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Hausdorff operators on weighted Banach spaces of type H∞

José Bonet

Abstract

Some criteria for the continuity of Hausdorff operators on weighted Banach spaces
of analytic functions with sup-norms are presented. The operator is defined in a
different way on spaces of entire functions and on spaces of analytic functions on the
disc. Both cases are analyzed. Our results complement recent work by Stylogiannis
and Galanopoulos, and by Mirotin.

1 Introduction.

The aim of this note is to study continuous Hausdorff operators on weighted Banach spaces
of holomorphic functions of type H∞, both in the case of spaces of entire functions, in
which the operator is defined as in [23], and in the case of the disc, where it is defined as
in [21]. See the definitions below. In fact, these two papers are the source of motivation
and inspiration for our results below. Our main results are Theorem 2.3, Corollary 2.4
and Theorem 3.1. Connections with multiplier operators and composition operators are
exhibited.

We describe first the spaces where the operators are defined. Let G be the unit disc D
or the whole complex plane C. We set R = 1 for the case of holomorphic functions on the
unit disc, and R = +∞ for the case of entire functions. A weight v is a continuous function
v : [0, R) → (0,∞), which is non-increasing on [0, R) and satisfies limr→R rnv(r) = 0 for
each n ∈ N. We extend v to D if R = 1 and to C if R = +∞ by v(z) := v(|z|). For such a
weight v, we define the following weighted Banach spaces of holomorphic functions on G

H∞
v (G) := {f ∈ H(G); ||f ||v := sup

z∈G
v(z)|f(z)| < ∞},

H0
v (G) := {f ∈ H(G); v|f | vanishes at infinity on G},

endowed with the norm ∥.∥v. A function g vanishes at infinity on G if for every ε > 0
there is a compact subset K of G such that |g(z)| < ε if z /∈ K. If G is an open subset of
C, we denote by H(G) the Fréchet space of all holomorphic functions on G endowed with
the topology τco of uniform convergence on the compact subsets of G.

For an analytic function f ∈ H({z ∈ C; |z| < R}) and r < R, we denote M(f, r) :=
max{|f(z)| ; |z| = r}. Using the notation O and o of Landau, f ∈ H∞

v (G) if and only if
M(f, r) = O(1/v(r)), r → R. Polynomials are contained in H0

v (G) and the closure of the
polynomials in H∞

v (G) coincides with H0
v (G), see e.g. [2].

We recall some examples of weights:
For R = 1,
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(i) v(r) = (1− r2)γ with γ > 0, which are the so-called standard weights on the disc, for
which H∞

v (D) are Korenblum type growth spaces; see Section 4.3 in [15].
(ii) v(r) = exp(−b(1− r)−a), a, b > 0, which are called exponential weights, and
(iii) v(z) = (log e

1−r2
)−α, α > 0, which are called logarithmic weights.

For R = +∞,
(i) v(r) = exp(−rα) with α > 0,
(ii) v(r) = exp(− exp(r)), and
(iii) v(r) = exp

(
− (log r)α

)
, where α > 1.

Banach spaces of the type mentioned above appear naturally in the study of growth
conditions of analytic functions and have been considered in many papers. We refer to
[1, 2, 5] and the references therein. Lusky [19] obtained the isomorphic classification of

these spaces. The space H∞
v (C) is denoted in [11] as the general weighted Fock space Fϕ

∞
of order infinity (i.e. with sup-norms) with v(z) = exp(−ϕ(|z|)), and ϕ : [0,∞[→]0,∞[
is a twice continuously differentiable increasing function. See [25] for Fock spaces. We
refer the reader to [15, 24, 25] for unexplained notation. In what follows N stands for the
natural numbers and we set N0 := N ∪ {0}.

2 Hausdorff operators on weighted Banach spaces of entire
functions.

Let µ be a positive measure on (0,∞). Stylogiannis and Galanopoulos [23] consider for-
mally the Hausdorff operator induced by the measure µ defined by

Hµ(f)(z) :=

∫ ∞

0

1

t
f
(z
t

)
dµ(t), z ∈ C,

where f ∈ H(C) is an entire function. The operator Hµ is studied in [23] on Fock spaces
Fp
α, 1 ≤ p ≤ ∞, α > 0. This operator is more general than the one considered in [16] for

Hardy spaces of the upper half plane, and was first studied in [22] for analytic Bergman
spaces of the upper half plane. See also [10, 14, 22]. Here we present some results about
the behaviour of Hµ when it acts on the weighted spaces H∞

v (C) and H0
v (C).

