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Abstract 

Operational problems in agri-food supply chains usually show characteristics that are scarcely addressed by traditional academic 
approaches. These characteristics make an already NP-hard problem even more challenging; hence, this problem requires the use 
of tailor-made algorithms in order to solve it efficiently. This work addresses a rich vehicle routing problem in a real-world agri-
food supply chain. Different types of animal food products are distributed to raising-pig farms. These products are incompatible, 
i.e., multi-compartment heterogeneous vehicles must be employed to perform the distribution activities. The problem considers 
constraints regarding visit priorities among farms, and not-allowed access of large vehicles to a subset of farms. Finally, a set of 
flat tariffs are employed to formulate the cost function. This problem is solved employing a reactive savings-based biased-
randomized heuristic, which does not require any time-costly parameter fine-tuning process. Our results show savings in both cost 
and traveled distance when compared with the real supply chain performance.  
© 2021 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Feeding pigs in the pork production industry is a highly relevant activity to successfully achieve the supply chain 
goals (Rodríguez, 2014). Such activity requires a precise logistics from the production plant to the farms where the 
pigs are raised. Hence, our work consists in designing a set of vehicle routes that meet the feed demand of a set of pig 
farms, considering the real case of a pork production company in Spain. From an academic point of view, the analyzed 

 

 
* Corresponding author. 

E-mail address: rtordecilla@uoc.edu, rafael.tordecilla@unisabana.edu.co 

 

Available online at www.sciencedirect.com 

ScienceDirect 

Transportation Research Procedia 00 (2019) 000–000  
www.elsevier.com/locate/procedia 

 

2352-1465 © 2020 © 2021 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the scientific committee of the 14th Conference on Transport Engineering  

14th Conference on Transport Engineering: 6th – 8th July 2021 

An Agile and Reactive Biased-Randomized Heuristic for an  
Agri-Food Rich Vehicle Routing Problem 

Rafael D. Tordecillaa,b,*, Pedro J. Copado-Méndeza, Javier Panaderoa, Leandro do C. 
Martinsa, Angel A. Juana 

aIN3 – Computer Science Dept., Universitat Oberta de Catalunya, Barcelona 08018, Spain 
bSchool of Engineering, Universidad de La Sabana, Chia 250001, Colombia  

Abstract 

Operational problems in agri-food supply chains usually show characteristics that are scarcely addressed by traditional academic 
approaches. These characteristics make an already NP-hard problem even more challenging; hence, this problem requires the use 
of tailor-made algorithms in order to solve it efficiently. This work addresses a rich vehicle routing problem in a real-world agri-
food supply chain. Different types of animal food products are distributed to raising-pig farms. These products are incompatible, 
i.e., multi-compartment heterogeneous vehicles must be employed to perform the distribution activities. The problem considers 
constraints regarding visit priorities among farms, and not-allowed access of large vehicles to a subset of farms. Finally, a set of 
flat tariffs are employed to formulate the cost function. This problem is solved employing a reactive savings-based biased-
randomized heuristic, which does not require any time-costly parameter fine-tuning process. Our results show savings in both cost 
and traveled distance when compared with the real supply chain performance.  
© 2021 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the scientific committee of the 14th Conference on Transport Engineering 
Keywords: Rich Vehicle Routing Problem, Agri-Food Supply Chain, Biased-Randomized Heuristic. 

1. Introduction 

Feeding pigs in the pork production industry is a highly relevant activity to successfully achieve the supply chain 
goals (Rodríguez, 2014). Such activity requires a precise logistics from the production plant to the farms where the 
pigs are raised. Hence, our work consists in designing a set of vehicle routes that meet the feed demand of a set of pig 
farms, considering the real case of a pork production company in Spain. From an academic point of view, the analyzed 

 

 
* Corresponding author. 

