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Abstract

Modern transport systems are not only large-scale but also highly dynamic, which makes it difficult to optimize
by just employing classical methods. This paper analyzes a realistic and novel problem within the Physical Inter-
net initiative which consists of container transportation throughout a spoke-hub network. Containers need to be
transported from their origin locations to their final destinations on or before a given deadline, and they can be
temporarily stored in network hubs. Each truck can move one container at a time from one hub to another, con-
tainers can be transported by different trucks during their path from their origin to their destination, and drivers
need to be back at their starting points in due time. A deterministic heuristic, based on discrete-event simulation,
is proposed as a first step to address the intrinsic dynamism of this time-evolving system. Then, in a second step,
a biased-randomized version of this heuristic is incorporated into a multi-start framework (BR-MS) to generate
better solutions. Next, our methodology is extended to a iterated local search (ILS) framework. Finally, a two-stage
algorithm, combining both the BR-MS and the ILS frameworks is proposed. Several computational experiments
have been carried out on a set of new benchmark instances, adapted from real road networks, to illustrate the
problem and compare the performance of the different solving approaches.

Keywords: heuristics; Biased-randomized heuristics; discrete-event heuristics; large-scale transport networks; dynamic transport
systems

1. Introduction

For the last few decades, economic growth and expansion of population have triggered greater demand
for road transport. In this environment, companies have to be able to quickly respond to customer needs,
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and thus continuously strive for their supply chain improvement. Hence, logistics and transport systems
have become not only global (large-scale) but also increasingly dynamic. However, some forecasting
sources claim that this growth has not yet reached its peak. Therefore, for the next decades a drastic
increment in road transport is to be expected. In this regard, the weight of shipments moved by road
in the United States is anticipated to increase by 26% in 2040 (Chambers et al., 2015). In China, the
population of trucks might rise by 21%, up to 14.47 millions in 2030 (Chen and Wang, 2016).

This excessive growth in such a short period of time has contributed to the greenhouse effect, with a
sharp increment of energy consumption and pollution, aside from the social impact. For instance, there
is a high demand for truck drivers, yet their working hours keep them away from home for long peri-
ods of time, which impacts their social life and health. Also, goods often travel unnecessary distances,
which can be avoided by linking them smartly and developing interconnected distribution networks.
Meanwhile, city logistics activities create significant traffic, noise, and pollution in the community. In
order to reduce the aforementioned impact, new innovative logistics approaches are requested. These
approaches need to consider both social and environmental aspects. The social dimension is related to
compliance with labor regulations, for which the literature offers several approaches. For networks with
long-distance transport, the transport costs are determined considering team drivers (Goel, 2018; Wolfin-
ger et al., 2019; Goel et al., 2020). These rotating shifts allow drivers to take mandatory breaks to rest.
A second approach is based on a collaborative network, in which drivers are organized by zones, so they
can return to their homes at the end of the day (Neves-Moreira et al., 2016).

The integration of sustainability principles in distribution models is also approached from different
perspectives. For instance, authors like Neves-Moreira et al. (2016) and Wolfinger and Salazar-González
(2021) defend the convenience of using transshipment locations to support a more sustainable distribu-
tion system. The transshipment location-allocation problem consists in designing a transport network in
which transshipment facilities are located for cargo exchange (e.g., in the form of inter-modal hubs) and
to allocate cargo flows through them. In this way, it is allowed to transport the loads from various origins
and destinations, in order to satisfy supply limitations, labor restrictions, and demand requirements.

As part of a new logistics paradigm, Montreuil (2011) has developed the Physical Internet (PI) ini-
tiative, which shifts towards a more efficient and sustainable global logistics systems: one based on
spoke-hub networks and horizontal cooperation among carriers (Serrano-Hernández et al., 2017). More-
over, modern supply chains require greater traceability and transparency. To deal with this issue, Kopetz
(2011) presents the concept ‘Internet of Things’ (IoT), which can be used for connecting physical objects
through the World Wide Web. This facilitates the communication between transport systems and their
users, thus enabling managers to make informed decisions as the system evolves.

While this approach might speed up deliveries and facilitates short-haul truck driving –which increases
the social dimension by allowing drivers to return their homes at the end of each working day–, it is im-
portant to consider several trade-offs. Sarraj et al. (2014) compares the current performance of the France
road network with the PI-enabled distribution, introducing hubs and implementing multi-modal trans-
portation in order to reduceCO2 emissions. According to their results, the PI concept could substantially
improve logistics efficiency and sustainability, e.g., reducing carbon footprint by 60% without jeopar-
dizing operational costs or accommodating lead times. In the same line, Fazili et al. (2017) confirms
that, in comparison with conventional methods, the PI distribution approach reduces driving distance,
gas emissions, social burden of traffic, and verifies that the number of drivers who return home on the
same day stays comparatively high despite traffic intensity.



In this context, this paper proposes a distribution approach in which a network of hubs allows con-
tainers to be moved from their origins to their destinations by a series of cooperative drivers from a
collaborative network perspective (i.e., the hub can be the furthest destination for a driver, if that is a la-
bor regulation requirement). Each driver is responsible for moving one container at a time, from one hub
to another in the network, until the container reaches its final destination. No predefined paths are given
in advance (thus making the routing design become more complex). By doing this, part of the externali-
ties of the transport activity are expected to be palliated, and the sustainable goals achieved: drivers may
return home everyday, and the pollutants can be minimized by reaching containers’ destinations faster
and by reducing the number of empty backhauls.

In such a scenario, and with the main goal of minimizing the total time required to move all containers
from their origins to their destinations (while considering social and environmental aspects), several
decisions need to be made: (i) which container needs to be moved next?; (ii) which path must follow
the selected container?; (iii) which driver is responsible for moving it to the next hub in the network?;
and (iv) how to deal with the synchronization issues that may arise in this type of dynamic transport
systems?. In order to solve this ‘dynamic’ optimization problem, a novel four-step procedure has been
designed:

• First, a fast and simple greedy heuristic is proposed. Similar to the work developed by Fikar et al.
(2016), this heuristic is based on discrete-event simulation (DES) concepts: every decision made
triggers an event that will modify the state of the system, thus changing future decisions. Like any
other deterministic heuristic, the same series of decisions are made for a given instance and, as a
consequence, the final solution provided by the greedy heuristic is unique. In particular, the heuristic
selects the ‘best-next’ decision at every step: the most ‘urgent’ container is selected, the shortest path
is chosen, and the closest driver is assigned to move it.
• Secondly, the previous DES-based heuristic is extended into a probabilistic algorithm by incorpo-

rating biased-randomization (BR) techniques (Ferone et al., 2019). These techniques make use of
skewed probability distributions to introduce some non-uniform randomness into the heuristic con-
structive process. This way, the deterministic heuristic is transformed into a probabilistic procedure
that can be encapsulated into a multi-start (MS) framework (Martı́ et al., 2013) to generate multiple
solutions. Each of these solutions is constructed according to a probabilistic version of the criteria
used by the deterministic heuristic. BR techniques have been successfully employed to solve differ-
ent combinatorial optimization problems in multiple application fields: vehicle routing (Dominguez
et al., 2014; Quintero-Araujo et al., 2017), facility location (Pagès-Bernaus et al., 2019), scheduling
(Ferrer et al., 2016), etc.
• Thirdly, the MS framework is extended into a iterated local search (ILS) metaheuristic framework

