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Abstract

The vehicle routing problem with backhauls integrates decisions on products delivery with decisions on collection
of returnable items. In this paper we analyze the scenario in which collection is optional. Both transport costs
and penalty costs for not collecting are considered. A mixed-integer linear model is proposed and solved for
small instances. A metaheuristic algorithm combining biased randomization techniques with iterated local search
is introduced for larger instances. This approach yields cost savings and is competitive compared to other state-of-
the-art approaches.

Keywords: Vehicle Routing Problem with Optional Backhauls; Returnable Transport Items; Biased Randomization; Iterated
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1. Introduction

Reverse logistics and closed-loop supply chains have been topics broadly studied in the literature and,
specially, during the last years. Both concepts are related to the return of products or materials from the
point of consumption in order to recover value. In particular, Govindan and Soleimani (2017) find that the
most addressed issues are re-manufacturing and waste management, while the topic of package recovery
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is barely tackled despite its environmental impact (Kroon and Vrijens, 1995). Given these considerations,
disposable packages have been replaced by returnable transport items (RTIs) such as reusable pallets,
trays, boxes, or any other mean to assemble goods (ISO, 2016). Still, environmental issues are not the
only concern regarding RTIs management. According to Glock (2017), RTIs are an important asset for
many industries, since they can decrease the selling cost for customers.

Regarding RTIs management, three control strategies have been proposed by Kroon and Vrijens
(1995): (i) the switch pool system, which is an integrated system between suppliers and customers where
each one owns RTIs –the supplier is responsible for the return process in this strategy; (ii) systems with
return logistics, in which RTIs are property of a central agency –this agency takes care of their col-
lection; and (iii) systems without return logistics, in which RTIs are also property of a central agency
–here, suppliers rent only the required RTIs and are responsible for the return process. Finally, if some
RTIs are not used they can be returned to the agency. These strategies are analyzed by Hellström and
Johansson (2010) through a case study, where the goals are to reduce cost of RTI management and trans-
port. A good strategy for RTIs management is the interchange between suppliers and customers (Elia
and Gnoni, 2015). However, such interchange can not be done simultaneously because pickups are only
possible when deliveries have already been made and the vehicle is empty (Koç and Laporte, 2018).
Therefore, the return of RTIs can be done in two forms: (i) by using dedicated collection vehicles; and
(ii) by using vehicles that make first deliveries and then collections. The latter case is known as the
vehicle routing problem with backhauls (VRPB) (Toth and Vigo, 1997; Belloso et al., 2017). Being an
extension of the vehicle routing problem, the VRPB is also a NP-hard problem.

As far as we know, in the existing literature on the VRPB it is always assumed that all customers, both
linehaul and bahckhaul, have to be serviced. In this paper, however, we explore the scenario in which
backhaul customers might be optional by introducing inventory costs (Figure 1). Thus, for example, if
the quantity of RTIs available in a supplier’s facility is enough to ensure future deliveries, collection
of RTIs in the current period can be reduced to diminish routing cost or speed up the routing process.
This might make sense whenever the cost of holding the additional inventory at the customers’ facilities
–i.e., the cost of holding the RTIs in stock– is lower than the marginal routing cost associated with their
collection. In practice, the cost of holding RTIs in stock at the customers’ facilities might vary from
one period to another, depending on factors such as how many RTIs will be need for the next period
distribution or how long have been the RTIs staying at the customers’ inventories.

Hence, the main contribution of this paper can be summarized as follows: (i) we propose and analyze
the vehicle routing problem with optional backhauls (VRPOB), which has not been considered before
in the literature; (ii) we provide a mathematical model of the problem, which is then solved using exact
methods for small-scale instances; (iii) we propose a biased-randomized iterated local search to solve
larger instances of the problem; and (iv) we analyze how the routing solutions evolve as we consider
different levels of inventory or penalty cost. Biased-randomization techniques allow for extending tradi-
tional metaheuristic frameworks in order to enhance their performance (Juan et al., 2013; Ferone et al.,
2018) and facilitate parallelization issues (Juan et al., 2014b).

The remaining of this document is organized as follows. Section 2 reviews the existing literature on
the VRPB. Section 3 formulates the problem as a mixed-integer linear programming model. Section 4
analyzes the results obtained after solving the model using an exact method for small-scale instances.
Section 5 introduces a metaheuristic algorithm that can be employed for solving large-scale instances.
Section 6 compares the results of our algorithm with the ones from the literature and with those obtained



Fig. 1: The vehicle routing problem with optional backhauls.

by the exact method; it also establishes new results for the extended VRPOB. Finally, Section 7 outlines
some concluding remarks.

2. Literature Review on the VRPB

Decisions regarding the integration of forward logistics with reverse logistics have been studied sys-
tematically along the last three decades. In the following, we review some works related to the vehicle
routing problem with backhauls. This version of the vehicle routing problem considers a sequential pro-
cess in which linehaul customers are serviced first and then bachauls customers are visited for collecting
the items that need to be returned to the depot. Some constraints that can lead to this type of sequential
process are: (i) deliveries have priority over collections; (ii) due to time or space limitations, it is not pos-
sible to load returned products to a vehicle that still has products to deliver; or (iii) cross contamination
between products to deliver and returned products must be avoided.

Traditionally, the main goal of the VRPB is to minimize the total distribution and collection cost by
taking advantage of the non-used capacity of the vehicles in the return trip. Some initial approaches for
the VRPB are presented by Deif and Bodin (1984) and Jacobs-Blecha and Goetschalckx (1992). Both
papers present heuristic algorithms to solve the problem efficiently. On the other hand, the VRPB is also
modelled as a mixed-integer linear problem by Toth and Vigo (1997). They solve it through a branch-
and-cut algorithm for instances between 25 and 68 customers. As pointed out by Koç and Laporte (2018)
and Belloso et al. (2019), the VRPB is still offering challenges that need to be solved.

Thus, Wassan (2007) proposes a heuristic that uses reactive tabu search and adaptive memory pro-
gramming for solving the VRPB. Zachariadis and Kiranoudis (2012) propose the static move descriptor



strategy, which is intended to reduce the computational complexity required to examine neighborhoods
with very large solutions. Dominguez et al. (2016) consider two-dimensional loads in a VRPB. Here, a
hybrid approach that combines biased randomization with a large neighborhood search metaheuristic is
proposed. In general, better solutions –in terms of cost and computational times– were found in com-
parison with current state-of-the-art heuristics. Belloso et al. (2019) use an iterative method based on
local search and a biased-randomization process to solve the heterogeneous-fleet VRPB, obtaining 20
new best-known solutions in a set of 36 instances.

