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Abstract

Whenever the closure of an open set is also open, it is called e-open and
if a space have a base consisting of e-open sets, it is called e-space. In
this paper we first introduce and study e-spaces and e-continuous func-
tions (we call a function f from a space X to a space Y an e-continuous
at x ∈ X if for each open set V containing f(x) there is an e-open set
containing x with f(U) ⊆ V ). We observe that the quasicomponent of
each point in a space X is determined by e-continuous functions on X
and it is characterized as the largest set containing the point on which
every e-continuous function on X is constant. Next, we study the rings
Ce(X) of all real valued e-continuous functions on a space X. It turns
out that Ce(X) coincides with the ring of real valued clopen continuous
functions on X which is a C(Y ) for a zero-dimensional space Y whose
elements are the quasicomponents of X. Using this fact we characterize
the real maximal ideals of Ce(X) and also give a natural representation
of its maximal ideals. Finally we have shown that Ce(X) determines
the topology of X if and only if it is a zero-dimensional space.
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1. Introduction

Throughout this article C(X) denotes the ring of all real-valued continuous
functions on a completely regular Hausdorff space X, and C∗(X) is the subring
of C(X) consisting of all bounded elements. For each f ∈ C(X), the set
Z(f) = {x ∈ X : f(x) = 0} is called the zero-set of f . If I is an ideal in
C(X), we denote Z[I] = {Z(f) : f ∈ I} and

⋂
Z[I] =

⋂
f∈I Z(f). Whenever⋂

Z[I] is nonempty, I is called fixed; else, free. Maximal ideals of C(X) are
precisely of the form Mp = {f ∈ C(X) : p ∈ clβXZ(f)} for each p ∈ βX,

where βX is the Stone-Čech compactification of X. More generally if A ⊆ βX,
we denote MA = {f ∈ C(X) : A ⊆ clβXZ(f)}. The fixed maximal ideals of
C(X) are the sets Mp = {f ∈ C(X) : p ∈ Z(f)}, for p ∈ X. The ideals Op =
{f ∈ C(X) : p ∈ intβXclβXZ(f)}, p ∈ βX in the context of C(X) are lower
bounds for prime ideals of C(X) in the sense that for every prime ideal P in
C(X), there exists a unique p ∈ βX such that Op ⊆ P ⊆ Mp; see Theorem
7.15 in [4]. More generally, for each A ⊆ βX the ideal OA is defined by the set
{f ∈ C(X) : A ⊆ intβXclβXZ(f)}. The reader is referred to [3], [4] and [7] for
undefined terms and notations concerning C(X) and the concepts of general
topology.

Let us give a brief outline of this article. In the next section we first observe
that the intersection of two e-open sets is a an e-open set and this follows that
the set Ce(X) consisting of real valued e-continuous functions on a space X
is a ring under pointwise addition and multiplication of functions. Next we
show that every open or dense subspace of an e-space is an e-space but not
every subspace (even a closed subspace) is necessarily an e-space. Section 3
is devoted to e-continuous functions. We observe in this section that each e-
continuous function on a space X is constant on every quasicomponent of X
and every subset of X with this property is in fact a quasicomponent of X.
This fact help us to define equivalence classes in βX for characterization of
maximal and real maximal ideals of Ce(X). The characterization of spaces
X for which Ce(X) or C∗e (X) (the subring of Ce(X) consisting of bounded
ones) coincides with one of the rings C(X) and C∗(X) are characterized. For
instance it is shown that Ce(X) = C(X) if and only if X is an e-space (zero-
dimensional) and Ce(X) = C∗(X) if and only if X is a pseudocompact e-
space (zero-dimensional). We also observe in this section that the rings Ce(X)
coincides with the rings of real valued clopen continuous functions on X which
are first introduced in [6] under the name of super continuous functions.

Finally in section 4 we characterize the maximal and real maximal ideals
of Ce(X). In [1] it is shown that the ring Cs(X) (=Ce(X)) of real valued
super (clopen) continuous functions on a space X is isomorphic with C(Xz)
for a zero-dimensional Xz. In that reference, for characterization of maximal
ideals of Cs(X) the authors have given a representation for maximal ideals
of C(Xz). In this section we present the characterization of maximal ideals
of Ce(X) by some equivalent classes in βX so that if we take X as a zero-
dimensional space they coincide with usual ones. Real maximal ideals of Ce(X)
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are also characterized and we have shown in this section that a space X is zero-
dimensional if and only if its topology coincides with the weak topology induced
by Ce(X) (C∗e (X)).

2. e-spaces

A set G in a topological space X is called extremely open (briefly e-open)
if G and clXG are open subsets of X. We call a subset of a topological space
an e-closed if its complement is an e-open. Equivalently, a set is e-closed if
and only if it is closed and its interior is also closed. Clearly every closed-open
(clopen) set in a topological space is an e-open set, but not conversely. For
example R \ {0} is an e-open subset of R which is not a clopen set. Moreover,
for each T1-space X, the set X \{x} is an e-open set for each x ∈ X. In fact, if
x is an isolated point of X, then X \ {x} is clopen, so it is e-open. Otherwise
X \{x} is open, since X is T1 and clX(X \{x}) = X is open. Thus every dense
open subset of a space is an e-open set. In particular an open subset G of R is
e-open in R if and only if R \G has an empty interior.

Using the following lemma, we show that the intersection of every two e-open
sets is an e-open set.

Lemma 2.1. Suppose that V is an e-open and U is an open subset of a space
X, then clX(V ∩ U) = clXV ∩ clXU .

Proof. Let p ∈ clXV ∩ clXU and W be an arbitrary neighborhood of p. Since
V is e-open, clXV is clopen and therefore it is a neighborhood of p and hence
(W ∩clXV )∩U 6= ∅. Thus W ∩(V ∩U) 6= ∅, which implies p ∈ clX(V ∩U). �

Now the proof of the following result is evident.

Corollary 2.2. In any space, the intersection of every two e-open sets is an
e-open set.