Proposition 2.1 Let v be a radial weight on C.

(1) If the operator Hµ : H∞
v (C) → H∞

v (C) is continuous, then

sup
n∈N0

∫ ∞

0

1

tn+1
dµ(t) ≤ ∥Hµ∥ < ∞, (2.1)

and the operator Hµ : H0
v (C) → H0

v (C) is also continuous.

(2) If the operator Hµ : H0
v (C) → H0

v (C) is continuous, then (2.1) holds.

(3) If the operator Hµ : H∞
v (C) → H∞

v (C) is compact, then

lim
k→∞

∫ ∞

0

1

tk
dµ(t) = 0.

Proof. (1) Set gm(z) := zm,m ∈ N0. Since gm ∈ H0
v (C) ⊂ H∞

v (C) and Hµ is well defined
and continuous on H∞

v (C), we conclude that the function

Hµ(gm) =
(∫ ∞

0

1

tm+1
dµ(t)

)
zm
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belongs to H∞
v (C). Moreover, for each m ∈ N0,

∥Hµ(gm)∥v =
(∫ ∞

0

1

tm+1
dµ(t)

)
∥zm∥v ≤ ∥Hµ∥ ∥zm∥v.

This implies

sup
n∈N0

∫ ∞

0

1

tn+1
dµ(t) ≤ ∥Hµ∥ < ∞.

As the polynomials are dense in H0
v and the continuous operator Hµ maps polynomials

into polynomials, we conclude that Hµ(H
0
v ) ⊂ H0

v .
(2) follows with the same argument, since the polynomials are contained in H0

v (C).
(3) The sequence hm := gm/∥zm∥v, m ∈ N0, is clearly bounded and tends to zero

uniformly on compact subsets of C. Indeed, fix R > 0, we have ∥zm∥v = supr≥0 r
mv(r) ≥

(2R)mv(2R). Then, for each z ∈ C, |z| ≤ R, we get |hm(z)| ≤ (1/2)m/v(2R) for each
m ∈ N, which yields limm→∞ sup|z|≤R |hm(z)| = 0.

If the operator Hµ : H∞
v (C) → H∞

v (C) is compact, then condition (2.1) holds and
the image of the unit ball of H∞

v (C) is relatively compact in H∞
v (C), hence the norm

topology and the weaker Hausdorff topology of uniform convergence on compact subsets
of C coincide on this image. Now, the sequence (Hµ(hm))m tends to zero uniformly on
the compact subsets, since, for each m ∈ N0, we have

Hµ(hm) =
(∫ ∞

0

1

tm+1
dµ(t)

)
hm,

and condition (2.1) holds. Therefore (Hµ(hm))m tends to zero in H∞
v (C). Clearly,

∥Hµ(hm)∥v =

∫ ∞

0

1

tm+1
dµ(t),

which completes the proof. 2

Lemma 2.2 (1) Condition (2.1) implies

sup
n∈N0

∫ ∞

0

1

tγn+1
dµ(t) < ∞,

for each γ > 0.
(2) If the sequence

( ∫∞
0

1
tk
dµ(t)

)
k∈N tends to zero, then

lim
β→∞

∫ ∞

0

1

tβ
dµ(t) = 0.

Proof. (1) Set

M(µ) := sup
n∈N0

∫ ∞

0

1

tn+1
dµ(t) < ∞,

and fix γ > 0. If n = 0, then
∫∞
0

1
tγn+1dµ(t) =

∫∞
0

1
t dµ(t) ≤ M(µ). We consider now the

interval [1,∞). Since γn+1 > 1 for each n ≥ 1, we have 1
tγn+1 ≤ 1

t for each t ∈ [1,∞) and∫∞
1

1
tγn+1dµ(t) ≤ M(µ) for each n ≥ 1. Now in the interval (0, 1) we proceed as follows.