The VRPB with time windows for visiting customers has also been studied. For instance, Küçükoğlu
and Öztürk (2015) propose a hybrid metaheuristic algorithm, which integrates simulated annealing with
tabu search and local search. A total of 34 best-known solutions were found for a benchmark set of 45
instances. A heterogeneous fleet is considered by Wu et al. (2016), who solve the VRPB with time win-
dows using an algorithm based on ant colony optimization. Variables such as vehicle type, fleet size, and
routes are determined in order to minimize the service total cost. Lin et al. (2017) integrate new opera-
tive constraints into the VRPB with time windows, among them: last-in-first-out rules, vehicle capacity
depending on the specific order, driving-time limits, etc. To solve this version of the problem, a hybrid
approach combining the greedy randomized adaptive search procedure with tabu search is proposed. A
two-phase approach that combines tabu search with a multi-start evolutionary strategy is proposed by
Reil et al. (2018) to solve a VRPB with time windows. These authors also consider constraints regarding
three-dimensional loading and different backhaul strategies.

Despite a large number of works have addressed the VRPB or the inventory routing problem (Juan
et al., 2014a; Gruler et al., 2018a,b), both problems have been rarely studied as an integrated problem.
For instance, Arab et al. (2018) consider both problems by addressing the inventory routing problem
with backhauls. The goal was twofold: to minimize total cost (inventory plus transportation) as well
as transportation risk. A heterogeneous fleet, multiple periods, and multiple products are considered.
Exact algorithms using the ε-constraint method, and evolutionary algorithms were applied to solve the
problem.

None of the aforementioned works consider the option of not collecting items from backhaul cus-
tomers. This means that some customers might not be visited since the additional inventory costs might
be justified by the savings in routing costs. To the best of our knowledge, only Qin et al. (2016) show a
similar idea by differentiating inventory holding cost for products and for returned items. However, their
problem is not formally a VPRB since backhauls are not considered, i.e., deliveries and pickups can be
done simultaneously for the same customer.

3. Problem Formulation

The vehicle routing problem with optional backhauls consists in a set of linehaul and backhaul customers
whose demands must be satisfied using a fleet of homogeneous vehicles initially located at a depot. This
depot has enough capacity and vehicles as to cover the aggregated customers’ demand. Therefore, all
linehaul customers will be serviced. The supplier uses returnable transport items for transportation of
product units. Hence, after all units have been delivered, empty RTIs from previous deliveries should
be collected at some backhaul customers and returned to central depot for future deliveries. Collecting
RTIs from backhaul customers is optional, and not doing it might generate savings in transportation



costs, but it might also generate ‘penalty’ costs due to the marginal inventories that need to be held at the
backhaul customers. Thus, in the VRPOP the following decisions need to be made in order to minimize
total costs (inventory plus routing): (i) to determine which backhaul customers will be visited; (ii) to
assig customers to routes (and vehicles); and (iii) to establish the sequence in which customers should
be visited.

Consider a non-directed graph G = (V,A), with V = {0} ∪ L ∪B represents the set of nodes, being
node 0 the depot, L = {1, 2, . . . , n} the set of n linehaul customers, and B = {n+1, n+2, . . . , n+m}
the set of m backhaul customers. Likewise, A = {(i, j)|i, j ∈ V, i 6= j} is the set of edges linking
each pair of nodes. For each i ∈ L, there is a positive demand di > 0 representing units of product to
be delivered. Similarly, for each j ∈ B, there is a negative demand dj < 0 representing items to be
collected. There is a set K of homogeneous vehicles available at the depot, each of them with a capacity
q >> max{di|i ∈ V }. Travelling an edge from node i to node j has a cost cij = cji > 0. The following
constraints need to be considered:

• Each route begins and ends in the depot.
• Each route must have at least a linehaul customer, i.e.: routes formed just by backhaul customers are

not allowed.
• In any route, linehaul customers are serviced before backhaul customers.
• Each linehaul customer must be serviced, but visiting backhaul customers is optional.
• For each route, the quantity of product to deliver and to collect must not exceed the vehicle’s capacity.
• Whenever a linehaul customer is visited in a route, all its demand is serviced; similarly, whenever a

backhaul customer is visited in a route, all its items are collected.

(Angel says): This model needs to be reviewed with Angel and simplified. Use upper case only
for random variables or sets. Why using different variables for demands? why using different pa-
rameters for travel costs?

3.1. Parameters

di = Demand of customer i ∈ V
cij = Cost of travel from node i ∈ V to node j ∈ V
hi = Penalty cost per unit of RTI not picked up from the customer i ∈ B
q = Capacity of each vehicle
M = A very big number

3.2. Variables

yijk = Binary variable that indicates whether arc (i, j) : i ∈ V, j ∈ V is on the route traveled by
vehicle k ∈ K or not
zik = Binary variable that indicates whether customer i ∈ V \ {0} is visited by vehicle k ∈ K or not
uik = Accumulated deliveries or pickups by vehicle k ∈ K until the customer i ∈ V \ {0}



3.3. Mathematical model

Minimize
∑
i∈B

hi ∗ di ∗

(
1−

∑
k∈K

zik

)
+
∑
k∈K

∑
i∈V

∑
j∈V,i 6=j

cij ∗ yijk (1)

s.t.

∑
k∈K

zik = 1, ∀i ∈ L (2)

∑
k∈K

zik ≤ 1, ∀i ∈ B (3)

∑
j∈L

y0jk = 1, ∀k ∈ K (4)

∑
i∈V \{0}

yi0k = 1, ∀k ∈ K (5)

∑
i∈L∪{0},i 6=f

yifk +
∑

j∈V,j 6=f

yfjk = 2 ∗ zfk, ∀f ∈ L,∀k ∈ K (6)

∑
i∈V \{0},i 6=f

yifk +
∑

j∈B∪{0},j 6=f

yfjk = 2 ∗ zfk, ∀f ∈ B, ∀k ∈ K (7)

∑
i∈L∪{0},i 6=f

yifk =
∑

j∈V,j 6=f

yfjk ∀f ∈ L,∀k ∈ K (8)

∑
i∈V \{0},i 6=f

yifk =
∑

j∈B∪{0},j 6=f

yfjk, ∀f ∈ B, ∀k ∈ K (9)

∑
j∈V,j 6=f

yfjk ≤ 1, ∀f ∈ L,∀k ∈ K (10)

∑
i∈V \{0},i 6=f

yifk ≤ 1, ∀f ∈ B, ∀k ∈ K (11)



∑
i∈L∪{0},j 6=l

yilk +
∑

j∈B∪{0},j 6=b

ybjk ≥ 2 ∗ ylbk, ∀l ∈ L,∀b ∈ B, ∀k ∈ K, l 6= b (12)

∑
i∈L

di ∗ zik ≤ q, ∀k ∈ K (13)

∑
i∈B

di ∗ zik ≤ q, ∀k ∈ K (14)

uik + dj ∗ zjk ≤ ujk +M ∗ (1− yijk) , ∀i ∈ V \ {0},∀j ∈ V \ {0},∀k ∈ K, i 6= j (15)

uik ≤ q, ∀i ∈ L,∀k ∈ K (16)

uik ≤ 2 ∗ q, ∀i ∈ B, ∀k ∈ K (17)

di ∗ zik ≤ uik, ∀i ∈ V \ {0},∀k ∈ K (18)

∀ yijk, zik ∈ {0, 1} (19)

∀ uik ≥ 0 (20)

(Angel says): use labels and ref for equations, instead of numbers

In this model, Equation 1 minimizes the total penalties and routing costs. Constraint 2 ensures that
every linehaul customer is visited by only one vehicle. Constraint 3 ensures that at most only one vehicle
visits a backhaul customer. Constraints 4 and 5 ensures that each vehicle leaves and returns to the depot,
respectively, only one time. Constraints 6 and 7 ensure that two arcs (one entering and one leaving) are
assigned to a customer only if this is served, both in linehaul and backhaul groups. Constraints 8 and 9
ensure that if one vehicle visits a customer, it must leave it. Constraint 10 ensures that after departing
from each linehaul customer, a vehicle must either serve another linehaul customer or make an empty
trip either to the depot or to a backhaul customer.



