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Abstract

We study a property about Polish inverse semigroups similar to the
classical theorem of Pettis about Polish groups. In contrast to what
happens with Polish groups, not every Polish inverse semigroup have
the Pettis property. We present several examples of Polish inverse sub-
semigroups of the symmetric inverse semigroup I(N) of all partial bi-
jections between subsets of N. We also study whether our examples
satisfy automatic continuity.
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1. Introduction

Let C be a class of topological groups, typically, C consists of all Polish groups
or more generally all second countable topological groups. A topological group
G has automatic continuity with respect to the class C if every homomorphism
from G into a group in C is continuous. There has been some increasing interest
in the phenomena of automatic continuity in Polish groups [8, 11, 12, 13]. A
typical argument to get automatic continuity for Polish groups uses the clas-
sical Pettis theorem: For every non meager Baire measurable subset A of a
Polish group G there is an open set V such that 1G ∈ V ⊆ A−1A (see, for in-
stance, [7, Theorem 9.9]). A well known consequence of this is that every Baire
measurable homomorphism between Polish groups is automatically continuous
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(see for instances [7, Theorem 9.10]). The restriction to Baire measurable ho-
momorphism is crucial, for instance, it is well known that the additive groups R
and R2 are isomorphic as vector spaces over the rationals but the isomorphism
cannot be continuous. To get the full automatic continuity the group has to
satisfy some special propery (like having ample generics [8] or the Steinhauss
property [12]). Automatic continuity of a Polish group is closely related to
the fact that the group carries a unique Polish group topology; the interested
reader can consult [11] for more information about it.

Recently, there have been some works about automatic continuity for Polish
semigroups (see [2, 3, 9, 10]). In this paper we explore a possible generalization
of Pettis theorem now for Polish inverse semigroups. We say that a topological
inverse semigroup S has the Pettis property if for every non meager A ⊆ S
with the Baire property, there is an idempotent e ∈ S and an open set V
such that e ∈ V and V ⊆ A−1A. As we said above, every Polish group
has the Pettis property as a topological inverse semigroup. In contrast, we
show that no every Polish inverse semigroup has the Pettis property. Another
difference between these two algebraic structures is that the Pettis property for
Polish inverse semigroups does not imply that Baire measurable homomorphism
are automatically continuous. One the purposes of this article is to provide
examples of Polish inverse semigroups realizing each Boolean combinations of
these properties.

The symmetric inverse semigroup I(X) on an arbitrary non empty set X
consists of all partial bijections between subsets of X. It is fundamental in
semigroup theory since, by a well known result of Wagner and Preston, every
inverse semigroup is isomorphic to a subsemigroup of I(X) for some X (see,
for instance, [6]). I(X) carries a very natural inverse semigroup topology intro-
duced recently in [2, 10] which generalizes the product topology on XX (with
X discrete). In the particular case of X being N, I(N) turns out to be a Polish
(i.e. completely metrizable and separable) inverse semigroup containing the
symetric group S∞(N) (with its usual product topology) as a Polish subgroup.
In [2] is shown that I(N) has automatic continuity with respect to all second
countable inverse semigroups. We show that I(N) does not have the Pettis
property. We study several Polish inverse subsemigroups of I(N). In partic-
ular, we analyze inverse subsemigroups generated by families of groups of the
form S∞(B) for B ⊆ N.

2. Preliminaries

A topological space is Polish if it is completely metrizable and separable.
We refer to [7] as a general reference for the descriptive set theory of Polish
spaces. N denotes the non negative integers. As usual, we identify a subset
A ⊆ N with its characteristic function and thus a collection C of subsets of
N is seen as a subset of 2N and we can talk about closed, open, Fσ, Gδ etc.
collections of subsets of N. A family of subsets of a set X is almost disjoint if
A ∩B is finite for every pair of sets in the family. A subset A of a topological
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space has the Baire property or is Baire measurable, if there is an open set V
such that A4V is meager.

A semigroup is a non-empty set S together with an associative binary oper-
ation ◦. To simplify the notation we sometimes write st in placed of s ◦ t. A
semigroup S is regular, if for all s ∈ S, there is t ∈ S such that sts = s and
tst = t. In this case, t is called an inverse of s. If each element have a unique
inverse, S is an inverse semigroup and, in this case, s−1 denotes the inverse of
s. An element s of a semigroup is idempotent if ss = s. We denote by E(S) the
collection of idempotents of S. We use Howie’s book [6] as a general reference
for semigroup theory

Let τ be a topology on a semigroup S. If the multiplication S × S → S is
continuous, we call S a topological semigroup. An inverse semigroup S is called
topological, if it is a topological semigroup and the function i : S → S, s→ s−1

is continuous. We refer the reader to [1] as a general reference for topological
semigroups.