Given n ≥ 1, select k ∈ N such that γn + 1 ≤ k + 1. We have 1
tγn+1 ≤ 1

tk+1 for each
t ∈ (0, 1). This yields ∫ 1

0

1

tγn+1
dµ(t) ≤

∫ 1

0

1

tk+1
dµ(t) ≤ M(µ).
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Therefore, for each n ∈ N0, we get∫ ∞

0

1

tγn+1
dµ(t) =

∫ 1

0

1

tγn+1
dµ(t) +

∫ ∞

1

1

tγn+1
dµ(t) ≤ 2M(µ).

(2) The proof is similar to part (1). 2

Theorem 2.3 Let α > 0 and β > 0. Let v be the weight on C defined by v(r) =
exp(−βrα). The following conditions are equivalent.

(i) Hµ : H∞
v (C) → H∞

v (C) is continuous.

(ii) Hµ : H0
v (C) → H0

v (C) is also continuous.

(iii) supn∈N
∫∞
0

1
tn+1dµ(t) < ∞.

In this case, we have

∥Hµ∥ ≤ sup
n∈N

∫ ∞

0

1

tnα+1
dµ(t).

Proof. Proposition 2.1 ensures that (i) implies (ii) and (ii) implies (iii).
Let us assume condition (iii) holds. By Remark 2.2,

M(µ) := sup
n∈N

∫ ∞

0

1

tαn+1
dµ(t) < ∞.

We show that Hµ : H∞
v (C) → H∞

v (C) is well defined and continuous. In particular, we
must prove that Hµ(f) is an entire function for each f ∈ H∞

v (C). To do this we apply the
Theorem in Mattner [20] and set F (z, t) := 1/tf(z/t), t ∈ (0,∞), z ∈ C, for f ∈ H∞

v (C).
For each z ∈ C the function F (z, .) is continuous, hence µ-measurable, and F (., t) is an
entire function for each t ∈ (0,∞). We have to prove that for each z0 ∈ C there is δ > 0
such that

sup
|z−z0|<δ

∫ ∞

0

1

t

∣∣∣f(z
t

)∣∣∣dµ(t) < ∞.

This will follow from our estimates below.
Given an arbitrary function f ∈ H∞

v (C) we have

|f(ζ)| ≤ exp(β|ζ|α)∥f∥v, ζ ∈ C.

Therefore, for each z ∈ C and t ∈ (0,∞), we get

1

t

∣∣∣f(z
t

)∣∣∣ ≤ 1

t
exp

(
β
( |z|

t

)α)
∥f∥v =

∞∑
n=0

1

n!

βn|z|nα

tnα+1
∥f∥v.

Then ∫ ∞

0

1

t

∣∣∣f(z
t

)∣∣∣dµ(t) ≤ ∥f∥v
∫ ∞

0

∞∑
n=0

1

n!

βn|z|nα

tnα+1
dµ(t) =

∥f∥v
∞∑
n=0

1

n!

(∫ ∞

0

1

tnα+1
dµ(t)

)
βn|z|nα ≤ M(µ)∥f∥v

∞∑
n=0

1

n!
(β|z|α)n = M(µ)∥f∥v exp(β|z|α).

This implies that the operator is well defined and

∥Hµ(f)∥ = sup
z∈C

|Hµ(f)(z)| exp(−β|z|α) ≤ M(µ)∥f∥v.
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2

Theorem 2.3 for α = 2 is proved in [23]. Our proof is close to the one given there.
The monomials are not a Schauder basis of the Banach space H0

v (C) for v(r) =
exp(−rα), r > 0, by Theorem 2.3 in Lusky [18]. This is why to see that Hµ acts as a
multiplier on H∞

v (C) requires a different proof below.

Corollary 2.4 Let α > 0 and β > 0. Let v be the weight on C defined by v(r) =
exp(−βrα). If supn∈N

∫∞
0

1
tn+1dµ(t) < ∞, then the continuous operator Hµ : H∞

v (C) →
H∞

v (C) acts on the Taylor expansion as a multiplier; that is,

Hµ

( ∞∑
n=0

anz
n
)
=

∞∑
n=0

an

(∫ ∞

0

1

tn+1
dµ(t)

)
zn.