(Lourenço et al., 2010), which does not require to re-construct an entire solution from scratch.
• Finally, a two-stage algorithm, combining both the MS and ILS frameworks, is proposed. In the first

stage, the MS allows for ‘diversification’, and produces a reduced pool of promising solutions. In
the second stage, the ILS framework allows for ‘intensification’, exploring in more detail each of the
promising solutions in the pool.

Accordingly, the main contributions of this paper are: (i) the description of a coordinated multi-vehicle
routing problem in interconnected networks; (ii) the design, implementation, and testing of different
heuristic-based solving approaches, including a novel type of optimization heuristic based on concepts



from discrete-event simulation; and (iii) the generation of a set of benchmarks that can be used for testing
other solution approaches to this problem. The remaining of the paper is organized as follows: Section 2
provides a review of the literature on the Physical Internet concept and on container distribution models;
Section 3 provides more details on the coordinated multi-vehicle routing problem analyzed in this paper;
Section 4 presents a Mixed Integer-Linear Programming (MILP) Model that is used to solve small-sized
instances, which contributes to validate the proposed heuristics; the building of the solving approach is
explained in Section 5; Section 6 presents an extensive set of computational experiments and explains
how the instances were created; Section 7 extends the analysis of the results; finally, Section 8 outlines
the main conclusions and provides some suggestions for future research.

2. Related Literature

This section reviews previous contributions related to the idea of interconnected logistics networks (sup-
ported by the PI concept and by the use of IoT solutions) as well as to existing work on container-
distribution systems.

2.1. The Physical Internet

Unsustainability in the way physical objects are transported, handled, stored, realized, supplied and used,
is well known within the academia (Montreuil, 2011). For instance, long periods of time in which drivers
have to be away from home have generated a shortage of drivers due to low job satisfaction. Considering
the future growth in the transportation field, this can end into a bottleneck that may limit future develop-
ment (Costello and Suarez, 2015). Hence, the proposed optimization model aims to solve the problem
by introducing ‘socially responsible’ schedules that allow drives to make their jobs compatible with their
personal lifestyles.

In this regard, the PI makes it possible to improve efficiency and sustainability (in its three dimen-
sions) through experiments based on analytical, optimization, and simulation models. Montreuil (2011)
proposed to strive towards the PI, where logistics networks would be interconnected and goods would
be encapsulated in world-standardized, green, networked, and smart containers that can be distributed
across fast, reliable, and eco-friendly transportation systems. A wide review on the PI concept has been
gathered by Pan et al. (2017). In a similar line, Treiblmaier et al. (2020) provides a literature review
on the PI concept, as well as an analysis on its future directions. Likewise, Sallez et al. (2016) review
research papers on smart containers, and explain various projects which aim to achieve different levels
of ‘container intelligence’ in their communication with supply chain management systems by using IoT
solutions. Gubbi et al. (2013) provides the concept, the architectural elements, and the future develop-
ments, whereas Dı́az et al. (2016) tackles challenges of IoT implementation, data storing, analytics, and
security. Some of the most relevant real-world experiences are described next. Hakimi et al. (2015) focus
on the interconnected transport of semi-trailers, which use relay-based exchanges at PI transit centers in
Quebec. Meller et al. (2012) design an assessment based on an analytical model of the US supply chain.
Sohrabi et al. (2016) present an optimization model for these type of systems.

Considering the main characteristics of our problem, dynamic traffic information will affect freight



movement, allow better planning, and improved scheduling (Gubbi et al., 2013). Online monitoring of
origin-destination routes and container travel times will enable us to make efficient decisions depending
on the state of the system, e.g.: to compute routes and assign available drivers to containers according to
priority, as the containers enter or progress within the distribution network.

2.2. The Container Distribution Model

Up to now, a tremendous attention has been given to optimization of diverse logistics networks. There
is a wide range of literature available on optimization in different areas, such as road logistics, marine
networks, or cargo industry in general. Just to point out some recent examples, Funke and Kopfer (2016)
builds a model for a multi-size inland container transport problem, which aims to minimize the total
travel distance and operation time of the trucks. He et al. (2015) offers an optimization model for a
multi-echelon container supply chain, whereas Hao and Yue (2016) optimizes a multi-modal transport
system by combining routes.

In the context of hub-and-spoke systems, Ji and Chu (2012) optimize a port logistics network of dy-
namic hinterland, while Ji et al. (2015) study routing optimization for multi-type containerships with
time deadline to minimize service, waiting, and traveling cost. Wang (2008) combines two hub-and-
spoke networks into a regional port cluster. Zäpfel and Wasner (2002) concentrate on decision-making,
calculating cost savings associated with developing a basic hub-and-spoke or a hybrid version, and ap-
plying the model to the Australian parcel service provider. Along with routing decisions, Hsu and Hsieh
(2007) also consider inventory levels, with the goal of minimizing shipping and inventory costs.

Quite often, combinatorial problems in transport and logistics are particular cases and variations of
the network design problem (Magnanti and Wong, 1984), where some sort of discrete choice is involved.
Typically, this choice relates to the network structure. One related topic is the multi-commodity network
design (MCND) problem (Gendron et al., 1999). It has many applications in transport planning whenever
certain commodity demands are to be satisfied, but also decisions can be made about the location of
several facilities. Here, containers can be understood as integer commodities that need to be routed with
the specific origin and destination nodes. This scenario was introduced by Montreuil (2011) in order
to switch from the traditional point-to-point delivery scenario (in which drivers complete a multi-day
journey and where long-distance backhauls are frequent) to a PI-enabled model, where the driver brings
a container from one hub to another that can be reached in a few hours, and then returns home –possible
carrying another container that has to be moved in the opposite direction.

