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Abstract

In this paper, the concept of rough representation of a rough topological
group on a Banach space is explored. Mainly, the continuity and the
irreducibility of rough representations are studied.
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1. Introduction

The rough set theory was introduced by Pawlak in 1982 [14]. The original
definition of rough set was slightly modified by Bryniarski in [9]. The rough sets
theory is related to theories which deal with analysis of intelligent systems under
imperfect knowledge and incomplete information such as fuzzy sets theory,
bayesian inference, etc.

The theory of rough sets has been deepened in many directions. For instance,
Al-shami et al. in [1, 2] and Mustafa et al. in [11] constructed the supra-
topology and the infra-topology spaces by using Nk-neighborhood systems in-
duced from any binary relation; therefore, new rough set models emerged along
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with their lower and upper approximation spaces with medical applications. It
appears that neighborhood systems conduct to the improvement of the value
of accuracy measure.

The theory of rough sets has many applications in several areas, such as
business and finance, chemistry, computer engineering and electrical engineer-
ing, including data compression, control, digital image processing, digital signal
processing, parallel and distributed computer systems, power systems, sensor
fusion, fractal engineering, decision analysis and systems, economics, environ-
mental studies, digital image processing, computer science, medicine, molec-
ular biology, musicology, neurology, robotics, social science; see for instance
[3, 4, 5, 13, 15] and references therein.

In [8], Biswas and Nanda introduced the concept of rough group. In [7],
Bagirmaz et al. introduced the concept of topological rough group in an ap-
proximation space. Altassan et al. in [6] deepened the study of topological
rough groups by defining rough subgroup, rough homomorphism and other re-
lated topics and studied their major properties.
The main purpose of this paper is to study the representations of rough topo-
logical groups on a Banach space. Roughly speeking, a representation of a
group is a map that sends an element of the group to a linear transformation
of some vector space such that the group properties are preserved. Thus, a
representation of a rough group enables to transform any problem to be solved
on the rough group to a problem on the vector space that can be solved by
tools from linear algebra. Since linear algebra is a well-mastered theory with
valid applications, a representation theory of rough group can bring a new
perspective and an effective tools to the theory of rough sets.

The organization of the paper is as follows: Section 2 collects basic definitions
about rough sets, rough groups and a topological rough groups. In Section 3,
we prove our main results on rough representations of rough topological groups.

2. Rough topological groups

This section is devoted to the collection of definitions and results that we
may need. Our main reference here is the article [7].

Definition 2.1. Let U be a non-empty set (called the universe). Let R be an
equivalence relation on U . The pair (U,R) is called an approximation space.

Let (U,R) be an approximation space. For x ∈ U , the equivalence class of
x is denoted by [x]. For X ⊂ U , set

X = {x ∈ U : [x] ⊂ X} and X = {x ∈ U : [x] ∩X 6= ∅}.

The sets X and X are called the upper approximation and lower approximation
of X in (U,R) respectively. We have X ⊂ X ⊂ X.

Assume that U is endowed with a binary operation U × U −→ U . The
product of two elements x and y is denoted by xy.
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Definition 2.2 ([8]). Let (U,R) be an approximation space with a binary
operation. A subset G of U is called a rough group if the following properties
hold :

(1) ∀x, y ∈ G, xy ∈ G,
(2) ∀x, y, z ∈ G, (xy)z = x(yz),
(3) ∃e ∈ G, ∀x ∈ G, ex = xe = x,

(e is called a rough identity element of G.)
(4) ∀x ∈ G,∃y ∈ G, xy = yx = e.

(y is called the rough inverse of x and is denoted by x−1).

To define a topological rough group [7], one may assume that there is a
topology on G. Thus G is endowed with the induced topology.

Definition 2.3. A topological rough group is a rough group G together with
a topology on G such that

(1) the map (x, y) 7−→ xy is continuous from G×G into G,
(2) the map x 7−→ x−1 is continuous from G into G.