E-mail address: rtordecilla@uoc.edu, rafael.tordecilla@unisabana.edu.co 



386	 Rafael D. Tordecilla  et al. / Transportation Research Procedia 58 (2021) 385–392
2 Author name / Transportation Research Procedia 00 (2019) 000–000 

problem can be considered as a rich vehicle routing problem (RVRP) (Caceres-Cruz et al., 2014), since: (i) vehicles 
are heterogeneous and have multiple compartments to separate different types of incompatible products that must be 
distributed to a set of farms; (ii) each farm may require multiple products; (iii) some farms admit only that a small-
medium vehicle deliver the feed; (iv) a visit priority must be met, which indicates that some farms must be visited as 
soon as possible, whereas other farms must be the last to be served; and (v) the cost function considers a set of flat 
tariffs, which depend on both the location of the farm and the number of farms visited in the same route. A flexible 
and enriched heuristic is then proposed to address this problem. Apart from the multi-product and multi-compartment 
RVRP, this heuristic must be able to deal with an objective function that relies on a flat-rate policy instead of the 
traditional distance-based minimization. Then, this enriched savings-based heuristic is extended into a biased-
randomized algorithm (BRA), which is able to provide multiple solution configurations in short computational times. 
As described in Grasas et al. (2017), biased-randomized techniques are based on the introduction of an oriented (non-
uniform) randomization process inside the constructive stage of a given heuristic. By doing so, a deterministic heuristic 
is transformed into a randomized algorithm that can be run multiple times (either in sequential or in parallel) without 
losing the logic behind the heuristic. Hence, the main contributions of our paper can be stated as follows: (i) the 
consideration of a flat-rate cost function, together with multi-product and multi-compartment characteristics; (ii) the 
design of a flexible and agile heuristic, which enriches the traditional savings heuristic, to solve a rich and real-life 
problem in the agri-food distribution industry; (iii) the extension of the former heuristic into a biased-randomized 
algorithm capable of providing, in short computational times, a set of alternative solution configurations to the 
problem, each of these including different dimensions; and (iv) the introduction of a reactive (automatic) fine-tuning 
process for the main parameter of the biased-randomization process. 

Rich vehicle routing problems have been increasingly addressed by the academic community, since they 
incorporate highly realistic constraints, especially when these are considered simultaneously (Azadeh and Farrokhi-
Asl, 2019). Characteristics regarding input data, decision management components, vehicles, time constraints, among 
others, turns a classical VRP into a rich VRP (Lahyani et al., 2015b). For instance, Alemany et al. (2016) combine the 
well-known savings heuristic (Clarke and Wright, 1964) with Monte Carlo simulation to solve a heterogeneous-fleet, 
multi-depot, multi-compartment, multi-product, and multi-trip VRP. In general, vehicles can be classified according 
to their physical characteristics, e.g., they can be homogeneous or heterogeneous, or compartmentalized or not. The 
relevance of considering compartmentalized vehicles emerges whenever different types of products are demanded and 
they are incompatible, i.e., products must be carried separately into the same vehicle and not be mixed. Despite the 
practical applications of this strategy for addressing real-world problems, the multi-compartment VRP has been 
scarcely studied (Derigs et al., 2011). Both theoretical and real-world cases can be found in the multi-compartment 
VRP literature. Silvestrin and Ritt (2017) and Muyldermans and Pang (2010) show examples of the former. These 
works propose metaheuristic approaches given the combinatorial nature of this problem. Regarding real-world cases, 
products as diverse as apparel, fuel, food, and waste require the use of compartmentalized vehicles for performing an 
appropriate transport (Wang et al., 2014; Reed et al., 2014; Vidovic et al., 2014; Coelho and Laporte, 2015). 

Agri-food supply chains also represent a field where the multi-compartment VRP has been addressed. These chains 
have special characteristics that should be taken into account in its modelling, such as products perishability 
(Tordecilla-Madera et al., 2018) or supply and demand seasonality (Vlajic et al., 2012). For instance, Lahyani et al. 
(2015a) propose a branch-and-cut algorithm to solve a multi-period and multi-compartment VRP with heterogeneous 
vehicles. A real case from the olive-oil collection process in Tunisia is considered, where compartments cleaning 
activities are considered. Oppen et al. (2010) address also cleaning activities in a multi-compartment VRP where 
inventory constraints are considered. Different types of animals are transported in this case, as well as a heterogeneous 
fleet and multiple trips. An exact method based on column generation is used as solving approach. Alternatively, 
employing approximate methods is a usual approach in agri-food multi-compartment VRPs. For instance, Caramia 
and Guerriero (2010) propose a hybrid approach combining mathematical programming and local search techniques 
to solve a real-life case regarding the collection of different types of milk in Italy. Finally, the number and capacity of 
compartments can also be a variable to consider, i.e., compartments are flexible. For instance, a large neighborhood 
search algorithm is proposed by Hübner and Ostermeier (2019) to solve this variant of the multi-compartment VRP. 
A relevant contribution of this paper is the consideration of loading and unloading costs, which are a function of the 
number of compartments. 
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The remainder of this paper is structured as follows: Section 2 shows the main characteristics of our addressed 
problem, and Section 3 describes the algorithm employed to solve it. Section 4 shows our main found results based 
on a real case study, and Section 5 shows the concluding remarks and future work. 