Constraint 11 ensures that before a vehicle visits a backhaul customer, it must have served either
another backhaul customer or a linehaul customer. Constraint 12 ensures a continuous flow using the
same vehicle when a linehaul customer is connected to a backhaul customer. Constraints 13 and 14
ensure that the total quantity of product to deliver or pick up does not exceed a single vehicle capacity,
both in linehaul and backhaul groups. Based on MTZ model (Miller et al., 1960), constraint 15 eliminates
subtours. Constraints 16 and 17 ensure that accumulated deliveries and pickups do not exceed a single
vehicle capacity. Constraint 18 ensures that products’ or RTIs’ demand does not exceed the value of the
accumulation variables. Finally, constraints 19 and 20 indicate the variables that are binary and positive,
respectively.

4. Solving Small-Scale Instances with Exact Methods

The previous model was implemented in IBM Cplex, which was used to solve instances eil 22, eil 23,
and eil 30 by Christofides and Eilon (1969). Such instances were adapted for the VRPB by Toth and
Vigo (1997) (TV instances), using 3 proportions of linehaul (LH) customers: 50%, 66% and 80%. Thus,
for instance, in the latter case (80% or 4 out of 5) customers 1, 2, 3, and 4 are LH, while the 5th one
is backhaul (BH), and so on. Here, we can assume that the RTIs to be collected were used in previous
periods to deliver products to the associated customer.

Firstly, the model is solved as a VRPB in which pickup decisions are integrated with delivery decisions
(Figure 1). This is compared with the case in which deliveries and pickups are made independently, i.e.,
LH customers and BH customers are not serviced in the same route but in different routes. Table 1 shows
the associated costs and the convenience of merging the linehaul and backhaul routes since it generates
noticeable reductions in cost.

Table 1: Comparison between VRPB and independent deliveries and pickups.

Instances LH BH Independent deliveries and pickups VRPB % Cost reductionDeliveries cost Pickups cost Total cost Total cost

eil22 50 11 10 281 225 506 371 36.4%

eil23 50 11 11 434 348 782 682 14.7%

eil30 50 15 14 328 340 668 501 33.3%

Secondly, four scenarios are considered for the unitary inventory cost (i.e., the penalty cost of not
visiting a BH customer), namely: high (hi = 0.60), medium (hi = 0.33), low (hi = 0.16), and very
low (hi = 0.06). These values were established after some preliminary tests with the instances. Table 2
shows the results for instances with 22, 23, and 30 nodes. For instances with 22 nodes, all BH customers
are visited regardless of the proportion of LH and BH customers. Some BH customers are not visited in
other instances, although only if the unitary inventory cost is not high (for instances with 23 nodes), or if
it is low or very low (for instances with 30 nodes). These results indicate that the unitary inventory cost
might affect the number of non-visited BH customers. As expected, the lower the unitary inventory cost
(hi), the higher the number of non-visited BH. Thus, for example, all BH customers are served in the
case of instances with the highest cost (hi = 0.60).



Table 2: Solutions of the exact algorithm for different levels of unitary inventory cost.

Instance hi
Total BH
demand LH BH

Total
penalty

cost

Total
cost

Gap (Cost
reduction)

Number of
not collected

units

% of not
collected

RTI’s
NSBH

eil22 50 0.60

12800 11 10

0.00 371.00 0.00% 0 0.00% 0
eil22 50 0.33 0.00 371.00 0.00% 0 0.00% 0
eil22 50 0.16 0.00 371.00 0.00% 0 0.00% 0
eil22 50 0.06 0.00 371.00 0.00% 0 0.00% 0

eil22 66 0.60

5500 14 7

0.00 366.00 0.00% 0 0.00% 0
eil22 66 0.33 0.00 366.00 0.00% 0 0.00% 0
eil22 66 0.16 0.00 366.00 0.00% 0 0.00% 0
eil22 66 0.06 0.00 366.00 0.00% 0 0.00% 0

eil22 80 0.60

5400 17 4

0.00 375.00 0.00% 0 0.00% 0
eil22 80 0.33 0.00 375.00 0.00% 0 0.00% 0
eil22 80 0.16 0.00 375.00 0.00% 0 0.00% 0
eil22 80 0.06 0.00 375.00 0.00% 0 0.00% 0

eil23 50 0.60

6604 11 11

45.00 682.00 0.00% 75 1.14% 1
eil23 50 0.33 24.75 657.75 -3.56% 75 1.14% 1
eil23 50 0.16 12.00 645.00 -5.43% 75 1.14% 1
eil23 50 0.06 93.24 567.24 -16.83% 1554 23.53% 7

eil23 66 0.60

2080 15 7

0.00 649.00 0.00% 0 0.00% 0
eil23 66 0.33 127.50 601.05 -7.39% 385 18.51% 3
eil23 66 0.16 89.60 533.60 -17.78% 560 26.92% 4
eil23 66 0.06 33.60 477.60 -26.41% 560 26.92% 4

eil23 80 0.60

5050 18 4

0.00 623.00 0.00% 0 0.00% 0
eil23 80 0.33 49.50 608.50 -2.33% 150 2.97% 1
eil23 80 0.16 24.00 583.00 -6.42% 150 2.97% 1
eil23-80 0.06 57.00 542.00 -13.00% 950 18.81% 3

eil30 50 0.60

5825 15 14

0.00 501.00 0.00% 0 0.00% 0
eil30 50 0.33 0.00 501.00 0.00% 0 0.00% 0
eil30 50 0.16 40.00 481.00 -3.99% 250 1.95% 2
eil30 50 0.06 36.00 431.00 -13.97% 600 4.69% 3

eil30 66 0.60

3500 20 9

0.00 537.00 0.00% 0 0.00% 0
eil30 66 0.33 0.00 537.00 0.00% 0 0.00% 0
eil30 66 0.16 16.00 527.00 -1.86% 100 0.78% 1
eil30 66 0.06 6.00 517.00 -3.72% 100 0.78% 1

eil30 80 0.60

1950 24 5

0.00 514.00 0.00% 0 0.00% 0
eil30 80 0.33 0.00 514.00 0.00% 0 0.00% 0
eil30 80 0.16 0.00 514.00 0.00% 0 0.00% 0
eil30 80 0.06 12.00 503.00 -2.14% 200 1.56% 1

In general, not collecting RTIs might yield some savings in total cost when the unitary inventory cost
is not high. For example, in instance eil23 66 the cost for hi = 0.60 (equivalent to 100% of serviced BH
customers) is 649. However, when hi = 0.33, the associated inventory cost is 127.50 and the total cost
is 601.05 –i.e., equivalent to a reduction of 7.39% in total cost. The behavior is similar for hi = 0.16



and hi = 0.06, both for instances with 23 and 30 nodes. These results show that, if th unitary inventory
cost is low, it might pay off not to visit all BH customers.