The symmetric inverse semigroup on a set X is defined as follows:

I(X) = {f : A→ B| A,B ⊆ X and f is bijective}.

For f : A→ B in I(X) we denote A = dom(f) and B = im(f). The operation
on I(X) is the usual composition, namely, given f, g ∈ I(X), then f ◦ g is
defined by letting dom(f ◦ g) = g−1(dom(f) ∩ im(g)) and (f ◦ g)(x) = f(g(x)),
if x ∈ dom(f ◦ g). The idempotents of I(X) are the partial identities 1A : A→
A, 1A(x) = x for all x ∈ A and A ⊆ X. Notice that 1∅ is the empty function
which also belongs to I(X). Let S∞(X) be the symmetric group, that is, the
collection of all bijections from X to X.

The following functions play an analogous role in I(X) as the projection
functions do in the product space XX . Let Dx = {f ∈ I(X) : x ∈ dom(f)}
and 2X denotes the power set of X.

dom : I(X)→ 2X , f 7→ dom(f),
im : I(X)→ 2X , f 7→ im(f),
evx : Dx → X, f 7→ f(x), for x ∈ X.

For x, y ∈ X, let

v(x, y) = {f ∈ I(X) | x ∈ dom(f) and f(x) = y},
w1(x) = {f ∈ I(X) | x /∈ dom(f)},
w2(y) = {f ∈ I(X) | y /∈ im(f)}.

The sets v(x, y) are motivated by the usual subbase for the product topology
on XX . The topology generated by the sets v(x, y), w1(x) and w2(x) is denoted
by τpp. This topology was defined in [2, 10]. The topology τpp is the smallest
Hausdorff topology that makes continuous the functions dom, im and evx (for
x ∈ X), where 2X is given the product topology. For this paper, we work only
with X = N and, unless said otherwise, we always use this topology on I(N) and
all its subsemigroups. (I(N), τpp) is a Polish inverse semigroup. Convergence
in I(N) is as follows (see [10]).
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Proposition 2.1. Let (fn)n be a sequence in I(N) and f ∈ I(N). Then,
fn → f if and only if the following conditions hold.

(i) For all x ∈ dom(f) there is n0 ∈ N such that x ∈ dom(fn) and fn(x) =
f(x) for all n ≥ n0.

(ii) For all x 6∈ dom(f) there is n0 ∈ N such that x 6∈ dom(fn) for all
n ≥ n0.

3. The Pettis property for inverse semigroups

A topological inverse semigroup S has the Pettis property if for every non
meager A ⊆ S with the Baire property, there are an idempotent e ∈ S and an
open set V such that e ∈ V and V ⊆ A−1A.

Notice that if x is an isolated point of S and xx−1 is not isolated, then S does
not have the Pettis property by a trivial reason: take A = {x}, then A is not
meager but does not satisfy the conclusion of the Pettis property. In contrast to
what happens for topological groups, a non discrete topological semigroup can
have an isolated idempotent. The following proposition is a simple criterion
for having the Pettis property. It will be used in the sequel.

Proposition 3.1. Let S be a Polish inverse semigroup. Let I be the collection
of isolated points of S. Suppose that x−1x ∈ I for all x ∈ I. If there is a
countable collection {On : n ∈ N} of open subgroups of S such that I ∪

⋃
nOn

is dense in S, then S has the Pettis property.

Proof. Let A ⊆ S be a non meager set with the Baire property. As I ∪
⋃
nOn

is open dense, there are two cases to be considered:
(a) Suppose A ∩ I 6= ∅ and let x ∈ A ∩ I, then e = x−1x is isolated and

e ∈ int(A−1A).
(b) Suppose A ∩ I = ∅. Then, there is n such that A ∩ On is not meager.

Clearly A ∩ On has the Baire property. Since On is a Polish group, by Pettis
theorem, there is a set V ⊆ On open in On (hence, open in S too) containing
the identity e of On such that V ⊆ (A−1A) ∩On. �

It is a classical result that any non meager Baire measurable subgroup of a
Polish group is clopen (see, for instance, [7, Exercise 9.11]). Our next result
shows a similar fact for subgroups of Polish inverse semigroups.