Corollary 2.2 is not true for an arbitrary intersection (union) of e-open sets.
In fact an arbitrary intersection of e-open sets, even clopen sets, need not be
even an open set. If X is a space and x ∈ X is the lone non-isolated point
of X, then for each x 6= y ∈ X, the set X \ {y} is e-open (clopen). Now
G =

⋂
x 6=y∈X(X \ {y}) = {x} which is not even open. Also an arbitrary union

of e-open sets need not be an e-open set. For example if we take X = { 1
n : n ∈

N} ∪ {0} as a subspace of R, then Gn = { 1
2n}, for each n ∈ N, is clopen and

hence e-open but
⋃
n∈NGn is not e-open because its closure is { 1

2n : n ∈ N}∪{0}
which is not open in X.

Since the intersection of two e-open sets in a topological space (X, τ) is an
e-open set by Corollary 2.2, the set of all e-open subsets of X form a base for a
topology τe on X. Whenever τe coincide with τ (i.e., τ = τe), we call the space
X an e-space.

Example 2.3. Whenever every open subset of a space has an open closure, i.e.,
if a space is extremally disconnected, then clearly it is an e-space. In particular,
every discrete space is an e-space. For a non-extremally disconnected e-space
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we may consider the one-point compactification space X = {1, 1
2 , · · · ,

1
n , · · · }∪

{0} as a subspace of R. The set B = {{ 1
n} : n ∈ N} ∪ {G ⊆ X : X \

G is finite and 0 ∈ G} consisting of e-open (clopen) sets is a base for X. Since
the closure of the open set {1, 1

3 ,
1
5 , · · · } is not open, X is an e-space which is

not extremally disconnected.

Proposition 2.4. The trace of any e-open set on an open subspace and also
on a dense subspace is e-open.

Proof. First, suppose that X is an open subspace of Y and let V ⊆ Y be
e-open. Let V0 = V ∩X. Then using the previous lemma we have

clXV0 = clY V0 ∩X = clY V ∩ clYX ∩X = clY V ∩X.

Since V is an e-open subset of Y , clY V is clopen in Y and hence clXV0 is clopen
in X. Now, suppose that X is a dense subspace of Y and let V ⊆ Y be e-open.
If we put again V0 = V ∩X, it is clear that clY V0 = clY (V ∩X) = clY V because
X is dense in Y . Now clXV0 = X ∩ clY V implies that clXV0 is open. �

Corollary 2.5. Every open or dense subspace of an e-space is an e-space.

Every subspace (even every e-closed subspace) of an e-space need not be an
e-space; see the following example.

Example 2.6. Let

B = {U ⊆ R : U is open in R with usual topology and [0,∞) \ U is finite}.

Clearly B may be a base for a topology on R, say τ . Since each member of B
is an e-open set with respect to the topology τ , (R, τ) is an e-space. In fact
for each U ∈ B, we have clU = R and hence clU is open. Now consider the
subspace (−∞, 0] of (R, τ) which is e-closed. The collection of all subsets of
the form U ∩ (−∞, 0] forms a base for (−∞, 0], where U is an open subset of
R with usual topology. This implies that the space (−∞, 0] as a subspace of
(R, τ) has the usual topology which is not an e-space.

From [3], recall that a T1-space X is zero-dimensional if each point of X
has a neighborhood base consisting of clopen sets. Equivalently, a T1-space X
is zero-dimensional if and only if for each x ∈ X and each closed set A not
containing x, there exists a clopen set containing x which does not meet A. So
every zero-dimensional space is a completely regular Hausdorff e-space. The
converse is also true by the following proposition.

Proposition 2.7. A space is a T3-e-space if and only if it is zero-dimensional.

Proof. Let X be a T3-e-space. Let G be an open set in X and x ∈ G. Using
the regularity of the e-space X, there exists an open set H such that x ∈ H ⊆
clXH ⊆ G. Now, since X is an e-space, there is an e-open set K in X such that
x ∈ K ⊆ H and hence x ∈ K ⊆ clXK ⊆ clXH ⊆ G, where clXK is clopen, so
X is zero-dimensional. �
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Example 2.8. Using Proposition 2.7, each T1-(even T2-)-e-space need not be
zero-dimensional. Whenever X is an infinite set with cofinite topology, then
clearly X is a T1-e-space which is not even T2, so it is not zero-dimensional.
Moreover every T2-e-space is not necessarily a zero-dimensional space. In fact
as in Example 14.2 in [7], we let X be the real line with neighborhoods of any
nonzero point being as in the usual topology, while neighborhoods of 0 will
have the form U \A, where U is a neighborhood of 0 in the usual topology and
A = { 1

n : n = 1, 2, . . . }. Now let Y = X ∩Q as a subspace of X. Clearly Y is
a T2-space which is not T3 and B = {((α, β) \A) ∩Q : α, β ∈ R \Q} is a base
for Y consisting of e-open sets. So Y is an e-space and since Y is not T3, it is
not zero-dimensional.

A topological spaceX is said to be an extremely T1-space (briefly a T e1 -space)
if whenever x and y are distinct points in X, there is an e-open set containing
each not the other. We call a space X an e-Hausdorff (or a T e2 -space), if every
two different points of X can be separated by two disjoint e-open sets and from
[5] a space X is called ultra Hausdorff if every two different points of X can
be separated by two disjoint clopen sets. It is easy to see that T1-spaces and
T e1 -spaces coincide and the following result states that T e2 -spaces also coincide
with ultra Hausdorff spaces.

Proposition 2.9. A topological space is e-Hausdorff if and only if it is ultra
Hausdorff.

Proof. First we note that whenever Uand V are two disjoint e-open subsets of
a topological space X, then clXU ∩ clXV = ∅ by Lemma 2.1. Next if a space
X is an e-Hausdorff, for each two different points x and y in X there exist two
disjoint e-open subsets U and V of X containing x and y respectively. But by
Lemma 2.1, clXU and clXV are two disjoint clopen sets containing x and y
respectively, hence X is an ultra Hausdorff. Since every clopen set is an e-open
set, the proof of the converse is evident. �

Corollary 2.10. Let X be an e-space. Then X is Hausdorff if and only if it
is ultra Hausdorff.