Example 2.4. Consider the approximation space (Q8, R) whereQ8 = {±1,±i,±j,±k}
is the quaternion group. Let ∗ be the quaternion multiplication.
Let Q8/R = {{±1}, {±i}, {±j,±k}}. Let G = {±i,−1}, then G = {±i,±1}
and G = {±i}. From Definition 2.2, since the conditions

(1) ∀x, y ∈ G, x ∗ y ∈ G,
(2) Association property holds in G,
(3) 1 ∗ (±i) = (±i) ∗ 1 = (±i) and 1 ∗ (−1) = (−1) ∗ 1 = −1 then 1 is the

rough identity element of G,
(4) (−i)−1 = i ∈ G and (−1)−1 = −1 ∈ G

hold, then G is rough group.
Let T = {∅, G, {−1}, {−i}, {i}, {−1,−i}, {−1, i}, {−i, i}, {−1,−i, i}} be a topol-
ogy on G, then TG = {∅, G, {−1}, {−i}, {i}, {−1,−i}, {−1, i}, {−i, i}} is the
relative topology on G.
Since the maps G×G→ G, (x, y) 7→ x∗y and G→ G, x 7→ x−1 are continuous,
then G is a topological rough group according to Definition 2.3.

3. Banach space representations of rough topological groups

In this section, we construct a representation theory of a locally compact
topological rough group on a Banach space. We follow the approach in [16] for
locally compact groups.
Let G be a rough group and let E be a complex separable Banach space. Denote
by L(E) the space of invertible bounded linear operators on E.

Definition 3.1. A rough representation of G on E is a homomorphism σ :
x 7−→ σ(x) from G into L(E), that is,

∀x, y ∈ G, σ(xy) = σ(x)σ(y). (3.1)
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Example 3.2. An example of rough group from [12] and an example of a
representation of a finite group from [10] inspired us to provide the following
example of rough representation.

Consider U as the symmetric group S3 = {e, (12), (13), (23), (123), (132)}
where e is the identity. The binary operation on S3 is the composition law.
Consider the subgroup H = {e, (12)} of S3 and endow S3 with the equivalence
relation R defined by

xRy if x−1y ∈ H.
The left cosets are eH = {e, (12)}, (1, 2)H = {e, (12)}, (13)H = {(13), (123)},
(23)H = {(23), (132)}, (123)H = {(123), (13)} and (132)H = {(132), (23)}.

Consider G = {e, (12), (123), (132)} a subset of S3. Then

G = {e, (12)} and G = S3.

One may check that the conditions of Definition 2.2 are satisfied. Therefore G
is a rough group.
Let {ei : i = 1, 2, 3} be the canonical basis of R3. Denote by M3(R) the space
of 3 × 3 matrices with real entries. The space M3(R) is identified with the
space of linear (necessary bounded) operators on E = R3. Let us consider the
map

σ : G = S3 −→M3(R)

x 7−→ σ(x) = (Lx)ij

where (Lx)ij is the matrix associated with the linear map Lx such that

Lxei = ex(i). The explicit computation shows that σ(e) =

 1 0 0
0 1 0
0 0 1

,

σ(12) =

 0 1 0
1 0 0
0 0 1

, σ(13) =

 0 0 1
0 1 0
1 0 0

, σ(23) =

 1 0 0
0 0 1
0 1 0

, σ(123) = 0 0 1
1 0 0
0 1 0

 and σ(132) =

 0 1 0
0 0 1
1 0 0

.

Finally, it is straightforward to verify that σ(xy) = σ(x)σ(y) for x, y ∈ S3.
Therefore, the map σ is a rough representation of G.

Definition 3.3. A locally compact rough group is a topological rough group G
such that G is a locally compact space, that is, every point in G has a compact
neighborhood.

Definition 3.4. Let G be a locally compact topological rough group. A rough
representation σ of G on E is said to be continuous if the map (x, a) 7−→ σ(x)a
is continuous from G× E into E.

Through the rest of this article, B(a, r) stands for the open ball of centre a
and of radius r.
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Theorem 3.5. If a rough representation σ of G on E is continuous then for
every a ∈ E, the map x 7−→ σ(x)a is continuous from G into E.