Proposition 3.2. Let S be a Polish inverse semigroup with the Pettis property.
Let G be a subgroup of S and suppose that lx : S → S given by lx(y) = yx is
an open map for each x ∈ G. If G is non meager and Baire measurable, then
G is clopen.

Proof. By the Pettis property of S, there is an open set V such that 1G ∈ V ⊆
G. Since lx is an open map for each x ∈ G and G =

⋃
x∈G V x, G is open.

Let H = G. Then H is a Polish subgroup of S and G is an open subgroup
of H. Then H = G, as it happens on topological groups (if x ∈ H \ G, then
G ∩ Gx = ∅, which contradicts that both are open in H and G is dense in
H). �
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4. Inverse subsemigroups of I(N) generated by groups

In this section we study subsemigroups of I(N) generated by families of
subgroups of I(N), that is, by groups of the form S∞(A). More precisely, we
analyze the inverse submsemigroup of I(N) generated by a collection of groups
S∞(Bi) where {Bi : i ∈ I} is an almost disjoint family. We find conditions that
guarantee that those semigroups are closed in I(N) and thus Polish. We also
present examples of such semigroups with and without the Pettis property.

For each k ∈ N and A,B ⊆ N, we define

Ik(A,B) = {f ∈ I(N) | dom(f) ⊆ A, im(f) ⊆ B and |dom(f)| = k}.

Notice that I0(A,B) = {1∅}. Also, we let

S(A,B) = {f ∈ I(N) : dom(f) = A & im(f) = B}.

Proposition 4.1. Let {Bi | i ∈ N} be an almost disjoint family of infinite
subsets of N. Given n ∈ N we set

S =
⋃
i∈N

S∞(Bi) ∪
⋃
i,j∈N

n⋃
k=0

Ik(Bi, Bj).

Then, S is a subsemigroup of I(N) iff |Bi ∩Bj | ≤ n, for each i 6= j.

Proof. Suppose that S is a semigroup. Let i 6= j and f ∈ S∞(Bj) and g ∈
S∞(Bi). Then |dom(f ◦g)| = |g−1(im(g)∩dom(f))| = |Bi∩Bj |. Since f ◦g ∈ S
and Bj ∩ Bi is finite, there is 0 ≤ k ≤ n such that f ◦ g ∈ Ik(Bi, Bj). Thus,
|dom(f ◦ g)| = |Bi ∩Bj | = k ≤ n.

Conversely, suppose that |Bi∩Bj | ≤ n for all i 6= j and let f, g ∈ S. We have
to show that f ◦ g ∈ S. If f, g ∈ S∞(Bi), for some i ∈ N, then f ◦ g ∈ S∞(Bi).
If f ∈ S∞(Bj) and g ∈ S∞(Bi), with i 6= j, then f ◦ g ∈ Ik(Bi, Bj), where
k = |Bi ∩Bj |. Finally, if g ∈ Ik(Bi, Bj), then f ◦ g ∈ Il(Bi, Bp) for some l ≤ k
and p ∈ N. �

Proposition 4.2. Let {Bi | i ∈ N} be a family of infinite subsets of N such
that, for some fixed n, |Bi ∩Bj | = n for all i 6= j. Let

S = gen

(⋃
i∈N

S∞(Bi)

)
be the inverse subsemigroup generated by

⋃
i∈N S∞(Bi). Then

S =
⋃
i∈N

S∞(Bi) ∪
⋃
i,j∈N

n⋃
k=0

Ik(Bi, Bj). (4.1)

Proof. First, notice that ⊆ in (4.1) follows from Proposition 4.1.
To show ⊇ in (4.1), we first verify that In(Bi, Bj) ⊆ S for all i, j ∈ N.

Suppose i 6= j. Let f ∈ In(Bi, Bj), dom(f) = {r1, . . . , rn} and Bi ∩ Bj =
{s1, . . . , sn}. Pick g ∈ S∞(Bj) and h ∈ S∞(Bi) such that g(si) = f(ri) and
h(ri) = si for each i ∈ {1, . . . , n}. It is easy to see that f = g ◦ h, thus f ∈ S.
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It remains to show that In(Bi, Bi) ⊆ S for each i ∈ N. Let f ∈ In(Bi, Bi)
and fix j ∈ N with i 6= j. Then, dom(f) = {r1, . . . , rn} and Bi ∩ Bj =
{s1, . . . , sn}. Pick h ∈ S∞(Bi) and g ∈ S∞(Bj) such that h(ri) = si and
g(si) = f(ri) for each i ∈ {1, . . . , n}. Then, f = g ◦ 1Bj

◦ h, i.e. f ∈ S.
Next, we show that if Ik(Bi, Bj) ⊆ S, then Ik−1(Bi, Bj) ⊆ S for any k ≤ n.

