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1 INTRODUCTION

The convection–diffusion–reaction equation has important applications in areas like fluid dynamics, heat or mass trans-
fer, chemical reaction processes, and contaminant transport.1,2 For this reason, there exists a wide literature about its
resolution, numerically and analytically.3–5

It is known that when a Neumann condition appears, the conservation equation for concentrations in the interior of
domain fails.1 This fact produces an inconsistency with the physical problem since the conservation of the mass requires
Robin conditions at the end. In the case here described the Danckwerts assumption has been considered, but that intro-
duces an error into predicted concentrations. This error is inversely proportional to Péclet number called Pe, dimensionless
parameter that measures the ratio of the characteristic diffusion time to the characteristic advection time.5,6

Some of the analytical techniques used for solving this equation with other initial and boundary conditions consist
in converting the original equation into a heat one by changes of variable together with the boundary conditions are
converted in homogeneous. This kind of problem can be solved either by separation of variables or by using a Laplace
transform.7 But when the initial and boundary conditions are complicated, the analytical solution is usually unavailable
or is given by transcendental errors functions.5 In this work, the most relevant operations has been indicated opting for
the method of separation of variables.
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A general description about obtaining the analytical solution is done in Golz and Dorroh1 taking Robin boundary
conditions, and lastly, the boundary condition at the end is modified to Neumann type. Then, the produced error above
mentioned is studied. But there is no existing detailed description about how to find the analytical solution and the
eigenvalues when the Neumann condition is considered. In that paper, only the verified relation and a quote over the
asymptotic behavior of these eigenvalues is measured, while in Jiménez Zenteno,3 the convection–diffusion–reaction
equation with Danckwerts homogeneous boundary conditions is solved. Separation variables and Fourier expansions are
used, and eigenvalues and eigenfunctions are built.

One of the first objectives of this work is to develop exhaustively how to obtain the analytical solution for the
convection–diffusion–reaction equation with non-homogeneous Danckwerts boundary conditions. The analytical tech-
nique detailed here is similar to the one described in the previous mentioned works; besides in this paper, the eigenvalues
are also found and calculated for several values of Péclet and Damköhler numbers. This second parameter, called Da, mea-
sures the ratio of the characteristic diffusion time to the characteristic reaction time.6 Both parameters are defined in the
next section. The obtained eigenvalues cannot be directly calculated because a transcendental non-linear equation is sat-
isfied. This type of equations gets involved in a wide quantity of examples.8 For solving it, here, a numerical method has
been employed.

From the numerical point of view, there are several works about how to solve different partial differential equations
(PDEs) with numerical methods. In Olsen-Kettle,9 the definition and application of a great variety of them for one- and
two-dimensional heat and diffusion equations can be found; generally, the considered initial and boundary conditions are
Dirichlet, Neumann, or Robin type. A brief list of some of the explained numerical methods for one-dimensional equation
is as follows: explicit methods (finite differences, explicit forward Euler method, and method of lines [MOL]), implicit
methods (implicit backward Euler method and Crank–Nicholson [C-N]), and iterative methods (Jacobi, Gauss–Seidel,
and relaxation methods), while as for 2D equation only, it is considered the 2D finite differences.

On the other hand, it can be consulted in Vande Wouwer et al,10 a summary about the development of Matlab-based
MOL toolbox (called Matmol) in three applications: Burgers' equation in one dimension, Burgers' equation in two dimen-
sions, and as last application, a study of benzene hydrogenation and the poisoning kinetics in a three-zone tubular reactor;
this third example is a dynamic model that includes material balance equation, energy balance, and an equation that rep-
resents catalyst deactivation (in all the cases studied here, Dirichlet initial conditions and Neumann boundary conditions
are taken).

Another type of examples are studied in David et al11 where the MOL is applied to the secondary settler models
with Dirichlet initial conditions and Robin type boundary conditions, parabolic PDE problem. The authors also use the
previous toolbox of Matlab development by Vande Wouwer et al.12

There is a general study of several numerical methods in Vande Wouwer et al2 when the 1D advection–diffusion
equation with initial and boundary conditions Dirichlet type is considered. If we focus the attention on this numerical
resolution, in that work, the time domain and spatial domain are discretized using different explicit and implicit schemes
of finite differences. There, it is concluded that implicit methods are unconditionally stable while the explicit methods
must satisfy the Von Neumann stability conditions. All these methods are compared obtaining that Crank–Nicholson,
under these assumptions, has a very good behavior with respect to analytical solution.

Due to this last conclusion, in the work presented here, the comparison between MOL and Crank–Nicholson's method
are studied for the 1D convection–diffusion–reaction equation with initial and Danckwerts boundary conditions. In this
academic study, three different techniques of resolution are carried out. The studied problem corresponds to the variation
of concentration of a solute in a tubular reactor of length L and radius R. The analytical solution obtained is compared
with two numerical methods: MOL and Crank–Nicholson's method.

This paper is organized as follows. In the first section, all the involved parameters and the PDE with initial and
boundary conditions are described. Following section shows the obtention of the analytical solution and the eigen-
values for several Pe numbers. These values cannot be found by analytical methods, and so, Table 1 just requires a
numerical calculus. The solution is written by a Fourier expansion. Moreover, a Matlab routine has been developed
for calculating and illustrating the associated concentration curves for different values of Pe and Da. These graphs show
perturbations for any Pe and Da numbers. This fact became to the authors to analyze the suitable number of terms in
the expansion expression. When in the literature Fourier expansions have appeared, the number optimum of terms to
calculate the analytical solution by computational routine has not been taken into account. In this paper, for each of
the dimensionless parameters, this number has been found and the concentration are represented with this quantity
of terms.
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Pe = 0.01 Pe = 0.1 Pe = 1 Pe = 10 Pe = 100
n 𝝀n

0 0 0 0 0 0
1 0.099 0.314 0.960 2.284 3.020
2 3.144 3.173 3.431 4.761 6.042
3 6.284 6.299 6.438 7.463 9.066
4 9.425 9.435 9.529 10.326 12.091
5 12.567 12.574 12.645 13.286 15.120
6 15.708 15.714 15.771 16.303 18.153
7 18.850 18.854 18.902 19.355 21.189
8 21.991 21.995 22.037 22.429 24.230
9 25.133 25.136 25.172 25.519 27.275
10 28.274 28.277 28.31 28.620 30.325
11 31.416 31.419 31.448 31.728 33.380
12 34.557 34.560 34.586 34.842 36.439
13 37.699 37.701 37.726 37.961 39.503
14 40.840 40.843 40.865 41.082 42.571
15 43.982 43.984 44.005 44.207 45.644
16 47.124 47.126 47.145 47.334 48.720
17 50.265 50.267 50.285 50.463 51.800
18 53.407 53.408 53.426 53.593 54.884
19 56.548 56.550 56.566 56.724 57.972
20 59.690 59.691 59.707 59.856 61.062

TABLE 1 Eigenvalues 𝜆n with a tolerance of 10−15 for different values of
Péclet number

On the other hand, the numerical resolution is made in Section 4 using two different methods, which are described and
studied for the problem here worked. Their results are compared with the analytic solution in Section 5. It is important to
realize that the size of the partition considered for each method must be taken into account to achieve similar precision
in both.

Finally, Section 6 will be dedicated to the conclusions obtained in this study.

2 PROBLEM DEFINITION

Let us consider a tubular reactor with length L where convection, diffusion, and a first-order reaction of the type A → B
take place. Under these conditions, the process is modeled by the expression given by

𝜕CA

𝜕t
= −vz

𝜕CA

𝜕z
+ DA

𝜕2CA

𝜕z2 − kACA, (1)

where CA(z, t) is the concentration of component A along the position, z, and time, t; DA is the diffusion coefficient of
component A; vz is the fluid velocity in z direction; and kA is the kinetic rate constant. The following Danckwerts boundary
conditions (B.C.) and initial conditions (I.C.) are considered

I.C. ∶ CA(z, 0) = CA0

B.C.1 ∶ vzCA(0, t) − DA
𝜕CA
𝜕z

|||z=0
= CAevz Robin type

B.C.2 ∶ 𝜕CA
𝜕z

|||z=L
= 0 Neumann type

⎫⎪⎪⎬⎪⎪⎭
,

where CAe is the concentration of component A at the reactor inlet and CA0 is the initial concentration along all its length.
PDE described in (1) is the so-called parabolic PDE.
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In order to simplify the calculus and the number of parameters of study, the variables are normalized and converted
into dimensionless ones. For this purpose, the following values are considered13:

CAn = CA
CAe

⇒ 0 ≤ CAn ≤ 1,

Z = z
L

⇒ 0 ≤ Z ≤ 1,

𝜃 = tvz

L
⇒ 0 ≤ 𝜃 ≤ ∞,

Pe = vzL
DA

Péclet Number.

Da = kAL
vz

Damköhler Number.

Throughout this paper, the normalized problem is formulated as

𝜕CAn
𝜕𝜃

= − 𝜕CAn
𝜕Z

+ 1
Pe

𝜕2CAn
𝜕Z2 − DaCAn

I.C. CAn(Z, 0) = CA0
CAe

B.C.1 𝜕CAn
𝜕Z

|||Z=0
− PeCAn(0, 𝜃) = −Pe

B.C.2 𝜕CAn
𝜕Z

|||Z=1
= 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (2)

Clearly, large Péclet numbers indicate a big influence of the convective term, and small Péclet numbers mark a bigger
influence of the diffusive term in the convection–diffusion–reaction equation given in (2).

3 ANALYTICAL RESOLUTION

The main idea of the approach here exposed is to convert this PDE into a heat equation with homogeneous boundary
conditions and to carry out its resolution by, for example, separation of variables and generalized Fourier expansion.1,3

Two changes of variable are required. The first one comes from the expression

CAn(Z, 𝜃) = erZ−s𝜃u(Z, 𝜃), (3)

where
r = Pe

2
, s = Pe

4
+ Da. (4)

These values are chosen for obtaining a heat PDE. This process can be generalized for any PDE like

𝜕Y
𝜕t

= −A𝜕Y
𝜕z

+ B𝜕2Y
𝜕z2 − CY ,

taking r and s as

r = A
2B

, s = A2

4B
+ C.

