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Overdispersion Effects on Reliability Test Planning
Arturo J. Fernández, Carlos J. Pérez-González, Andrés Carrión-Garcı́a, and Vicent Giner-Bosch

Abstract—The impact of overdispersion on the design of
optimal reliability demonstration test plans for beta-binomial
models with Weibull, gamma and lognormal lifetime distributions
is analyzed. Assuming limited producer and consumer risks,
fixed-duration test plans with minimal sample sizes and optimal-
duration test plans with minimum costs based on failure count
data are determined by solving the corresponding nonlinear
programming problems when the fluctuation of the failure
probability is described by a beta distribution. If the test time
is fixed, the overdispersion effect on the optimal sample size
and decision criterion is important in most situations. The
influence is less relevant when the engineer also wants to find
the minimum-cost test time. Optimal-duration plans usually out-
perform fixed-duration schemes in terms of costs and robustness
against overdispersion. The use of lot inspection schemes with
optimal reliability test times is strongly recommended when
the presence of overdispersed failure count data is suspected.
Applications of the developed methodology to the manufacturing
of microelectronic chips and semiconductor lasers are provided
for illustrative and comparative purposes.

Index Terms—Reliability demonstration test plans, beta-
binomial model, fixed and optimal test durations, constrained
nonlinear optimization, limited producer and consumer risks,
Weibull, log-normal and gamma distributions.

I. INTRODUCTION

PLANNING reliability tests to judge the acceptability of
manufacturing processes and batches is a critical issue

in most industries worldwide. In practice, a device is con-
sidered acceptable if its reliability at a given conforming
lifetime reaches a certain minimum level. Reliability engineers
typically minimize sample sizes or cost functions subject
to various quality and risk prerequisites in order to find
optimal test plans. Generally, test times are prefixed by the
analyst, whereas optimal decision criteria and sample sizes
are determined by solving constrained optimization problems.

The construction of test plans for reliability demonstration
has been widely addressed in diverse fields. Some recent
references are Kantam et al. [1], Balamurali and Jun [2], Guo
and Liao [3], Hsieh and Lu [4], Li and Lin [5], Yang [6],
Fernández [7], Wu and Huang [8], Wang et al. [9], Aslam et
al. [10], Lewitschnig and Fanzott [11], Chen et al. [12] and
Wu et al. [13], [14].

Decision criteria in many reliability tests are based on the
number of failures observed in the experiment. Numerous
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papers have considered failure count data, including Guo et
al. [15], Yalcin and Eryilmaz [16], Qin et al. [17], Lu et al.
[18], Li et al. [19], Bouslah et al. [20], Ge et al. [21], Pérez-
González et al. [22], [23] and Zhao and Yun [24].

Reliability test durations are often fixed in advance. If t

denotes the test time, n represents the number of devices
randomly selected from the submitted lot and Xn,t designates
the number of observed failures at time t, then the entire lot
is accepted if and only if (iff) Xn,t is at most the so-called
acceptance number, k. Hence, a t-duration reliability test plan
is described by the pair (n, k). Recently, Fernández [25] has
proposed lot inspection schemes with optimal test times by
minimizing cost functions. In this case, a reliability test plan
is characterized by the triple (n, k, t).

In general, it is assumed that the distribution of Xn,t is
binomial with sample size n and constant failure probability
p. However, p often fluctuates from batch to batch, resulting
in greater variability than the binomial distribution. In many
situations, the empirical variance is larger than specified by
a binomial model. A convenient approach to capture the
heterogeneity of the test devices is to consider that p is also a
random variable with a determined beta distribution. In such a
case, the beta-binomial distribution of Xn,t has an additional
dispersion parameter d. This alternative model reduces to the
standard binomial distribution when d = 0 and provides a
better fit to the observed failure count data when there is
overdispersion.

Typical lifetime models in reliability testing are the Weibull,
gamma and lognormal distributions. Reliability test plans for
Weibull models have been proposed by Jun et al. [26], Chen
et al. [27], Arizono et al. [28], Tsai et al. [29], Seo et al.
[30], Aslam et al. [31], Fernández [32], [33], Roy [34] and
Gao et al. [35]. If the Weibull shape parameter is 1, the
distribution reduces to the exponential model, which plays
an important role in reliability engineering; see, e.g., Aslam
[36], Dey and Chakraborty [37], Fernández [38], [39], [40]
and Lee et al. [41], [42]. If the shape parameter is 2, the
distribution is Rayleigh, which has also a wide range of
applications in reliability; e.g., Soliman and Al-Aboud [43],
Lee et al. [44], Dey and Dey [45], MirMostafaee et al.
[46] and Asgharzadeh et al. [47]. Gamma sampling plans
have been discussed, among others, by Lu and Tsai [48],
Tseng et al. [49], Fernández [50], [51] and Fernández et al.
[52], and references therein. Test plans for lognormal lifetime
distributions have been presented in Gupta [53], Schneider
[54], Alhadeed and Yang [55], Wu and Lu [56], Naqvi and
Aslam [57], Fernández [58] and Pérez-González et al. [59].

