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Abstract

In this paper, we prove some fixed point theorems for Lipschitz type
mappings in the setting of metric spaces. Our results open up the unex-
plored area of fixed points of Lipschitz type mappings for investigation.
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1. Introduction and Preliminaries

In 2021, Popescu [9] introduced a new class of Picard operators, namely, the
Górnicki mappings, which extends the notion of enriched contractions [2].

The following result was obtained in [9]:

Theorem 1.1. Suppose that (X, d) is a complete metric space and T : X → X
is a mapping satisfying

d(Tx, Ty) ≤M [d(x, y) + d(x, Tx) + d(y, Ty)], (1.1)

where M ∈ [0, 1) and the following condition:
(C) Assume that there exist real constants a, b with a ∈ [0, 1) and b > 0 such
that for arbitrary x ∈ X there exists u ∈ X satisfying

(i) d(u, Tu) ≤ ad(x, Tx);
(ii) d(u, x) ≤ bd(x, Tx).

Then T has a fixed point.
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It is pertinent to mention here that Popescu augmented (1.1) with the con-
dition (C) above and named it as ”Górnicki mappings”. Condition (C) was
first appeared in Górnicki [5] in the study of fixed points of Lipschitz mappings.

The following example suggests that (1.1) may contain the class of non-
expansive mappings:

Example 1.2. Let X = [−1, 1] and d be the usual metric on X. Define
T : X → X by

T (x) =

{
0, if x ∈ (−1, 1);
−x, if x ∈ {−1, 1}.

Then T satisfies (1.1) for each M satisfying 1/2 ≤M < 1. Also, T satisfies the
following generalized non-expansive condition

d(Tx, Ty) ≤ max{d(x, y), d(x, Tx), d(y, Ty)}.
However, T does not satisfy the contractive condition

d(Tx, Ty) < max{d(x, y), d(x, Tx), d(y, Ty)}.

In [3], the author showed the significance of the class of Górnicki mappings.
It can easily be observed that condition (C) provides a natural setting for a
sequence {xn} ⊂ X to be a Cauchy sequence. Setting M = 1 in (1.1), we get
the triangle inequality, i.e., d(Tx, Ty) ≤ d(Tx, x) + d(x, y) + d(y, Ty). In this
case, since the triangle inequality always holds in a metric space assumption
(1.1) with M = 1 does not subject to mapping to any condition and, therefore,
the existence of a fixed point is not guaranteed. However, a fixed point is guar-
anteed if we assume the mapping to be continuous [3] or some other weaker
properties [7].

In the next section, we show that if we replace (1.1) by a weaker continuity
assumption, then the existence of fixed point is still guaranteed. If T is a self-
mapping of a metric space (X, d) then the set O(x, T ) = {Tnx | n = 0, 1, 2, . . .}
is called the orbit of T at x and T is called orbitally continuous [4] if z =
limi→∞ Tmix implies Tz = limi→∞ TTmix. Every continuous self-mapping is
orbitally continuous, but not conversely.

2. Main results

Theorem 2.1. Suppose that (X, d) is a complete metric space and T : X → X
is an orbitally continuous mapping satisfying (C). Then T has a fixed point.

Proof. Let x0 ∈ X be an arbitrary point. Then following the arguments given
in [9], one can easily show that {xn} is a Cauchy sequence. Since (X, d) is
complete, there exists a point z ∈ X such that xn → z as n→∞. Suppose that
T is orbital continuous. Orbital continuity of T implies that limn→∞ Txn = Tz.
This yields Tz = z, that is, z is a fixed point of T . �
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The following example illustrates Theorem 2.1.

Example 2.2. Let X = [−2, 10] and d be the usual metric on X. Define
T : X → X by

T (x) =

{
−8x− 6, if x ∈ [−2,−1];
x/2, if x ∈ (−1, 10].

Then for any x ∈ X, there exists y = 0 such that (i) and (ii) of (C) hold for
a = 1/2 and b = 2 [7]. Furthermore, since the orbit of T at x = 0 is constantly
0 and T is orbitally continuous at x = 0, we can conclude that T has a unique
fixed point at x = 0.

The following classes of functions were studied in [7]. Let f : X → [0,∞) be
a function. Let A denote the class of functions α : X ×X → [0,∞) satisfying:
for any sequence {xn} ⊂ X, if {fxn} converges, then lim sup

n→∞
α(xn, xn+1) < 1.

Let K denote the class of functions κ : X × X → [0,∞) satisfying: for any
sequence {xn} ⊂ X, if {fxn} is a non-increasing sequence converging to 0, then
the sequence {κ(xn, xn+1)} is bounded. Let L denote the class of functions
l : X × X → [0,∞) satisfying: for any sequence {xn} ⊂ X, if {fxn} is a
non-increasing sequence converging to 0, then the sequence {l(xn, xn+1)} is
bounded below away from zero. Let χ : [0,∞) → [0,∞) be a continuous
function satisfying χ(t) < t for all t > 0.

2.1. Fixed point results for a new class of contractive mappings. Mo-
tivated by the applicability of Condition (C’) (see below [7]) in the diverse
settings, we prove the following theorem which extends Theorem 4 of [9] (also
Theorem 1.4 of [6]).

Theorem 2.3. Suppose that (X, d) is a complete metric space and T : X → X
is a mapping satisfying

d(Tx, Ty) ≤ χ([d(x, y) + d(x, Tx) + d(y, Ty)]), (2.1)

and the following condition:
(C’) Assume that there exist α ∈ A(f), κ ∈ K(f) and l ∈ L(f), such that for
each x ∈ X, there exists y ∈ X satisfying

(i’) d(y, Ty) ≤ α(x, y)d(x, Tx);
(ii’) d(x, y) ≤ κ(x, y)[d(x, Tx)]l(x,y).