Proposition 2.11. Every homeomorphic image of an e-space is an e-space.

Proof. Let X and Y be two homeomorphic spaces, X be an e-space and ϕ :
X → Y be an onto homeomorphism. Let V be an open subset of Y and y ∈ V .
Then there is x ∈ X such that y = ϕ(x). Since ϕ is continuous ϕ−1(V ) is an
open subset of X containing x and hence there exists an e-open subset U of X
such that x ∈ U ⊆ ϕ−1(V ). But ϕ is an open function, so ϕ(U) is open and
y ∈ ϕ(U) ⊆ V . Now it is enough to show that clY ϕ(U) is open, i.e., ϕ(U) is an
e-open set. Using Theorem 7.9 in [7], we have ϕ(clXU) = clY ϕ(U) and since
ϕ is open, ϕ(clXU) is an open subset of Y because clXU is an open subset of
X. This shows that clY ϕ(U) is open and we are through. �

Similar to definitions preceding the Proposition 2.9, we may define the e-
compactness of the spaces: A space is called e-compact if every e-open cover
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of the space has a finite subcover. Clearly every compact space is e-compact
and using the following proposition, every e-compact is countably compact.

Proposition 2.12. If a space X is compact, then it is e-compact and whenever
X is an e-compact T1-space, then it is countably compact.

Proof. The first part is evident. For the second part, suppose on the con-
trary that X is not countably compact. Then there is an infinite subset
A = {x1, x2, . . . , xn, . . . } of X without any cluster point. Now for each n ∈ N,
the set Gn = X \An, where An = {xn, xn+1, . . . } is an e-open set because An
is closed and clXGn = X \ Bn, where Bn ⊆ An will be open since Bn is also
closed. Clearly ∪∞n=1Gn = X and no finite number of Gn’s cover X, i.e., X is
not e-compact.. �

The converse of the second part of the above proposition is not true. To
see this consider the space of ordinals [1, ω1), where ω1 is the first uncountable
ordinal number. It is known that the space [1, ω1) is countably compact. But
{[1, α) : α ∈ [2, ω1)} is a clopen cover for [1, ω1) that can have no finite subcover.
We could not prove or disprove the converse of the first part of the proposition,
so we cite it here as a question for interested readers.

Question: Is every e-compact space a compact space?

Let A be a subset of a topological space X. An element x ∈ X is called
an e-cluster point of A if each e-open subset of X containing x meets A. The
set of all e-cluster points of A is called the e-closure of A and we denote it by
e-clXA. Clearly for each subset A of a space X, we have clXA ⊆ e-clXA and
the inclusion may be proper. For instance if we consider the open interval (0, 1)
in R, then clR(0, 1) = [0, 1], but e-clR(0, 1) = R.

As a closure of a set, the e-closure of a set A in a space X is the intersection
of all e-closed subsets of X containing A. Whenever

S = {H ⊆ X : H is an e-closed set and A ⊆ H},
then e-clXA =

⋂
H∈S H. In fact if x ∈

⋂
H∈S H and x /∈e-clXA, then there is

an e-open set G containing x such that G∩A = ∅. now X \G is an e-closed set
containing A which does not contain x, a contradiction. The reverse inclusion
is also routine. The e-interior is defined similarly and the e-interior of a set A
is denoted by e-intXA.

In contrast to the closure of a set which is closed, the e-closure of a set need
not be e-closed. To this end, we let X = {0, 1, 1

2 ,
1
3 , . . . } be a subspace of R

with usual topology and A = { 1
2 ,

1
4 , . . . }. Then e-clA = A ∪ {0} which is not

e-closed.

Proposition 2.13. Let A be an e-compact subset of a space X and X be
e-Hausdorff. Then A = e-clXA.

Proof. Let x ∈ e-clXA\A. Since X is e-Hausdorff, for each a ∈ A there exists a
clopen set Ua not containing x by Proposition 2.9. Now C = {A∩Ua : a ∈ A} is
an e-open cover of the e-compact subspace A and hence it has a finite subcover,
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say {A∩Ua1 , · · · , A∩Uan}, so A =
⋃n
i=1A∩Uai . But U =

⋃n
i=1 Uai is clopen

not containing x and hence X \ U is e-open containing x which does not meet
A, a contradiction. Therefore A = e-clXA. �

3. e-continuous functions

Definition 3.1. Let X and Y be topological spaces and f : X → Y be a
function. We say that f is e-continuous at a point x ∈ X if for each open set V
in Y containing f(x) there exists an e-open set U in X containing x such that
f(U) ⊆ V . A function f : X → Y is called e-continuous if it is e-continuous at
each point of X.

Clearly every e-continuous function is continuous, but the converse is not
necessarily true. For instance, the identity function i : R → R is continuous
but not e-continuous, because the only nonempty e-open subsets of R are dense
open subsets of R. Whenever X is an e-space, then every continuous function
on X is e-continuous. In fact if f : X → Y is continuous, x ∈ X and V is an
open subset of Y containing f(x), then there exists an open set G containing
x such that f(G) ⊆ V . But X is an e-space, so there is an e-open subset U of
X with x ∈ U ⊆ G. Thus f(U) ⊆ V implies f is indeed e-continuous.

As the continuity, the e-continuity of a function may be stated via the inverse
images of the open sets under the function and other similar standard condi-
tions. The proof of the following proposition is analogous to that of Theorem
7.2 in [7].

Proposition 3.2. Let X and Y be topological spaces and f : X → Y be a
function. Then the following statements are equivalent.

(1) f is e-continuous.
(2) f−1(V ) is a union of e-open subsets of X for each open subset V of Y .
(3) f−1(H) is an intersection of e-closed subsets of X for each closed subset

H of Y .
(4) f(e-clXA) ⊆ clY f(A).

Proposition 3.3. An e-continuous image of an e-compact space is compact.