It is important to realize that the Péclet number verifies Pe = 2r. By analogy with the existing literature, we rewrite (2) as

𝜕u
𝜕𝜃

= 1
2r

𝜕2u
𝜕Z2

I.C. u(Z, 0) = CA0
CAe

e−rZ

B.C.1 𝜕u
𝜕Z

|||Z=0
− ru(0, 𝜃) = −2res𝜃

B.C.2 𝜕u
𝜕Z

|||Z=1
+ ru(1, 𝜃) = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (5)
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The problem enunciated in (5) is not homogeneous boundary condition, but the PDE is just a heat equation. For
reaching homogeneous boundary conditions, the second suitable change is

u(Z, 𝜃) = v(Z, 𝜃) + w(Z, 𝜃), (6)

where v(Z, 𝜃) must be a polynomial function in Z of degree 1, verifying the boundary conditions of (5). From those
considerations, it can be shown that

v(Z, 𝜃) = a(𝜃)Z + b(𝜃) = −2res𝜃

2 + r
Z + 2(1 + r)

2 + r
es𝜃 = 2

2 + r
(1 + r − rZ)es𝜃. (7)

From (5) and taking into account (7), the following PDE is deduced:

𝜕w
𝜕𝜃

= 1
2r

𝜕2w
𝜕Z2 + G(Z, 𝜃)

I.C. w(Z, 0) = H(Z)

B.C.1 𝜕w
𝜕Z

|||Z=0
− rw(0, 𝜃) = 0

B.C.2 𝜕w
𝜕Z

|||Z=1
+ rw(1, 𝜃) = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (8)

where
G(Z, 𝜃) ∶= − 𝜕v

𝜕𝜃
(Z, 𝜃) = −[a′(𝜃)Z + b′(𝜃)] = −s 2

2+r
[−rZ + 1 + r] es𝜃 = −sv(Z, 𝜃),

𝜑(Z) ∶= CA0
CAe

e−rZ,

H(Z) ∶= 𝜑(Z) − v(Z, 0) = e−rZ CA0
CAe

− 2
2+r

[−rZ + 1 + r] .

It is important to realize that in this paper, G(Z, 𝜃) ≠ 0, for all the values of the variables, since in problem (8), the boundary
conditions are no null, and the construction of the function v(Z, 𝜃) is assured.

In the literature, there are many references about the existence and uniqueness of the solution of this problem with
Robin's conditions and Danckwerts' conditions, since in the case studied here, the coefficients are constants.1,14–18 Due
to this fact, the next subsections are directly dedicated to the construction of the analytical solution. The technique here
described is the usual for these family of problems.1,3,19

3.1 Resolution of the homogeneous heat equation

To solve the following homogeneous equation 𝜕w
𝜕𝜃

= 1
2r

𝜕2w
𝜕Z2 , a solution is sought in the following way:

w(Z, 𝜃) = T(𝜃)X(Z).

Replacing in the heat equation, it is obtained

X(Z)T′(𝜃) = 1
2r

X ′′(Z)T(𝜃) ⇐⇒
T′(𝜃)
1
2r

T(𝜃)
= X ′′(Z)

X(Z)
= 𝜆.

It can be seen that only the case 𝜆 < 0 is possible, (Ch. 4, Vande Wouwer20). For convenience, it is rewritten 𝜆 = −𝜆2.
Under this assumption, the general solution of X ′′(Z)

X(Z)
= −𝜆2 is given by

X(Z) = A cos(𝜆Z) + B sin(𝜆Z).

Imposing the boundary condition B.C.1, the relation between constants A and B is established as follows:

A = B𝜆
r
.

It can be taken B = 1, without loss of generality.
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FIGURE 1 Representation of Equation (10) for Pe = 1 and Pe = 10. Its roots are the eigenvalues 𝜆n [Colour figure can be viewed at
wileyonlinelibrary.com]

Due to w(Z, 𝜃) has to verify the problem (8) and its boundary conditions, without taking into account the initial
condition yet, the basic eigenfunctions are

Xn(Z) =
𝜆n

r
cos(𝜆nZ) + sin(𝜆nZ), (9)

where 𝜆n are the eigenvalues satisfying the equation

tan(𝜆n) =
2𝜆nr

𝜆2
n − r2

, (10)

whose graph can be seen in Figure 1 for Pe = 1 and Pe = 10.
The equation satisfied by the eigenvalues is a transcendental equation, so a numerical method must be employed for

its resolution. In Table 1, it can be seen a particular case of the values obtained after solving Equation (10).

3.2 Resolution of the non-homogeneous heat equation
Using the Fourier generalized development theorem,20 the solution of the equation

𝜕w
𝜕𝜃

= 1
2r

𝜕2w
𝜕Z2 + G(Z, 𝜃)

is of the form, in general,

w(Z, 𝜃) =
∞∑

n=0
Tn(𝜃)Xn(Z),

where Xn(Z) =
𝜆n
r

cos(𝜆nZ)+ sin(𝜆nZ), whenever the eigenvalues 𝜆n verify Equation (10). The functions Tn(𝜃) have to sat-
isfy the previous equation. The set formed by the proper functions Xn(Z) and the mentioned 𝜆n constitutes an orthogonal
basis. This property has been verified using Matlab. In our case, as 𝜆0 = 0:

w(Z, 𝜃) =
∞∑

n=1
Tn(𝜃)Xn(Z). (11)

Assuming the suitable conditions of derivability and the convergence of the series given by the Fourier generalized
development theorem, a relation that the functions Tn(𝜃) must verify can be obtained:

T′
n(𝜃) +

𝜆2
n

2r
Tn(𝜃) = gn(𝜃), ∀n ≥ 1.

where gn(𝜃) are the Fourier coefficients of G(Z, 𝜃) in the orthogonal basis (Xn(Z))∞n=1.
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It is worth noting two observations in order to facilitate the calculations. As it can be seen in the operations of the upper
lines, the functions G(Z, 𝜃) and H(Z) are related, and therefore, their Fourier coefficients are in turn

G(Z, 𝜃) = ses𝜃[H(Z) − 𝜑(Z)],

where the only term depending on the variable 𝜃 is the exponential factor. In general, gn(𝜃) = ses𝜃(hn − 𝜑n) being 𝜑n and
hn the Fourier coefficients of 𝜑(Z) and H(Z), respectively,

hn = 1
∫ 1

0 X2
n(Z)dZ ∫

1

0
H(Z)Xn(Z)dZ, 𝜑n = 1

∫ 1
0 X2

n(Z)dZ ∫
1

0
𝜑(Z)Xn(Z)dZ.

Summarizing, the functions Tn(𝜃) satisfy the IVP

T′
n(𝜃) +

𝜆2
n

2r
Tn(𝜃) = ses𝜃(hn − 𝜑n), ∀n ≥ 1

Tn(0) = hn

}
. (12)

The solution of (12) is

Tn(𝜃) =
2rs(hn − 𝜑n)

2rs + 𝜆2
n

es𝜃 +
2rs𝜑n + hn𝜆

2
n

2rs + 𝜆2
n

e−
𝜆2

n
2r
𝜃
. (13)

Finally, replacing (13) in (11) and undoing the changes of variable indicated in (3) and (6), the solution of the problem (2)
is built by

CAn(Z, 𝜃) = erZ−s𝜃

(
v(Z, 𝜃) +

∞∑
n=1

Tn(𝜃)Xn(Z)

)
. (14)

3.3 Observations on the analytical solution
The convergence of all these functional series has been studied in the literature depending on the values of Pe. It can
be demonstrated, applying the M-Weierstrass criterion in one case, or using Comparison criterion in another, that all the
series involved are absolutely convergent and therefore convergent.21,22 Golz and Dorroh1 demonstrated that this series
is bounded for all 𝜃.

Besides, in this work, we considered for simulations the maximum dimensionless time, 𝜃max, which is shown in Table 2.
It has been selected depending on the values of Péclet and Damköhler numbers, with the aim of reaching the steady state
in the solution.

It can be observed that, for a fixed value of Da, the dimensionless time for achieving the steady state, 𝜃max, decreases
when Pe increases. And this time also decreases for a fixed Pe when Da increases.

Throughout this paper, several considerations must be taken into account. In figures of the dimensionless concentra-
tion, for CA0 = 0mol/m3 and CAe = 1mol/m3, the picture on the left side shows the concentration profile: The time is
fixed, and the position is variable. Only three values of 𝜃 have been chosen for clarity. 𝜃1 is the initial time, 𝜃 = 0; the
last value, 𝜃10, is when the system achieves approximately the steady state, that is, 𝜃max. Besides, an intermediate value,
for example, 𝜃3 = 2

9
𝜃max, has been assigned. On the other hand, the picture on the right side shows the evolution of the

dimensionless concentration along the time for a fixed position in the reactor. Three Z positions are plotted: Z = 0, also
denoted as node 1, Z = 0.5 approximately, indicated as middle node, and Z = 1, labeled as node N + 1.

This reference to nodes is not really necessary when an analytical solution is deduced, because it can be calculated at
any Z position. Nevertheless, these plots will be compared in the following sections with those obtained using numerical
methods based on a discretization scheme, where each Z position is associated to a node. This fact justifies the legends

0.01 0.1 1 10 100
0.01 8 7 4 1 0.1
0.1 8 7 4 1 0.1
1 8 7 4 1 0.1
10 5 4 3 1 0.05

TABLE 2 Value of 𝜃max from which the steady state is attained
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FIGURE 2 Representation of CAn obtained by the analytical technique for Pe = 0.01 and Da = 0.1 with 50 and 100 terms in Fourier
expansion [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 CAn curves for Pe = 10 and Da = 0.1 considering 100 and 1800 terms in the Fourier expansion in the analytical solution
[Colour figure can be viewed at wileyonlinelibrary.com]

shown in the analytical plots. Although N can be any positive integer value, for the analytical solution obtained in this
paper, N = 100 has been considered (101 nodes). Besides, a partition of 100 terms has been taken for 𝜃 ∈ [0, 𝜃max].