Suppose i 6= j. Let f ∈ Ik−1(Bi, Bj), dom(f) = {r1, . . . , rk−1} and Bi ∩ Bj =
{s1, . . . , sn}. There is h ∈ Ik(Bi, Bj) such that dom(h) = {r1, . . . , rk−1, rk}
and h(ri) = si for each i ∈ {1, . . . , k− 1} and h(rk) 6∈ {sk, . . . , sn}. Also, there
is g ∈ S∞(Bj) such that g(si) = f(ri) for each i ∈ {1, . . . , k − 1}. Then we
have that f = g ◦ 1Bi

◦ h, and therefore f ∈ S.
It remains to verify that Ik−1(Bi, Bi) ⊆ S, whenever Ik(Bi, Bi) ⊆ S. Fix j 6=

i. Let f ∈ Ik−1(Bi, Bi), dom(f) = {r1, . . . , rk−1} and Bi ∩ Bj = {s1, . . . , sn}.
There is h ∈ Ik(Bi, Bi) such that dom(f) ⊆ dom(h) = {r1, . . . , rk−1, rk} and
h(ri) = si for each i ∈ {1, . . . , k − 1} and h(rk) 6∈ {sk, . . . , sn}}. Pick g ∈
S∞(Bi) such that g(si) = f(ri) for each i ∈ {1, . . . , k− 1}. Then we have that
f = g ◦ 1Bj

◦ h, i.e. f ∈ S.
Finally, we show that 1∅ ∈ S. Let i 6= j and choose g ∈ I1(Bi, Bj) such that

im(g) ∩Bi = ∅. Then for any f ∈ S∞(Bi), we have that f ◦ g = 1∅. �

Proposition 4.3. Let {Bi | i ∈ N} be a family of infinite subsets of N. Let
n ∈ N and A ⊆ N. We set

S(A) =
⋃
i∈A

S∞(Bi) ∪
⋃
i,j∈N

n⋃
k=0

Ik(Bi, Bj).

If |Bi ∩Bj | ≤ n for all i 6= j, then S(A) is closed in I(N).

Proof. Let (fk)k∈N be a sequence in S and f ∈ I(N) such that fk → f . We
need to show that f ∈ S. Let ik, jk ∈ N be such that dom(fk) ⊆ Bik and
im(fk) ⊆ Bjk . We consider two cases:

(a) Suppose dom(f) is finite. Since fk → f , there exists k0 such that
dom(f) ⊆ dom(fk) ⊆ Bik for each k ≥ k0 (see Proposition 2.1). Let p =
|dom(f)|, thus p ≤ n. Analogously, there is k1 ≥ k0 such that im(f) ⊆ im(fk) ⊆
Bjk for all k ≥ k1. Thus f ∈ Ip(Bik1

, Bjk1
).

(b) Suppose dom(f) is infinite. Since dom(fk) → dom(f) (see Proposition
2.1), we can assume that dom(fk) is infinite for all k. Thus, there is i such that
dom(fk) = Bi for all k. Thus f ∈ S∞(Bi). �

From Proposition 4.3 we also get the following.

Theorem 4.4. Let {Bi | i ∈ N} be a family of infinite subsets of N such that,
for some fixed n, |Bi ∩ Bj | = n for all i 6= j. Then, the inverse semigroup
generated by

⋃
i∈N S∞(Bi) is Polish. �

Now we present our first example of a topological inverse semigroup with
the Pettis property.
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Theorem 4.5. Let {Bi | i ∈ N} be a family of infinite subsets of N. Suppose
there is n such that |Bi ∩Bj | ≤ n for i 6= j. If n > 0, suppose furthermore that
{i ∈ N : F ⊆ Bi} is finite for all F ⊆ N of size n. Let

S =
⋃
i∈N

S∞(Bi) ∪
⋃
i,j∈N

n⋃
k=0

Ik(Bi, Bj).

Then S is a Polish inverse semigroup with the Pettis property.