Proof. By the Theorem in [20], see consequence (C3), for each f ∈ H∞
v (C) and each

n ∈ N0, we have( dn

dζn
Hµ(f)

)
(z) =

∫ ∞

0

1

t

∂n

∂ζn

∣∣∣
ζ=z

f
(ζ
t

)
dµ(t) =

∫ ∞

0

1

tn+1
f (n)

(z
t

)
dµ(t).

Hence, the entire function Hµ(f) satisfies for each n ∈ N0

1

n!
Hµ(f)

(n)(0) =
(∫ ∞

0

1

tn+1
dµ(t)

)f (n)(0)

n!
.

Consequently,

Hµ

( ∞∑
n=0

anz
n
)
=

∞∑
n=0

an

(∫ ∞

0

1

tn+1
dµ(t)

)
zn

for each f(z) =
∑∞

n=0 anz
n ∈ H∞

v (C). 2

It is important to point out that not all multipliers

Tγ

( ∞∑
n=0

anz
n
)
=

∞∑
n=0

anγnz
n,

with γ ∈ ℓ∞ define a continuous operator from H∞
v (C) into itself. This question is related

to the solid hull and core of the space H∞
v (C) which was investigated for spaces of type

H∞
v in [6, 7, 9].

Lemma 2.5 Let v be a radial weight on C or D. If m = (mn)n ∈ ℓ1, then the operators
Tm : H∞

v → H∞
v and Tm : H0

v → H0
v given by Tm(

∑∞
n=0 anz

n) =
∑∞

n=0mnanz
n are well

defined, continuous, their norm satisfies ∥Tm∥ ≤
∑

n |mn|, and they are also compact.

Proof. It is enough to show that Tm : H∞
v → H∞

v is well defined and continuous, since
Tm maps polynomials into polynomials and the subspace of polynomials is dense in H0

v .
Clearly Tm(f) is an entire function for each f ∈ H∞

v .
Cauchy inequalities imply |an|∥zn∥v ≤ ∥f∥v for each f =

∑∞
n=0 anz

n ∈ H∞
v and each

n ∈ N0, see e.g. the proof of Theorem 2.3 in [4]. This implies

∥
∞∑
n=0

mnanz
n∥v ≤

( ∞∑
n=0

|mn|
)
sup
n

|an|∥zn∥v ≤
( ∞∑

n=0

|mn|
)
∥f∥v.

This proves the continuity and the estimate of the norm.
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To show compactness, for each k ∈ N, define the operator Tm,k on H∞
v by

Tm,k(
∞∑
n=0

anz
n) =

k∑
n=0

mnanz
n.

This operator is continuous and has finite rank. Moreover, for each f ∈ H∞
v , we have

∥(Tm − Tm,k)(f)∥v ≤
( ∞∑

n=k+1

|mn|
)
∥f∥v,

and Tm is the limit in the operator norm of a sequence of finite rank operators, hence it
is compact. 2

Proposition 2.6 Let α > 0 and β > 0. Let v be the weight on C defined by v(r) =
exp(−βrα). If the sequence

( ∫∞
0

1
tk

dµ(t)
)
k∈N0

is in ℓ1, then the operator Hµ is compact

on H∞
v (C) and on H0

v (C).

Proof. This is a consequence of Corollary 2.4 and Lemma 2.5. 2

Observe that one cannot use the argument of the proof of Theorem 3.1 in [23] to prove
compactness of Hµ, because the monomials are not a Schauder basis of the Banach space
H0

v (C) for v(r) = exp(−rα), r > 0, by Theorem 2.3 in Lusky [18], as it was mentioned
above. On the other hand, Corollary 2.6 in [18] implies that the monomials are indeed a
Schauder basis of H0

v (C) for v(r) = exp(−(log r)2), r > 0.
If the monomials are a Schauder basis of H0

v (C), then Theorem 5.2 in [7] implies that
the spaces H∞

v (C) and H0
v (C) are solid, that is, if an entire function

∑∞
n=0 anz

n belongs
to one of these spaces and |bn| ≤ |an|, n ∈ N0, then

∑∞
n=0 bnz

n is also in the same space.
We have the following results. The first one improves Lemma 2.5 for certain radial weights
on C.

Proposition 2.7 Let v be the radial weight on C defined by v(r) = exp(−(log r)2), r > 0.
If m = (mn)n ∈ ℓ∞, then the operators Tm : H∞

v → H∞
v and Tm : H0

v → H0
v , given

by Tm(
∑∞

n=0 anz
n) =

∑∞
n=0mnanz

n, are well defined and continuous. Moreover Tm is
compact if and only if m ∈ c0.