Some of the aforementioned approaches share similarities (as some of them are closely related to
the classical pickup and delivery problem). In particular, the problem analyzed in Neves-Moreira et al.
(2016) is similar to the one we propose. Still, our work differs from theirs in at least the following
aspects: (i) our model assumes that each container has to be transported to its destination, otherwise the
solution is not a feasible one; (ii) the objective function in our approach consists in minimizing the total
time employed since the first driver is activated until the last driver returns home, while their objective
function simultaneously maximizes the movements performed by each request and minimizes the time
that is necessary to execute the distribution plan; and (iii) we propose a novel solving approach that is
inspired in iteratively processing a list of dynamic events scheduled at a discrete number of times. This
approach, inspired in a deterministic discrete-event simulation, can provide reasonably good solutions



in real-time by parallelizing the biased-randomized heuristic. In addition, by considering a stochastic
discrete-event simulation, it can easily be extended to a simulation-optimization algorithm (Chica et al.,
2020), so it can deal with stochastic travel times. Our approach is also flexible in terms of routing
optimization, as there are no driver-container pairs that need to start and return together, as in Fazili et al.
(2017). Thus, paths of containers and drivers are rather calculated independently.

3. A More Detailed Description of the Transport Network Problem

The spoke-hub network problem studied can be defined by means of a graph N = (L ∪ H ∪ D,E),
where L is the set of nodes representing origins and destinations of each container, H is the set of hub
nodes in the network (locations where a container can be temporarily stored), D is the set of depots
where drivers are initially available, and E is the set of edges connecting some of the previous nodes
(i.e., the graph does not have to be complete). Each edge e = {i, j} ∈ E is characterized by a travel
time required to traverse it, τij > 0. We consider a setR of drivers. Each driver d ∈ R has an associated
home depot hd ∈ D, which is the starting and ending node of the corresponding driver route. Depot
nodes hd ∈ D cannot store containers, neither be visited by a driver with a different home depot node.
Also, a set of containers C has to be transported: each container c ∈ C has an associated origin and
destination (oc, dc ∈ L), and a due time (τc > 0) by which the container has to be at its destination.
Containers can be dropped temporarily at hubs on their way from their origin to their destination. We
also consider a planning horizon T .

It is assumed that hubs are virtually uncapacitated (i.e., they can store any number of containers).
The goal is to minimize the total time required to complete the distribution process, which includes the
delivery of all containers and the return of all drivers to their associated origins. The following constraints
apply: (i) each truck can load and transport one container at a time; (ii) all containers must reach their
destination on or before the corresponding due time; (iii) there is a maximum number of working hours
per driver (wd), after which the driver is unavailable until the next day ; and (iv) depending on the number
of drivers and the needs of the system shipments, some drivers may be required only once (by positioning
the driver in advance to the transfer hub such, so the trip can be continued immediately). Figures 1 and
2 show, respectively, a representation of a small network and a feasible solution for a problem with 2
containers and 3 drivers, where the symbol ‘endpoint’ represents the origin of some containers and the
destination of others. In this example, nodes 4 and 5 are the origins of containers 1 and 2, respectively.
Likewise, nodes 6 and 7 are the respective destination of each container. Figure 2 only reports the nodes
where drivers stop, and not all the nodes they traverse in their route.

4. A Mixed Integer-Linear Programming Model

The formulation of the problem is defined over the directed graph (L ∪H ∪D,A), which is the result
of converting the undirected graph N described Section 3 into a directed graph. We use binary variables
xdcij , which take the value 1 if, and only if, arc (i, j) ∈ A is used by driver d ∈ R to transport container
c ∈ C ∪ {0}, being container 0 a virtual one used to represent empty movements. We also consider the
following additional variables:



Fig. 1: A simple example of the coordinated multi-vehicle transport problem.

Fig. 2: Representation of a feasible solution.

• U : threshold variable, U ∈ [0, T ], representing an upper bound on the return time of drivers to the
home depot (this variable will be minimized in the objective function).
• tdi : arrival time of driver d at node i ∈ N .
• td0: departure time of driver d from the associated home depot hd.
• t̂ci : arrival time of container c at node i ∈ L ∪H .

The main sets and parameters are summarized in Table 1. The basic version of the problem assumes



Table 1: Summary of the main sets and parameters

SETS & PARAMETERS DESCRIPTION
N = (L ∪H ∪D,E) initial graph

L the set of nodes representing origins and destinations of each container
H the set of hub nodes in the network
D the set of ‘depots’ where drivers are initially available
E the set of edges connecting some of the previous nodes
R set of drivers
C set of containers that have to be transported
τij travel time required to traverse edge e = {i, j} ∈ E
T planning horizon

hd ∈ D associated ‘home’ depot for driver d ∈ R
wd maximum number of working hours for driver d ∈ R

oc ∈ L origin node of container c ∈ C
dc ∈ L destination node of container c ∈ C

τc due time by which the container c ∈ C has to reach its destination

that each driver can visit a node at most once. This version can be formulated as follows:

Minimize U (1)

subject to Constraints (3) to (16), which are described in the following sections.

4.1. Global Time Threshold Constraints

Constraints (2), in combination with the objective function, minimize the last arrival time of drivers to
their associated home depot at the end of the trip (we assume that starting time of the distribution process
for all drivers is 0):

tdi ≤ U ∀d ∈ R, ∀i ∈ N (2)

Notice that if we do not assume that all drivers will start at time zero, then the left part of Constraints
(2) would be tdi−td0. Constraints (3) impose that the arrival time of any driver d ∈ R at any node i ∈ N
must be less or equal that T (planning horizon):

tdi ≤ T ∀d ∈ R ∀i ∈ N (3)

Notice that constraints (3) are redundant with Constraints (2). However, we keep both in order to
strengthen the formulation.



4.2. Departure and Arrival Constraints

Constraints (4) ensure that each container is transported (either by one or multiple drivers) from its
origin, and it arrives to its destination:

∑
d∈R

∑
j∈(N\D)∩δ+(oc)

xdcocj =
∑
d∈R

∑
j∈(N\D)∩δ−(dc)

xdcjdc = 1 ∀c ∈ C (4)

Note that δ+(i) and δ−(i) are the sets of successors and predecessors, respectively, of node i ∈ N .
Constraints (5) ensure that each driver who starts a trip must finish it. Notice that the starting and

ending node for a driver d is home depot hd. We also assume that each driver makes at most one trip,
even though several containers may be transported during the trip (one at a time):

∑
c∈C∪{0}

∑
j∈δ+(hd)

xdchdj =
∑

c∈C∪{0}

∑
j∈δ−(hd)

xdcjhd
≤ 1 ∀d ∈ R (5)

4.3. Flow Conservation Constraints

Constraints (6) ensure that, at each non-depot node j ∈ H ∪ L, if a container arrives to it then the
container must also leave it (unless the node is the origin or destination of the container). Notice that we
use the less-or-equal symbol, since each container is transported by at most one driver at a time:∑

d∈R

∑
i∈δ−(j)

xdcij =
∑
d∈R

∑
i∈δ+(j)

xdcji ≤ 1 ∀c ∈ C ∀j ∈ H∪L, j 6= oc, dc

(6)