It is important to realize that the analytical solution, (14), is a series. The first question to consider is the suitable number
of n terms for calculation. Observe that for Pe = 0.01 and Da = 0.1 in Figure 2, there are no great variations in the obtained
solution when the terms are increased from 50 to 100.

However, in Figure 3, where Pe = 10 and Da = 0.1, it can be seen in the picture on the left side that only at the initial
time, 𝜃1, and near the reactor outlet (Z = 1) there are some small oscillations when merely 100 terms are considered. The
same discrepancy can be observed in the picture on the right side, at the initial times and at the reactor outlet (node N+1).
These perturbations disappear when the number of terms in the Fourier expansion is increased; see the same figure for
1800 terms.

Other dimensionless concentration curves for Pe = 10 and Da = 100 can be observed in Figure 4, where the same
options in the number of terms of the Fourier development have been taken. A better observation of the improvement
when 1800 terms are considered is shown in Figure 5.

Therefore, perturbations are found in the analytical solution when the number of terms is not suitable, depending on
the particular values of Pe and Da. So the optimum number of terms has to be determined for avoiding these perturbations,
without increasing unnecessarily the computation time.

For a specific value of Pe and Da, let AM ∈ 100×101(R) be the matrix of the values of the dimensionless analytical
concentration for (Z, 𝜃) where M terms in the Generalized Fourier development are considered. Let us define TOLM in
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FIGURE 4 CAn curves for Pe = 10 and Da = 100 considering 100 terms and 1800 in the Fourier expansion in the analytical solution
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Detail in CAn curves for
Pe = 10 and Da = 100 considering 100
terms or 1800 in the Fourier expansion
for the analytical solution [Colour figure
can be viewed at wileyonlinelibrary.com]

the following way:

TOLM = max
𝑗

(max
i
(|AM − AM−100|)). (15)

TOLM is a metric that measures how the precision of CAn(Z, 𝜃) improves as the number of terms in the Fourier develop-
ment increases. The question is which is the minimum number of terms M satisfying TOLM < 10−4, for each combination
of Pe and Da values.

It can be seen in Figure 6 and in Table 3 that for a fixed Péclet number and several values of Da, the number of terms
to consider is the same, regarding the tolerance defined by (15). This seems to indicate that Damköhler number has no
influence in the number of terms to consider in Fourier development. This fact is owing to its contribution in the analytical
expression of the considered differences in (15). Substituting (7) and (13) in (14), it is obtained

CAn(Z, 𝜃) = erZ

⎡⎢⎢⎢⎣
2

2 + r
(1 + r − rZ) +

∞∑
n=1

Xn(Z)
2rs(hn − 𝜑n) + (hn𝜆

2
n + 2rs𝜑n)e

−
(

s+ 𝜆2
n

2r

)
𝜃

2rs + 𝜆2
n

⎤⎥⎥⎥⎦ .
Calling CM

An the partial sum with M terms in (14),

CM2
An (Z, 𝜃) − CM1

An (Z, 𝜃) = erZ
M2∑

n=M1+1

2rs(hn − 𝜑n) + (hn𝜆
2
n + 2rs𝜑n)e

−
(

s+ 𝜆2
n

2r

)
𝜃

2rs + 𝜆2
n

Xn(Z)
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FIGURE 6 Number of terms in Fourier development for Pe = 0.1 and Pe = 10 with difference values of Da [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 3 Minimum number of terms in the Fourier Development for
TOLM ≤ 10−4

0.01 0.1 1 10 100
0.01 200 200 200 200 200
0.1 300 300 300 300 300
1 600 600 600 600 600
10 1800 1800 1800 1800 1800

FIGURE 7 Number of terms in Fourier development for different values of Pe with Da = 0.01 and Da = 10 [Colour figure can be viewed at
wileyonlinelibrary.com]

In the example described in this work, 𝜑n = 0 since CA0 = 0, then

CM2
An (Z, 𝜃) − CM1

An (Z, 𝜃) = erZ
M2∑

n=M1+1
hnXn(Z)

2rs + 𝜆2
ne

−
(

s+ 𝜆2
n

2r

)
𝜃

2rs + 𝜆2
n

. (16)

Obviously, when the number of terms to consider increases the sequence, (𝜆n)n increases too; see Table 1. And so, since
s = Pe

4
+ Da, the factor where Da is present decreases quickly to zero due to the exponential function incorporated in it.

However, if now Da is fixed and Pe is variable, a study about the number of the suitable terms to consider is shown in
Figure 7.

If the value of Pe is increased the number of terms in the Fourier development also increases independently of the values
of Da. All of this is summarized in Table 3.

It is worth noting that in Figure 2, no difference can be appreciated between the analytical solution when 100 terms
against 50 terms are considered in the series development, for Pe = 0.01 and Da = 0.1. In Table 3, for those values of Pe
and Da, 200 terms have been assigned. Figure 8 proves that it is not necessary to consider greater values of the number
of terms. However, the data found using the formula (15) in the above table are due to the implemented algorithm. It
has been applied starting from 100 terms, since in general for the other values of Pe at least this number of addends was
necessary. In fact, max𝑗(maxi(|A100 − A50|)) = 2.0571 · 10−5 is obtained. So the analytical solution for Pe = 0.01 could be
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FIGURE 8 CAn curves for Pe = 0.01 and Da = 0.1 considering 100 and 200 terms in the Fourier expansion in the analytical solution
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Representation of CAn in 𝜃max (left picture) and in node N + 1 (right picture) by analytical resolution with Pe = 0.01 and
different values of Da [Colour figure can be viewed at wileyonlinelibrary.com]

calculated with 100 terms and the value of TOLM of (15) is reached. Throughout this paper all the analytical solutions
have been calculated with the optimum numbers of terms in the Fourier developments referred in Table 3.

Moreover, the data found in Table 3 lead us to the conclusion that for values of Pe > 10, the time of execution in Matlab
would be so excessive. For this reason, these Pe values are not considered in this paper. On the other hand, those higher
values of Péclet number in the convection–diffusion–reaction equation imply that diffusion is negligible versus convection
and that the reactor behaves as a plug flow one. In this case, maybe it is better to solve directly the PDE corresponding to
a plug flow reactor.

The dimensionless concentrations obtained by analytical resolution for a fixed value of Péclet and all the possible
Damköhler numbers can be seen in Figures 9–11.

In Figure 9 Pe = 0.01, the right picture shows clearly that the steady state at the reactor outlet is reached earlier when
the value of Da increases. The concentration curves are ever smooth and convex. And the values of the dimensionless
concentration decrease as the value of Da becomes greater. This behavior also occurs along the reactor, not only at the
outlet, as can be seen in the left picture.

In the previous figures, for Pe = 1 and Pe = 10, respectively, the concentration curves present an inflection point
characteristic of the S-shaped curves. The change from concave to convex is more pronounced if Pe is bigger. In Figure 11,
it can be seen that concentration reaches the steady state earlier than with the other values of Pe shown in Figures 9 and
10, right picture. For all these values of Pe, if greater values of Da are taken, this stationary aspect is reached at the initial
stages. This observation can also be detected if the comparison study is done for a fixed Da together with all the possible
Péclet numbers. In the right pictures of Figures 12 and 13, the outlet reactor concentration for some values of Da is shown.

2143

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


AGUD ALBESA ET AL.

FIGURE 10 Representation of CAn in 𝜃max (left picture) and in node N + 1 (right picture) by analytical resolution with Pe = 1 and different
values of Da [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Representation of CAn in 𝜃max (left picture) and in node N + 1 (right picture) by analytical resolution with Pe = 10 and
different values of Da [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 Representation of CAn in 𝜃max (left picture) and in node N + 1 (right picture) by analytical resolution with Da = 0.01 and
different values of Pe [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 13 Representation of CAn in 𝜃max (left picture) and in node N + 1 (right picture) by analytical resolution with Da = 100 and
different values of Pe [Colour figure can be viewed at wileyonlinelibrary.com]

In the same way, clearly, for greater values of Da, the concentration curve at the reactor outlet reaches the stationary
behavior earlier than for small values of Da. Note, moreover, the low values of the concentration as Pe increases.

4 NUMERICAL RESULTS

Throughout this section, the normalized problem described in (2) is considered. To this problem, different numerical
methods are applied to compare the results. Concretely, firstly, a unique discretization in spatial variable is done apply-
ing the MOL, and secondly, by using Crank–Nicholson, two discretizations, in spatial and time variables, are taken into
account.

In the numerical methods that are described here, an internal mesh of equidistant partitions in each one of the domains
is considered. Thus, for the spatial domain, with Z ∈ [0, 1], it is taken Z𝑗 = Z0 + ( 𝑗 − 1)h = ( 𝑗 − 1)h, where 𝑗 =
1, … ,N + 1, h = 1∕N; and for the time domain, 𝜃 ∈ [0,∞), 𝜃n = 𝜃0 + nk = nk,n = 0, … ,M are considered where
k = 𝜃max

M
and 𝜃max is shown in Table 2.

We denote
C𝑗 = CAn(Z𝑗 , 𝜃), 𝑗 = 1, … ,N + 1
Cn
𝑗
= CAn(Z𝑗 , 𝜃n), 𝑗 = 1, … ,N + 1,n = 0, … ,M,

for MOL and Crank–Nicholson, respectively.
Usually, only internal points are taken in the mesh, 𝑗 = 2, … ,N and n = 1, … ,M − 1. Depending on the boundary

conditions for the problem, there exist different possibilities to work with those points.

4.1 Strategies for the boundary conditions
In the case of Dirichlet boundary conditions, after the spatial discretization, the variables associated to both endpoints of
the spacial grid have directly assigned a numerical value. However, if Neumann or Robin boundary conditions are given
and a method that discretizes derivatives with respect to the spatial variable is used, several ways can be followed.