Figure 2 shows an example of a solution for instance eil30 50 with hi = 0.60 (high) and hi = 0.06
(very low). All customers are visited in the first case (a), while 3 BH customers are not served in the
second case (b). The depot is depicted as node 0. In this example, non-visited customers are those that
are more distant from the depot and have the lowest demands (in absolute value). Finally, notice that
changes in the number of visited BH customers might also affect the linehaul part of a route.

Fig. 2: Optimal solutions for instance eil30 50 and unitary inventory costs of 0.60 (a) and 0.06 (b).

5. A Biased-Randomized Iterated Local Search

(Angel says:) I would like review with Rafael the explanation of the algorithm.

The exact solution is only possible for small TV instances, i.e., up to 30 customers. Executions of
larger quantities take long times since this problem is NP-Hard. Therefore, a metaheuristic algorithm
based on a Biased-Randomized version of the Clarke & Wright Savings Heuristic (BR-CWS) and Iter-
ated Local Search (ILS) is proposed (Figure 3 and Algorithm 1). Firstly, an initial solution is obtained
through the BR-CWS (Algorithm 2 and line 2 in Algorithm 1). The savings list is created for each edge
not connected with the depot, however, since each BH customer has a penalty cost for not being served,
the traditional way to calculate such savings (sij = ci0 + c0j − cij) is replaced with the expression in
Equation (21) (Panadero et al., 2018) only for those edges whose both nodes are backhaul.

s
′

ij = α ∗ sij + (1− α) ∗ (hi + hj), ∀i ∈ B, ∀j ∈ B (21)



Fig. 3: Flow chart for our approach

Where 0 ≤ α ≤ 1. Panadero et al. (2018) affirm that its concrete value only depends on “the hetero-
geneity of the customers in terms of rewards”, i.e, the higher the heterogeneity, the closer to 0 α should
be. The case in which α = 1 corresponds to the traditional case in CWS, where penalty costs are not
considered. In the case in which α = 0, savings (and therefore, transport costs) are not considered and



Algorithm 1 Procedure VRPOB(inputParameters, α, β, λ, r)
1: // Generate initial solution applying Biased-Randomization
2: newSolution← penalizedBRCWS(inputParameters, α, β, λ)
3: // Improve initial solution using Local Search
4: newSolution← improveSolutionUsingOperatorsAndHashMap(inputParameters, newSolution)
5: // Apply ILS
6: repeat
7: pendingNodes← destroyRoutes(r, newSolution)
8: newSolution← penalizedBRCWS(inputParameters, α, β, pendingNodes)
9: newSolution← improveSolutionUsingOperatorsAndHashMap(inputParameters, newSolution)

10: bestSolution← acceptanceCriteria(bestSolution, newSolution)
11: until time reaches the limit
12: return bestSolution

only penalty costs are relevant. Intermediate values for α assign more or less weight to transport and
penalty costs.

Once computed, these savings values are adapted according to Deif and Bodin (1984) in order to
address properly the backhaul nodes. This procedure is described in Algorithm 3. The idea is to delay
the selection of interface edges, so that both LH and BH routes are “complete” before being merged.
This delay is done by subtracting p from the previously computed savings. The value of p is computed
by p = maxs ∗ λ, in which maxs is the value of the maximum savings that can be attained and λ is a
penalty coefficient ranging between 0 and 1. In our case, λ is uniformly chosen between 0.05 and 0.20
(Deif and Bodin, 1984).

After a dummy solution is obtained, the selection of each edge that will be part of the solution route
is done through Biased-Randomization (BR) (Algorithm 2) (Juan et al., 2010). Here, a probability is
assigned to each edge in the savings list. Then, a geometric distribution is employed in a Monte Carlo
simulation in which only one parameter (β) must be fine-tuned. This parameter can be interpreted as the
probability of choosing the edge with the highest savings. In our algorithm, the value of β is selected
uniform randomly between 0.01 and 0.5. Once selected, the merging conditions are checked (line 11).
The two corresponding routes of an edge e can be merged if: (i) its nodes are adjacent to the depot, (ii)
its nodes belong to different routes, and (iii) the vehicle capacity constraint is met. If both routes belong
to the same cluster, i.e., to either the LH group or the BH group (line 12), the merge is done. Otherwise
(line 14), this union is allowed only if total transport cost (line 20) is less than the total penalty cost for
not picking up (line 21), i.e., if the total transport cost for BH nodes is high, the algorithm chooses not
to collect RTI’s in that route. In this case, the union is discarded, and the BH route is penalized. At the
end of each iterative step, the selected savings edge is removed from the list (line 29), and the process is
repeated until no more options are available (line 3).

This procedure yields an initial solution that can be improved. Our main acceptance criterion is the
total cost given by adding transport costs and penalty costs. The search for better solutions initiates
with the implementation of Local Search procedures (LS) based on the use of: an inter-routes node-
insertion operator, an inter-routes nodes-swap operator, and a cache (memory-based) procedure (hash
map) (Algorithm 1, line 4). Since along the whole algorithm execution a high number of iterations are



Algorithm 2 Procedure penalizedBRCWS(inputParameters, α, β, λ)

1: savingsList← penalizeSavingsList(inputParameters, α, λ)
2: savingsList← sortDescSavingsList(savingsList)
3: while savingsList is not empty do
4: Randomly select position pos ∈ {1, ..., |savingsList|} according to distribution Geom(β)
5: e← selectEdgeFromList(pos, savingsList)
6: es ← getSavingsValue(e)
7: iNode← getOrigin(e)
8: jNode← getEnd(e)
9: iR← getEvolvingRouteOfNode(iNode)

10: jR← getEvolvingRouteOfNode(jNode)
11: if route-merging conditions are met then
12: if iR and jR are of the same type then
13: newSolution← mergeRoutes(newSolution, e)
14: else
15: lhRoute← findLHRoute(iR, jR)
16: bhRoute← findBHRoute(iR, jR)
17: lhRCost← getCost(lhRoute)
18: bhRCost← getCost(bhRoute)
19: bhPenCost← getPenalizedCost(bhRoute)
20: totalTransportCost← lhRCost + bhRCost - es
21: totalPenaltyCost← lhRCost + bhPenCost
22: if totalTransportCost < totalPenaltyCost then
23: newSolution← mergeRoutes(newSolution, e)
24: else
25: newSolution← removeBHRoute(newSolution)
26: end if
27: end if
28: end if
29: removeEdge (savingsList, pos)
30: end while
31: return newSolution

carried out, such cache procedure stores in memory the best found route for a given group of nodes. That
is, if in an iteration a route connecting some nodes is found (current route) but, in any previous step a
route with a better acceptance criterion for the same group of nodes had already been found, the current
route is discarded.