Then T has a unique fixed point.

Proof. Let x0 ∈ X be an arbitrary point. Then following the arguments given
in [7], one can easily show that d(xn, Txn)→ 0 and {xn} is a Cauchy sequence.
Since (X, d) is complete, there exists a point z ∈ X such that xn → z as n→∞.
Using (2.1), we get

d(Txn, T z) ≤ χ([d(xn, z) + d(xn, Txn) + d(z, Tz)]).

On letting n→∞, we obtain z = Tz and z is a fixed point of T . Uniqueness
of the fixed point follows from (2.1). �
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Replacing χ(t), α(x, y), κ(x, y) and l(x, y) in Theorem 2.3 by suitable func-
tions, we get the following corollary:

Corollary 2.4. Suppose that (X, d) is a complete metric space and T : X → X
is a mapping satisfying

d(Tx, Ty) ≤M [d(x, y) + d(x, Tx) + d(y, Ty)], 0 ≤M < 1. (2.2)

Further assume that there exist a ∈ (0, 1), b > 0 and l > 0 such that for each
x ∈ X, there exists y ∈ X satisfying d(y, Ty) ≤ ad(x, Tx) and d(x, y) ≤
b[d(x, Tx)]l. Then T has a unique fixed point.

On the other hand, Nguyen and Tram [7] followed a different approach. They
established the existence of fixed points of a mapping T satisfying Condition
(C’) in a complete metric (X, d) under the assumption that the function x→
d(x, Tx) has property (L). It is important to note that property (L) is weaker
than lower semi-continuity property [7].

The following property [1] may be used as an alternate to the notion of
orbital continuity.

If xn → z, then d(z, Tz) = 0; here lim
n→∞

d(xn, Txn) = 0. (2.3)

The following result is also valid if we replace (2.1) of Theorem 2.3 by (2.3).

Theorem 2.5. Suppose that (X, d) is a complete metric space and T : X → X
is a mapping satisfying Condition (C’) and (2.3). Then T has a fixed point.

Remark 2.6. Let f(y) = d(y, Ty) and assume f is lower semicontinuous. Then
(2.3) holds since

0 ≤ d(z, Tz) ≤ lim inf d(xn, Txn) = 0,

which implies that d(z, Tz) = 0 (since xn → z) [1].

2.2. Fixed point results for Lipschitz mappings. Lipschitz type mappings
in fixed point theory constitutes a very important class of mapping and include
contraction mappings, contractive mappings and nonexpansive mappings as its
subclasses. In metric fixed point theory, there is no general method for the
study of fixed points of Lipschitz type mappings and this area of study has
largely remained unexplored. A self-mapping T of a metric space (X, d) is said
to satisfy Lipschitz condition if d(Tx, Ty) ≤ kd(x, y) for some k > 0 and T
is called a generalized Lipschitz type mapping if T satisfies a condition of the
form (2.4) or some other condition of similar form [8]. In this paper, our results
open up an unexplored area for the investigation of fixed points of Lipschitz
type mappings.

In the next result, we consider the following classes of functions: Let ψ :
[0,∞) → [0,∞) be continuous and ψ(0) = 0. Let χ : [0,∞) → [0,∞) be
continuous satisfying χ(t) < t for all t > 0.
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Theorem 2.7. Suppose that (X, d) is a complete metric space and T : X → X
is a mapping satisfying Condition (C’) and

d(Tx, Ty) ≤ ψ(d(x, y)) + χ(d(x, Tx) + d(y, Ty)). (2.4)

Then T has a fixed point.

Proof. Let x0 ∈ X be an arbitrary point. Then following the arguments given
in [7], one can easily show that d(xn, Txn)→ 0 and {xn} is a Cauchy sequence.
Since (X, d) is complete, there exists a point z ∈ X such that xn → z as n→∞.
Using (2.4), we get

d(Txn, T z) ≤ ψ(d(xn, z)) + χ(d(xn, Txn) + d(z, Tz)).

On letting n→∞, we get

d(z, Tz) ≤ ψ(0) + χ(d(z, Tz)) < d(z, Tz),

a contradiction. Hence z = Tz and z is a fixed point of T . �

If we take ψ(t) = Mt, χ(t) = Kt, α(x, y) = a, κ(x, y) = b and l(x, y) = l in
Theorem 2.7, then we get the following:

Corollary 2.8. Suppose that (X, d) is a complete metric space and T : X → X
is a mapping satisfying

d(Tx, Ty) ≤Md(x, y) +K[d(x, Tx) + d(y, Ty)]. (2.5)

Further assume that there exist a,K ∈ (0, 1),M > 0, b > 0 and l > 0 such
that for each x ∈ X, there exists y ∈ X satisfying d(y, Ty) ≤ ad(x, Tx) and
d(x, y) ≤ b[d(x, Tx)]l. Then T has a fixed point.

We now give a fixed point theorem for a generalized non-expansive mapping.

Theorem 2.9. Suppose that (X, d) is a complete metric space and T : X → X
is a mapping satisfying Condition (C’) and

d(Tx, Ty) ≤ max{d(x, y),
K ′

2
[d(x, fx) + d(y, fy)]}, (2.6)

where 0 ≤ K ′ < 2. Then T has a fixed point.

Proof. The proof is similar to Theorem 2.1. �
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[2] V. Berinde and M. Pǎcurar, Approximating fixed points of enriched contractions in

Banach spaces, J. Fixed Point Theory Appl. 22, no. 2 (2020), 38.
[3] R. K. Bisht, A note on a new class of contractive mappings, Acta Math. Hungar. 166

(2022), 97–102.
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