Constraints (7) ensure that, at each non-depot node j ∈ H ∪ L, if a driver arrives to it then the driver
must also leave it. Again, we use the less-or-equal symbol (since each driver can transport at most one
container at a time):∑

c∈C∪{0}

∑
i∈δ−(i)

xdcij =
∑

c∈C∪{0}

∑
i∈δ+(i)

xdcji ≤ 1 ∀d ∈ R ∀j ∈ H ∪ L (7)

4.4. Time and Subtour Elimination Constraints

Constraints (8) impose that, if a driver traverses the arc (hd, j), the arrival time at node j must be at least
the departure time from the home depot hd (td0) plus the time required to traverse the arc (hd, j):

td0 + τhdj ≤ tdj +M(1−
∑

c∈C∪{0}

xdchdj) ∀d ∈ R ∀j ∈ δ+(d) (8)



Here, we make use of a ‘big enough’ constant M , e.g.: M = 2T . Constraints (9) impose that if a
driver traverses arc (i, j), the arrival time at node j must be at least the departure time from node i plus
the time required to traverse arc (i, j):

tdi + τij ≤ tdj +M(1−
∑

c∈C∪{0}

xdcij ) ∀d ∈ R ∀j ∈ δ+(i), ∀i ∈ H ∪L

(9)

for a big enough M , e.g., M = 2T . Constraints (10) and (11) define the arrival time of container
c ∈ C at node j ∈ H ∪ L. If a driver transports a container, the arrival time of the container equals the
arrival time of the driver who transports it:

t̂cj ≤M
∑

i∈δ−(j)

∑
d∈R

xdcij ∀c ∈ C ∀j ∈ H ∪ L (10)

tdj −M(1−
∑

i∈δ−(j)

xdcij ) ≤ t̂cj ≤ tdj +M(1−
∑

i∈δ−(j)

xdcij ) ∀c ∈ C ∀d ∈ R ∀j ∈ H ∪ L (11)

Constraints (12) impose that if a container traverses arc (i, j), the arrival time at node j must be at
least the departure time from node i plus the time required to traverse the arc (i, j):

t̂ci+τij ≤ t̂cj+M(1−
∑
d∈R

xdcij ) ∀c ∈ C ∀j ∈ δ+(i), ∀i ∈ H∪L (12)

Once more, we consider a ‘big enough’ constant M , e.g., M = 2T . Constraints (13) ensure that all
containers must reach their destination on or before the corresponding due time:

t̂cdc ≤ τc ∀c ∈ C (13)

Constraints (14) ensure that the maximum number wd of working hours per driver d ∈ R and day is
not exceeded:

tdhd
≤ wd ∀d ∈ R (14)

4.5. Variables that can be Set to Zero or not Defined

As exposed in Section 3, the depots inD cannot store containers, and each of them acts as the home base
for the drivers associated with it. Constraints (15) indicate that drivers cannot depart from home depots
with a container (i.e., outgoing arc at drivers’ home depots are empty movements):



xdcij = 0 ∀d ∈ R, ∀c ∈ C, ∀i ∈ D, ∀j ∈ δ+(i) (15)

Constraints (16) indicate that a driver cannot use an outgoing empty arc from another driver’s home
depot:

xd0
ij = 0 ∀d ∈ R, ∀i ∈ D \ {hd}, ∀j ∈ δ+(i) (16)

As described in Section 3 and forced by Constraints (15), drivers depart and arrive from/to their home
depot without containers. Hence, Constraints (5) can be replaced by Constraints (17):

∑
j∈δ+(hd)

xd0
hdj =

∑
j∈δ−(hd)

xd0
jhd
≤ 1 ∀d ∈ R (17)

Notice that the formulation of the problem can also be defined over the complete directed graph
(L ∪H ∪D,A∗), where the travel time τij between each pair of nodes is computed as the shortest path
over the initial graph (L∪H∪D,A). In this way, nodes that lie on a shortest path may also be intrinsically
visited more than once. Since the complete graph considerably increases the size of the problem –and,
therefore, the number of variables–, we apply a pre-processing phase and a valid inequality to reduce this
size. As indicated in El-Hajj et al. (2016), one way of reducing the size of a problem is by considering just
accessible nodes and arcs. More specifically, we test two main types of pre-processing by disregarding,
for each driver, the nodes and arcs that cannot be visited during the wd time threshold. We also make use
of a valid inequality, on the global duration of all routes, proposed in Bianchessi et al. (2018).

5. Solving Methodology

This section describes four incremental approaches to solve the aforementioned problem. First, a greedy
heuristic based on concepts from discrete-event simulation is presented. This DES-based heuristic makes
deterministic decisions based on the ‘best-in-the-short-term’ selections related to containers, drivers,
and paths. Later, a biased-randomized multi-start version of the previous heuristic is proposed. Then, a
ILS metaheuristic is introduced to explore intermediate states of solutions. Finally, a 2-stage algorithm
combining the multi-start and the ILS frameworks is designed to widely explore the search space in a
more efficient manner.

5.1. DES-based Heuristic

In discrete-event simulation, every time an event occurs, and a new decision is made to deal with it, new
events might be triggered and processed as the ‘simulation clock’ evolves over time (White and Ingalls,
2015). These new events are then scheduled to happen in a future time, which might have a deterministic



or a random nature. Hence, every decision made can trigger a future event, which might change the state
of the system once it occurs. In our case, there are three types of events:

• Activation of a driver for a possible pickup: a ‘pickup’ event consists in moving a free driver from his
/ her current location towards a node where a container is likely to require transport.
• Transport of a container (transport): a ‘transport’ event consists in moving a container from its cur-

rent location to a new node in the network –this new node could be either its destination or an inter-
mediate hub, and reaching it might require traversing other intermediate nodes.
• Returning a driver to the associated home depot: a ‘return’ event consist in requesting the driver

to return to the home depot, so that the working shift is not exceeded –the driver can still transport
containers during the return to the depot as far as that is compatible with being at home on time.

From these possible events, the following DES-based heuristic is proposed with the goal of minimizing
the total time required to transport all containers and return all drivers to their home depot:

1. Compute the shortest path between any pair of nodes in the network using the Floyd-Warshall algo-
rithm (Floyd, 1962).

2. Assign drivers to containers in order to mobilize as many containers as possible. While a container
does not reach the final destination, it is considered a ‘travelling’ container. In case there are more
containers than drivers, prioritize containers according to their deadlines and distance from their des-
tination. In other words: the most ‘urgent’ containers are assigned to their nearest drivers until no
more drivers are available, or all containers have been assigned. This initial list of pickup events will
generate future transport events that will be scheduled according to the deterministic times required
to traverse the necessary edges. In turn, as new decisions are made on these transport events, new
pickup, transport, or return events will be added to the list and scheduled to happen in a future time.