For example, using a second-order central difference scheme,13

𝜕𝑓

𝜕Z
|||Z𝑗

= 𝑓𝑗+1−𝑓𝑗−1

2ΔZ
+ O(ΔZ2),

𝜕2𝑓

𝜕Z2
|||Z𝑗

= 𝑓𝑗+1−2𝑓𝑗+𝑓𝑗−1

ΔZ2 + O(ΔZ2),
(17)

for the equation corresponding to the 𝑗th row of the system matrix, it would be necessary to know the previous and
subsequent data. This would be a problem when working at the grid endpoints because there is no previous data for Z = 0
and there is no further data for Z = 1.
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The solution is either to apply what is called “false frontier” or “fictitious nodes”13 or in the grid endpoints to use a
system of progressive differences in Z = 0 and regressive ones in Z = 1:

𝜕𝑓

𝜕Z
|||Z1

≃ −3𝑓1+4𝑓2−𝑓3

2ΔZ
+ O(ΔZ2) Forward Difference,

𝜕𝑓

𝜕Z
|||ZN+1

≃ 3𝑓N+1−4𝑓N+𝑓N−1

2ΔZ
+ O(ΔZ2) Backward Difference,

(18)

which is the strategy applied here. For this reason, the equations of both numerical methods, MOL and Crank-Nicholson's
scheme, apply only for internal nodes of the mesh; that is, from 𝑗 = 2, … ,N. Besides, concretely, the equations for 𝑗 = 2
and for 𝑗 = N allow us to obtain the values of C1 and CN+1 which are replacing in this internal grid.

4.2 About the stability and consistency of the numerical methods
A method is called stable when the rounding or truncation errors generated in each of the iterations do not greatly affect
the output data. Let be the local error of a numerical method at a point (Z𝑗 , 𝜃n) like the committed error when applying
the algorithm once at that point with the considered step in each of the independent variables. A method is said to be
consistent of order p if p is the largest integer such that the maximum of the quotient between the local error and the
step is an O(hp). The consistency of a method measures whether the solutions of the problem, when the step considered
in the grid tends to zero, approximate the solutions of the discrete problem, supposing that the truncation error of the
development of Taylor tends to zero.23

Thanks to the Lax theorem,24 it is known that a consistent and stable method is convergent. There are several ways to
study the stability of a numerical method applied to an ODE or algebraic problem, such as the Von Neumann's method
and the spectral radius of the matrix method.20 In this paper, both mentioned methods will be followed.

Let a numerical method described by an equation be like

Cn+1 = MCn + Un.

Let Cn
e be the exact solution in the nth iteration of the method and en the truncation or rounding error produced in the

nth iteration. With these notations, it can be written

Cn = Cn
e + en. (19)

Both the exact solution and the numerical solution verify the equation where the discretization has already been applied.
So subtracting the following expressions, you get

Cn+1
e = MCn

e + Un

Cn+1 = MCn + Un ⇐⇒ Cn+1
e + en+1 = M(Cn

e + en) + Un

}
⇒ en+1 = Men. (20)

A necessary condition for having a stable method is

lim
n→∞

||en|| = 0, (21)

with some adequate vector norm, giving rise to conditions on the chosen steps in the temporal and spatial discretization.
Obviously, considering the matrix norm induced by the vector norm taking in (19), the sequence of errors given in (21)

must be contractive. If the 1-norm matrix, also called spectral norm, is used, it is known that a necessary and sufficient
condition for this purpose is20

𝜌(M) = max
k

|𝜆k| < 1,

being 𝜌(M) the spectral radius of the matrix M obtained in (20) and being 𝜆k the eigenvalues of this matrix.25

On the other hand, in the Von Neumann's method for the study of the stability, a periodic solution of the equation is
supposed admitting an expression of the form C(Z, 𝜃) = T(𝜃)eiPZ, where i is the imaginary unit and P is the period.24 In
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the case studied here, this requisite is verified as has been seen in previous sections. And then,

Cn
𝑗
= TneiP𝑗h.

So for the stability of the method, it must be verified that

||||Tn+1

Tn

|||| < 1. (22)

This amplification quotient will be studied for Crank–Nicholson's method described in the following sections.

4.3 MOL
To apply MOL to the problem (2), the cylindrical reactor is divided into N slices, which generates N + 1 nodes. To each of
these nodes, it is assigned the dimensionless time-dependent variable C𝑗(𝜃) with 𝑗 = 1, … ,N + 1, so that

C𝑗(𝜃) = CAn
(

Z𝑗 , 𝜃
)
, 𝑗 = 1, … ,N + 1,

where
Z𝑗 =

𝑗 − 1
N

, 𝑗 = 1, … ,N + 1,

all this scheme can be seen in Figure 14.
MOL consists of transforming the PDE, with its initial and boundary conditions, into a system of ODEs with their

corresponding initial conditions, discretizing only the spatial variable. For this purpose, partial spatial derivatives must
be replaced by finite differences. In this case, since it is a parabolic PDE due to the diffusive term in Equation (2), finite

FIGURE 14 MOL scheme, 𝑗 = 1, … ,N + 1

FIGURE 15 Representation of the concentration curves obtained for Pe = 0.1 and Da = 1 using MOL with the built-in Matlab fixed-step
ode3 solver, incorporated only in older Matlab versions and not distributed in modern ones (N = 100) [Colour figure can be viewed at
wileyonlinelibrary.com]
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TABLE 4 Values of Δ𝜃 against ΔZstab for several values of Péclet and Damköhler numbers

Da
0.01 0.1 1 10 100

Pe 𝚫𝜽 𝚫Zstab 𝚫𝜽 𝚫Zstab 𝚫𝜽 𝚫Zstab 𝚫𝜽 𝚫Zstab 𝚫𝜽 𝚫Zstab

0.01 8.1 · 10−2 5.0 · 10−7 7.1 · 10−2 5.0 · 10−7 4.0 · 10−2 5.0 · 10−7 1.0 · 10−2 5.0 · 10−7 1.0 · 10−3 5.0 · 10−7

0.1 8.1 · 10−2 5.0 · 10−6 7.1 · 10−2 5.0 · 10−6 4.0 · 10−2 5.0 · 10−6 1.0 · 10−2 5.0 · 10−6 1.0 · 10−3 5.0 · 10−6

1 8.1 · 10−2 5.0 · 10−5 7.1 · 10−2 5.0 · 10−5 4.0 · 10−2 5.0 · 10−5 1.0 · 10−2 5.0 · 10−5 1.0 · 10−3 5.0 · 10−5

10 5.1 · 10−2 4.8 · 10−4 4.0 · 10−2 4.8 · 10−4 3.0 · 10−2 4.8 · 10−4 1.0 · 10−2 4.8 · 10−4 5.1 · 10−4 4.7 · 10−4

central second-order differences, (17), will be used at the internal grid points, while forward or backward second-order
finite differences are used for Robin and Neumann boundary conditions, (18).

Let us begin with B.C.1, which allows obtain information from C1. To do this, 𝜕CAn
𝜕Z

|||Z=0
is replaced by the second-order

forward finite difference approximation for the first derivative:

1 = C1 −
1

Pe
−3C1 + 4C2 − C3

2
N

.

Operating, C1 is obtained:

C1 =
2 Pe

N
+ 4C2 − C3

2 Pe
N
+ 3

.

B.C.2 allows to determine CN+1. Therefore, 𝜕CAn
𝜕Z

|||Z=1
is replaced by the second-order backward finite difference approxi-

mation corresponding to the first derivative:

3CN+1 − 4CN + CN−1
2
N

= 0.

Operating,

CN+1 = 4CN − CN−1

3
.

Finally, the discretization of the PDE allows to obtain information about C𝑗 , with 𝑗 = 2, … ,N. For this, the PDE is
applied in each of the nodes 𝑗 = 2, … ,N, and 𝜕CAn

𝜕Z
is replaced in Z𝑗 by the second-order central finite difference for

the first derivative, while 𝜕2CAn
𝜕Z2 in Z𝑗 is replaced by the second-order central finite difference for the second derivative,

obtaining the following system of N − 1 ODEs:

dC𝑗

d𝜃
= −

C𝑗+1 − C𝑗−1
2
N

+ 1
Pe

C𝑗+1 − 2C𝑗 + C𝑗+1(
1
N

)2 − Da · C𝑗 , 𝑗 = 2, … ,N, (23)

with the following initial conditions:

C𝑗(0) =
CA0

CAe
, 𝑗 = 2, … ,N.

4.3.1 Stability of the MOL for the convection–diffusion–reaction equation
In the assumption that the solution of the problem (2) is periodic in the studied domain, several works have been found in
the literature,20 which states that the method is stable if the following relationship between the discretization time step,
Δ𝜃 = k, and the discretization spatial step, ΔZ = h, is verified:

Δ𝜃 ≤ ΔZstab ∶= 1
1
ΔZ

+ 2
PeΔZ2 +

Da
2

. (24)

When working with Matlab to solve the obtained system of ODEs, the user can find several built-in variable-step
numerical methods, combinations of different Runge–Kutta, and other numerical routines for the ODEs resolution. If
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FIGURE 16 Representation of the concentration curves obtained for Pe = 0.1 and Da = 1 using MOL with the built-in Matlab
variable-step ode15s solver (N = 100) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 17 Representation of the concentration curves obtained for Pe = 0.01 and Da = 0.1 using MOL with the built-in Matlab
variable-step ode15s solver (N = 100) [Colour figure can be viewed at wileyonlinelibrary.com]

other fixed-step routines are used, the solutions are not always stable (Figure 15). This non-stable behavior is expected
taking into account Table 4, where Δ𝜃 applied in each simulation is compared to the quotient (24), using ΔZ = 0.01. For
all the combinations of Pe and Da values used in this paper, relation (24) is not fulfilled.