Next, the ILS is implemented (Lourenço et al., 2010). The perturbation process consists in destroying
at least two routes (Algorithm 1, line 7) and reconstructing them. Such destruction implies that, tem-
porarily, m nodes do not belong to any route. Observe that m < n, where n is the total number of nodes
in the instance. This implies that a smaller problem must be solved and, therefore, a faster solution will
be attained. A destruction ratio (r) is defined here, in order to establish a maximum number of routes



Algorithm 3 Procedure penalizeSavingsList(inputParameters, α, λ)
1: // Create the savings list
2: savingsList← createSavingsList(inputParameters, α)
3: maxs ← obtainMaximumSavings(savingsList)
4: for each edge in savingsList do
5: // An interface edge connects a LH node with a BH node
6: if edge is interface then
7: Randomly select λ ∈ {0.05, 0.2}
8: p← maxs ∗ λ
9: updateSavings(edge, p)

10: end if
11: end for
12: return savingsList

to be destroyed (DR). In general, 0 < r < 1, but in our algorithm r is generated as a random number
between 0.1 and 0.5. On the one hand, a destruction ratio greater than 0.5 would destroy most of the
constructed routes and the process would lose time-efficiency. On the other hand, a destruction ratio less
than 0.1 would destroy very few routes and the effect of the perturbation would be almost null. DR is
calculated by Equation (22) and is defined as the maximum between 2 and the multiplication of r and the
total quantity of routes in the solution. The objective here is to avoid the destruction of only one route.

DR = max{2, r ∗#Routes} (22)

Once the destruction process is finished, the reconstruction is made from scratch for the m nodes,
by using again the BR-CWS and the LS (Algorithm 1, lines 8-9. Algorithm 2 is implemented again
only for the m nodes). Observe that, until now, the constraint regarding the number of vehicles has not
been considered, since the BR-CWS relaxes it implicitly. This can lead to temporarily-allowed infeasible
solutions in our algorithm execution, which let explore new regions of the solution space. Nevertheless,
final solutions must be feasible, and a Recursive Corrective Operator (RCO) is executed at the end of the
algorithm to attain it (Belloso et al., 2017). The use of this procedure implies that the cost is not the only
acceptance criterion, but also the number of routes (Algorithm 1, line 10), i.e., the quantity of routes in
the solution must equal the number of vehicles.

6. Computational Results and Discussion

The TV set of 33 instances introduced by Toth and Vigo (1997) has been solved in order to evaluate
the performance of our proposed methodology. These instances are different in the number of linehaul
and backhaul nodes, vehicle capacities, and demands. Also, the previous proportions for LH customers
were considered here, i.e.: 50%, 66%, and 80%. Initially, α is not taken into account in order to compare
our algorithm’s results with those by Toth and Vigo (1997) and Belloso et al. (2017). Table 3 shows the
comparison between our best solutions (OBS) and the best-known solutions (BKS) in the literature. Since



previous papers do not consider that parameter, the unitary inventory cost (hi) is assumed to be virtually
infinite here in order to make an adequate comparison. In 78.8% of the instances the gap between OBS
and the BKS is 0.0%. Actually, OBS is always better than the BKS provided by Toth and Vigo (1997)
except for the instance eil33 50, in which the gap is 1.5%. For the rest of the instances, Belloso et al.
(2017) achieve better solutions than us, although the gap never exceeds 0.9%.

The previous gap needs to be further reduced

These results show that our algorithm obtains competitive solutions when compared with state-of-the-
art approaches in the base scenario –where hi and α are not considered. Now that this point has been
made, we can use the algorithm for analyzing new scenarios where collection of items becomes optional
and will be made only if it is cost worthy.

In order to calibrate the value of the parameter α, several tests were performed. After these tests,
we set the parameter α ∈ {0.2, 0.5, 0.8, 1.0}. Regarding the unitary inventory costs, we set hi ∈
{0.66, 0.33, 0.16, 0.06}. In this preliminary stage, only small instances with optimal solutions were con-
sidered. Thus, for each combination of instances, unitary inventory cost, and α, a total of 5 runs were
performed (each run using a different seed for the pseudo-random number generator). The performance
of the metaheuristic was measured as the percentage gap between OBS and the BKS –optimal solution
in this case. Figure 4 provides the average gap obtained by the metaheuristic when combined with each
α and hi. As we can see, α = 0.8 provides better solutions, on the average, for all values of hi.

Alfa

Av
er

ag
e 

G
ap

-0.10%

0.10%

0.30%

0.50%

0.70%

0.90%

1.10%

1.30%

1.50%

0.2 0.5 0.8 1.0

0.60 0.33 0.16 0.06

Penalty

Fig. 4: Average gap obtained by the metaheuristic when combined with each α and penalty values.

Due to the satisfactory performance of our biased-randomized approach in small-sized instances, the
metaheuristic was also tested in the larger ones. Thus, for each of the 33 instances, a total of 10 runs
were performed. The stopping criterion was fixed to 25, 75, and 300 seconds for instances up to 50
nodes, up to 100 nodes, and with over 100 nodes, respectively. Our algorithms have been coded in Java
and a standard PC with an Intel Core i7 CPU at 2.7 GHz and 16 GB RAM has been employed to run all



Table 3: Comparison between our algorithm and previous works.

Instance LH BH Q K Toth and Vigo (1997)
(BKS in 1997)

Belloso et al. (2017)
(BKS in 2017)

OBS
(hi =∞)

Gap
OBS-Belloso

eil22 50 11 10 6000 3 371.0 371.0 371.0 0.0%
eil22 66 14 7 6000 3 366.0 366.0 366.0 0.0%
eil22 80 17 4 6000 3 375.0 375.0 375.0 0.0%

eil23 50 11 11 4500 2 682.0 682.0 682.0 0.0%
eil23 66 15 7 4500 2 649.0 649.0 649.0 0.0%
eil23 80 18 4 4500 2 623.0 623.0 623.0 0.0%

eil30 50 15 14 4500 2 501.0 501.0 501.0 0.0%
eil30 66 20 9 4500 3 537.0 537.0 537.0 0.0%
eil30 80 24 5 4500 3 514.0 514.0 514.0 0.0%

eil33 50 16 16 8000 3 738.0 738.0 749.0 1.5%
eil33 66 22 10 8000 3 750.0 750.0 750.0 0.0%
eil33 80 26 6 8000 3 736.0 736.0 736.0 0.0%