Proof. The monomials are a Schauder basis of H0
v (C) by Corollary 2.6 in [18]. We can

apply Theorem 5.2 in [7] to conclude that H∞
v (C) and H0

v (C) are solid. Then, if m ∈ ℓ∞,
Tm is continuous on H∞

v (C) and H0
v (C) by the closed graph theorem.

By Theorem 2.5 in [18] there is d > 0 such that for all f(z) =
∑∞

n=0 anz
n ∈ H∞

v (C)
we have

sup
n∈N0

|an| exp(n2/4) ≤ ∥f∥v ≤ d sup
n∈N0

|an| exp(n2/4).

This implies ∥Tm(f)∥v ≤ d (supn∈N0
|mn|) ∥f∥v for each f ∈ H∞

v (C). Define, for k ∈ N,

Tm,k(

∞∑
n=0

anz
n) =

k∑
n=0

mnanz
n,

∞∑
n=0

anz
n ∈ H∞

v (C).

Assume that m ∈ c0. By the argument given above, we have ∥(T − Tm,k)(f)∥v ≤
d (supn≥k |mn|) ∥f∥v for each f ∈ H∞

v (C). Therefore Tm is compact, since it is the
limit of a sequence of finite rank operators in the operator norm.
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Conversely, if Tm is compact, then the image of the bounded sequence (zn/∥zn∥v)n,
which tends to zero uniformly on compact sets, satisfies that

(Tm(zn/∥zn∥v))n = (mnz
n/∥zn∥v)n

tends also to zero uniformly on compact sets, as m ∈ ℓ∞, hence it tends to zero in norm
too. This implies that m ∈ c0, because ∥Tm(zn/∥zn∥v)∥v = |mn| for each n ∈ N0. 2

Proposition 2.8 Let v be a radial weight on C such that the monomials are a Schauder
basis of H0

v (C). If supn∈N
∫∞
0

1
tn+1dµ(t) < ∞, then the operator

T
( ∞∑

n=0

anz
n
)
=

∞∑
n=0

(∫ ∞

0

1

tn+1

)
anz

n,

is continuous on H∞
v (C) and H0

v (C). Moreover, T (p)(z) = Hµ(p)(z) for each polynomial
p(z), and the operator Hµ has a unique continuous linear extension from the polynomials
to H0

v (C).

Proof. The continuity of T follows again from Theorem 5.2 in [7], which ensures that
H∞

v (C) and H0
v (C) are solid. 2

Example 2.9 (1) Let χ be the characteristic function of (1,∞). Consider the measure
dµ(t) = χ(t)1t dt, where dt is the Lebesgue measure. If f ∈ H(C) is an entire function, the
Hausdorff operator in this case satisfies

Hµ(f)(z) =

∫ ∞

0

1

t
f
(z
t

)
dµ(t) =

∫ ∞

1

1

t2
f
(z
t

)
dt =

∫ 1

0
f(sz)ds =

1

z

∫ z

0
f(ζ)dζ,

hence it coincides with the Hardy operator H, which was investigated for spaces of type
H∞

v (C) in Theorem 3.12 in [1]. It is shown there that H is continuous on H∞
v (C) and

that H2 = H ◦H is compact.
(2) Let v be the weight on C defined by v(r) = exp(−βrα) with α ≥ 1 and β > 0. Let

g ∈ H(C) be an entire function. According to Corollary 3.12 in [8], the Volterra operator

Vg(f)(z) :=

∫ z

0
f(ζ)g′(ζ)dζ, z ∈ C,

is continuous on H∞
v (C) if and only if g is a polynomial of degree less or equal the integer

part [α] of α. The Volterra operator is also related to the Hausdorff operator. Indeed, if
n ≤ [α] and g(z) = zn, we have

Vg(f)(z) = n

∫ z

0
f(ζ)ζn−1dζ = nzn

∫ ∞

1

1

t
f
(z
t

)dt
tn

= nznHµ(f)(z),

for the measure dµ(t) = χ(t)(1/tn)dt.