In order to get stable solutions, according to Equation (24), smaller discretization time-step values should be used, which
is not efficient when executing the implemented programs. For this reason, this paper has worked with Matlab built-in
variable-step ODE solvers, concretely, the ode15s solver. The values of the obtained concentration can be observed in
Figure 16 for the same Péclet and Damköhler values taken in Figure 15.

The solutions obtained with the variable-step ode15s solver are stable. Other ODEs solvers can be used in Matlab,
but the results are not considerably better. Other example of solutions found with MOL are seen in Figures 17–19 taking
N = 100.

4.4 Crank–Nicholson's method
This method applies discretization to both time and spatial derivatives, this being one of its main differences with the
MOL that only discretizes the spatial derivatives. With this discretization MOL leads to a system of ordinary differential
equations, while Crank–Nicholson solves a system of algebraic equations.

On the other hand, the Crank–Nicholson's method achieves greater stability than MOL since it is based on working
with the numerical approximation to the value of the solution of the convection–diffusion–reaction equation in a middle
node of the mesh of the type (Z, 𝜃 + k∕2); see Figure 20. It is an implicit method, which can lead to greater operational
complexity, but a stable method is obtained,26 for all k

h2 .27
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FIGURE 18 Representation of the concentration curves obtained for Pe = 10 and Da = 0.1 using MOL with the built-in Matlab
variable-step ode15s solver (N = 100) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 19 Representation of the concentration curves obtained for Pe = 10 and Da = 100 using MOL with the built-in Matlab
variable-step ode15s solver (N = 100) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 20 Grid of Crank–Nicholson's
method, 𝑗 = 1, … ,N + 1, n = 0, … ,M

For the time derivative, the second-order central difference scheme for the first derivative seen in (17) is directly applied,
using Δ𝜃 = k∕2:

𝜕CAn

𝜕𝜃
(Z, 𝜃 + k∕2) = CAn(Z, 𝜃 + k) − CAn(Z, 𝜃)

k
+ O(k2).
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While for the second-order spatial derivatives, the average of the central differences obtained for the expressions of
𝜕2CAn
𝜕Z2 (Z, 𝜃 + k) and 𝜕2CAn

𝜕Z2 (Z, 𝜃) is done, applying the formulas of (17). Analogously for the spatial derivatives of first order,
the mean value of the second-order central differences applied to 𝜕CAn

𝜕Z
(Z, 𝜃+k) and 𝜕CAn

𝜕Z
(Z, 𝜃) is again taken. The following

approximations or equations of the method are obtained28:

CAn =
Cn+1
𝑗

+ Cn
𝑗

2
+ O(k2),

𝜕CAn

𝜕Z
=

Cn+1
𝑗+1 − Cn+1

𝑗−1 + Cn
𝑗+1 − Cn

𝑗−1

4h
+ O(h2),

𝜕2CAn

𝜕Z2 =
Cn+1
𝑗+1 − 2Cn+1

𝑗
+ Cn+1

𝑗−1 + Cn
𝑗+1 − 2Cn

𝑗
+ Cn

𝑗−1

2h2 + O(h2).

Therefore, remembering that the dimensionless PDE that models the problem is

𝜕CAn

𝜕𝜃
= −𝜕CAn

𝜕Z
+ 1

Pe
𝜕2CAn

𝜕Z2 − DaCAn,

it is obtained for 𝑗 = 2, … ,N, n = 0, … ,M − 1:

Cn+1
𝑗

− Cn
𝑗

k
= −

(
Cn+1
𝑗+1 − Cn+1

𝑗−1 + Cn
𝑗+1 − Cn

𝑗−1

4h

)
+ 1

Pe

(
Cn+1
𝑗+1 − 2Cn+1

𝑗
+ Cn+1

𝑗−1 + Cn
𝑗+1 − 2Cn

𝑗
+ Cn

𝑗−1

2h2

)
− Da

(
Cn+1
𝑗

+ Cn
𝑗

2

)
.

To propose the matrices of the method, the values of iteration n+ 1 should be moved to the left-hand side of the equation
and the iteration n to the right-hand one. First, the equations that verify the internal nodes of the mesh are considered,
that is, 𝑗 = 2, … ,N:

Cn+1
𝑗+1

(
1

4h
− 1

2h2Pe

)
+Cn+1

𝑗

(
1
k
+ 1

h2Pe
+ Da

2

)
+ Cn+1

𝑗−1

(
−1
4h

− 1
2h2Pe

)
= Cn

𝑗+1

(
−1
4h

+ 1
2h2Pe

)
+ Cn

𝑗

(
1
k
− 1

h2Pe
− Da

2

)
+ Cn

𝑗−1

(
1

4h
+ 1

2h2Pe

)
,

(25)

noting that this matrix formulation gives rise to tridiagonal matrices.
For the study of the boundary conditions, we work with progressive differences in the case of Z = 0 and with regressive

differences in the case of Z = 1. Specifically we use non-centered differences with three points, (18).20 Given n = 0, … ,M:

𝜕CAn
𝜕Z

|||Z=0
= −3Cn

1+4Cn
2−Cn

3

2h

B.C.1
= −Pe + PeCn

1 ⇒ Cn
1 = 2hPe+4Cn

2−Cn
3

3+2hPe
,

𝜕CAn
𝜕Z

|||Z=1
= 3Cn

N+1−4Cn
N+Cn

N−1

2h

B.C.2
= 0 ⇒ Cn

N+1 = 4Cn
N−Cn

N−1
3

.

(26)

Replacing these values in the equations of the method for 𝑗 = 2,

Cn+1
2

[
1
k
+ 1 + hPe

h2Pe(3 + 2hPe)
+ Da

2

]
+ Cn+1

3

[
h2Pe2 − 2

2h2Pe(3 + 2hPe)

]
= Cn

2

[
1
k
− Da

2
− 1 + hPe

h2Pe(3 + 2hPe)

]
+ Cn

3

[
−h2Pe2 + 2

2h2Pe(3 + 2hPe)

]
+ 2 + hPe

h(3 + 2hPe)
,

and then for 𝑗 = N,

Cn+1
N−1

[−1
3h

− 1
3h2Pe

]
+ Cn+1

N

[ 1
3h

+ 1
k
+ 1

3h2Pe
+ Da

2

]
= Cn

N−1

[ 1
3h

+ 1
3h2Pe

]
+ Cn

N

[1
k
− Da

2
− 1

3h
− 1

3h2Pe

]
.
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TABLE 5 Values of k = 𝜃max
M

against 2
Da

for several
values of Péclet and Damköhler numbers and M = 99

Da
0.01 0.1 1 10 100

k 2
Da

k 2
Da

k 2
Da

k 2
Da

k 2
Da

Pe 0.01 0.08 200 0.07 20 0.04 2 0.01 0.2 0.001 0.02
0.1 0.08 200 0.07 20 0.04 2 0.01 0.2 0.001 0.02
1 0.08 200 0.07 20 0.04 2 0.01 0.2 0.001 0.02
10 0.05 200 0.04 20 0.03 2 0.01 0.2 0.0005 0.02

TABLE 6 Values of k = 𝜃max
M

against 2
Da

for several
values of Péclet and Damköhler numbers and
M = 495

Da
0.01 0.1 1 10 100

k 2
Da

k 2
Da

k 2
Da

k 2
Da

k 2
Da

Pe 0.01 0.016 200 0.014 20 0.008 2 0.002 0.2 0.0002 0.02
0.1 0.016 200 0.014 20 0.008 2 0.002 0.2 0.0002 0.02
1 0.016 200 0.014 20 0.008 2 0.002 0.2 0.0002 0.02
10 0.05 200 0.008 20 0.006 2 0.002 0.2 0.0001 0.02

It is possible to reformulate the numerical method by means of a system of equations for the internal grid. We have a
system whose matrix A ∈ N−1(R),B ∈ N−1(R) and whose expression is

ACn+1 = BCn + Un, n = 0, 1, … ,M − 1, (27)

being

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
k
+ 1+hPe

h2Pe(3+2hPe)
+ Da

2
h2Pe2−2

2h2Pe(3+2hPe)
0 … 0

−1
4h

− 1
2h2Pe

1
k
+ 1

h2Pe
+ Da

2
1

4h
− 1

2h2Pe
0 … 0

⋱ ⋱ ⋱
−1
4h

− 1
2h2Pe

1
k
+ 1

h2Pe
+ Da

2
1

4h
− 1

2h2Pe

0 … 0 −1
3h

− 1
3h2Pe

1
3h

+ 1
k
+ 1

3h2Pe
+ Da

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

with

Cn =
⎛⎜⎜⎜⎝

Cn
2
⋮
⋮

Cn
N

⎞⎟⎟⎟⎠ , Cn+1 =
⎛⎜⎜⎜⎝

Cn+1
2
⋮
⋮

Cn+1
N

⎞⎟⎟⎟⎠ , Un =
⎛⎜⎜⎜⎝

2+hPe
h(3+2hPe)

0
⋮
0

⎞⎟⎟⎟⎠ ,
and

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
k
− Da

2
− 1+hPe

h2Pe(3+2hPe)
−h2Pe2+2

2h2Pe(3+2hPe)
0 … 0

1
4h

+ 1
2h2Pe

1
k
− 1

h2Pe
− Da

2
−1
4h

+ 1
2h2Pe

0 … 0
⋱ ⋱ ⋱

1
4h

+ 1
2h2Pe

1
k
− 1

h2Pe
− Da

2
−1
4h

+ 1
2h2Pe

0 … 0 1
3h

+ 1
3h2Pe

1
k
− Da

2
− 1

3h
− 1

3h2Pe

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that the initial condition of the problem (2) ensures that CAn(Z, 0) = CA0
CAe

= C0
𝑗
, ∀𝑗 = 1, … ,N + 1. It is suffices

consider a spatial step h <

√
2

Pe
, which is easily achievable for the Pe and Da values and for the partition spatial here

considered; and a temporal step k <
2

Da
, which, as you will see in Tables 5 and 6, is always verified in this work. Taking into

account all these assumptions, the matrix A is a strictly diagonally dominant, and so it is invertible assuring the existence
of unique solution of the algebraic system.
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FIGURE 21 Representation of the concentration curves obtained for Pe = 0.01 and Da = 0.1 using Crank–Nicholson's method with
N = 100,M = 99 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 22 Representation of the concentration curves obtained for Pe = 10 and Da = 0.1 using Crank–Nicholson's method with
N = 100,M = 99 [Colour figure can be viewed at wileyonlinelibrary.com]

When the system solution has already been obtained by a direct method, the values of Cn
1 and Cn

N+1, n = 0, … ,M
are calculated taking into account the expressions given in (26). Numerical results for N = 100,M = 99 can be seen in
Figures 21–23 for the same values of Péclet and Damköhler numbers illustrated in the previous methods.
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It can be observed, for example, in Figure 22, that in the first nodes, Crank–Nicholson's method presents worse results
than MOL, Figure 18. However, this disadvantage is overcame taking a finer temporary partition in Crank–Nicholson's
method, for example ,M = 495. That is, only it is necessary to increase the number of iterations. An example of this
improvement is illustrated in Figure 24.