Proof. Suppose that a rough representation σ of G on E is continuous. Since G
is endowed with the induced topology, then a neighborhood of x in G is a set of
the form G ∩U where U is a neighborhood of x in G. Fix x0 ∈ G, given ε > 0
and a ∈ E, and let the open ball B(σ(x0)a, ε) be a neighborhood of σ(x0)a in
E. The map Φ : (x, a) 7→ σ(x)a from G×E → E is continuous, therefore there
exists a neighborhood U of x0 in G such that Φ(U × B(a, r)) ⊂ B(σ(x0)a, ε).
Especially, Φ(U × {a})) ⊂ B(σ(x0)a, ε). Thus ∀x ∈ U, ‖σ(x)a− σ(x0)a‖ < ε.
The set G ∩ U is a neighborhood of x0 in G such that ‖σ(x)a − σ(x0)a‖ < ε
whenever x lies in G ∩ U ; that is, if x ∈ G ∩ U , then σ(x)a belongs to the
set B(σ(x0)a, ε) i.e σ(G ∩ U)a ⊂ B(σ(x0)a, ε). Thus the map: x 7→ σ(x)a is
continuous from G into E. �

Theorem 3.6. If a rough representation σ of G on E is continuous then
for every compact subset Ω of G, the set of operators {σ(x) : x ∈ Ω} is
equicontinuous.

Proof. Assume that σ is a continuous rough representation of G on E. Set H =
{σ(x) : x ∈ Ω} where Ω is a compact subset of G. Let a ∈ E and ε > 0. Let
x ∈ Ω. Since the representation σ is continuous, then the map (y, b) 7→ σ(y)b is
continuous at (x, a). Hence there exists an open neighborhood of (x, a) of the
form (Ux ∩Ω)×B(a, η) where Ux is an open neighborhood of x in G and η is a
positive real such that ∀(y, b) ∈ (Ux∩Ω)×B(a, η), ‖σ(y)b−σ(x)a‖ < ε/2. On
the other hand, according to Theorem 3.5, as the representation σ is continuous,
the map s 7→ σ(s)a is continuous at x. Thus there exists an open neighborhood
(Vx ∩ Ω) of x in G, where Vx is a neighborhood of x in G such that if y ∈ Vx,

then ‖σ(y)b− σ(x)a‖ < ε/2. Set Ox = Ux ∩ Vx ∩ Ω. We have Ω =
⋃
x∈Ω

Ox. As

Ω is compact, then there exists a finite list of elements x1, ..., xn of Ω such that

Ω =

n⋃
i=1

Oxi . For z ∈ Ω, there exists i ∈ {1, ..., n} such that z ∈ Oxi . Then for

b ∈ B(a, η) we have ‖σ(z)b− σ(z)a‖ ≤ ‖σ(z)b− σ(xi)a‖+ ‖σ(xi)a− σ(z)a‖ <
ε/2 + ε/2 = ε. Thus H is equicontinuous at a. Since a is an arbitrary element
of E, then H is equicontinuous. �

Theorem 3.7. Let σ be a rough representation of G on E. If for every a ∈ E,
the map x 7−→ σ(x)a is continuous from G into E and if for every compact
subset Ω of G the set {σ(x) : x ∈ Ω} is equicontinuous, then σ is continuous.

Proof. We have to prove that the map Ψ : (x, a) 7→ σ(x)a is continuous from
G × E into E. Let ε > 0 and let (x, a) ∈ G × E, then we have [x] ∩ G 6= ∅,
thus there exists t ∈ [x] ∩ G. By Theorem 3.5, there exists a neighborhood
Ut = (tVe) ∩G of t (where Ve is a compact neighborhood of e) such that,

∀y ∈ Ut, ‖σ(y)a− σ(x)a‖ < ε

2(‖σ(xt−1)‖+ 1)
. (3.2)
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On the other hand, set Ux = xVe. Then Ux is a compact neighborhood of x in
G. By hypothesis, the set {σ(y) : y ∈ Ux} is equicontinuous. Thus there exists
η > 0 such that ∀ b ∈ B(a, η) and forall y ∈ Ux, we have,