3 Hausdorff operators on weighted Banach spaces of ana-
lytic functions on the unit disc.

Let µ be a positive Radon measure on the unit disc D and letK be a µ-measurable function
on D. For w ∈ D, we denote by φw the automorphism of the disc defined by

φw(z) =
w − z

1− wz
, z ∈ D.

7



Mirotin [21] defines the Hausdorff operator associated with µ and K on the disc D by

HK,µ(f)(z) :=

∫
D
K(w)f(φw(z))dµ(w), z ∈ D,

for an analytic function f ∈ H(D) on the unit disc. He obtained conditions to ensure that
the operator acts continuously on the Bloch space, Bergman spaces and Hardy spaces.
Similarly defined operators for the Möbius invariant area measure were investigated on
some spaces of integrable functions by Karapetyants, Samko and Zhu in [17]. Our purpose
in this section is to add a few results about the continuity of the operator HK,µ when it
acts on spaces of type H∞

v (D) and H0
v (D). It turns out that this question is related to the

continuity of the composition operators Cφw : H∞
v (D) → H∞

v (D) for the automorphism
φw, w ∈ D. By Proposition 2.1 in [5] this composition operator is continuous if and only
if

sup
z∈D

ṽ(z)

ṽ(φw(z))
< ∞.

In this case, the norm of the operator satisfies

∥Cφw∥ = sup
z∈D

ṽ(z)

ṽ(φw(z))
< ∞.

Here ṽ is the associated weight to v in the sense of [3], which is defined by

ṽ(z) := 1/||δz||H∞
v (G)′ .

The associated weight ṽ is radial, continuous, decreasing H∞
v (G) = H∞

ṽ (G), H0
v (G) =

H0
ṽ (G) and ∥f∥v = ∥f∥ṽ for each f ∈ H∞

v (G). All the examples of weights on the unit disc
mentioned in the introduction satisfy that there is C > 0 such that v(z) ≤ ṽ(z) ≤ Cv(z)
for each z ∈ D. Observe that if Cφw is continuous, then ∥Cφw∥ ≥ ṽ(0)/ṽ(w) ≥ 1, hence
supw∈D ∥Cφw∥ = ∞, since limr→1 ṽ(r) = 0. In particular, the spaces H∞

v (D) and H0
v (D)

are not Möbius invariant in the sense of [13].
As a consequence of Theorem 2.3 in [5] and its proof, the operator Cφw is continuous

on H∞
v (D) for all w ∈ D if and only if the weight v satisfies the following condition:

(∗) sup
n

ṽ(1− 2−n)

ṽ(1− 2−n−1)
< ∞.

Standard and logarithmic weights satisfy this condition, but exponential weight do not.

Theorem 3.1 Let v be a radial weight on D satisfying condition (∗). If the function
w ∈ D → K(w)∥Cφw∥ belongs to L1(µ), then the operators

HK,µ : H∞
v (D) → H∞

v (D),

and
HK,µ : H0

v (D) → H0
v (D),

are continuous. In this case, we have

∥HK,µ∥ ≤
∫
D
|K(w)| ∥Cφw∥dµ(w).
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Proof. First we prove the result for the operator acting on H∞
v (D). To do this, we

use again Mattner’s Theorem in [20] to ensure that HK,µ(f) is an analytic function for
each f ∈ H∞

v (D). We may assume that K(w) is defined for all w ∈ D. Put F (z, w) :=
K(w)f(φw(z)), z, w ∈ D, for f ∈ H∞

v (D). For each z ∈ D, the function F (z, .) is µ-
measurable, and for each w ∈ D, the function F (., w) is analytic on D. We must show that
for each z0 ∈ D there is δ > 0 such that

sup
|z−z0|<δ

∫
D
|K(w)|f(φw(z)|dµ(w) < ∞.

Since the function w ∈ D → K(w)∥Cφw∥ belongs to L1(µ), we can estimate as follows, for
each z ∈ D,∫

D
|K(w)|f(φw(z)|dµ(w) =

∫
D
|K(w)|ṽ(φw(z))|f(φw(z))|

1

ṽ(φw(z))
dµ(w) ≤

≤ ||f ||v
ṽ(z)

(∫
D
|K(w)|∥Cφw∥dµ(w)

)
.