Assuming beta-binomial failure count data, this paper de-
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termines the best reliability demonstration test (RDT) plans
with fixed and optimal test durations by solving the cor-
responding constrained optimization problems. The impact
of overdispersion on the optimal sample size, decision rule
and test time is then studied when the lifetime variables
follow Weibull, gamma and lognormal distributions. Fixed-
duration RDT plans (n, k) minimize sample sizes, whereas
optimal-duration inspection schemes (n, k, t) minimize cost
functions depending on test time and sample size. In both
cases, producer and consumers risks are controlled and the
failure probability p randomly varies according to a beta
distribution.

The remainder of our study is structured as follows. Section
II deals with RDT planning with fixed test time when the
decision criterion is based on the uniformly most powerful
beta-binomial test. The probability of lot acceptance is derived
in terms of the reliability level. Fixed-duration RDT plans
with minimal sample size and limited risks are determined in
Section III by solving the underlying constrained optimization
problem, whereas Section IV analyzes the influence of the
overdispersion on the optimal sample size and acceptance
number assuming Weibull, gamma and lognormal lifetime
distributions. Next, Section V presents the optimal-duration
RDT plan with minimum cost and controlled risks. Mixed
integer nonlinear programming problems are solved to find
optimal inspection schemes. The impact of the dispersion on
the best plan is also studied. Illustrative examples concerning
microelectronic chips and semiconductor lasers are provided
in Section VI. Section VII then offers a brief discussion and
some concluding remarks.

II. RDT PLANS WITH FIXED TEST TIME

Sampling plans for lot acceptance are frequently designed
in practice to assure that a certain device has achieved the
desired reliability at a given time.

Suppose that a large lot of devices from a given manufac-
turing process is submitted to judge its acceptability based on
the number of failed units in a reliability test. If the random
variable T represents the lifetime of the device, the reliability
at time t > 0 is then defined as RT (t) = Pr(T ≥ t).

Moreover, the minimum lifetime of a conforming unit is
denoted by v > 0. In such a case, reliability tests are usually
developed for determining whether the reliability of the device
at the conforming lifetime R = RT (v) is sufficiently high.

Assuming that R0 and R1 are the acceptable and rejectable
reliability levels, respectively, specified by the producer and
the consumer, then a lot is deemed acceptable if R ≥ R0,

and rejectable if R ≤ R1. A random sample of n units
is often chosen from the submitted lot with the purpose of
deciding between the null hypothesis H0 : R ≥ R0 and the
alternative hypothesis H1 : R ≤ R1. These devices are then
simultaneously place on life test for a certain prefixed time t

and the number of observed failures, designated by Xn,t, is
noted.

In our case, if p = 1 − RT (t) denotes the unreliability
of the device at time t, the conditional distribution of Xn,t

given p has a binomial Bin(n, p) distribution with parameters
n ∈ N = {1, 2, . . .} and p ∈ (0, 1), i.e. Xn,t | p ∼ Bin(n, p).

Hence,

Pr(Xn,t = x | p) =
(
n

x

)
px(1− p)n−x

for x ∈ Ωn = {0, 1, . . . , n}. In addition, it is assumed that the
random failure probability p follows a Beta(a, b) distribution
with mean u = 1 − RT (t) and variance u(1 − u)d/(1 + d),

where a, b > 0, and d = 1/(a + b) represents a dispersion
parameter. Since p ∼ Beta(u/d, (1 − u)/d), its probability
density function (pdf) is given by

g(p) =
pu/d−1(1− p)(1−u)/d−1

B[u/d, (1− u)/d]
, 0 < p < 1,

where B[·, ·] denotes the beta function. Therefore,

Pr(Xn,t = x) =

∫ 1

0

Pr(Xn,t = x | p)g(p)dp

for x ∈ Ωn, which implies that the pdf of Xn,t is defined by

Pr(Xn,t = x) =

(
n
x

)
B[p/d+ x, (1− p)/d+ n− x]

B[p/d, (1− p)/d]

for x ∈ Ωn. That is, the unconditional distribution of Xn,t is
Beta-Binomial with parameters n, p and d, which is denoted
as Xn,t ∼ BetaBin(n, p, d).