‖σ(y)b− σ(y)a‖ < ε

2
. (3.3)

Put Vx = {y ∈ Ux : tx−1y ∈ Ut}. Then Vx is a neighborhood of x. The set
V(x,a) = Vx × B(a, η) is a neighborhood of (x, a). Then ∀(y, b) ∈ V(x,a), we
have,

‖Ψ(y, b)−Ψ(x, a)‖ = ‖σ(y)b− σ(x)a‖ ≤ ‖σ(y)b− σ(y)a‖+ ‖σ(y)a− σ(x)a‖
≤ ‖σ(y)b− σ(y)a‖+ ‖σ(xt−1tx−1y)a− σ(xt−1t)a‖
≤ ‖σ(y)b− σ(y)a‖+ ‖σ(xt−1)σ(tx−1y)a− σ(xt−1)σ(t)a‖
≤ ‖σ(y)b− σ(y)a‖+ ‖σ(xt−1)(σ(tx−1y)a− σ(t)a)‖
≤ ‖σ(y)b− σ(y)a‖+ ‖σ(xt−1)‖‖σ(tx−1y)a− σ(t)a‖

≤ ε

2
+ ‖σ(xt−1)‖‖σ(tx−1y)a− σ(t)a‖.

Furthermore, since for y ∈ Vx, tx−1y ∈ Ut according to (3.2), then

‖σ(tx−1y)a− σ(t)a‖ < ε

2(‖σ(xt−1)‖+ 1)
.

Hence

‖Ψ(y, b)−Ψ(x, a)‖ ≤ ε

2
+ ‖σ(xt−1)‖‖σ(tx−1y)a− σ(t)a‖

≤ ε

2
+

ε‖σ(xt−1)‖
2(‖σ(xt−1)‖+ 1)

<
ε

2
+
ε

2
= ε.

Thus Ψ : (x, a) 7→ σ(x)a is continuous from G × E into E. Hence, σ is
continuous. �

Theorem 3.8. Let σ be a homomorphism from G into L(E) such that

(1) the map x 7−→ σ(x)a from G into E is continuous for every a ∈ E,
and

(2) there is a neighborhood N of e in G such that ∀x ∈ N , a ∈ E, ‖σ(x)a‖ ≤
‖a‖.

Then σ is a continuous rough representation of G.

Proof. To prove that σ is a continuous rough representation of G, it suffices to
prove that the map Ψ : (x, a) 7→ σ(x)a is continuous at (e, a) ∈ G×E. By (2)
there exists a neighborhood N of e in G such that ∀x ∈ N ,∀b ∈ E, ‖σ(x)b‖ ≤
‖b‖. Since e ∈ G we have [e]∩G 6= ∅. Thus there exists t ∈ [e]∩G. According to
(1), the map x 7−→ σ(x)a is continuous at t. Hence there exists a neighborhood
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Vt = (tN ) ∩G of t in G such that,

∀x ∈ Vt, ‖σ(x)a− σ(t)a‖ ≤ ε

2(‖σ(t−1)‖+ 1)

Set Ve = {x ∈ N : tx ∈ Vt}. Then Ve is a neighborhood of e in G. Set
W(e,a) = Ve×B(a, ε2 ). Then W(e,a) is a neighborhood of (e, a) in G×E. Then
∀(x, b) ∈W(e,a), we have

‖Ψ(x, b)−Ψ(e, a)‖ = ‖σ(x)b− σ(e)a‖
≤ ‖σ(x)b− a‖
≤ ‖σ(x)b− σ(x)a‖+ ‖σ(x)a− a‖
≤ ‖σ(x)(b− a)‖+ ‖σ(t−1tx)a− σ(t−1t)a‖
≤ ‖σ(x)(b− a)‖+ ‖σ(t−1tx)a− σ(t−1t)a‖
≤ ‖b− a‖+ ‖σ(t−1)(σ(tx)a− σ(t)a)‖
≤ ‖b− a‖+ ‖σ(t−1)‖‖σ(tx)a− σ(t)a‖