Proof. Let f : X → Y be e-continuous from X onto Y and X be e-compact.
Let C = {Vα : α ∈ S} be an open cover of Y . For each x ∈ X, there is α ∈ S
such that f(x) ∈ Vα. Since f is e-continuous, there exists an e-open set Gx in
X containing x with f(Gx) ⊆ Vα. Clearly X =

⋃
x∈X Gx and e-compactness

of X implies that X =
⋃n
i=1Gxi

for some x1, · · · , xn ∈ X. Since f(Gxi
) ⊆ Vαi

,
we have Y =

⋃n
i=1 Vαi , i.e., Y is compact. �

Whenever X is a topological space, we recall that for each x ∈ X, the largest
connected subset Cx of X containing x is the component of x. In fact Cx is
the union of all connected subsets of X containing x. The quasicomponent Qx
of x in X is the intersection of all clopen subsets of X which contain x. It
is well-known that Cx ⊆ Qx for each x and the inclusion may be proper, see
Exercise 26B in [7].
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If X and Y are topological spaces, then a function f : X → Y is called
clopen continuous at x ∈ X if for each neighborhood V of f(x), there is a
clopen subset of X containing x such that f(U) ⊆ V . The clopen continuous
functions and also the rings of real valued clopen continuous functions are
studied in [6] and [1] respectively. Clearly every clopen continuous function
f : X → Y is e-continuous and whenever Y is a T3-space, the converse is also
true.

Theorem 3.4. Let X and Y be topological spaces and f : X → Y be an
e-continuous function. Then the following statements hold.

(1) If Y is a T2-space, then f is constant on each quasi-component Qx,
x ∈ X.

(2) If Y is a T3-space, then f is clopen continuous.

Proof. (1) Since Y is Hausdorff, for each y ∈ Y ,where y 6= y0 = f(x0), there
exists an open set V in Y such that y0 ∈ Y \ clY V and y ∈ V . By the e-
continuity of f there is an e-open set Gy in X containing x0 such that f(Gy) ⊆
Y \ clY V . But f is also continuous, so f(clXGy) ⊆ clY f(Gy) ⊆ clY (Y \ V ) =
Y \V . Since Qx0 ⊆

⋂
y0 6=y∈Y clXGy and y /∈ f(clXGy) (for otherwise, y ∈ Y \V

which is impossible), y /∈ f(Qx0) for each y ∈ Y with y 6= y0. This implies that
f(Q0) = y0.

(2) Let x ∈ X and V be a neighborhood of f(x) in Y . Then there exists
an open subset W of Y containing f(x) with W ⊆ clYW ⊆ V by regularity of
Y . Since f is e-continuous, there exists an e-open subset U of X containing
x such that f(U) ⊆ W . Now f(clXU) ⊆ clY f(U) ⊆ clYW ⊆ V , because f is
continuous. But U is e-open, so clXU is clopen and we are through. �

The converse of part (2) of the above lemma is also true in the sense that
Qx for each x in a space X is in fact the largest subset of X containing x on
which every e-continuous function on X is constant.

Proposition 3.5. Let X be a space and Y be a Hausdorff space containing at
least two points. Then for each x ∈ X,

Qx = {y ∈ X : f(x) = f(y), for each e-continuous function f : X → Y }.
Proof. Whenever y ∈ Qx, then f(x) = f(y) for each e-continuous function
f : X → Y by Proposition 3.4. Conversely suppose that y /∈ Qx. Hence there
exists a clopen set U containing x but not y. Now define f : X → Y with
f(U) = y1 and f(X \ U) = y2, where y1 and y2 are two different points of Y .
Clearly f is e-continuous, f(x) = y1 6= y2 = f(y) and we are done. �

If X is a topological space and f : X → R is an e-continuous function, then
using Theorem 3.4, f is a clopen continuous, because R is a T3-space. Therefore
the ring of all real valued e-continuous functions Ce(X) on a topological space
X coincides with the ring Cs(X) consisting of real valued clopen continuous
functions. It is easy to see that Ce(X)(= Cs(X)) is an ordered ring which is a
subring of C(X) and the following lemma follows that Ce(X) is in fact a lattice
ordered ring. Using Theorem 3.4, whenever X is connected, then Ce(X) = R.
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We denote by C∗e (X) the set of all bounded members of Ce(X) and we call
X an e-pseudocompact space if Ce(X) = C∗e (X). Clearly every e-compact
space is e-pseudocompact by Proposition 3.3, but the converse is not true. For
example R with usual topology is e-pseudocompact, since it is connected and
each member of Ce(X) is constant by Theorem 3.4. But the e-open cover
{R \ {n, n + 1, . . . }}n∈N of R can have no finite subcover. It is also clear that
every pseudocompact space is e-pseudocompact, however the aforementioned
example shows that the converse is not necessarily true.

Whenever X is an e-space, then clearly C(X) coincides with Ce(X). By the
following proposition, the converse is also true if the space X is a completely
regular Hausdorff space. First we need the following lemma.

Lemma 3.6. Let X, Y and Z be topological spaces and f : X → Y , g : Y → Z
be functions. Then the following statements hold.

(1) If f is e-continuous and g is continuous, then g ◦ f : X → Z is e-
continuous.

(2) If g◦f is e-continuous and g is an open one-to-one continuous function,
then f is e-continuous.

Proof. It is evident. �

Our proof of the following proposition shows that the parts (1) and (2) are
equivalent for any space X. In the other words, for any space X the equality
C∗(X) = C∗e (X) implies C(X) = Ce(X).

Proposition 3.7. For a completely regular Hausdorff space X, the following
statements are equivalent.

(1) C∗(X) = C∗e (X).
(2) C(X) = Ce(X).
(3) The space X is an e-space.
(4) The space X is a zero-dimensional space.