Therefore HK,µ(f) is indeed an analytic function and moreover

∥HK,µ(f)∥v ≤
(∫

D
|K(w)| ∥Cφw∥dµ(w)

)
∥f∥v, f ∈ H∞

v (D).

This implies the statement for H∞
v (D).

To complete the proof it is enough to show that our assumptions implyHK,µ(H
0
v (D)) ⊂

H0
v (D). Since the polynomials are dense in H0

v (D), it is enough to show that HK,µ(H
∞) ⊂

H∞. This follows adapting the argument above, having in mind that our assumptions
imply that K ∈ L1(µ), because K is µ-measurable and |K(w)| ≤ |K(w)| ∥Cφw∥ for each
w ∈ D. 2

Remark 3.2 The arguments in the proof of Theorem 3.1 show that if the function K ∈
L1(µ), then the operator HK,µ : H∞ → H∞ is continuous and ∥HK,µ∥ ≤

∫
D |K(w)|dµ(w).

Compare with Theorem 3 in [20] for Hardy spaces Hp, 1 ≤ p < ∞ and with Lemma 2.2 in
[16] which considers Hardy spaces on the upper half plane.

Our next lemma is certainly known, but we were not able to find a reference.

Lemma 3.3 (1) If v(r) = (1− r2)γ with γ > 0, then

∥Cφw∥ =
(1 + |w|
1− |w|

)γ
, w ∈ D.

(2) If v(z) = (log e
1−r2

)−α, α > 0, then

∥Cφw∥ ≤
(
1 + log

1 + |w|
1− |w|

)α
, w ∈ D.

Proof. (1) It is easy to see that

(1− |w|)2 = inf
z∈D

|1− wz|2 ≤ sup
z∈D

|1− wz|2 = (1 + |w|)2.

9



Therefore, by Proposition 4.1 in [24], we get

sup
z∈D

1− |z|2

1− |φw(z)|2
= sup

z∈D

|1− wz|2

1− |w|2
=

(1 + |w|)2

1− |w|2
=

1 + |w|
1− |w|

.

This clearly implies the statement.

(2) We estimate (v(z)/v(φw(z)))
1/α, z ∈ D again using Proposition 4.1 in [24] as

follows.

log(e/(1− |φw(z)|2)
log(e/(1− |z|2)

=
log

(
e|1−wz|2)

(1−|w|2)(1−|z|2)

)
log(e/(1− |z|2)

≤

log
(

e(1+|w|)
(1−|w|)(1−|z|2)

)
log(e/(1− |z|2)

≤ 1 + log
1 + |w|
1− |w|

.

2

Our next corollary should be compared with the results in [21].

Corollary 3.4 (1) Let v(r) = (1− r2)γ with γ > 0. If the function w ∈ D → K(w)/(1−
|w|)γ belongs to L1(µ), then HK,µ : H∞

v (D) → H∞
v (D) is continuous.

(2) Let v(r) = (log e
1−r2

)−α, α > 0. If the function w ∈ D → K(w) log(1−|w|) belongs
to L1(µ), then HK,µ : H∞

v (D) → H∞
v (D) is continuous.

Proof. This is a direct consequence of Lemma 3.3 and Theorem 3.1. 2

Example 3.5 (1) Consider the weight v(r) = (1 − r2)γ , 0 ≤ r < 1, with γ > 0 and the
measure dµ(w) = dA(w)/(1 − |w|2)β, β > 0, where dA is the area measure. If there is
C > 0 such that (1/C)(1−|w|2)α ≤ |K(w)| ≤ C(1−|w|2)α for all z ∈ D, and β+α−γ < 1,
then the Hausdorff operator HK,µ : H∞

v (D) → H∞
v (D) is continuous. This follows from

Corollary 3.4 (1) and Lemma 3.9 in [24].
(2) If the measure µ is concentrated on a sequence (wn)n in D, we get the discrete

Hausdorff operator, for d = (dn)n ∈ C,

Hd(f)(z) :=

∞∑
n=1

dnf(φwn(z)), z ∈ D.

If the sequence reduces to one single point, we obtain the weighted composition operator
dCφw . Theorem 3.1 implies that if

∑∞
n=1 |dn| ∥Cφwn

∥ < ∞, then Hd is continuous on
H∞

v (D).
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