2. Problem Description 

The part of the supply chain addressed in this paper is that in charge of distributing the animal food from central 
depots to the farms, as displayed in Fig. 1. We consider each day as an independent instance, where the subset of 
farms requiring service can be different. Each farm generates an order, and each order may be composed of different 
types of feed, e.g., Fig. 1 displays circles, hexagons and triangles representing three different products. In general, 
products can be classified in medicated and non-medicated. Also, the characteristics of each type of product depend 
on the growth stage of each herd, i.e., the required diet mix is different according to the age (in weeks) of each 
individual. The demand of each product in each farm is deterministic. The feed distribution is carried out from a depot 
through a set of compartmentalized heterogeneous vehicles. For instance, Fig. 1 shows two types of vehicles with 
three and four compartments, respectively. Compartments are also heterogeneous, i.e., each compartment has a 
different known capacity. The demanded quantity per product and farm is at most the capacity of a vehicle. Hence, 
each vehicle can visit multiple farms in the same route, as long as the aggregate demand does not exceed the vehicle's 
capacity. Split deliveries are not allowed, i.e., a single farm must be served by a single vehicle. The objective of using 
compartmentalized vehicles is to separate each type of feed, since they cannot be mixed during a trip. In addition, if 
the demand of a product is higher than the capacity of a single compartment, it can be split into two or more 
compartments in the same vehicle. Nevertheless, in general, medicated feed cannot be transported in the same route 
as non-medicated feed. Not all types of vehicles can visit all customers, since some farms have access constraints. 
That is, a subset of farms can be served by all types of vehicles, whereas another subset cannot be served by large 
vehicles. An additional constraint assigns a sanitary priority indicator, which determines a specific order in which a 
subset of farms must be visited in case they are in the same route. The company classifies the farms into 3 types 
according to this sanitary priority: (i) a subset of farms with an assigned priority according to a consecutive natural 
number. These farms must always be served in ascending order whenever they are in the same route, e.g., a farm with 
a priority of 2 must always be visited before a farm with a priority of 5; (ii) a subset of farms with no priority; and (iii) 
a subset of farms with a “negative” priority, which indicates that they must be the last to be served in any route. 

 

 

Fig. 1. Representation of our real-life problem. 

Our main objective is to minimize the total distribution cost. As the company outsources the feed transportation, 
the distribution cost calculation has been settled in a distribution agreement. This cost is computed as the product of 
the delivered quantity and a pre-established tariff. The whole distribution region is clustered in zones, so that the tariff 
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𝑐𝑐𝑐𝑐(𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧) depends on both the zone 𝑧𝑧𝑧𝑧 where the customer is located and the number of farms 𝑛𝑛𝑛𝑛 visited in the same route. 
Each customer has three different tariffs according to 𝑛𝑛𝑛𝑛 (Equation 1), where 𝑐𝑐𝑐𝑐1(𝑧𝑧𝑧𝑧) < 𝑐𝑐𝑐𝑐2(𝑧𝑧𝑧𝑧) < 𝑐𝑐𝑐𝑐3(𝑧𝑧𝑧𝑧). 