Proof. Clearly (2) implies (1) and if (1) holds we let f ∈ C(X) and take a
homeomorphism φ : R→ (−1, 1). Then φ ◦ f is bounded e-continuous by part
(1). Now by Lemma 3.6 f will be e-continuous because φ is homeomorphism.
Hence C(X) = Ce(X), so (1) also implies (2). Using Proposition 2.7, (3) and
(4) are equivalent and clearly (3) implies (2). Thus it remains to show that (2)
implies (3). We note that the set {cozf : f ∈ C(X)} is a base for open subsets
of X by Theorem 3.2 in [4]. Now if x ∈ cozf for some f ∈ C(X) = Ce(X), then
f(x) 6= 0, hence for an open set V in R containing f(x) but not 0, there exists
an e-open set U containing x such that U ⊆ f−1(V ) ⊆ cozf . This implies that
the space X have a base consisting of e-open sets and we are through. �

By Proposition 3.7, whenever X is an e-space, then C(X) = Ce(X). More-
over if X is also e-pseudocompact, then Ce(X) = C∗e (X) implies that C(X) =
C∗e (X) ⊆ C∗(X) and hence X will be pseudocompact. Therefore in the follow-
ing proposition, we may replace “pseudocompact” with “e-pseudocompact”.
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Proposition 3.8. The following statements for a completely regular Hausdorff
space X are equivalent.

(1) C(X) = C∗e (X).
(2) Ce(X) = C∗(X).
(3) The space X is a pseudocompact e-space.
(4) The space X is a pseudocompact zero-dimensional space.

Proof. (1) ⇒ (2). First Ce(X) ⊆ C(X) = C∗e (X) ⊆ C∗(X). Next C∗(X) ⊆
C(X) = C∗e (X) ⊆ Ce(X). Hence Ce(X) = C∗(X).

(2) ⇒ (3). The equality Ce(X) = C∗(X) implies that C∗e (X) = Ce(X) ∩
C∗(X) = C∗(X). Hence by Proposition 3.7 X is an e-space. On the other
hand, by the same proposition we have Ce(X) = C(X). Now using part (2),
C(X) = Ce(X) = C∗(X), so X is pseudocompact.

(3)⇒ (4)⇒ (1). By Propositions 2.7 and 3.7, the proof is evident. �

4. Characterization of maximal and real maximal ideals of rings
of real valued e-continuous functions

From now on we need some notations and details of the proof of Theorem
3.1 in [1] for later use. By Theorem 3.1 in [1], Cs(X), the ring of real valued
clopen continuous functions on a space X, is a C(Y ) for a zero-dimensional
space Y . As we have already observed Ce(X) coincides with Cs(X), so we use
Ce(X) instead of Cs(X) in the statement of our Theorem 4.1 which is the same
theorem in [1]. On the other hand, in order to familiar with some notations
in the proof of Theorem 3.1 in [1] and their applications, we have to give the
sketch of the proof.

Theorem 4.1. For every topological space X, there exists a zero-dimensional
space Xz such that Ce(X) ∼= C(Xz).

Proof. Let Xz be the decomposition {Qx : x ∈ X} on X, where Qx is the
quasicomponent of x and take the collection τ consisting of subsets G of Xz

such that
⋃
Qx∈GQx is a union of clopen subset of the space X. It is not hard

to see that τ is a topology on Xz and Xz with this topology is Hausdorff. To
see that Xz is zero-dimensional, let H be an open set in Xz and Qy ∈ H for
some y ∈ X. Then by definition T =

⋃
Qx∈H Qx is a union of clopen subsets of

X and y ∈ T . Therefore there is a clopen subset U of X such that y ∈ U ⊆ T .
Now take G = {Qz : z ∈ U}. Since

⋃
Qz∈GQz = U and U is clopen in X, the

set G is clopen in Xz and Qy ∈ G ⊆ H (to see that G ⊆ H let Qx ∈ G, then
x ∈ U ⊆ T , so there is Qz ∈ H with x ∈ Qz ⊆ H. Therefore Qx = Qz ∈ H).
This shows that Xz is indeed a zero-dimensional space.

Finally we define ϕ : Ce(X) → C(Xz) with ϕ(f) = fz for each f ∈ Ce(X),
where fz(Qx) = f(x) for each x ∈ X. By a routine proof we observe that
fz ∈ C(Xz) for each f ∈ C(X) and it is easy to see that ϕ is a one-to-one
homomorphism. To complete the proof it remains to show that ϕ is onto. To
this end, let g ∈ C(Xz). The function f : X → R defined by f(x) = g(Qx),
for all x ∈ X is e-continuous. In fact, if x ∈ X, f(x) = g(Qx) = c and
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ε > 0 is given, then there is an open set H in Xz containing Qx such that
g(H) ⊆ (c−ε, c+ε). Now it is enough to take the e-open subset G =

⋃
Qz∈H Qz

of X. Clearly x ∈ G and f(G) ⊆ (c − ε, c + ε) which implies that f ∈ Ce(X).
By definitions of f and ϕ it is clear that ϕ(f) = g and we have thus shown
that ϕ is onto. �

By the above proof, all members of C(Xz) will be of the form fz for some
f ∈ C(X). Using Corollaries 27.10 and 27.11 in [7], for a locally connected
space X we have Ce(X) ∼= C(Y ), where Y is a discrete space and in particular
for a compact locally connected space, we have Ce(X) ∼= Rn for some n ∈ N.

Now using the definition of the isomorphism ϕ, the following result is evident.

Lemma 4.2 ([1, Lemma 4.1]). An ideal I in Ce(X) is fixed if and only if ϕ(I)
is a fixed ideal in C(Xz). In particular, ϕ takes fixed maximal ideals to fixed
maximal ideals.

By this lemma as in Theorems 4.2 and 4.4 in [1], fixed and free maximal
ideals of Ce(X) will be characterized as follows.

Proposition 4.3. ([1], Theorem 4.2) For a topological space X, the fixed max-
imal ideals of Ce(X) are precisely of the form

MQx
= {f ∈ Ce(X) : Qx ⊆ Z(f)} = (

⋂
y∈Qx

My) ∩ Ce(X) x ∈ X.

The ideals MQx are distinct for distinct Qx and for each x ∈ X, Ce(X)/MQx

is isomorphic with the real field R.