eil51 50 25 25 160 3 559.0 559.0 559.0 0.0%
eil51 66 34 16 160 4 548.0 548.0 548.0 0.0%
eil51 80 40 10 160 4 565.0 565.0 565.0 0.0%

eilA76 50 37 38 140 6 739.0 739.0 739.0 0.0%
eilA76 66 50 25 140 7 768.0 768.0 768.0 0.0%
eilA76 80 60 15 140 8 781.0 781.0 781.0 0.0%
eilB76 50 37 38 100 8 801.0 801.0 801.0 0.0%
eilB76 66 50 25 100 10 873.0 873.0 873.0 0.0%
eilB76 80 60 15 100 12 919.0 919.0 919.0 0.0%
eilC76 50 37 38 180 5 713.0 713.0 713.0 0.0%
eilC76 66 50 25 180 6 734.0 734.0 734.0 0.0%
eilC76 80 60 15 180 7 733.0 733.0 733.0 0.0%
eilD76 50 37 38 220 4 690.0 690.0 690.0 0.0%
eilD76 66 50 25 220 5 715.0 715.0 715.0 0.0%
eilD76 80 60 15 220 6 703.0 694.0 695.0 0.1%

eilA101 50 50 50 200 4 843.0 831.0 832.0 0.1%
eilA101 66 67 33 200 6 846.0 846.0 846.0 0.0%
eilA101 80 80 20 200 6 916.0 856.0 857.0 0.1%
eilB101 50 50 50 112 7 923.0 925.0 0.2%
eilB101 66 67 33 112 9 982.0 987.0 0.5%
eilB101 80 80 20 112 11 1008.0 1009.0 0.1%

Average 0.1%

tests.
Using α = 0.8, each instance was run 10 times for each hi value. Tables 4 and 6 show the results

obtained by our algorithm. Notice that the value of hi is higher for Table 6. A new fine-tuning process was
carried out to establish their values, namely: high (hi = 12.40), medium (hi = 6.20), low (hi = 3.10),
and very low (hi = 1.24). Re-adjusting the values of hi for these instances is necessary since they have
different levels of demand as compared to the smaller ones. For each instance and hi, the following data
is provided: the BKS, OBS, non-serviced BH customers, CPU time (in seconds), and the percentage gap.



The results obtained for small instances (22, 23, and 30 nodes) are the same as the BKS ones (Table 2).
The most relevant results are obtained when the number of non-serviced BH customers is greater than
zero. Here, 44 solutions show this effect. In 39 out of these (88.6%), the gap is negative, meaning that
by allowing collections to be optinal it is possible to generate solutions with a lower total cost than when
all BH customers need to be visited.

There is not a general relation between the non-serviced BH customers and the gap. However, in those
5 out of 44 cases in which a gap is positive, there are only 1 or 2 non-serviced BH customer. That is, a
higher quantity of non-serviced BH customers usually yields to savings in total cost. This does not mean
that the RTIs will never be collected, but just that they can be picked up at another period of the planning
horizon. Likewise, BH customers that are visited during the current period might be skipped at the next
one.

Table 4: Found solutions for instances with small demands and penalty costs.

Instance BKS hi = 0.66 hi = 0.33 hi = 0.16 hi = 0.06
OBS NSBH Time GAP OBS NSBH Time GAP OBS NSBH Time GAP OBS NSBH Time GAP

eil22 50 371 371.0 0 0.2 0.0% 371.0 0 0.2 0.0% 371.0 0 0.2 0.0% 371.0 0 0.0 0.0%
eil22 66 366 366.0 0 0.2 0.0% 366.0 0 0.2 0.0% 366.0 0 0.1 0.0% 366.0 0 0.0 0.0%
eil22 80 375 375.0 0 1.3 0.0% 375.0 0 0.1 0.0% 375.0 0 0.2 0.0% 375.0 0 0.0 0.0%
eil23 50 682 682.0 0 3.0 0.0% 657.8 1 1.6 -3.6% 645.4 1 16.0 -5.4% 567.2 7 0.4 -16.8%
eil23 66 649 649.0 0 5.8 0.0% 601.1 1 12.4 -7.4% 536.4 4 1.3 -17.3% 477.6 4 0.1 -26.4%
eil23 80 623 623.0 0 0.0 0.0% 608.5 1 0.1 -2.3% 583.8 1 0.0 -6.3% 542.0 3 6.2 -13.0%
eil30 50 501 501.0 0 0.3 0.0% 501.0 0 0.1 0.0% 482.3 2 0.0 -3.7% 431.0 3 0.3 -14.0%
eil30 66 537 537.0 0 0.2 0.0% 537.0 0 0.0 0.0% 527.5 1 0.1 -1.8% 517.0 1 0.0 -3.7%
eil30 80 514 514.0 0 0.7 0.0% 514.0 0 0.1 0.0% 514.0 0 0.2 0.0% 503.0 1 0.0 -2.1%
eil33 50 738 749.0 0 1.8 1.5% 749.0 0 0.8 1.5% 749.0 0 3.8 1.5% 749.0 0 0.3 1.5%
eil33 66 750 750.0 0 2.9 0.0% 750.0 0 0.1 0.0% 750.0 0 0.1 0.0% 750.0 0 0.0 0.0%
eil33 80 736 736.0 0 0.3 0.0% 736.0 0 2.4 0.0% 736.0 0 5.4 0.0% 736.0 0 0.2 0.0%

Table 5: Found solutions for instances with small demands and penalty costs.

Instance BKS hi = 0.66 hi = 0.33 hi = 0.16 hi = 0.06
OBS NSBH Time GAP OBS NSBH Time GAP OBS NSBH Time GAP OBS NSBH Time GAP

eil22 50 371.0 371.0 0 0.3 0.0% 371.0 0 0.3 0.0% 371.0 0 0.1 0.0% 371.0 0 0.0 0.0%
eil22 66 366.0 366.0 0 1.3 0.0% 366.0 0 0.2 0.0% 366.0 0 0.1 0.0% 366.0 0 0.0 0.0%
eil22 80 375.0 375.0 0 0.4 0.0% 375.0 0 0.1 0.0% 375.0 0 0.0 0.0% 375.0 0 0.0 0.0%
eil23 50 682.0 682.0 0 1.3 0.0% 657.8 1 0.7 -3.5% 657.0 1 9.2 -3.7% 567.2 7 0.7 -16.8%
eil23 66 649.0 649.0 0 2.5 0.0% 615.8 1 1.1 -5.1% 533.6 4 0.7 -17.8% 477.6 4 0.0 -26.4%
eil23 80 623.0 623.0 0 0.0 0.0% 608.5 1 0.1 -2.3% 583.0 1 0.0 -6.4% 542.0 3 0.3 -13.0%
eil30 50 501.0 501.0 0 0.1 0.0% 501.0 0 0.2 0.0% 481.0 2 0.4 -4.0% 431.0 3 0.3 -14.0%
eil30 66 537.0 537.0 0 0.0 0.0% 537.0 0 0.0 0.0% 527.0 1 0.0 -1.9% 517.0 1 0.0 -3.7%
eil30 80 514.0 514.0 0 0.5 0.0% 514.0 0 0.2 0.0% 514.0 0 0.1 0.0% 503.0 1 0.0 -2.1%
eil33 50 738.0 749.0 0 0.7 1.5% 749.0 0 0.1 1.5% 749.0 0 0.9 1.5% 749.0 0 0.2 1.5%
eil33 66 750.0 750.0 0 1.2 0.0% 750.0 0 0.7 0.0% 750.0 0 0.1 0.0% 750.0 0 0.0 0.0%
eil33 80 736.0 736.0 0 7.9 0.0% 736.0 0 0.7 0.0% 736.0 0 0.5 0.0% 736.0 0 0.1 0.0%