3. Steps 4 and 5 are iteratively executed until there are no more events in the list –i.e., until all containers
have been delivered, and all drivers have returned to their depots.

4. In each iteration, the next scheduled event is removed from the list and processed, while the (deter-
ministic) simulation clock is updated to that time. Processing an event means making decisions about
the next steps (e.g., which is the next container to be moved?, which driver should be activated?,
which is the next node to bring the container to?, etc.). Accordingly, these decisions will trigger new
events that need to be added to the list and be scheduled in the future.

5. After each new event, update the state variables and statistics of the system (e.g., current locations of
drivers and containers, etc.).

6. Once all events in the list have been processed, a solution has been generated and its time-based cost
can be computed. Based on the defined goal, this cost is given by the time in which the last driver
returns to the associated home depot after all containers have reached their destination nodes.

5.2. Extending the DES-based Heuristic to a Biased-Randomized Multi-Start Procedure

As with any other heuristic, the DES-based one follows a greedy behaviour, i.e.: the best choice in the
short term is always chosen. So, the solution generated by this deterministic procedure is always the
same regardless if it is executed multiple times.

In order to overcome this disadvantage and to explore a wider search area, a biased-randomized multi-



start (BR-MS) version of this heuristic is designed. As discussed in Belloso et al. (2019), this can be
achieved by using skewed probability distributions instead of a greedy behaviour while constructing the
solution. In our case, the selections of the next container, next path (next node to visit), and next driver are
randomized by using Geometric probability distributions with parameters βc, βp, and βd (respectively),
with each β ∈ (0, 1). The use of the Geometric probability distribution is justified by the fact that
it only contains one parameter, β, which is easy to set (Grasas et al., 2017). In addition, values of β
closer to 1 induce a more greedy behavior in the algorithm, while values of β closer to 0 induce a more
uniformly random behavior. Notice that are the values in between the most interesting ones, since they
correspond to a behavior between greedy and uniformly random, which has been successfully tested in
many routing and scheduling applications (Dominguez et al., 2016; Ferone et al., 2020). By introducing
this non-uniform randomization effect, a new solution is likely to be generated every time the procedure
is run. Still, because of the skewed probability distribution employed, the logic behind the heuristic is
respected, i.e., the new selection behaviour is somewhat between greedy and random uniform.

The scheme of the algorithm is a natural extension of the one for the heuristic. However, the following
variations occur as shown in Algorithm 1: (i) not always the most ‘urgent’ container is selected next
–still, one of the most urgent ones is likely to be selected; (ii) not always the shortest path towards the
container’s destination is selected –still, one of the shortest path will be selected; and (iii) not always the
driver who is closer to the current location of the container will be assigned to it –although one of the
drivers in the close neighborhood is likely to be selected.

Thus, the path that each container will follow is not set in the beginning. On the contrary, it is decided
at every step of the algorithm. In order to select the next node (a hub or the container’s destination) the
following steps are followed:

1. Given the location of a container, generate a list of the adjacent hubs.
2. Sort this list by the time requested to travel from each intermediate hub to the container’s destination

(following the shortest path) and taking into account the time required to travel the edge connecting
the current location of the container with the intermediate hub.

3. Use the Geometric probability distribution to randomly select the next hub from the sorted list.

The idea behind this approach is that the best option in the short run does not necessarily lead to the
best global solution (in some cases, not even to a feasible one).

5.3. Extending the DES-based Heuristic to a Biased-Randomized Iterated Local Search

The BR-MS approach is useful to explore different routing possibilities during the search for high-
quality solutions. Nonetheless, this search starts from scratch at each iteration without taking advantage
of the existence of already good solutions. This section describes how to extend the DES-based heuristic
into a biased-randomized iterated local search (BR-ILS), which makes uses of a ‘base’ solution and a
destruction-construction process to avoid starting new solutions from scratch. Thus, while the BR-MS
has a higher ‘exploration’ component (it explores better the different regions of the solution space), the
BR-ILS has a higher ‘exploitation’ component (it intensifies the search around good solutions already
found).

In our case, a partial solution xp is the result of undoing the last p% of decisions taken in a com-



Algorithm 1 The Biased-Randomized Discrete-Event Heuristic (BRH)

1: procedure SCHEDULECONTAINEREVENTSBRH(βc, βp, βd, containers, drivers, solution, shortestPaths)
2: travellingContainers← getTravellingContainers(containers)
3: if travellingContainers is not empty then
4: sort(travellingContainers) . by urgency
5: idleDrivers← getIdleDrivers(drivers)
6: k← 0
7: while k < size of travellingContainers and idleDrivers is not empty do
8: container← selectContainerBRH(βc, travellingContainers)
9: node← selectPathBRH(βp, container, shortestPaths)

10: driversList← sort(idleDrivers) . by time-based cost
11: found← false
12: while driversList is not empty and not found do
13: driver← selectDriverBRH(βd, driversList)
14: if areFeasible(driver, container) then
15: scheduleEvent(driver, container, node)
16: updateSolution(solution)
17: removeDriver(idleDrivers)
18: removeContainer(travellingContainers)
19: found← true
20: else
21: removeDriver(driversList)
22: end if
23: end while
24: k← k + 1
25: end while
26: end if
27: end procedure

plete solution x. Therefore, the ‘perturbation’ phase in our ILS consists in: (i) partially destroying a base
solution x (the size of the destruction is given by the varying parameter p); and then (ii) completing
the partial solution by reconstructing it according to the biased-randomized version of the DES-based
heuristic. Once a new complete solution has been obtained, if it outperforms the base solution or the
best solutions, these are updated and the percentage of destruction p is reset to its minimum value pmin.
Otherwise, p is iteratively incremented by a certain step until it reaches its maximum value pmax. Notice
that, occasionally, in order to further diversify the search, the algorithm, following an acceptance crite-
rion, might accept non-improving solutions. This criterion is based on the distance between the costs of
the new and the base solution (demon value). This mechanism helps to prevent getting stuck in local
minimums. This procedure is summarized in Algorithm 2.