Although in some cases it is not necessary to make M = 495 iterations in Crank–Nicholson's method, as is illustrated
in Figures 21 and 23, Table 7 indicates for which values of Pe and Da is more suitable to take into account M = 495. It
can be seen that considering Da = 10n, if n < 1, the oscillations increase for bigger values of Pe; conversely, taking n ≥ 1
these oscillations in the first spatial nodes decrease as Pe increases. So throughout this paper, all the Crank–Nicholson
solutions have been calculated with M = 495.

4.4.1 Stability and convergence of the Crank–Nicholson's method for the
convection–diffusion–reaction equation with Danckwerts conditions
The consistency of the Crank–Nicholson's method applied to the convection–diffusion equation can be seen in Zuazua24

and Carranza.29 In the case studied here, a reaction term has been added to the PDE. It can be verified that this does not
influence the time consistency of the method. Therefore, by the Lax theorem, it would suffice to study the stability of the
Crank–Nicholson's method for the problem equation (2). In the Crank–Nicholson's method, it is discretized both in time
and space; then, this condition must necessarily be verified.

If the technique of the spectral radius were analytically used for the study of stability,25 eigenvalues of complicated
calculations would be obtained for large values of N. However, a study for the different values of Pe and Da here taken
are performed. The matrix of method (27) is A−1B, so the following table is obtained for all these values.

Table 8 shows that the matrix of Crank–Nicholson's method for the values of Pe and Da here considered has, in general,
all the eigenvalues strictly less than the unit, although very close to that value. Even so, it can be concluded from this
that the Crank–Nicholson's method with Danckwerts conditions is stable for the problem (2) since the spectral radius of
the matrix of the method 𝜌(A−1B) < 1. These values so close to one make us think of taking concrete temporal steps and
spatial steps. When the heat equation is studied, it is customary to take Δ𝜃 = Pe(ΔZ)2.24 It is a future line of research
not taken into account here since the main purpose in this paper is trying to study the methods under the same spacing
conditions in the mesh.

FIGURE 23 Representation of the concentration curves obtained for Pe = 10 and Da = 100 using Crank–Nicholson's method with
N = 100,M = 99 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 24 Representation of the concentration curves obtained for Pe = 10 and Da = 0.1 using Crank–Nicholson's method with N = 100
and M = 495 [Colour figure can be viewed at wileyonlinelibrary.com]

Noteworthy, that another way to demonstrate the stability of the method of the previous problem would be using the
Von Neumann method, see (22). We start, as it is already known, with the calculation of the analytic periodic solution
expressed as

Cn
𝑗
= TneiP𝑗h,

where P is the period of the solution.
Replacing this in the equation of the method seen in (25), internal grid, the modulus of the amplification quotient Tn+1

Tn

is given by

||||Tn+1

Tn

||||2
=

[
1 − kDa

2
− k

h2Pe
+ k

h2Pe
cos(Ph)

]2
+ k

4h2 sin2(Ph)[
1 + k

h2Pe
− k

h2Pe
cos(Ph) + kDa

2

]2
+ k

4h2 sin2(Ph)
.

Calling 𝛼 = k
h2Pe

,

||||Tn+1

Tn

||||2
=

[
1 − kDa

2
− 𝛼(1 − cos(Ph))

]2
+ 𝛼Pe

4
sin2(Ph)[

1 + kDa
2

+ 𝛼(1 − cos(Ph))
]2

+ 𝛼Pe
4

sin2(Ph)
. (28)

To demonstrate that the condition of the Von Neumann's method is satisfied, (22), it is enough to observe that it is
always true

2𝛼(1 − cos(Ph)) ≥ 0.

Firstly, if 1−cos(Ph) = 0 is obvious to check that sin(Ph) = 0 and so, |||Tn+1

Tn
||| < 1 since kDa > 0. Due to this fact, from now on,

let 2𝛼(1−cos(Ph)) > 0. Taking into account the product 2[kDa+2𝛼(1−cos(Ph))]where each one of the factors corresponds
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TABLE 7 Number of iterations M in Crank–Nicholson's method

0.01 0.1 1 10 100
0.01 99 99 99 495 495
0.1 495 495 495 495 495
1 495 495 495 495 99
10 495 495 495 495 99

TABLE 8 Minimum and maximum,
respectively, of the eigenvalues of A−1B in
Crank–Nicholson's method 0.01 0.1 1 10 100

0.01 [−0.99, 0.98] [−0.99, 0.98] [−0.99, 0.98] [−0.99, 0.97] [−0.99, 0.98]
0.1 [−0.99, 0.98] [−0.99, 0.98] [−0.99, 0.98] [−0.99, 0.97] [−0.95, 9.80]
1 [−0.99, 0.98] [−0.99, 0.98] [−0.98, 0.98] [−0.95, 0.97] [−0.60, 0.97]
10 [−0.90, 0.97] [−0.88, 0.97] [−0.84, 0.97] [−0.60, 0.97] [0.65, 0.99]

TABLE 9 Rate of convergence of CN method with Danckwerts conditions for
Da = 0.01

0.01 0.1 1 10
𝜃1 0.9999 0.9993 0.9928 0.9307
𝜃25 1.0336 1.1080 1.3116 1.8906
𝜃50 1.0480 1.1547 1.3889 1.9640
𝜃75 1.0588 1.1883 1.4349 1.9282
𝜃100 1.0683 1.2158 1.4755 1.9105

to the sum and the difference, respectively, of the terms which appear squared in the amplification quotient (28)

0 < 2
[
kDa + 2𝛼(1 − cos(Ph))

]
=

[
1 +

(
kDa

2
+ 𝛼(1 − cos(Ph))

)]2

−
[

1 −
(

kDa
2

+ 𝛼(1 − cos(Ph))
)]2

=
[

1 +
(

kDa
2

+ 𝛼(1 − cos(Ph))
)]2

+ 𝛼Pe
4

sin2(Ph) −
[

1 −
(

kDa
2

+ 𝛼(1 − cos(Ph))
)]2

− 𝛼Pe
4

sin2(Ph)

=
[

1 +
(

kDa
2

+ 𝛼(1 − cos(Ph))
)]2

+ 𝛼Pe
4

sin2(Ph) −

[[
1 −

(
kDa

2
+ 𝛼(1 − cos(Ph))

)]2

+ 𝛼Pe
4

sin2(Ph)

]

or equivalently,

[
1 +

(
kDa

2
+ 𝛼(1 − cos(Ph))

)]2

+ 𝛼Pe
4

sin2(Ph) >
[

1 −
(

kDa
2

+ 𝛼(1 − cos(Ph))
)]2

+ 𝛼Pe
4

sin2(Ph).

This fact leads to conclude that ||||Tn+1

Tn

||||2
< 1 ⇐⇒

||||Tn+1

Tn

|||| < 1.

Analogously, the process can be developed for the equations of the boundary nodes, (26).
With one of these proofs the stability is demonstrated, which together with the consistency gives the convergence of

the method using Lax theorem.
Besides convergence, other important concept when a numerical method is worked is the rate of convergence. The rate

of convergence of Crank–Nicholson's method with Danckwerts conditions has been studied using the definition seen in
Jeong et al.30 Firstly, let be denoted by Cn

i,ΔZh
≈ C(Zi, 𝜃n) with ΔZh ∶= (ΔZ)h = 1∕h. Taking into account this notation, let

be define the error in the hth iteration by

𝜀n
i,h = |||Cn

i,(ΔZ)h
− Cn

i,(ΔZ)h−1

||| ,
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0.01 0.1 1 10
𝜃1 0.9999 0.9993 0.9928 0.9307
𝜃25 1.0469 1.1521 1.3886 1.9412
𝜃50 1.0664 1.2111 1.4740 1.9166
𝜃75 1.0837 1.2567 1.5831 1.9229
𝜃100 1.0955 1.2836 1.7208 1.9223

TABLE 10 Rate of convergence of CN method with Danckwerts conditions for
Da = 1

0.01 0.1 1 10
𝜃1 0.9999 0.9993 0.9928 0.9307
𝜃25 1.3013 1.8904 1.9544 1.8915
𝜃50 1.3681 1.9800 1.9541 1.8859
𝜃75 1.4872 1.9829 1.9541 1.8846
𝜃100 1.5424 1.9836 1.9541 1.8843

TABLE 11 Rate of convergence of CN method with Danckwerts conditions for
Da = 100

FIGURE 25 Different representations of the concentration CAn with Pe = 10 and Da = 0.01 using the three methods for the resolution
[Colour figure can be viewed at wileyonlinelibrary.com]

and so, the vector 𝜀N𝜃

NZ
= (𝜀N𝜃

1 , 𝜀
N𝜃

2 … , 𝜀
N𝜃

NZ
) is obtained; let

||𝜀N𝜃

NZ
||2 ∶=

√√√√√√√
NZ∑
i=1

(𝜀N𝜃

i,h )
2

NZ
.