𝑐𝑐𝑐𝑐(𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧) = �
𝑐𝑐𝑐𝑐1(𝑧𝑧𝑧𝑧), 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 = 1
𝑐𝑐𝑐𝑐2(𝑧𝑧𝑧𝑧), 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 = 2
𝑐𝑐𝑐𝑐3(𝑧𝑧𝑧𝑧), 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 ≥ 3

    (1) 

Fig. 2 displays a few examples of tariffs (expressed in €/t) employed by the company. Fig. 2a shows the case in 
which each farm is the only one visited in its route. Hence, the tariff of all customers in the Zone 1 is 𝑐𝑐𝑐𝑐1(1) = 7.74 
and the tariff of the customer 4, located in the Zone 2, is 𝑐𝑐𝑐𝑐1(2) = 8.98. Fig. 2b shows the case in which all customers 
in the Zone 1 form a single route, therefore, the employed tariff is 𝑐𝑐𝑐𝑐3(1) = 8.76. The customer 4’s tariff remains the 
same as in the former case. Finally, Fig. 2c shows the case in which customers of different zones form a unique route. 
Under these circumstances, the distribution agreement indicates that the employed tariff must be the greatest one. 
Hence, as 𝑐𝑐𝑐𝑐3(1) = 8.76 and 𝑐𝑐𝑐𝑐3(2) = 9.24, the final distribution tariff for the route in this instance is 9.24 €/t. Since 
the total satisfied demand is the same in the 3 cases of Fig. 2, and the total variable cost depends on the supplied food-
load in tonnes, the case in Fig. 2b incurs a higher variable cost than the instance in Fig. 2a, and the case in Fig. 2c 
incurs the highest variable cost in the example. This means that merging routes increases the variable cost in our 
problem, which is the opposite of merging routes in traditional routing problems. This behavior is caused by the flat 
tariffs indicated in the distribution agreement. 

 

 

Fig. 2. Examples of tariffs used by the company. 

The considered problem requires that the total delivery cost is not the only key performance indicator (KPI), i.e., 
the approach used to solve this problem must show enough flexibility to consider additional KPIs, such as the number 
of designed routes and the total travelled distance. Despite its non-typical objective function and unique constraints, 
the problem can be classified as a rich variant of a multi-product and multi-compartment open VRP (RVRP). Hence, 
it is an NP-hard problem and, as such, the use of heuristic-based approaches (Londoño et al., 2020) is justified 
whenever the size of the problem goes beyond a certain level. 

3. From a Flexible and Fast Heuristic to a Reactive Biased-Randomized Algorithm 

This section shows our approach for dealing with the described RVRP. This approach is based on both multi-start 
(Martí et al., 2013) and biased-randomized algorithms (BR) (Grasas et al., 2017). Algorithm 1 provides a general view 
of the proposed heuristic to solve the RVRP. The core of our approach is a flexible and fast two-stage heuristic, which 
includes all problem characteristics considering multiple KPIs. In the stage 1, a first initial solution is generated, in 
which each customer is assigned to a vehicle in a single round-trip, meeting all the considered constraints. Once this 
initial solution is generated, the algorithm merges routes in stage 2 as much as possible, reducing the number of used 
vehicles. Algorithm 2 outlines the stage 2, which consists of the following steps: firstly, it computes the savings 
associated with potential route merges. These savings are computed for every edge and are based on both the distance 
between farms and the tariff per zone. Then, a list of edges associated with the savings values is created and sorted in 
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decreasing order. The main loop iterates on the sorted savings list, where each edge is selected to be part of the solution 
only if it meets the following merging conditions: (i) both customers in the origin and the end of the edge belong to 
different routes; and (ii) these customers are adjacent to the depot. Unlike the traditional savings method, we do not 
consider the total vehicle capacity. Instead, it is evaluated whether the demand of each product fits in the available 
compartments, considering both their capacity and a feasible layout. When a feasible assignment is found, the 
algorithm merges the routes and updates the solution; otherwise, the current edge is rejected and the algorithm 
proceeds to the next iteration with a new alternative. The current solution is updated by removing the routes at both 
extremes of the selected edge and adding the resulting new merged route. All KPIs are then updated, including the 
cost, which considers the flat-rate delivery tariffs (Fig. 2). Again, notice that this approach is different to the distance-
based cost computation employed in most articles on the VRP, which do not consider a flat-rate tariff. Finally, the 
current edge is removed from the list, and the whole process is repeated until the savings list is empty, returning a 
completely new solution sol. 
 