Average 0.0 1.4 0.1% 0.3 0.4 -0.8% 0.8 1.0 -2.7% 1.6 0.1 -6.2%

The unitary inventory cost is also a parameter that has an influence on cost savings. On the one hand,
high values of hi lead to the collection of most RTIs. In this case, we obtain a gap of 0.0% for most of
the instances, especially those in which the number of customers is low. On the other hand, only in a few



Table 6: Found solutions for instances with large demands and penalty costs

Instance BKS hi = 12.40 hi = 6.20 hi = 3.10 hi = 1.24
OBS NSBH Time GAP OBS NSBH Time GAP OBS NSBH Time GAP OBS NSBH Time GAP

eil51 50 559.0 559.0 0 2.1 0.0% 559.0 0 16.0 0.0% 559.0 0 0.7 0.0% 538.6 3 60.0 -3.6%
eil51 66 548.0 548.0 0 36.2 0.0% 548.0 0 18.7 0.0% 548.0 0 0.4 0.0% 541.4 3 1.9 -1.2%
eil51 80 565.0 565.0 0 20.7 0.0% 572.0 0 0.6 1.2% 548.7 1 3.1 -2.9% 535.4 1 0.5 -5.2%

eilA76 50 739.0 739.0 0 5.6 0.0% 739.0 0 6.5 0.0% 736.1 1 1.3 -0.4% 734.2 1 1.1 -0.6%
eilA76 66 768.0 771.0 0 30.5 0.4% 768.0 0 17.6 0.0% 767.1 1 24.6 -0.1% 765.2 1 66.6 -0.4%
eilA76 80 781.0 792.0 0 44.6 1.4% 783.0 0 34.7 0.3% 781.0 0 26.5 0.0% 775.4 1 48.2 -0.7%
eilB76 50 801.0 801.0 0 23.4 0.0% 801.0 0 22.8 0.0% 808.1 1 40.6 0.9% 796.2 1 3.1 -0.6%
eilB76 66 873.0 873.0 0 21.5 0.0% 873.0 0 73.3 0.0% 872.1 1 19.1 -0.1% 870.2 1 6.9 -0.3%
eilB76 80 919.0 920.0 0 26.1 0.1% 919.0 0 63.4 0.0% 919.0 0 17.3 0.0% 913.4 1 4.3 -0.6%
eilC76 50 713.0 713.0 0 10.0 0.0% 713.0 0 33.6 0.0% 713.0 0 3.8 0.0% 711.2 1 1.6 -0.3%
eilC76 66 734.0 734.0 0 62.2 0.0% 741.0 0 62.6 1.0% 734.1 1 34.3 0.0% 731.2 1 8.2 -0.4%
eilC76 80 733.0 743.0 0 16.3 1.4% 735.0 0 52.2 0.3% 736.0 0 4.2 0.4% 728.4 2 10.2 -0.6%
eilD76 50 690.0 690.0 0 17.2 0.0% 690.0 0 8.0 0.0% 690.0 0 1.2 0.0% 689.2 1 2.1 -0.1%
eilD76 66 715.0 720.0 0 15.5 0.7% 715.0 0 41.1 0.0% 715.0 0 2.5 0.0% 715.0 0 2.3 0.0%
eilD76 80 694.0 704.0 0 48.2 1.4% 696.0 0 25.7 0.3% 699.0 0 7.6 0.7% 688.2 3 28.0 -0.8%

eilA101 50 831.0 844.0 0 84.2 1.6% 844.0 0 232.7 1.6% 838.4 2 291.1 0.9% 793.8 10 268.6 -4.5%
eilA101 66 846.0 859.0 0 189.9 1.5% 846.0 0 293.9 0.0% 846.0 0 13.8 0.0% 828.8 6 44.7 -2.0%
eilA101 80 856.0 871.0 0 203.6 1.8% 865.0 0 59.3 1.1% 872.0 0 168.8 1.9% 827.6 6 231.9 -3.3%
eilB101 50 923.0 925.0 0 275.3 0.2% 923.2 1 140.5 0.0% 921.8 4 123.0 -0.1% 884.8 10 167.4 -4.1%
eilB101 66 982.0 1001.0 0 90.3 1.9% 997.0 0 236.4 1.5% 995.0 0 275.4 1.3% 973.2 4 184.5 -0.9%
eilB101 80 1008.0 1025.0 0 38.2 1.7% 1014.0 0 218.7 0.6% 1015.8 2 261.8 0.8% 984.0 6 240.3 -2.4%

cases a very low hi does not yield savings, which shows the advantage of using our approach for such
values of hi.

7. Conclusions

Setting delivery and collection routing plans represents a challenging problem that has to be addressed
on a daily basis in many supply chains. In this paper, we analyze a variant of the vehicle routing problem
with linehaul and backhaul customers in which visiting the latter is an optional action that might be
skipped. If so, savings in transportation cost can be achieved, although additional inventory costs might
be incurred.

To deal with this NP-hard combinatorial optimization problem, a mixed-integer linear programming
model is proposed and solved for a set of traditional instances. Here, instances up to 30 nodes can be
solved using exact methods. For larger instances, a biased-randomized iterated local search is proposed.
After showing that our approach is competitive with state-of-the-art methods for solving the traditional
vehicle routing problem with backhauls, it is adapted to consider that collection of items might be op-
tional subject to a penalty (inventory holding) cost. Our analysis shows that it is possible to obtain better
aggregated (routing plus inventory) costs in scenarios where collection is not mandatory.

Several lines are identified for future research: (i) our approach could be extended to consider the
multi-period and / or multi-depot cases; and (ii) customers’ demands or (time-based) transportation costs
might be considered as random variables.