5.4. A Two-Stage hybrid Algorithm Combining BR-MS with BR-ILS

The BR-ILS is an effective way to intensify the search in those promising regions of the solution space
where the initial solution was found. Notice, however, that the time-dependant nature of the events im-
plies that every decision will change the future evolution of the network (drivers’ availability, containers’
location, etc.). Hence, the BR-ILS approach could invest too much time in partially destroying and recon-



Algorithm 2 The BR-ILS Algorithm

1: procedure SOLVEBRILS(network, containers, drivers, itermax, pmin, pmax, step)
2: % pmin: minimum percentage of solution destruction
3: % pmax: maximum percentage of solution destruction
4: % step: increment of percentage on each iteration

5: baseSol← SolveSH(network, containers, drivers) . Using the DES-based heuristic
6: demon← 0

7: bestSol← baseSol
8: p← pmin

9: iter ← 0
10: while iter < itermax do
11: newSol← perturbation(p, baseSol) . Perturbation phase
12: ∆← totalT ime(newSol)− totalT ime(baseSol)
13: if ∆ < 0 then . Improvement
14: baseSol← newSol
15: p← pmin − step
16: demon← −∆

17: if totalT ime(newSol) < totalT ime(bestSol) then
18: bestSol← newSol
19: end if
20: else
21: if ∆ < demon then . Worsening
22: baseSol← newSol
23: p← pmin − step
24: demon← 0
25: end if
26: end if
27: p← min(p+ step, pmax)

28: iter ← iter + 1

29: end while
30: return bestSol
31: end procedure

structing base solutions which initial decisions (the ones corresponding to the first events) compromise
the quality of the final solution. In other words, the existence of these inter-dependencies between past
and future events limits the efficiency of local search operators (since random movements might com-
promise the feasibility of time-synchronized decisions). Without an effective local search procedure, the
BR-ILS might get easily trapped into a local minimum unless the base solution is completely reset from
time to time.

Thus, in order to avoid investing too much computing time intensifying the search around a sub-
optimal base solution, we propose a 2-stage hybrid algorithm (HILS) as follows: in the first stage, the
BR-MS procedure is employed to widely explore the solution space and identify a reduced set of very
promising solutions. Then, in the second stage, each of these promising solutions is employed as a
starting base solution in the BR-ILS procedure.



6. Computational Experiments

This section aims to provide a structured insight into the following contents: (i) a short description of
the experiments over a reduced set of three small instances for both the deterministic DES-based heuris-
tic and an exact approach for solving the mixed integer-linear programming (MILP) model described
in Section 4; (ii) a characterization of the adapted networks; (iii) an extensive description of the proce-
dural strategy to obtain the benchmark instances; (iv) a summary of the main characteristics of the 20
benchmark instances created (including the graphical representation of an instance); (v) the setting of the
algorithm’s parameters, the programming language, and the characteristics of the computer employed;
and (vi) a description of the computational experiments performed as well as their corresponding results.

All algorithms have been implemented using Java SE 8.0 151, and tested with JUnit 4.12. All the
experiments were run in a Dell Workstation Precision Tower Serie 7000, Intel Xeon E5-2650 v4 with
32GB RAM In order to assess the quality of the solutions provided by the proposed algorithm, we have
carried out a comparison with the MILP exact model presented in Section 4, which has been solved using
CPLEX. As only small instances of the MILP model can be solved in practice (i.e., without running out
of memory or investing an unreasonable amount of computing time), we have generated a set of four
small instances with networks of up to 18 nodes and 2-3 containers. Figure 3 illustrates a graphical repre-
sentation of the underlying network for instance pi-small-03, which contains 18 nodes and 3 containers.
Table 2 presents the obtained results for both our algorithm and the exact solver, where TT refers to the
total time necessary to deliver all containers and return all drivers to their depots. Notice that the pro-
posed algorithm is able to reach the optimal value provided by the exact solver for these four instances,
which contributes to validate its quality. Regarding computational times, the proposed algorithm is able
to reach the optimal values in about 0.02 seconds (on the average), whilst the exact solver needs about
35 seconds.

Table 2: Small instances characteristics and results for our algorithm and an exact solver.

Network Problem Our Algorithm CPLEX Gaps
TT Comp. TT Comp. [1-3]

Instance Nodes Edges D/H/E #C #D [1] Time (s) [2] [3] Time (s) [4] (%)

pi-small-01 10 20 3/3/4 2 2 14.85 0.02 14.85 0.61 0
pi-small-02 8 13 2/2/4 2 2 6.50 0.02 6.50 0.12 0
pi-small-03 18 51 3/9/6 3 3 6.50 0.03 6.50 138.61 0
pi-small-04 13 78 3/6/4 2 3 5.80 0.02 5.80 1.56 0

Avg. 8.41 0.023 8.41 35.23 0

Due to the novelty of the considered problem, there are not standardized benchmark instances in
the literature. Hence, in order to generate the benchmark instances we decided to adapt the large-scale
networks introduced in Keenan (2017) for the time capacitated arc routing problem (De Armas et al.,
2019). These datasets are included in the TCARP large rural datasets, in which a simplified version
of some Irish roads are drawn. Table 3 shows the main characteristics of each instance, including: the
number of nodes, the number of edges, the associated density (or sparsity) d ∈ (0, 1), and basic statistics
on the weights (travel times) and the degree of the nodes.

For each network, 4 different instances have been created, each with a distinctive set of containers,



Fig. 3: Representation of the pi-small-03 instance.

Table 3: Basic details of each considered network.

Network Weights Degree

Instance Nodes Edges Density Mean Min Max Mean Max

TCARP-R1 221 245 0.010 0.870 0.069 1.786 2.22 5
TCARP-R2 382 424 0.006 0.938 0.048 2.125 2.22 4
TCARP-R3 508 550 0.004 0.916 0.062 2.893 2.17 5
TCARP-R4 805 872 0.003 0.788 0.022 3.098 2.17 6
TCARP-R5 599 647 0.004 0.964 0.002 3.062 2.16 5

fleet of drivers, and network structure. Specifically, we have considered scenarios with 25, 50, 100, and
200 containers with different upper and lower bounds for the number of drivers per depot as well as for
the shifts. The containers have different origins, destinations, and deadlines. Also, each instance has a
different number of depots, hubs, and endpoints (origins or destinations). Next, some additional details
are provided on how these instances have been created from the original ones:

• Classification of nodes in the network: each node in the network has been labeled as a depot, hub, or
endpoint according to its connectivity degree, d:

1. If d = 1, it can either be an endpoint with probability 0.5 or a depot with the same probability.
2. If the node has relatively high connectivity (d ≥ 4), it is labeled as a hub with probability 0.75

or a depot with probability 0.25.



3. If the degree is 2 ≤ d ≤ 3, the node is labeled as a hub with probability 0.5, as a depot with
probability 0.3, or as an endpoint with probability 0.2.

• Configuration of the set of containers to be delivered: origin and destination endpoints are randomly
chosen, but taking into account that the shortest path between both nodes cannot exceed 24 hours for
instances 1 to 10 and 12 hours for instances 11 to 20. The due times for the containers are set propor-
tional to the length of the shortest path from their origin to their destination endpoints. Therefore, if
the length of the shortest path is l hours, a margin of k · l hours is set, where k usually takes a value
between 2 and 3, depending on the instance.