Proposition 4.4 ([1, Theorem 4.4]). For every space X, the maximal ideals
of Ce(X) are precisely of the form

Mp = {f ∈ Ce(X) : p ∈ clβXzZ(fz)} , p ∈ βXz

As we observe the free maximal ideals of Ce(X) are characterized via the
zero-sets of Xz. These maximal ideals Mp so defined are in fact the maximal
ideals of C(Xz) which are not necessarily distinct for distinct p. For instance
whenever p ∈ X, then Mp = Mq, for each q ∈ Qp. Here we are going to
introduce more natural representation of the maximal ideals of Ce(X) by some
equivalence classes in βX which do not depend upon Xz. First we construct
equivalence classes in βX similar to Qx’s in X. Lemma 3.5 will show us the
right way to define such classes. For every p, q ∈ βX define p ≡ q if and only
if fβ(p) = fβ(q), for each f ∈ C∗e (X). Clearly, this defines an equivalence
relation on βX. Let Qp be the equivalence class containing p, for every p ∈
βX. In case X is a completely regular Hausdorff space, we also note that the
mapping σ : X → Xz with σ(x) = Qx for each x ∈ X has the Stone extension
σ̄ : βX → βXz, by Theorem 6.5 in [4]. This extension map is onto as σ is. to
characterize the maximal ideals of Ce(X), we first need the following lemmas.

Lemma 4.5. Let p, q ∈ βX. Then σ̄(p) = σ̄(q) if and only if q ∈ Qp.
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Proof. For each f ∈ Ce(X) we have fz(Qx) = f(x) for each x ∈ X and this
means that f ∈ C∗e (X) if and only if fz ∈ C∗(Xz). On the other hand f = fz◦σ
on X for each f ∈ Ce(X) implies that fβ = fβz ◦ σ̄ for each f ∈ C∗e (X). Now
suppose that q /∈ Qp, then there exists f ∈ C∗e (X) such that fβ(p) 6= fβ(q).
This implies that fβz ◦ σ̄(p) 6= fβz ◦ σ̄(q) and hence σ̄(p) 6= σ̄(q). Conversely,
let q ∈ Qp but σ̄(p) 6= σ̄(q). Then there exists g ∈ C∗(Xz) with gβ(σ̄(p)) 6=
gβ(σ̄(q). Since every member of C∗(Xz) is of the form fz for some f ∈ C∗e (X),
we may take g = fz for some f ∈ C∗e (X). Now fβz ◦σ̄(p) 6= fβz ◦σ̄(q) implies that
fβ(p) 6= fβ(q), so p is not equivalent to q , i.e., q /∈ Qp, a contradiction. �

Note that, σ takes zero-sets of members of Ce(X) to zero-sets in Xz and also
the images of any two disjoint zero-sets of members of Ce(X), are disjoint in
Xz, since σ(Z(f)) = Z(fz) for each f ∈ Ce(X). Also using Lemma 3.6, Ce(X)
is a lattice ring. In fact if f ∈ Ce(X) and we take g : R → R with g(x) = |x|
for each x ∈ R, then by Lemma 3.6 we infer that |f | ∈ Ce(X).

Lemma 4.6. Let f ∈ Ce(X). Then σ̄(p) ∈ clβXz
Z(fz) if and only if Qp ∩

clβXZ(f) 6= ∅.

Proof. Let Qp∩clβXZ(f) = ∅. Then by the relation defined preceding Lemma
4.5, for every a ∈ clβXZ(f), there exists ga ∈ C∗e (X) such that gβa (p) 6= gβa (a).

If we take gβa (p) = δ and gβa (a) = α and define ka = | ga−αδ−α | ∧ 1, then

clearly ka ∈ C∗e (X) by the argument preceding the lemma, 0 ≤ ka ≤ 1,
ka(a) = 0 and ka(p) = 1. Hence for every a ∈ clβXZ(f) we may assume
that 0 ≤ ga ≤ 1, gβa (p) = 1 and gβa (a) = 0. Again, letting ha = 2(ga ∨ 1

2 −
1
2 ),

we have ha ∈ C∗e (X), 0 ≤ ha ≤ 1, a ∈ intβXZ(hβa) and hβa(p) = 1. Since
clβXZ(f) is compact, there exists a finite subset {a1, a2, ..., an} of clβXZ(f),
such that clβXZ(f) ⊆

⋃n
i=1 Z(hβai). Then Z(f) ⊆ Z(h), where h =

∏n
k=1 hak

and evidently h ∈ C∗e (X), 0 ≤ h ≤ 1 and hβ(p) = 1. Hence Z(f) and
h−1[ 2

3 , 1] = Z(g), where g = h ∧ 2
3 −

2
3 ∈ Ce(X) are disjoint zero-sets of

Ce(X). Therefore by the argument preceding the lemma, σ(Z(f)) = Z(fz)
and σ(Z(g)) = Z(gz) are disjoint zero-sets in Xz. Moreover p ∈ clβXZ(g) im-
plies that σ̄(p) ∈ σ̄(clβXZ(g)) ⊆ clβXz

σ̄(Z(g)) = clβXz
σ(Z(g)) = clβXz

Z(gz)
and so σ̄(p) /∈ clβXz

Z(fz).
Conversely, suppose that q ∈ Qp ∩ clβXZ(f) 6= ∅. Using the previous

lemma σ̄(p) = σ̄(q), and since q ∈ clβXZ(f), we have σ̄(q) ∈ σ̄(clβXZ(f)) ⊆
clβXz σ̄(Z(f)) = clβXzσ(Z(f)) = clβXzZ(fz). Therefore σ̄(p) ∈ clβXzZ(fz).