<
ε

2
+ ‖σ(t−1)‖‖σ(tx)a− σ(t)a‖

As x ∈ Ve then tx ∈ Vt and we have

‖σ(x)a− σ(t)a‖ ≤ ε

2(‖σ(t−1)‖+ 1)

So ‖Ψ(x, b)−Ψ(e, a)‖ < ε

2
+ ‖σ(t−1)‖ ε

2(‖σ(t−1)‖+ 1)

<
ε

2
+
ε

2
= ε

Hence the map Ψ : (x, a) 7→ σ(x)a is continuous at (e, a) ∈ G× E. �

Definition 3.9. Let σi, i = 1, 2 two rough representations of G on Ei, i = 1, 2
respectively. They are said to be rough equivalent if there exists a homeomor-
phism S : E1 −→ E2 such that

∀x ∈ G, Sσ1(x) = σ2(x)S.

S is called an intertwining operator.

Definition 3.10. The rough representation σ of G in E is said to be rough
irreducible when E and {0} are the only two closed subspaces of E that are
invariant by all the operators σ(x) with x ∈ G.

Definition 3.11. A rough representation σ is said to be rough unitary when
E = H is a Hilbert space and 〈σ(x)u, σ(x)v〉 = 〈u, v〉, ∀x ∈ G,∀u, v ∈ E.

Theorem 3.12. Let σ be a rough unitary rough representation of G in the
Hilbert space H. Let H1 be a subspace of H. If H1 is invariant by σ then the
orthogonal H⊥1 of H1 in H is also invariant by σ.
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Proof. Assume that H1 is invariant. Let u ∈ H⊥1 , v ∈ H1, x ∈ G. we
have 〈σ(x)u, v〉 = 〈u, σ(x)∗v〉 = 〈u, σ(x−1)v〉 = 0 where σ(x−1)v ∈ H1 by
assumption that H1 is invariant. This implies σ(x)u ∈ H⊥1 . �

Theorem 3.13. Let σ and π be two rough representations of G on E and F
respectively and let S : E −→ F be an intertwining operator. Then the kernel
ker(S) of S is a subspace of E invariant by σ and the range ran(S) of S is a
subspace of E invariant by π.

Proof. It is clear that ker(S) is a subspace of E. If a ∈ ker(S), then for all
x ∈ G, S(σ(x)a) = (S ◦ σ(x))a = (π(x) ◦ S)(a) = π(x)(S(a)) = π(x)(0) = 0.
Hence σ(x)a ∈ kerS.
It is clear that ran(S) is subspace of F . If b ∈ ran(S), then there exists a ∈ E
such that S(a) = b. For all x ∈ G, π(x)b = π(x)(S(a)) = (π(x) ◦ S)(a) =
S ◦ σ(x)(a) = S(σ(x)a). Since σ(x)a ∈ E, then π(x)b ∈ ran(S).

�

Theorem 3.14. Let S : E −→ F be an intertwining operator of two rough
irreducible rough representations (σ,E) and (π, F ) of a rough group G. If (σ,E)
and (π, F ) are not rough equivalent, then S = 0.

Proof. If (σ,E) and (π, F ) are not rough equivalent, then S is not invertible.
Then we have two possibilities:

i) If S is not injective, then ker(S) 6= {0}. According to Theorem 3.13,
ker(S) is a subspace of E invariant by σ. But σ is irreducible. Therefore
ker(S) = E. Hence S = 0.

ii) If S is not surjective, then its range ran(S) is a proper subset of F . By
Theorem 3.13, ran(S) is a subspace of F which is invariant by π. But
π is irreducible. Therefore ran(S) = {0}. Hence S = 0.

�

4. Conclusion

Representations of rough topological groups have been studied. Mainly,
some of their algebraic and topogical properties have been scrutinized. As a
perspective, we plan to consider rough sets modeled from different types of
neighborhood systems (references [3, 5] will be useful). We will study their
realizations as objects of linear algebra.
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