Proof. From Propositions 4.1 and 4.3, S is a Polish inverse subsemigroup of
I(N). We use Proposition 3.1 to show that S has the Pettis property. Let I be
the collection of isolated points of S. By Proposition 4.3 we know that each
S∞(Bi) is open. Thus S \ (

⋃
n S∞(Bn) ∪ I) is closed and countable. Hence,⋃

n S∞(Bn) ∪ I is dense in S. So, it remains to verify that xx−1 ∈ I for all
x ∈ I.

If n = 0, then there are no isolated points as 1∅ = limi 1Bi
. Suppose n > 0.

We claim that

I =
⋃
i,j∈N

In(Bi, Bj).

In fact, let f ∈ In(Bi, Bj) and F = dom(f). By hypothesis, there is k0 such
that F 6⊆ Bk for all k > k0. Pick bk ∈ Bk \ F for all k ≤ k0. Let

V =
⋂
a∈F

v(a, f(a)) ∩
⋂
k≤k0

w1(bk) ∩ S.

We need to show that V = {f}. Suppose not and let g ∈ V with g 6= f .
Then |dom(g)| > n and it has to be infinite. Thus F ⊆ dom(g) = Bk for some
k ≤ k0. But this is impossible, as bk 6∈ dom(g). Conversely, if f ∈ S∞(Bi),
then f is not isolated, as each S∞(Bi) is open in S. On the other hand,
suppose f ∈ Ik(Bi, Bj) with k < n. For each l ∈ N, pick nl ∈ Bi \ dom(f) and
ml ∈ Bj \ im(f) with nl 6= nl′ for l′ 6= l. Consider gl = f ∪ {(nl,ml)}. Then
gl ∈ Ik+1(Bi, Bj) and gl → f . Thus f is not isolated.

Thus, it is now clear that xx−1 ∈ I for all x ∈ I and all hypothesis of
Proposition 3.1 are satisfied. �

The following example shows that the Pettis property for Polish inverse semi-
groups does not imply that a Baire measurable homomorphism is automatically
continuous.

Example 4.6. Suppose (Bn)n is a pairwise disjoint family of infinite subsets
of N. Let S =

⋃
n S∞(Bn) ∪ {1∅}. Let τ be the topology on S as a subspace

of I(N). Then (S, τ) is a Polish inverse semigroup with the Pettis property (by
Theorem 4.5). We will show that (S, τ) does not have automatic continuity
with respect to the class of Polish inverse semigroups. Notice that

⋃
n S∞(Bn)

is open in S and therefore Polish. Consider

S =

(⋃
n

S∞(Bn)

)
⊕ {1∅},
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where
⋃
n S∞(Bn) and {1∅} are given the subspace topology. It is well known

(and elementary) that the topological sum of Polish spaces is Polish. Let ρ be
this new Polish topology on S. It is easy to verify that (S, ρ) is a topological
inverse semigroup. We only need to show that the following set is ρ-open:

V = {(f, g) ∈ S × S : f ◦ g = 1∅}.

Suppose f ∈ S∞(Bi), g ∈ S∞(Bj) and f ◦ g = 1∅. Then, i 6= i and (f, g) ∈
S∞(Bi)× S∞(Bj) ⊆ V .

Finally, the identity function f : (S, τ)→ (S, ρ) is clearly a Borel measurable
homomorphism which is not continuous since 1∅ is not τ -isolated.

We show next that the previous result does not occur for a finite partition
of N, namely, the generated inverse semigroup has automatic continuity. Auto-
matic continuity for semigroups is obtained by lifting the same property from
a subgroup of the semigroup ([2, 3, 9]). Thus, we use the following property of
the symmetric group (see also [11, § 5]).

Theorem 4.7 (Kechris-Rosendal, [8]). S∞(N) has automatic continuity with
respect to the class of second countable topological groups.

Theorem 4.8. Let B1, . . . , Bm be a collection of infinite subsets of N. Suppose
there is n such that |Bi∩Bj | ≤ n for i 6= j and let S be the semigroup generated
by
⋃m
i=1 S∞(Bi). Then, S is a Polish semigroup that has the Pettis property.

Moreover, if the Bi’s are pairwise disjoint, then S has automatic continuity
with respect to the class of second countable topological inverse semigroups.

Proof. By an argument entirely analogous to that in the proof of Theorems 4.2
and Proposition 4.3 we have that S is closed in I(N) and

S =

m⋃
i=1

S∞(Bi) ∪
m⋃

i,j=1

n⋃
k=0

Ik(Bi, Bj).