• Assignment of drivers to depots and configuration of shifts: the number of drivers assigned to each
depot is randomly generated within a lower and upper bound. The working shifts range from 8 to 10
hours.

For each of the 20 benchmarks, Table 4 shows: the size of the network, the number of depots, hubs,
and endpoints, the number of containers and drivers, and the parameters used to create each instance.
These parameters include: the minimum and the maximum number of drivers per depot, due times per
container, and length (in hours) of the shortest path between the origin and the destination. It also displays
a summary of the container shipments, including: the maximum, minimum, and average length.

Figure 4 shows the structure of the network for the instance pi-02, where circle nodes represent depots,
triangular nodes represent hubs, and square nodes represent endpoints.

Regarding the parameters’ configuration, the following ranges have been defined for randomly se-
lecting the beta values associated with each of the Geometric distributions: βc ∈ (0.70, 1.00),
βp ∈ (0.98, 1.00), and βd ∈ (0.85, 1.00). The aforementioned ranges have been obtained after testing
different values of β for the entire set of instances. As explained in Juan et al. (2013, 2014), our aim is
to develop algorithms that are relatively simple to implement and use a reduced number of parameters
with few setting requirements, which facilitates the associated fine-tuning process. Hence, our algorithm
should perform well for any instance and data as far as the β parameters take values inside ‘reasonable’
intervals. For the three solving approaches (BR-MS, BR-ILS, and HILS), the maximum computational
time was set to 180 seconds. Again, after a quick trial-and-error test, the configuration of parameters for
the BR-ILS are: pmin = 50, pmax = 100, and step = 2. In the case of the HILS, the diversify parameter
was set to 0.5 (i.e., half of the time the hybrid algorithm is executing the BR-MS component and half of
the time is executing the BR-ILS one). Finally, the cooldown parameter was set to 10.

Additionally, in order to assess the impact –in terms of the quality of the solution obtained– of a
scenario in which drivers’ shifts are limited to 8-10h (instead of more typical schedules of 24 / 48h, with
the required stops to rest and sleep), a set of computational experiments has been carried out for instances
pi-01 to pi-10. Drivers’ due times for this set of instances have been modified by employing different
multiplicative factors (1.25, 1.50, 1.75, 2.00, and 3.00). As depicted in Figure 5, by extending due times
in a 25%, an average improvement of 11.1% in the shipping time is achieved. This percentage grows
up to 15.5% when extending due times in a 50%, and up to 20.8% when extending them in a 300%. In
conclusion, defining short shifts in these networks might prove difficult to guarantee solutions with low
delivery times. These solutions have been obtained by employing the BR-MS procedure, with a time
threshold of 60 seconds, considering the shipping time as the objective to minimize, and repeating three
times each execution for each instance and factor (only results for the best-found solutions are reported).

In the next set of experiments, each instance has been executed 10 times, using a different seed for the
pseudo-random number generator in each execution. The best results obtained are depicted in Table 5.
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Fig. 5: Shipping time results for instances pi-01 to pi-10 when extending drivers’ shifts.

This table also includes: (i) the total time (TT) necessary to deliver all containers and return all drivers to
their depots; and (ii) the shipping time (ST), which does not take into account the time required for the
drivers to return home. These last two metrics are reported in hours. Finally,the percentage gaps between
all pair combinations of the four approaches are also provided. Table 6 shows the results obtained when
the goal is to minimize shipping times (i.e., without including returning times of drivers to their home
depots).
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7. Analysis of Results

For the 20 instances depicted in Table 5, Figure 6 shows the comparative results for total times. Percent-
age gaps between each pair of algorithms are used for the comparison. As can be noticed, the BR-MS
and BR-ILS approaches have similar performance, with 50% of the gaps between 3− 11% (1st and 3rd
quartile). The hybrid algorithm, HILS, is able to outperform both individual algorithms, offering an aver-
age gap around 9% when compared with the DES-based greedy heuristic and about 2% when compared
with the BR-MS or the BR-ILS metaheuristics.

BR-MS BR-ILS HILS

Approaches
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Fig. 6: Performance comparison, in percentage gaps, for total (shipping plus returning) times (TT).

Table 6 shows that the hybrid 2-stage algorithm HILS is the one reporting the best results and the
trend is still the same. However, the gaps obtained by the three approaches (with respect to the greedy
heuristic) are somewhat greater than the ones from the previous results (Figure 6). This is due to the fact
that we are allowing drivers to cover larger distances. The HILS has a slight edge over the rest, with an
average gap of 9%, and 1st and 3rd quartiles at 4% and 12%, respectively.

Apart from the total and the shipping time, there are a wide variety of indicators than can be interesting
for a manager, e.g.: the number of drivers deployed, the number of hours spent by the drivers, the total
time that the drivers were actually driving, etc. The detailed numerical values are given in Table 7, where
CT stands for the computational time, #D represents the number of drivers employed, DET corresponds
to the drivers total time, and DTT refers to the drivers traveling time. All units are in hours, except for
the number of drivers and the computational time (this one is given in seconds). Notice that the data
of the radar plots has been reversed, i.e.: optimizing a feature means having the greatest value, 100%.



(a) Greedy heuristic solution characteristics. (b) BR-MS solution characteristics.

(c) BR-ILS solution characteristics. (d) HILS solution characteristics.

Fig. 7: A graphical representation of different solutions on multiple dimensions (indicators).

For instance, the solution provided by the deterministic heuristic is the one employing the minimum
computational time. In this regard, as it is shown in Figure 7, the solution obtained by the HILS approach
is the one yielding the minimum total time, although the minimum shipping time was obtained by the
BR-ILS algorithm by using 4 more drivers. However, the solution found by means of the BR-MS is the
most balanced one.



Table 7: Measuring different indicators associated with four solutions (instance pi-06).

Approach TT (h) ST (h) CT (s) #D DET (h) DTT (h)

Greedy Heuristic 39.14 35.37 0 189 1677 1349
BR-MS 32.23 28.46 66 190 1671 1316
BR-ILS 31.41 28.09 42 198 1722 1349
HILS 30.72 28.31 147 194 1714 1335

8. Conclusions and Future Work

Real-life transport management in global networks can drastically scale up in difficulty with increas-
ing customers’ demands and shipping volumes. In those situations, managers require from intelligent
algorithms to properly address the underlying large-scale routing optimization problems. In the context
of interconnected networks with intermediate hubs that can temporarily storage containers, this paper
introduces a ‘discrete-event’ heuristic as a first approach to solve a coordinated multi-vehicle container
transport problem. By combining concepts from discrete-event simulation with a greedy heuristic, it is
possible to effectively deal with the challenging synchronization issues that arise in these dynamic sys-
tems, which evolve over time as new decisions are made in response to the emerging events. Thus, in
a network of containers, depots, drivers, hubs, and endpoints, our main goal is to find routing solutions
that minimize the total time required to: (i) deliver the containers to their final destinations before their
deadline expires; and (ii) allow the drivers to return to their home depots before their working shift is
over. Apart from this main goal, other indicators (such as the number of employed drivers, the total
driving time, etc.) are also reported in a multi-dimensional graph. For small-case instances, the proposed
heuristic approach yields optimal solutions within much less execution time than the one required by the
exact model.