�

Theorem 4.7. For every completely regular Hausdorff space X, the maximal
ideals of Ce(X) are precisely of the form

MQp

= {f ∈ Ce(X) : Qp∩clβXZ(f) 6= ∅} =

 ⋃
q∈Qp

Mq

∩Ce(X) , p ∈ βX,

and they are distinct for distinct Qp.
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Proof. Using the previous lemma and Theorem 4.4, the proof of the first part is
evident. For the second part, let Qp 6= Qq. Then q /∈ Qp and hence σ̄(p) 6= σ̄(q)
by Lemma 4.5. Now there exists fz ∈ C∗(Xz) such that σ̄(p) ∈ clβXzZ(fz) and
σ̄(q) /∈ clβXz

Z(fz). This means that Qp∩clβXZ(f) 6= ∅ but Qq∩clβXZ(f) = ∅
by Lemma 4.6. Therefore f ∈MQp \MQq

, i.e., MQp 6= MQq

. �

We may directly obtain the fixed maximal ideals of Ce(X) from Theorem
4.7 which are characterized in Proposition 4.3.

Corollary 4.8. Let X be a completely regular Hausdorff space and p ∈ βX.
Then the maximal ideal MQp

is fixed if and only if MQp

= MQx
for some

x ∈ X.

Proof. Whenever MQp

= MQx
, clearly MQp

is fixed. Conversely, let MQp

be

fixed. Then there is x ∈ X such that x ∈ Z(f) for each f ∈ MQp

. Using
Proposition 3.4, f(Qx) = 0, ∀f ∈ MQp

. This means that MQp ⊆ MQx
and

hence MQp

= MQx
because MQp

is maximal. �

Remark 4.9. As we observed in Theorem 4.7, MQp

= (
⋃
q∈Qp Mq)∩Ce(X) for

each p ∈ βX while for fixed maximal idealsMQx
, we haveMQx

= (
⋂
y∈Qx

My)∩
Ce(X). The reason is that the equivalence classes Qp’s are constructed by a
bit different relation which is defined preceding Lemma 4.5 and in contrast to
Qx’s, they are not necessarily the quasi components of βX. In fact Qp for each
p ∈ βX is contained in the quasicomponent of p in βX. To see this let q ∈ Qp
but not in the quasicomponent of p in βX. Then there is a clopen set G in
βX such that p ∈ G but q /∈ G. Now define g ∈ C(βX) with g(G) = 0 and

g(βX \ G) = 1. Clearly g|X ∈ C∗e (X) and g|βX = g separates p and q, i.e.,
q /∈ Qp.

Moreover, as the representation ofMQp

’s, we may wrightMQx
= (

⋃
y∈Qx

Mx)∩
Ce(X), in fact MQx

= My ∩ Ce(X) for each y ∈ Qx. To this end, whenever
f ∈ Ce(X), then for y ∈ Qx, we have f(y) = 0 if and only if f(Qx) = f(Qy) = 0
by proposition 3.4.

Since every element of βXz is of the form σ̄(p), p ∈ βX, the ideal Oσ̄(p)

is defined as usual by the set {fz ∈ C(Xz) : σ̄(p) ∈ intβXz
clβXz

Z(fz)}. The

related ideals in Ce(X) are ϕ−1(Oσ̄(p)), p ∈ βX and we are to characterize
them by the following lemma and corollary.

Lemma 4.10. Let f ∈ Ce(X) and p ∈ βX. Then σ̄(p) ∈ intβXz
clβXz

Z(fz) if
and only if Qp ⊆ intβXclβXZ(f)

Proof. Let σ̄(p) ∈ intβXz
clβXz

Z(fz). Then there exists gz ∈ C∗(Xz) (g ∈
C∗e (X)) such that gβz (σ̄(p)) = 1 and cozgβz ⊆ intβXz

clβXz
Z(fz). Therefore

cozgz ⊆ Z(fz) which implies that fzgz = 0 whence fg = 0. On the other hand,
since g = gz ◦ σ on X, we have gβ = gβz ◦ σ̄ and hence gβ(p) = 1. Now fg = 0
implies that clβXZ(f) ∪ clβXZ(g) = βX or equivalently, βX \ clβXZ(g) ⊆
clβXZ(f). Using the equivalence relation defined preceding Lemma 4.5, for
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every q ∈ Qp we have gβ(q) = gβ(p) = 1. Hence

Qp ⊆ βX \ clβXZ(g) ⊆ intβXclβXZ(f).

For the converse, suppose that Qp ⊆ intβXclβXZ(f). By a similar argument
in the proof of Lemma 4.5, there exists an e-continuous function h ∈ C∗e (X)
such that hβ(p) = 1 and βX \ intβXclβXZ(f) ⊆ clβXZ(h). Thus cozhβ ⊆
intβXclβXZ(f), whence cozh ⊆ Z(f) and hence fh = 0 which implies that
fzhz = 0. Moreover, since hβ = hβz ◦ σ̄ and hβ(p) = 1, we have hβz (σ̄(p)) = 1
which means that hz /∈ M σ̄(p). Therefore fz ∈ Oσ̄(p) by 7.12(b) in [4], so
σ̄(p) ∈ intβXz

clβXz
Z(fz). �

Now, by the above lemma and the isomorphism ϕ : Ce(X) → C(Xz), we
have the following corollary.

Corollary 4.11. For each p ∈ βX,

OQ
p

:= ϕ−1(Oσ̄(p)) = {f ∈ Ce(X) : Qp ⊆ intβXclβXZ(f)}.

Corollary 4.12. An ideal I in Ce(X) is contained in a unique maximal ideal
MQp

if and only if OQ
p ⊆ I.

Using Theorem 4.1, to study the algebraic properties of the rings Ce(X), the
space X may be considered as a zero-dimensional space. The following propo-
sition also states that Ce(X) (C∗e (X)) determines the topology of a Hausdorff
X if and only if it is zero-dimensional.

Proposition 4.13. Let X be a Hausdorff space. Then X is zero-dimensional
if and only if its topology coincides with the weak topology induced by Ce(X)
(C∗e (X)).