Table 7: Found solutions for instances with large demands and penalty costs

Instance BKS hi = 12.40 hi = 6.20 hi = 3.10 hi = 1.24
OBS NSBH Time GAP OBS NSBH Time GAP OBS NSBH Time GAP OBS NSBH Time GAP

eil51 50 559.0 559.0 0 1.6 0.0% 559.0 0 1.2 0.0% 559.0 0 0.8 0.0% 541.2 4 72.3 -3.2%
eil51 66 548.0 548.0 0 4.2 0.0% 548.0 0 0.7 0.0% 548.0 0 0.2 0.0% 542.4 2 0.3 -1.0%
eil51 80 565.0 565.0 0 9.0 0.0% 565.0 0 2.1 0.0% 548.7 1 2.7 -2.9% 535.7 1 1.0 -5.2%

eilA76 50 739.0 739.0 0 2.0 0.0% 739.0 0 1.2 0.0% 736.1 1 1.9 -0.4% 734.2 1 1.6 -0.6%
eilA76 66 768.0 771.0 0 44.8 0.4% 771.0 0 30.5 0.4% 767.1 1 70.7 -0.1% 765.2 1 4.6 -0.4%
eilA76 80 781.0 792.0 0 72.8 1.4% 781.0 0 17.3 0.0% 781.0 0 56.4 0.0% 775.7 1 55.8 -0.7%
eilB76 50 801.0 801.0 0 11.8 0.0% 801.0 0 2.1 0.0% 798.1 1 6.6 -0.4% 796.2 1 3.9 -0.6%
eilB76 66 873.0 873.0 0 56.6 0.0% 873.0 0 21.4 0.0% 872.1 1 11.2 -0.1% 870.2 1 2.1 -0.3%
eilB76 80 919.0 920.0 0 60.2 0.1% 919.0 0 37.0 0.0% 919.0 0 5.4 0.0% 913.7 1 19.7 -0.6%
eilC76 50 713.0 713.0 0 6.6 0.0% 713.0 0 9.7 0.0% 713.0 0 5.8 0.0% 711.2 1 0.7 -0.3%
eilC76 66 734.0 736.0 0 68.1 0.3% 737.0 0 74.3 0.4% 733.1 1 33.0 -0.1% 731.2 1 1.6 -0.4%
eilC76 80 733.0 739.0 0 73.7 0.8% 736.0 0 73.0 0.4% 738.0 0 24.2 0.7% 729.1 2 25.2 -0.5%
eilD76 50 690.0 690.0 0 23.7 0.0% 690.0 0 15.2 0.0% 690.0 0 1.4 0.0% 689.2 1 1.1 -0.1%
eilD76 66 715.0 717.0 0 16.4 0.3% 715.0 0 12.9 0.0% 715.0 0 1.7 0.0% 715.0 0 7.0 0.0%
eilD76 80 694.0 699.0 0 29.3 0.7% 701.0 0 64.0 1.0% 695.0 0 13.5 0.1% 693.1 2 17.9 -0.1%

eilA101 50 831.0 845.0 0 282.5 1.7% 834.2 1 172.9 0.4% 838.4 2 27.9 0.9% 797.8 11 282.5 -4.0%
eilA101 66 846.0 848.0 0 246.6 0.2% 846.0 0 38.6 0.0% 846.0 0 7.8 0.0% 830.0 6 32.7 -1.9%
eilA101 80 856.0 872.0 0 140.0 1.9% 871.0 0 260.0 1.8% 860.0 0 222.4 0.5% 838.7 7 79.2 -2.0%
eilB101 50 923.0 925.0 0 108.3 0.2% 926.2 1 43.0 0.3% 921.8 4 76.2 -0.1% 879.8 8 84.9 -4.7%
eilB101 66 982.0 999.0 0 286.0 1.7% 992.0 0 119.4 1.0% 984.3 1 138.7 0.2% 963.8 4 256.7 -1.9%
eilB101 80 1008.0 1008.0 0 268.0 0.0% 1011.0 0 238.6 0.3% 1012.8 2 64.5 0.5% 986.0 6 278.2 -2.2%

Average 0.0 86.3 0.5% 0.1 58.8 0.3% 0.7 36.8 -0.1% 3.0 58.5 -1.5%
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Lourenço, H.R., Martin, O.C., Stützle, T., 2010. Iterated local search: Framework and applications. In Handbook of meta-
heuristics. Springer, pp. 363–397.

Malladi, K.T., Sowlati, T., 2018. Sustainability aspects in inventory routing problem: A review of new trends in the literature.
Journal of Cleaner Production

Miller, C.E., Tucker, A.W., Zemlin, R.A., 1960. Integer programming formulation of traveling salesman problems. Journal of
the ACM (JACM) 7, 4, 326–329.

Mostafa, N., Eltawil, A., 2015. A mixed-integer programming model for the production-inventory-distribution-routing problem.
In Industrial Engineering and Engineering Management (IEEM), 2015 IEEE International Conference on, IEEE, pp. 310–
314.

Panadero, J., Freixes, A., Mozos, J.M., Juan, A.A., 2018. Agile optimization for routing unmanned aerial vehicles under
uncertainty. In XVIII Spanish Conference on Artificial Intelligence, pp. 635–640.

Qin, L., Yang, P., Miao, L., 2016. Model and algorithm for inventory/routing decision in a delivery and pickup system. Journal
of Computational and Theoretical Nanoscience 13, 1, 558–566.

Reil, S., Bortfeldt, A., Mönch, L., 2018. Heuristics for vehicle routing problems with backhauls, time windows, and 3d loading
constraints. European Journal of Operational Research 266, 3, 877–894.

Shariff, S.S.R., Omar, M., Moin, N.H., 2016. Location routing inventory problem with transshipment points using p-center.
In Industrial Engineering, Management Science and Application (ICIMSA), 2016 International Conference on, IEEE, pp.
1–5.

Soysal, M., 2016. Closed-loop inventory routing problem for returnable transport items. Transportation Research Part D:
Transport and Environment 48, 31–45.

Toth, P., Vigo, D., 1997. An exact algorithm for the vehicle routing problem with backhauls. Transportation science 31, 4,
372–385.

Vahdani, B., Niaki, S., Aslanzade, S., 2017. Production-inventory-routing coordination with capacity and time window con-
straints for perishable products: Heuristic and meta-heuristic algorithms. Journal of Cleaner Production 161, 598–618.

Wassan, N., 2007. Reactive tabu adaptive memory programming search for the vehicle routing problem with backhauls. Journal
of the Operational Research Society 58, 12, 1630–1641.

Wu, W., Tian, Y., Jin, T., 2016. A label based ant colony algorithm for heterogeneous vehicle routing with mixed backhaul.
Applied Soft Computing 47, 224–234.

Yingfei, Z., Shuxia, Z., Xiaojing, C., Fang, L., 2011. Application of modified shapley value in gains allocation of closed-loop
supply chain under third-party reclaim. Energy Procedia 5, 980–984.

Zachariadis, E.E., Kiranoudis, C.T., 2012. An effective local search approach for the vehicle routing problem with backhauls.
Expert Systems with Applications 39, 3, 3174–3184.

Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., Mohammadi, M., 2016. Sustainable design of a closed-loop location-
routing-inventory supply chain network under mixed uncertainty. Transportation Research Part E: Logistics and Trans-
portation Review 89, 182–214.

Zhao, J., Ke, G.Y., 2017. Incorporating inventory risks in location-routing models for explosive waste management. Interna-



tional Journal of Production Economics 193, 123–136.