Moreover, using the argument in the proof of Theorem 4.5, we have that S has
the Pettis property.

Suppose that B1, . . . , Bm are pairwise disjoint. Then,

S =

m⋃
i=1

S∞(Bi) ∪ {1∅}

and each S∞(Bi) is a clopen subset of S. We will show that S has automatic
continuity. Let T be a second countable topological inverse semigroup and
ϕ : S → T be a homomorphism. Let ϕi : S∞(Bi) → T be the restriction of
ϕi to S∞(Bi). Then, the range of ϕi is a second countable topological group.
Hence by Theorem 4.7, ϕi is continuous. Since each S∞(Bi) is clopen, ϕ is also
continuous. �

The next example shows that Theorem 4.5 can not be generalized to any
almost disjoint family of sets. It provides an example of a topological inverse
semigroup without the Pettis property.
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Example 4.9. Let {Cn : n ∈ N} be a partition of N\{0} and Bn = Cn∪{0}.
Then Bn ∩Bm = {0} for all n 6= m. Let S be the inverse semigroup generated
by
⋃
n S∞(Bn). Then,

S =
⋃
i∈N

S∞(Bi) ∪ I1(N) ∪ {1∅}

where I1(N) = I1(N,N). From Theorem 4.4 we know that S is a Polish inverse
subsemigroup of I(N). We will show that S does not have neither the Pettis
property nor automatic continuity.

We first characterize the isolated points of S. Let ux be the element of S
where dom(ux) = {x} and ux(x) = 0. The isolated points of S are

I = {ux : x ∈ N \ {0}} ∪ {u−1
x : x ∈ N \ {0}} ∪ {u−1

y ◦ ux : x, y ∈ N \ {0}}.

In fact, given x, y ∈ Bn \ {0} with x 6= y, z ∈ Bm \ {0} and m,n ∈ N, we have

{ux} = v(x, 0) ∩ w1(y) ∩ S,

{u−1
z ◦ ux} = v(x, z) ∩ w1(0) ∩ S.

On the other hand, u0 and 1∅ are not isolated: u0 = limn 1Bn
and 1∅ =

limn 1{n}.
S does not have the Pettis property because a somewhat trivial reason.

Let A = {u−1
1 }, then A is a closed not meager set as u−1

1 is isolated, but
A−1 ◦A = {u0} has empty interior.

Now we show that S does not have automatic continuity. As in Example
4.6, it suffices to show that the following topological sum makes S a topological
inverse semigroup:

S =

(⋃
i∈N

S∞(Bi) ∪ I1(N)

)
⊕ {1∅}

Let ρ be the new topology on S. We only need to show that the following set
is ρ-open

V = {(f, g) ∈ S × S : f ◦ g = 1∅}.
This can be verified considering several cases.

(i) Suppose f ∈ S∞(Bi) and f ◦ g = 1∅. Then, g ∈ I1(N) and it is easy
to verify that g has to be isolated. Thus (f, g) ∈ S∞(Bi) × {g} ⊆ V .
Analogously we treat the case g ∈ S∞(Bi) and f ◦ g = 1∅.

(ii) Suppose f, g ∈ I1(N) and f ◦ g = 1∅. If f and g are isolated, there
is nothing to show. Otherwise, suppose f = u0 and g ∈ I1(N) with
g 6= u0. Let dom(g) = {x}. Then, (f, g) ∈ w2(x)×{g} ⊆ V . The other
case is similar.

Now we present a characterization of the inverse semigroup associated to an
arbitrary almost disjoint family. For that we need to introduce a notion.
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Definition 4.10. Let {Bi | i ∈ N} be an almost disjoint family of infinite
subsets of N. Let m ∈ N and i, j ∈ N, an m-chain between Bi and Bj is a tuple
(k1, ..., kn) such that |Bi ∩Bk1 | ≥ m, |Bk1 ∩Bk2 | ≥ m, . . ., |Bkn−1 ∩Bkn | ≥ m,
and |Bkn ∩Bj | ≥ m. We allow i = j, but in this case we require that i 6= k1.

For i, j ∈ N, we let

Pi,j = sup{m ∈ N | there exists an m-chain between Bi and Bj}.

Notice that Pi,j could be equal to ∞.