The mean and variance of Xn,t are

E[Xn,t] = np and V [Xn,t] = np(1− p)(nd+ 1)/(d+ 1),

respectively. Essentially, the distribution of Xn,t is Bin(n, p)

when d = 0. If d → 0+, then V [Xn,t] converges to np(1−p),

which coincides with the variance of a Bin(n, p) distribution,
whereas V [Xn,t] converges to n2p(1− p) as d → ∞.

The uniformly most powerful beta-binomial test would
reject the submitted lot when Xn,t was large enough; say,
if and only if (iff) Xn,t > k, where k ∈ Ωn−1 is the so-called
acceptance number.

Given the fixed test time t > 0, an RDT plan is represented
by a pair St = (n, k), where n and k are integers such that
0 ≤ k < n. The inspection scheme for lot acceptance St =

(n, k) can be stated as follows: Step 1: Choose a sample of
n units at random from the submitted lot. Step 2: Place the
n selected devices on life test for time t. Step 3: Count the
number of failed units at time t, Xn,t. Step 4: Accept the lot
if Xn,t ≤ k, and reject it, otherwise.

In our situation, the operating characteristic (OC) function
of a given RDT plan provides the probability of lot acceptance
versus the reliability level. Hence, the OC function of the
inspection scheme St = (n, k) at R = RT (v) is the probability
of observing k failures or less by time t. Thus, the OC function
associated with the plan St at the reliability level R is defined
as

A(R) ≡ A(R;n, k, t) = Pr(Xn,t ≤ k), 0 < R < 1. (1)
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Since p = 1 − RT

(
tR−1

T (R)/v
)
, the OC function of St

at R can be expressed as A(R) = H [p] , where H [p] ≡
H [p;n, k, d] is given by

H [p] =
k∑

i=0

(
n
i

)
B
[
p
d + i, 1−p

d + n− i
]

B
[
p
d ,

1−p
d

] (2)

for 0 < R < 1. If the time-censored reliability test is finished
at time t = cv, it is then deduced that p = 1−RT

(
cR−1

T (R)
)
,

where the censoring factor c = t/v is fixed by the decision
maker. The OC function (1) is decreasing in n and t, and
increasing in k and R. As the OC function describes the
discriminatory power of the inspection scheme, a quality
manager can compare OC curves in order to select the suitable
RDT plan.

III. DESIGN OF FIXED-DURATION RDT PLANS

Suppose that a determined test time t is fixed by the analyst.
In such a case, the design of RDT plans in industry usually
assumes minimum sample size, as well as the required protec-
tions to customers and manufacturers. That is, in addition to
minimize the sampling effort, the best t-duration RDT plan has
to assure that the probability of rejecting good lots (producer
risk) and the probability of accepting bad lots (consumer risk)
are low enough.

In our framework, the producer and consumer risks associ-
ated with the inspection scheme St = (n, k) are defined by

max
R≥R0

{1−A(R;n, k, t)} and max
R≤R1

{A(R;n, k, t)},

respectively. Hence, as the OC function is increasing in R, the
corresponding producer and consumer risks are given by

1−A(R0;n, k, t) and A(R1;n, k, t).

Traditionally, it is assumed an agreement between the
customer and the manufacturer on the specifications of the
maximum tolerated producer and consumer risks, denoted as
α0 and α1, where 0 < α0, α1 < 0.5. Of course, α0 and α1

are usually very small in most applications. An RDT plan
St = (n, k) that satisfies the nonlinear inequality constraints

1−A(R0;n, k, t) ≤ α0 and A(R1;n, k, t) ≤ α1. (3)

is said to be feasible. Thus, the optimal t-duration RDT plan
would be the feasible inspection scheme S∗

t = (n∗, k∗) with
minimal sample size.