Proof. WheneverX is a zero-dimensional space, then Ce(X) = C(X) by Propo-
sition 3.7. On the other hand X is completely regular, so its topology coincides
with the weak topology induced by C(X) = Ce(X) (C∗(X) = C∗e (X)) by The-
orem 3.6 in [4]. Conversely suppose that the topology on X coincides with the
weak topology induced by Ce(X). Then the collection B = {f−1(a, b) : f ∈
Ce(X), a, b ∈ R} is a base for X. But each f−1(a, b) is a union of e-open subsets
of X by Proposition 3.2 and this shows that the space X has a base consisting
of e-open sets, so X is an e-space. On the other hand, using Theorem 3.7 in
[4] the space X is completely regular and hence X will be zero-dimensional by
Proposition 2.7. �

Remark 4.14. If we consider X to be zero-dimensional, then Ce(X) = C(X)
and every two different points p, q ∈ βX can be separated by fβ , for some
f ∈ C∗(X) = C∗e (X). This means that Qp is singleton for each p ∈ βX and
each maximal ideals MQp

of Ce(X) is exactly Mp.

The rest of this section is devoted to characterization of real maximal ideals
of Ce(X). If R is a commutative ring which contains the real field R, then a
maximal ideal M of R is said to be real whenever R

M ' R. In C(X) an ideal
I is a real maximal ideal if and only if for each f ∈ C(X), f − r ∈ I for some
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r ∈ R; see Corollary 3.3 in [2]. From 8B.2 in [4], for every f ∈ C(X), we denote
υfX = {p ∈ βX : f∗(p) 6= ∞}, where f∗ : βX → R∗ is the Stone extension of
f from X to the one-point compactification R∗ = R ∪ {∞}. The realcompact
spaces between X and βX are precisely the spaces υC′X =

⋂
f∈C′ υfX for a

subset C ′ of C(X). The space υC(X)X is called the Hewitt realcompactification
of X which is the smallest; see 8B.3 in [4].

Theorem 4.15. Let X be a completely regular Hausdorff space and p ∈ βX.
Then the following statements are equivalent.

(1) The maximal ideal MQp

of Ce(X) is real.
(2) Qp ∩ υCe(X)X 6= ∅.
(3) p ∈ υCe(X)X, or equivalently Qp ⊆ υCe(X)X.

Proof. First note that MQp

is real if and only if ϕ(MQp

) is real. On the other
hand, Lemma 4.6, implies that ϕ(MQp

) = M σ̄(p) and therefore, MQp

is real if
and only if σ̄(p) ∈ υXz.

(1)⇒(2). Suppose that Qp ∩ υCe(X)X = ∅. Let q ∈ Qp be arbitrary. Then
by the definition of υCe(X)X, there exists an e-continuous function f ∈ Ce(X)
such that f∗(q) =∞. Using Theorem 7.6 (a) in [4], |Mq(f)| is infinitely large
and therefore by Theorem 5.7 in [4] we infer that the zero-sets Zn = {x ∈ X :
|f(x)| ≥ n}, n ∈ N belong to Z[Mq]. Thus Lemma 4.6 implies that

σ(Zn) = {y ∈ Xz : |fz(y)| ≥ n} ∈ Z[M σ̄(p)],

and hence by Theorems 5.7 and 7.6(a) in [4] we conclude that f∗z (σ̄(q)) =
f∗z (σ̄(p)) = ∞. This is a contradiction by the preceding argument at the
beginig of the proof; see also Theorem 8.4 in [4].

(2)⇒(3). Let q ∈ Qp ∩υCe(X)X but p /∈ υCe(X)X. Then by the definition of
υCe(X)X, there exists an e-continuous function f ∈ Ce(X) such that f∗(p) =
∞. Since q ∈ υCe(X)X, so f∗(q) = r, for some real number r ∈ R. Let

g = r ∨ f ∧ (|r| + 1), then g ∈ C∗e (X) and gβ(q) = f∗(q) = r. But q ∈ Qp

and by the definition of Qp we have gβ(p) = gβ(q) = r, which implies that
f∗(p) = r, a contradiction.

(3)⇒(1). Using the argument at the beginning of the proof, it is enough to
show that σ̄(p) ∈ υXz. To do this, we need to prove that, f∗z (σ̄(p)) 6= ∞, for
every fz ∈ C(Xz); see Theorem 8.4 in [4]. In fact since f∗z ◦ σ̄ agree with f∗ on
X , we have f∗z ◦ σ̄ = f∗. Now (f∗z ◦ σ̄)(p) = f∗(p) implies that f∗z (σ̄(p)) 6=∞
because f∗(p) 6=∞ and we are done. �

Using Theorem 3.1 in [2] and our Theorem 4.15, we have also the following
elementwise characterization of real maximal ideals of Ce(X).

Proposition 4.16. Let I be an ideal of Ce(X). Then the following statements
are equivalent.

(1) The ideal I is a real maximal ideal of Ce(X).
(2) For each f ∈ Ce(X), there is r ∈ R such that f − r ∈ I.
(3) There exists p ∈ βX such that for each f ∈ Ce(X), Qp ∩ clβXf

−1(r) 6=
∅, for some r ∈ R.

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 2 447



S. Afrooz, F. Azarpanah and N. Hasan Hajee

References

[1] S. Afrooz, F. Azarpanah and M. Etebar, On rings of real valued clopen continuous
functions, Appl. Gen. Topol. 19, no. 2 (2018), 203–216.

[2] Z. Arjmandnezhad, F. Azarpanah, A. A. Hesari and A. R. Salehi, Characterizations of

maximal z◦-ideals of C(X) and real maximal ideals of q(X), Quaest. Math. 45 (2022),
1575–1587.

[3] R. Engelking, General Topology, Heldermann Verlag, Berlin-west 31, 1989.

[4] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, 1976.
[5] J. R. Porter and R. G. Woods, Ultra-Hausdorff H-closed extensions, Pacific J. Math. 84,

no. 2, (1979), 399–411.
[6] I. L. Reilly and M. K. Vamanamurthy, On super-continuous mappings, Indian J. Pure.

Appl. Math. 14, no. 6 (1983), 241–250.

[7] S. Willard, General Topology, Addison-Wesley Publishing Company, Inc. 1970.

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 2 448