 
 

 
 
The previous heuristic is extended into a reactive BR algorithm (R-BR). This procedure allows not only to diversify 

the search for good solutions, but also to generate alternative solutions assessed in terms of multiple KPIs. Our 
proposed methodology in Algorithm 1 uses both stages 1 and 2 (Algorithm 2) as the base for the R-BR. Previously 
described steps are followed the same, except for the selection of the next edge in the savings list. This selection is 
now performed by considering a skewed probability distribution, which introduces a sort of randomness into this 
process. In our case, the selection of the next element is performed according to a geometric distribution with 
parameter 0 < 𝛽𝛽𝛽𝛽 < 1. Employing this distribution introduces diversification to explore other regions of the solution 
space, preserving at the same time the savings heuristic original purpose. Unlike previous works, our algorithm is 
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reactive, since the parameter 𝛽𝛽𝛽𝛽 is automatically fine-tuned. The R-BR implementation procedure is described next: 
firstly, initialize parameters 𝛽𝛽𝛽𝛽1  and 𝛽𝛽𝛽𝛽2  using a symmetric Triangular probability distribution with mode 𝑚𝑚𝑚𝑚 = 0.5. 
Secondly, generate two complete solutions using 𝛽𝛽𝛽𝛽1 and 𝛽𝛽𝛽𝛽2, respectively. Then, compare the yielded costs (or any 
other KPI) to obtain the best-found mode 𝑚𝑚𝑚𝑚∗ and the best-found solution sol so far. Then, the algorithm iterates while 
the time limit is not reached. For each iteration, a new 𝛽𝛽𝛽𝛽𝑠𝑠𝑠𝑠 is computed using a Triangular distribution with mode equal 
to 𝑚𝑚𝑚𝑚∗. Later, generate a new complete solution newsol using 𝛽𝛽𝛽𝛽𝑠𝑠𝑠𝑠. Again, obtain the best-found mode 𝑚𝑚𝑚𝑚∗ and solution 
sol. Finally, introduce the new solution sol in the pool of solutions 𝑆𝑆𝑆𝑆∗. 

4. Case Study 

Real-world instances representing multiple products demands from 44 workdays have been provided by the 
company. They represent daily deliveries made to 214 farms. Currently, the company performs a delivery only when 
the customer generates an order. Hence, only a subset of farms is served each day. Furthermore, the delivered product 
mix also changes every day, and each customer may require multiple types of food at the same day. The feed shelf 
life is greater than one day; therefore, perishability is not included in our case study. The number of vehicle types are 
3: a vehicle type with 6 compartments and a total capacity of 26 t, a vehicle type with 6 compartments and a total 
capacity of 21 t, and a vehicle type with 5 compartments and a total capacity of 21 t. A single product demand can 
vary between 1 t and 26 t. Our approach yields 4 KPIs: (i) total distance, computed as an approximation by employing 
the Euclidean distance between two farms, considering their real Cartesian coordinates; (ii) total cost, computed 
employing the flat tariffs described in Section 2; (iii) total number of routes; and (iv) average utilization of vehicles, 
computed considering the utilization percentage of every vehicle used in every route of a complete solution. The 
algorithm is implemented in Python 3 and executed in a personal computer with 16 GB RAM and a 2.8 GHz Intel 
Core i7-1165G7 processor. 

Table 1 shows the average results after running our biased-randomized algorithm employing 44 instances. This 
table compares the results obtained when considering a non-reactive and a reactive biased-randomized (BR) heuristic. 
The latter refers to the procedure described in Section 3. The former refers to the case already described in the literature, 
in which the parameter 𝛽𝛽𝛽𝛽 of the geometric probability distribution must be fine-tuned by hand. In our experiments, 
our manual fine-tuning process found the best results when 𝛽𝛽𝛽𝛽 follows a uniform probability distribution between 0.01 
and 0.40. Both BR procedures employ a time limit of 60 seconds. Table 1 also shows the results obtained by the 
company in its real daily operations. Obviously, these results are independent of our both BR procedures. Four types 
of solutions are generated, where each one is the best-found solution assessed in terms of each aforementioned KPI. 
For instance, the Best-distance solution is the one that achieves the minimum distance. Hence, the reached value of 
the KPI Distance is underlined for this solution. The reasoning in this example can be extended for the rest of the 
KPIs. The greater the utilization, the better. The other KPIs have an opposite interpretation. Values obtained by the 
non-reactive BR are only slightly better than the ones yielded by the reactive BR, i.e., differences are minimal. 
Nevertheless, the non-reactive BR requires a few work hours for performing the fine-tuning process, whereas the 
reactive BR is automatic and does not require any fine-tuning. 

