination697

of simulation with machine learning or time series analysis; (ii) to consider698

larger-size instances in order to investigate how adding more correlated nodes699

affects the performance of the Petri net predictor in comparison to other ap-700

proaches; (iii) to consider scenarios with a wider range of possible values for701

the correlated demands, which might reduce the accuracy of some prediction702

methods; and (iv) to analyze an entire supply chain network with nodes that703

present correlated demands.704
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