All the possible cases of values of Pe and Da have been studied, but only any results are shown in Tables 9–11, considering
M = 495,990 and the N = 100,200, 400:

The previous tables shown that the CN method for the problem (2) has a rate of convergence of order two, approximately,
in a wide variety of cases but there are some values of Pe and Da for which linear convergence radius is obtained. Besides,
it can be seen that the radius of convergence increases when Da increases, generally unless Da = 100 and Pe = 10.
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FIGURE 26 Different representations of the concentration CAn with Pe = 10 and Da = 0.1 using the three methods for the resolution
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 27 Different representations of the concentration CAn with Pe = 10 and Da = 1 using the three methods for the resolution
[Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 12 Maximum error, 𝜀max , between analytical and MOL matrix solutions with N = 100 and its
associated position

0.01 0.1 1 10 100
0.01 1.00 · 10−4 [0, 1] 1.00 · 10−4 [0, 1] 1.00 · 10−4 [0, 1] 2.68 · 10−2 [0, 1] 1.80 · 10−2 [48, 1]
0.1 6.00 · 10−4 [0, 1] 6.00 · 10−4 [0, 1] 6.00 · 10−4 [0, 1] 4.60 · 10−4 [0, 1] 4.60 · 10−4 [0, 1]
1 6.30 · 10−3 [0, 1] 6.30 · 10−3 [0, 1] 6.30 · 10−3 [0, 1] 6.30 · 10−3 [0, 1] 6.30 · 10−3 [0, 1]
10 6.14 · 10−2 [0, 1] 6.14 · 10−2 [0, 1] 6.14 · 10−2 [0, 1] 6.14 · 10−2 [0, 1] 6.14 · 10−2 [0, 1]

5 COMPARATIVE STUDY

In this section, we present a comparison among the different solutions found by the three methods studied here. The anal-
ysis has been done in a mathematical and a graphical way. First of all, the graphics obtained with each one of the applied
methods have been represented in the same axis, as an example for Pe = 10 and Da ∈ {0.01, 0.1, 1}, in Figures 25–27.
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TABLE 13 Maximum error, 𝜀max , between analytical and Crank–Nicholson matrix solutions with
N = 100, M = 495 and its associated position

0.01 0.1 1 10 100
0.01 1.63 · 10−3 [1, 1] 1.52 · 10−3 [1, 1] 1.07 · 10−3 [1, 1] 2.70 · 10−2 [4, 1] 1.82 · 10−2 [44, 1]
0.1 4.44 · 10−3 [1, 1] 4.12 · 10−3 [1, 1] 3.04 · 10−3 [1, 1] 1.28 · 10−3 [1, 1] 5.99 · 10−4 [0, 1]
1 1.09 · 10−2 [1, 1] 9.92 · 10−3 [1, 1] 6.55 · 10−3 [1, 1] 6.28 · 10−3 [0, 1] 6.28 · 10−3 [0, 1]
10 6.14 · 10−2 [0, 1] 6.14 · 10−2 [0, 1] 6.14 · 10−2 [0, 1] 6.14 · 10−2 [0, 1] 6.14 · 10−2 [0, 1]

TABLE 14 Maximum error, 𝜀max , between analytical and MOL matrix solutions with N = 200 and its
associated position

0.01 0.1 1 10 100
0.01 2.32 · 10−5 [0, 1] 2.32 · 10−5 [0, 1] 2.32 · 10−5 [0, 1] 2.68 · 10−5 [5, 1] 1.82 · 10−5 [48, 1]
0.1 2.66 · 10−4 [0, 1] 2.66 · 10−4 [0, 1] 2.66 · 10−4 [0, 1] 2.66 · 10−4 [0, 1] 2.66 · 10−4 [0, 1]
1 2.98 · 10−3 [0, 1] 2.98 · 10−3 [0, 1] 2.98 · 10−3 [0, 1] 2.98 · 10−3 [0, 1] 2.98 · 10−3 [0, 1]
10 3.11 · 10−2 [0, 1] 3.11 · 10−2 [0, 1] 3.11 · 10−2 [0, 1] 3.11 · 10−2 [0, 1] 3.11 · 10−2 [0, 1]

TABLE 15 Maximum error, 𝜀max , between analytical and Crank–Nicholson matrix solutions with
N = 200, M = 495 and its associated position

0.01 0.1 1 10 100
0.01 1.67 · 10−3 [1, 1] 1.55 · 10−3 [1, 1] 1.10 · 10−3 [4, 1] 2.70 · 10−2 [4, 1] 1.82 · 10−2 [42, 1]
0.1 4.73 · 10−3 [1, 1] 4.41 · 10−3 [1, 1] 3.32 · 10−3 [1, 1] 1.53 · 10−3 [1, 1] 3.32 · 10−4 [1, 1]
1 1.33 · 10−2 [1, 1] 1.23 · 10−2 [1, 1] 8.69 · 10−3 [1, 1] 3.30 · 10−3 [1, 1] 2.98 · 10−3 [0, 1]
10 3.11 · 10−2 [0, 1] 3.11 · 10−2 [0, 1] 3.11 · 10−2 [0, 1] 3.11 · 10−2 [0, 1] 3.11 · 10−2 [0, 1]

Graphically, there exists a similar behavior among the three employed methods not only for the Pe and Da values used
for the simulation in these figures, but for all the Pe and Da values used in this paper. Nevertheless, it is more accurate to
compare the three methods in a mathematical way.

Two kind of mathematical errors have been calculated, comparing analytical and numerical solution. Firstly, the max-
imum error, 𝜀max, between the analytical solution and each one of the numerical method employed has been found and
also the time and spatial position where this error is reached; and secondly, the least-square error, 𝜀leastsq, is found. The
main purpose of these measures is to find the adequate number of spatial slices, N, for achieving a good approxima-
tion between the dimensionless concentration matrix obtained by analytical or numerical methods. And, furthermore, to
conclude which of the numerical solution is closer to the analytical one.

The first error is measured by calculating the maximum difference, in absolute value, between the dimensionless
concentration matrix of the analytical solution, Aanal𝑦tical, and the dimensionless concentration matrix of the numerical
associated method, Amethod. Remember that Aanal𝑦tical is defined in (15) with the suitable number of terms in the Fourier
development seen in Table 3. The size of both matrices is 100 × 101 in this paper.

𝜀max = max(max
(||Aanal𝑦tical − Amethod||)). (29)

Results can be seen in Tables 12 and 13. In these tables, when the 𝜀max is obtained, the position of the matrix element
where this error occurs is indicated. The first index is the time node, n, and the second one is the spatial node, 𝑗, in the
grid of the numerical methods.

It can be detected in general terms, in Tables 12 and 13, that at the initial time (𝜃 = 0) and the reactor inlet (Z = 0) is
where the maximum value of 𝜀max is achieved in both methods. On the other hand, Crank–Nicholson's method produces
greater errors than MOL. For Da ≤ 1, 𝜀max increases as Pe increases. Nevertheless, for Da ≥ 10, 𝜀max shows a minimum as
Pe increases, independently of the numerical method used for calculating the dimensionless concentration. The following
step is to increase the number of slices in the spatial domain, N, for trying to reduce 𝜀max.
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TABLE 16 Maximum error, 𝜀max , between analytical and Crank–Nicholson matrix solutions with
N = 500, M = 495 and its associated position

0.01 0.1 1 10 100
0.01 1.69 · 10−3 [1, 1] 1.57 · 10−3 [1, 1] 1.12 · 10−3 [1, 1] 2.70 · 10−2 [4, 1] 1.82 · 10−2 [40, 1]
0.1 4.92 · 10−3 [1, 1] 4.60 · 10−3 [1, 1] 3.51 · 10−3 [1, 1] 1.70 · 10−3 [1, 1] 4.61 · 10−4 [1, 1]
1 1.51 · 10−2 [1, 1] 1.40 · 10−2 [1, 1] 1.03 · 10−2 [1, 1] 4.61 · 10−3 [1, 1] 9.94 · 10−4 [0, 1]
10 2.94 · 10−2 [1, 1] 2.53 · 10−2 [1, 1] 2.07 · 10−2 [1, 1] 1.20 · 10−2 [0, 1] 1.20 · 10−2 [0, 1]

TABLE 17 Least-square error, 𝜀leastsq, between
analytical and MOL matrix solutions with N = 100

0.01 0.1 1 10 100
0.01 3.22 · 10−13 3.22 · 10−13 3.32 · 10−13 1.22 · 10−4 3.96 · 10−5

0.1 3.59 · 10−11 3.59 · 10−11 3.72 · 10−11 4.63 · 10−11 5.88 · 10−11

1 3.93 · 10−9 3.93 · 10−9 4.00 · 10−9 4.77 · 10−9 9.37 · 10−9

10 3.76 · 10−7 3.76 · 10−7 3.77 · 10−7 4.03 · 10−7 1.24 · 10−6

TABLE 18 Least-square error, 𝜀leastsq, between
analytical and Crank–Nicholson matrix solutions
with N = 100, M = 495 0.01 0.1 1 10 100

0.01 6.26 · 10−9 5.05 · 10−9 2.07 · 10−9 1.22 · 10−4 3.96 · 10−5

0.1 1.89 · 10−8 1.54 · 10−8 6.52 · 10−9 7.29 · 10−10 6.76 · 10−11

1 5.07 · 10−8 4.09 · 10−8 1.74 · 10−8 5.59 · 10−9 9.40 · 10−9

10 3.86 · 10−7 3.81 · 10−7 3.78 · 10−7 4.03 · 10−7 1.24 · 10−6

TABLE 19 Least-square error, 𝜀leastsq, between
analytical and MOL matrix solutions with N = 200

0.01 0.1 1 10 100
0.01 5.40 · 10−14 5.39 · 10−14 5.40 · 10−14 1.22 · 10−4 3.96 · 10−5

0.1 7.01 · 10−12 7.01 · 10−12 7.09 · 10−12 7.66 · 10−12 8.47 · 10−12

1 8.83 · 10−12 8.83 · 10−10 8.88 · 10−10 9.36 · 10−10 1.24 · 10−9

10 9.61 · 10−8 9.62 · 10−8 9.62 · 10−8 9.79 · 10−8 1.59 · 10−7

If Tables 14 and 15 are compared, it can be seen that MOL always generates dimensionless concentrations closer to the
analytical ones than Crank–Nicholson for the studied values of Péclet and Damköhler. And the highest 𝜀max remains at
the initial time and reactor inlet for both numerical methods. Furthermore, if we compare these tables with Tables 12
and 13, it can be clearly seen that for N = 200, 𝜀max increases with Pe using MOL, for all the Da values studied. However,
this fact is not as clear as Crank–Nicholson where the relation of 𝜀max with Pe and Da values does not change when N
increases from 100 to 200. Table 16 shows that, for the Crank–Nicholson's method, 𝜀max is not reduced to significant levels
even taking N = 500; therefore, these new calculations for these great values of N will not be considered.