Theorem 4.11. Let {Bi | i ∈ N} be an almost disjoint family of infinite subsets
of N. Let S be the inverse subsemigroup generated by

⋃
i∈N S∞(Bi). Then

S =
⋃
i∈N

S∞(Bi) ∪
⋃
i,j∈N

Pi,j⋃
k=1

Ik(Bi, Bj) ∪ {1∅}. (4.2)

Proof. We start by showing ⊆ in (4.2). For that end, it suffices to observe that
the right hand side of (4.2) is an inverse subsemigroup of I(N). In fact, suppose
first that f ∈ Ik(Bi, Bj) with k ≤ Pi,j and g ∈ Il(Br, Bs) with l ≤ Pr,s. Then
f ◦ g ∈ Iq(Br, Bj) for some q ≤ min{k, l}. We need to show that q ≤ Pr,j . In
fact, observe that an l-chain from Br to Bs followed by an k-chain from Bi to
Bj is a q-chain from Br to Bj as |Bs ∩ Bi| ≥ q. The other cases are similar
and left to the reader.

Conversely, let m ≤ Pi,j and f ∈ Im(Bi, Bj). Let (k1, . . . , kn) be a m-
chain from Bi to Bj . We will verify the case n = 1, the rest is completely
similar. Suppose |Bi ∩Bk| ≥ m and |Bk ∩Bj | ≥ m. Since |dom(f)| = m, pick
g1 ∈ S∞(Bi) and g2 ∈ S∞(Bk) such that

g1(dom(f)) ⊆ Bi ∩Bk,

g2(g1(dom(f))) ⊆ Bk ∩Bj ,

g2((Bk ∩Bj) \ g1(dom(f))) ∩Bk ∩Bj = ∅.

Finally, pick g3 ∈ S∞(Bj) such that g3(g2(g1(x))) = f(x) for all x ∈ dom(f).
The last condition above guarantees that dom(g3 ◦g2 ◦g1) = dom(f). Therefore
f = g3 ◦ g2 ◦ g1 and f ∈ S. �

5. More subsemigroups of I(N)

We present two general constructions of subsemigroups of I(N). The idea
is quite natural: we impose some restrictions on the domain and range of the
functions. We construct several Polish inverse subsemigroups of I(N) without
Pettis property. In particular, I(N) does not have this property.

For each collection C of subsets of N we put

S(C) = {h ∈ I(N) : dom(h) ∈ C and im(h) ∈ C}
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and
S+(C) = {h ∈ I(N) : (N \ dom(h)) ∈ C and (N \ im(h)) ∈ C}.

Notice that S+(P(N)) = I(N).
A collection I of subsets of N is an ideal, if I hereditary (i.e. if A ⊆ B ∈ I,

then A ∈ I) and it is closed under finite unions. An ideal is proper if N does
not belong to the ideal. We will use ideals which are Fσ as subsets of 2N. There
are plenty of such ideals (see, for instance, [14]). Suppose I is a proper ideal
of subsets of N and let I+ be P(N) \ I. Then

S(I) ⊆ S+(I+).

Proposition 5.1. Let C be a collection of subsets of N.

(i) If C is hereditary, then S(C) is an inverse subsemigroup of I(N).
(ii) If S(C) is an inverse subsemigroup of I(N), then C is closed under

intersections.
(iii) If C contains all finite sets, then S(C) is dense in I(N).
(iv) If C is a closed subset of 2N, then S(C) is closed in I(N).
(v) If C is upward closed, then S+(C) is an inverse subsemigroup of I(N).

If in addition, C is Gδ, then so is S+(C) and therefore it is a Polish
inverse subsemigroup of I(N).

Proof. (i) Suppose f, g ∈ S(C). Notice that dom(f ◦ g) ⊆ dom(g) and
im(f ◦ g) ⊆ im(f). Since C is hereditary, f ◦ g ∈ S(C).

(ii) Let A,B ∈ C. Since 1A ◦ 1B = 1A∩B ∈ S(C), then A ∩B ∈ C.
(iii) Let {xi : 1 ≤ i ≤ n}, {yi : 1 ≤ i ≤ n}, {ui : 1 ≤ i ≤ m} and

{zi : 1 ≤ i ≤ l} be finite subsets of N such that {xi : 1 ≤ i ≤ n}∩{ui :
1 ≤ i ≤ m} = ∅, {yi : 1 ≤ i ≤ n} ∩ {zi : 1 ≤ i ≤ l} = ∅. Consider
the following basic open set of I(N):

V =

n⋂
i=1

v(xi, yi) ∩
m⋂
j=1

w1(uj) ∩
l⋂

k=1

w2(zk).