The average percentage difference between our solution and the company solution is shown in the columns Gap of 
Table 1. This indicator is computed considering the gap between each KPI obtained for each instance. A negative gap 
indicates that our solution outperforms the company's. If the gap is positive, then the smaller the gap, the better. Hence, 
a few results can be highlighted. Firstly, our heuristic always reaches a smaller cost than the company, regardless of 
the type of solution. Secondly, savings in distance provided by our heuristic are high when considering the Best-
distance solution. Thirdly, the company slightly outperforms our algorithm when considering the number of routes 
and the vehicle utilization. Finally, the cost is a KPI whose behavior is opposite to the rest of the indicators’, i.e., when 
the cost improves, the other KPIs worsen. This behavior is a result of considering the flat tariffs explained in Section 
2. 

The best-found distance and best-found cost gaps between our solution and the company solution for the 44 
instances are displayed in Fig. 3. This figure also shows a comparison between our both tested heuristics, i.e., non-
reactive BR (NR-BR) and reactive BR (R-BR). Regarding the distance, only a few instances exceed the 0% limit, i.e., 
our agile approach is able to outperform the company’s distance results for the vast majority of instances. Furthermore, 
our approach always reaches a negative gap in costs, which is a great result considering the tough restriction imposed 
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by the flat tariffs. Finally, Fig. 3 also shows that our reactive BR can yield solutions highly similar to the ones achieved 
by the non-reactive BR. 

Table 1. Average results considering different KPIs. 

Type of 
solution 

Non-reactive BR Reactive BR 
KPI KPI 

Distance Cost #Routes Utilization Distance Cost #Routes Utilization 
Real company 1153.6 5555.5 23.9 95.8% 1153.6 5555.5 23.9 95.8% 
Best-distance 1104.0 5541.7 24.7 92.5% 1106.6 5540.6 24.8 92.3% 

Best-cost 1201.3 5495.7 26.7 86.2% 1196.9 5497.5 26.8 86.1% 
Best-#routes 1178.8 5544.3 24.2 94.1% 1173.3 5542.4 24.3 93.8% 

Best-utilization 1168.5 5549.6 24.2 94.8% 1174.7 5548.6 24.3 94.6% 
 Gap Gap 

Best-distance -4.4% -0.2% 3.5% 3.3% -4.1% -0.3% 3.7% 3.5% 
Best-cost 4.3% -1.1% 12.3% 9.6% 4.0% -1.1% 12.6% 9.6% 

Best-#routes 2.0% -0.2% 1.4% 1.7% 1.5% -0.2% 1.7% 2.0% 
Best-utilization 1.1% -0.1% 1.4% 1.0% 1.7% -0.1% 1.7% 1.2% 

 

 

Fig. 3. Distance and cost gaps of our best-found solutions with respect to the company’s. 

5. Conclusions 

This work has proposed a reactive biased-randomized heuristic to solve a real-world rich vehicle routing problem 
for the distribution of animal food. A set of complex constraints have been considered, such as multi-compartment 
heterogeneous vehicles, flat tariffs, visit priorities, among others. Four KPIs have been proposed to assess the solutions 
quality. Advantages of employing our agile approach are mainly twofold. Firstly, our yielded results outperform the 
real company's outcomes in terms of traveled distance and distribution cost. These results are obtained in only a few 
seconds, whereas designing these routes by the company takes a few work hours. Secondly, results yielded by our 
reactive biased-randomized algorithm are highly competitive when compared with a non-reactive one. However, the 
latter requires a time-costly fine-tuning process, whereas our proposed heuristic does not require to perform this 
procedure. Future work includes considering inventory planning jointly with the vehicle routing. In this case, both 
food perishability conditions and a multi-period planning can be included. 
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