It is interesting to remark that 𝜀max only shows the point where the difference between analytical and numerical solu-
tions is the greatest, but it can be an isolated point. For avoiding this fact, the least-square error, 𝜀leastsq, is calculated
according to (30). This error takes into account all the points in the dimensionless matrix concentration calculated by
analytical and numerical methods, instead of only the most unfavorable point.

𝜀leastsq =
∑

𝑗,n
[
Aanal𝑦tical( 𝑗,n) − Amethod( 𝑗,n)

]2

101 × 100
. (30)

If the least-square approximation is used for calculating an error between the numerical and analytical solution,
Tables 17 and 18 are obtained.

From Tables 17 and 18, a similar behavior is deduced between 𝜀max and 𝜀leastsq with N = 100. So Crank–Nicholson's
method generates greater errors than MOL. Also, for Da <= 1, 𝜀leastsq increases with Pe and for Da >= 10, it shows a
minimum as Pe increases, regardless of the numerical method used. If the number of spatial slices increases to N = 200,
Tables 19 and 20 are obtained.
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0.01 0.1 1 10 100
0.01 6.37 · 10−9 5.15 · 10−9 2.14 · 10−9 1.22 · 10−4 3.96 · 10−5

0.1 2.09 · 10−8 1.72 · 10−8 7.63 · 10−9 9.59 · 10−10 2.95 · 10−11

1 6.88 · 10−8 5.60 · 10−8 2.34 · 10−8 3.03 · 10−9 1.26 · 10−9

10 1.51 · 10−7 1.31 · 10−7 1.14 · 10−7 9.92 · 10−8 1.59 · 10−7

TABLE 20 Least-square error, 𝜀leastsq, between
analytical and Crank–Nicholson matrix solutions
with N = 200, M = 495

0.01 0.1 1 10 100
0.01 6.45 · 10−9 5.22 · 10−9 2.19 · 10−9 1.22 · 10−4 3.96 · 10−5

0.1 2.28 · 10−8 1.89 · 10−8 8.72 · 10−9 1.29 · 10−9 4.67 · 10−11

1 9.50 · 10−8 7.88 · 10−8 3.57 · 10−8 4.74 · 10−9 2.78 · 10−10

10 1.76 · 10−7 1.28 · 10−7 8.73 · 10−8 3.08 · 10−8 2.74 · 10−8

TABLE 21 Least-square error, 𝜀leastsq, between
analytical and Crank–Nicholson matrix solutions with
N = 400, M = 495

0.01 0.1 1 10 100
0.01 6.75 · 10−9 1.93 · 10−8 1.30 · 10−7 1.22 · 10−4 3.96 · 10−5

0.1 2.35 · 10−8 3.32 · 10−8 1.38 · 10−7 2.13 · 10−8 3.86 · 10−10

1 1.04 · 10−7 9.96 · 10−8 1.85 · 10−7 3.41 · 10−8 1.30 · 10−9

10 2.10 · 10−7 1.61 · 10−7 3.17 · 10−7 9.62 · 10−8 2.00 · 10−8

TABLE 22 Least-square error, 𝜀leastsq, between
analytical and Crank–Nicholson matrix solutions with
N = 500, M = 495

Lower values for the 𝜀leastsq are clearly obtained for MOL when N increases from 100 to 200. Nevertheless, this effect
is not shown for Crank–Nicholson's method, where the 𝜀leastsq even increases in some cases when N raises to 200. Using
higher values for N as 400, Table 21, or 500, Table 22, in Crank–Nicholson's method does not reduce 𝜀leastsq in comparison
with N = 100, but increases the computation time.

So it is enough to apply MOL with N = 100 in the spatial domain, while Crank–Nicholson's method with the same
number of slices gives worse approximations. In view of these numerical results, the authors have been taken N = 100 for
MOL, and even if the value of N is increased, there is no significant improvement in the results of the least-square error,
N = 100 and M = 495 for the Crank–Nicholson's method.

All of this leads us to conclude that, in general, for the convection–diffusion–reaction equation with Danckwerts bound-
ary conditions, MOL approximates better than Crank–Nicholson to the analytical solution with the particular values here
exposed, CAe = 1mol/m3

, CA0 = 0mol/m3.

6 CONCLUSIONS

The convection–diffusion–reaction PDE with Danckwerts boundary conditions applied in a tubular reactor has been
solved using three different techniques: one analytical solution and two numerical methods. The numerical approxi-
mations employed are based on different strategies, because MOL discretizes the dimensionless PDE only in the spatial
domain, generating an ODE system, while Crank–Nicholson's method discretizes the PDE in both spatial and time
domains, resulting an algebraic equations system.

When the analytical technique is taken, Fourier expansion appears after transforming the PDE into a heat equation with
non-homogeneous boundary conditions, through the application of two changes of variables, and solving by separation
of variables. The number of terms to consider in this developments is important in order to control the solution precision
(i.e., below 10−4), and it depends on the values of Péclet number in a direct correlation way. The other dimensional-less
parameter, Damköhler number, does not have a relevant transcendence, as it has been demonstrated in the paper.

Stability of both numerical methods has been studied in this work. Stability of MOL depends on the relationship
between discretization time and spatial steps. Although the steps applied in this paper do not meet the stability criterion
for fixed-step ODE solvers, the stability is assured using a variable-step solver (ode15s) regardless the values of Pe and
Da used in the simulations with MOL. On the other hand, in this paper, the stability of Crank–Nicholson's method has
been demonstrated for all the conditions studied. Nevertheless, some oscillations appear with Crank–Nicholson's method,
depending on the values of Pe and Da applied. These oscillations are eliminated simply increasing the number of slices
used in the time domain discretization.
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The graphical comparison between the analytical dimensionless concentrations and those calculated by both numerical
methods shows a good approximation, and it is very difficult to distinguish them with the naked eye. So a mathematical
comparison has been established by means of two errors: 𝜀max and 𝜀leastsq. On one hand, 𝜀max shows the maximum dif-
ference between analytical and numerical solutions for MOL and Crank–Nicholson and the point of the time and spatial
grid where this maximum occurs. On the other hand, 𝜀leastsq compares analytical and numerical solutions considering all
the points along the time and space domains.

The maximum value of 𝜀max is detected, in general, at the initial time and reactor inlet for both numerical methods,
although Crank–Nicholson's method produces greater errors than MOL, regardless of the number of slices used in the spa-
tial domain, N. When 𝜀leastsq is used, it can be checked that Crank–Nicholson's method also generates greater errors than
MOL. Moreover, increasing N reduces clearly this error for MOL, but this behavior is not detected with Crank–Nicholson's
method.

It can be concluded that MOL approximates better to the analytical solution than Crank–Nicholson for the
convection–diffusion–reaction equation with Danckwerts boundary conditions, using a lower number of slices in the
spatial domain and reducing the computational effort needed.

All the routines here used have implemented with Matlab R2020b. In CPU: Processor: Intel (R) Core (TM) i7-6700 K
CPU @ 4.00 GHz. Memory (RAM) 16.0 GB. 64-bit operating system, x64 processor. The average time elapsed in the
execution of the programs has been:

• MOL program: 0.3 s
• Crank–Nicholson's method: 0.4 (using Gaussian algorithm for solving the algebraic linear system) or 0.03 s (using

Thomas algorithm)
• Analytical solution: 30 min for 200 terms, 90 min for 300 terms, 2 h for 600 terms, and 7 h for 1800 terms
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NOMENCLATURE
AN matrix of analytical concentrations
CA(z, t) concentration of A (mol/m3)
CA0 initial concentration of component A (mol/m3)
CAe concentration of component A at the reactor inlet (mol/m3)
CAn(Z, 𝜃) normalized concentration, CAn(Z, 𝜃) =

CA(z,t)
CAe

C𝑗 C𝑗 = CAn(Z𝑗 , 𝜃)
Cn
𝑗

Cn
𝑗
= CAn(Z𝑗 , 𝜃n)

Da Damköhler number, Da = kAL
vz

DA diffusion coefficient of component A (m2∕s)
h spatial step
𝑗 spatial subindex, 𝑗 = 1, … ,N + 1
k time step
kA kinetic rate constant (s−1)
L reactor length (m)
M number of slices in time grid
n time superindex, n = 0, … ,M
N number of slices in spatial grid or number of terms to consider in Fourier expansions
Pe Péclet number, Pe = vzL

DA

r r = Pe
2

s s = Pe
4
+ Da

t time variable (s), t∈ [0,+∞)
Tn eigenfunctions of analytical solution in time domain
TOL tolerance considered for the number of terms in the Fourier expansions, TOL = max(max(|AN+100 −AN |))

2162



AGUD ALBESA ET AL.

vz fluid velocity in the z spatial direction (m/s)
Xn eigenfunctions of analytical solution in spatial domain
z spatial variable (m), z ∈ [0,L]
Z dimensionless spatial variable, Z ∈ [0, 1]
𝜆n eigenvalues of analytical solution
𝜃 dimensionless time variable, 𝜃 ∈ [0,+∞)
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