The former discrete-event-based heuristic is extended into a probabilistic algorithm by introducing
biased-randomization techniques. Hence, a biased-randomized multi-start procedure is proposed as a
way to generate multiple solutions with different characteristics. The randomization of the heuristic is
performed every time a decision needs to be made regarding: (i) the next container to be dispatched; (ii)
the next driver to be activated; and (iii) the next node that the container will visit in the path to its final
destination. For the tested instances, this algorithm is able to outperform the initial greedy heuristic by
a gap of 7% on the average. Next, in order to intensify the local search around ‘good’ base solutions,
the biased-randomization version of the heuristic is also extended into a iterated local search procedure.
According to the computational experiments, the performance of this second metaheuristic is quite simi-
lar to that of the multi-start one. Finally, both the multi-start (exploration-oriented) and the iterated local
search (intensification-oriented) procedures are combined into a 2-stage algorithm. Using the same com-
putational times, this hybrid algorithm is able to slightly outperform the previous metaheuristics, with
an average gap of 9% with respect to the initial greedy heuristic.

This paper introduces the concept of discrete-event heuristic: a solution-construction procedure that
incorporates efficient decision-making criteria inside a deterministic discrete-event simulation. By com-
bining such a discrete-event greedy heuristic with the concept of biased randomization, our approach



is able to quickly generate feasible and high-quality solutions to a challenging transportation problem.
This allows us to deal with large-size instances that cannot be efficiently solved by just employing exact
methods or other metaheuristic algorithms unless they take into account the cause-and-effect relations
among the chronological events. By introducing this novel approach, new transportation strategies might
be considered by supply chain managers. Hence, by increasing the level of coordination and synchro-
nization among drivers, managers can propose scenarios in which these drivers do not have to cover
large distances, while still minimizing the total time required to complete the transportation of con-
tainers. Probably the main limitation of the proposed approach is the difficulty to measure the quality
of its solutions in large-size instances, where exact methods cannot provide optimal values and where
other metaheuristics might also have severe limitations due to the feasibility constraints imposed by the
time-dependent events that characterize this highly dynamic transportation environment.

In our view, this work has several research lines that are worthy to be explored in the future, among
them: (i) to extend the hybrid algorithm into a simulation-optimization one (Chica et al., 2020), so it can
deal with real-life uncertainty (e.g., stochastic travel times, stochastic loading / unloading times, etc.);
(ii) to analyze the effect of relaxing the deadlines (both for containers and drivers) in the quality of the
solutions, specially considering that future vehicles might not require a human driver; (iii) to combine
this algorithm with machine learning methods (Arnau et al., 2018; Bayliss et al., 2020), so that it can be
used to solve optimization problems with dynamic inputs (e.g. the travel times or storage capacities might
depend upon the previous routing decisions); and (iv) to incorporate economic and environmental costs
in the objective function as well as to analyze tradeoffs between total distribution time and economic
cost –e.g., by considering a penalty cost in case of delays.

Acknowledgments

This work has been partially supported by the Spanish Ministry of Science (PID2019-111100RB-
C21 / AEI / 10.13039/501100011033, RED2018-102642-T), and the Erasmus+ program (2019-I-ES01-
KA103-062602).

References

Arnau, Q., Juan, A.A., Serra, I., 2018. On the use of learnheuristics in vehicle routing optimization problems with dynamic
inputs. Algorithms 11, 12, 208.

Bayliss, C., Juan, A.A., Currie, C.S., Panadero, J., 2020. A learnheuristic approach for the team orienteering problem with
aerial drone motion constraints. Applied Soft Computing 0, 0, 106280.

Belloso, J., Juan, A.A., Faulin, J., 2019. An iterative biased-randomized heuristic for the fleet size and mix vehicle-routing
problem with backhauls. International Transactions in Operational Research 26, 1, 289–301.

Bianchessi, N., Mansini, R., Speranza, M.G., 2018. A branch-and-cut algorithm for the team orienteering problem. International
Transactions in Operational Research 25, 2, 627–635.

Chambers, M., Goworowska, J., Rick, C., Sedor, J., 2015. Freight facts and figures 2015. U.S. Department of Transportation.
Bureau of Transportation Statistics.

Chen, X., Wang, X., 2016. Effects of carbon emission reduction policies on transportation mode selections with stochastic
demand. Transportation Research Part E: Logistics and Transportation Review 90, 196–205.

Chica, M., Juan, A.A., Bayliss, C., Cordón, O., Kelton, W.D., 2020. Why simheuristics? benefits, limitations, and best practices



when combining metaheuristics with simulation. SORT-Statistics and Operations Research Transactions xx, 311–334.
Costello, B., Suarez, R., 2015. Truck driver shortage analysis 2015. American Trucking Associations 206, 1–12.
De Armas, J., Keenan, P., Juan, A.A., McGarraghy, S., 2019. Solving large-scale time capacitated arc routing problems: from

real-time heuristics to metaheuristics. Annals of Operations Research 273, 1-2, 135–162.
Dı́az, M., Martı́n, C., Rubio, B., 2016. State-of-the-art, challenges, and open issues in the integration of internet of things and

cloud computing. Journal of Network and Computer Applications 67, 99–117.
Dominguez, O., Juan, A.A., De La Nuez, I., Ouelhadj, D., 2016. An ils-biased randomization algorithm for the two-dimensional

loading hfvrp with sequential loading and items rotation. Journal of the Operational Research Society 67, 1, 37–53.
Dominguez, O., Juan, A.A., Faulin, J., 2014. A biased-randomized algorithm for the two-dimensional vehicle routing problem

with and without item rotations. International Transactions in Operational Research 21, 3, 375–398.
El-Hajj, R., Dang, D.C., Moukrim, A., 2016. Solving the team orienteering problem with cutting planes. Computers and

Operations Research 74, C, 21–30.
Fazili, M., Venkatadri, U., Cyrus, P., Tajbakhsh, M., 2017. Physical internet, conventional and hybrid logistic systems: A routing

optimisation-based comparison using the eastern canada road network case study. International Journal of Production
Research 55, 9, 2703–2730.

Ferone, D., Gruler, A., Festa, P., Juan, A.A., 2019. Enhancing and extending the classical GRASP framework with biased
randomisation and simulation. Journal of the Operational Research Society 70, 8, 1362–1375.
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