Let f = {(xi, yi) : 1 ≤ i ≤ n}. As C contains all finite sets, f ∈
V ∩ S(C).

(iv) It follows from the continuity of the functions dom, im : I(N)→ 2N.
(v) Similar to (i) and (iv). It is a well known classical theorem that every

Gδ subset of a Polish space is also Polish.
�

In the previous proposition, the converse of (ii) is not true. Consider C =
{{0, . . . , n} : n ∈ N} and the function f : {0, 1} → {0, 1} given by f(0) = 1
and f(1) = 0. Notice that f ◦ 1{0} /∈ S(C).

Let [N]≤n be the collection of all subsets of N with at most n elements.
The inverse semigroup S([N]≤n) has been studied in the literature (see, for
instance, [5, 4]). It is easy to verify that [N]≤n is a closed subset of 2N, thus
from Proposition 5.1 we get
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Example 5.2. S([N]≤n) is a Polish inverse subsemigroup of I(N).

Example 5.3. Consider the Schreier family

C = {F ⊆ N : |F | ≤ min(F ) + 1}.
C is a closed subset of 2N homemorphic to the ordinal ωω + 1 (with the order
topology). Hence S(C) is a Polish inverse subsemigroup of I(N). It can be
shown that it has Cantor-Bendixon rank equal to ω.

Our next result provides examples of Polish inverse semigroups without the
Pettis property, which moreover do not have isolated points (in contrast with
Example 4.9).

Theorem 5.4. Let I be a proper Fσ ideal of subsets of N containing all finite
sets. Then S+(I+) is a Polish inverse subsemigroup of I(N) without the Pettis
property.

Proof. Let S = S+(I+). Since I is hereditary, I+ is upward closed and, by
Proposition 5.1, S is a topological inverse subsemigroup of I(N). Since I+ is
Gδ as a subset of 2N, S is a Gδ subset of I(N) and thus it is a Polish inverse
semigroup.

Now we show that S does not have the Pettis property. Let A ⊆ N with
A,Ac 6∈ I and J be the ideal generated by I ∪ {A}. Then J is a proper Fσ
ideal properly extending I. Let L = S+(J +). Since J + ⊆ I+, L ⊆ S. We will
show that L is a witness that S does not have the Pettis property.

First of all, L is an inverse semigroup and thus L = L−1 and L ◦ L = L.
Since J + is Gδ as a subset of 2N, so is L as a subset of S. Moreover, S(J ) ⊆ L
and every finite set belongs to J , thus L is dense in I(N) (by Proposition 5.1).
Hence L is non meager in S.

It remains to verify that L has empty interior in S. We need to show that
S \ L is dense in S. Let {xi : 1 ≤ i ≤ n}, {yi : 1 ≤ i ≤ n}, {ui : 1 ≤ i ≤ m}
and {zi : 1 ≤ i ≤ l} be finite subsets of N such that {xi : 1 ≤ i ≤ n} ∩ {ui :
1 ≤ i ≤ m} = ∅, {yi : 1 ≤ i ≤ n} ∩ {zi : 1 ≤ i ≤ l} = ∅. Let V be a non
empty basic open set of I(N):

V =

n⋂
i=1

v(xi, yi) ∩
m⋂
j=1

w1(uj) ∩
l⋂

k=1

w2(zk).

Let X = {xi : 1 ≤ i ≤ n}, Y = {yi : 1 ≤ i ≤ n}, U = {uj : 1 ≤ j ≤ m} and
Z = {zk : 1 ≤ k ≤ l}. Let B = Ac \ (X ∪ Y ∪ U ∪ Z) and f = 1B ∪ {(xi, yi) :
1 ≤ i ≤ n}. Clearly f ∈ V . On the other hand,

dom(f)c = (B ∪X)c = (A ∪X ∪ Y ∪ U ∪ Z) ∩Xc.

Since A = (A∩X)∪(A∩Xc), X ∈ I and A 6∈ I, dom(f)c ∈ J \I. Analogously,
im(f)c ∈ J \ I. Thus f ∈ V ∩ (S \ L). �

For I = ∅, I+ = P(N) and I(N) = S+(I+). The reader can verify that for
I = ∅ in the proof of Proposition 5.4 we still can conclude that f ∈ V ∩(S \L).
Thus, we get the following.
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Corollary 5.5. I(N) does not have the Pettis property.
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