The constrained minimization problem to find S∗
t =

(n∗, k∗) is an integer nonlinear programming problem, which
can be stated as follows:

Minimize n

Subject to A(R0;n, k, t) ≥ 1− α0,

A(R1;n, k, t) ≤ α1,

n, k ∈ N0, n > k,

(4)

where N0 = N ∪ {0}, in which N is the set of natural
numbers. More compactly, the optimization problem (4) can
be formulated as

min{n ∈ N : (n, k) ∈ Dt},

where Dt denotes the feasible region associated with (4).
Assuming that

mk = min {n ∈ N : A(R1;n, k, t) ≤ α1, n > k}

for k ∈ N0, it is then deduced that the minimal sample size
is n∗ = mk∗ , where

k∗ = min {k ∈ N0 : A(R0;mk, k, t) ≥ 1− α0, 0 ≤ k < mk}

is the optimal acceptance number. That is, the RDT plan with
fixed test time t and minimal sample size is given by S∗

t =

(mk∗ , k∗).

IV. INFLUENCE OF THE OVERDISPERSION

The impact of the dispersion parameter d in reliability test
planning with prefixed duration is analyzed in this section.
Weibull, gamma and lognormal distributions are assumed to
describe the random behavior of the lifetime variable T. These
distributions are relevant probabilistic models in reliability
engineering due to their flexibility in fitting different types
of time-to-failure data. Some tables and figures are provided
to quantify the overdispersion effects on the optimal sample
size and acceptance number.

Suppose first that the reliability function of T is given by
RT (t) = exp(−λts) for t > 0, where s, λ > 0. In this case,
T has a Weibull W (s, λ) distribution with parameters s and
λ. In practice, the Weibull shape parameter s is often tied to
the device failure mechanism [25]. If St = (n, k) is a Weibull
RDT plan, the corresponding OC function can be expressed
as

AW (R) ≡ AW (R;n, k, t) = H [pW ] , 0 < R < 1, (5)

where pW = 1−Rts/vs

and H[·] was defined in (2).
Table I presents the optimal (minimum sample size)

W (s, λ) RDT plans (n∗, k∗) with fixed test time for α0 =

0.05, α1 = 0.10, acceptable reliability level R0 = 0.98, 0.99,
rejectable reliability level R1 = 0.88, 0.90, shape parameter
s = 1, 2, 3, censoring factor c = 0.8, 1.2 and dispersion
parameter d = 0.000, 0.002, 0.004, 0.006. The failure rate is
constant over time if s is 1, whereas the device wear-out is
linear and quadratic when s is 2 and 3, respectively.

Next, assume that the lifetime of the device, T, follows a
gamma G(r, θ) distribution with shape parameter r > 0 and
scale parameter θ > 0. Since the pdf of T ∼ G(r, θ) is

fT (t) =
tr−1 exp(−t/θ)

θrΓ(r)
, t > 0,

the reliability function of T is defined as

RT (t) = 1− Ir[t/θ], t > 0,
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TABLE I
OPTIMAL RELIABILITY TEST PLANS (n∗, k∗) FOR WEIBULL W (s, λ) DISTRIBUTIONS WHEN α0 = 0.05 AND α1 = 0.10.

s = 1 s = 2 s = 3

c = 0.8 c = 1.2 c = 0.8 c = 1.2 c = 0.8 c = 1.2

R0 R1 d n∗ k∗ n∗ k∗ n∗ k∗ n∗ k∗ n∗ k∗ n∗ k∗

0.98 0.88 0.000 67 3 46 3 84 3 38 3 104 3 32 3
0.002 70 3 47 3 87 3 39 3 110 3 33 3
0.004 72 3 48 3 110 4 40 3 140 4 33 3
0.006 90 4 49 3 135 5 41 3 200 6 34 3

0.90 0.000 81 3 55 3 101 3 46 3 126 3 39 3
0.002 102 4 68 4 128 4 57 4 162 4 47 4
0.004 125 5 70 4 159 5 58 4 262 7 48 4
0.006 150 6 84 5 242 8 70 5 442 12 50 4

0.99 0.88 0.000 39 1 26 1 49 1 22 1 60 1 19 1
0.002 40 1 27 1 50 1 22 1 87 2 19 1
0.004 57 2 27 1 72 2 23 1 92 2 19 1
0.006 59 2 39 2 75 2 32 2 96 2 19 1

0.90 0.000 65 2 44 2 80 2 37 2 100 2 31 2
0.002 67 2 45 2 84 2 37 2 106 2 31 2
0.004 70 2 46 2 89 2 38 2 113 2 32 2
0.006 73 2 47 2 119 3 39 2 153 3 32 2

where Ir[·] is the incomplete gamma function given by

Ir[y] =
1

Γ(r)

∫ y

0

xr−1 exp(−x)dx, y > 0.

In view of (2), the OC function associated with the gamma
RDT plan St = (n, k) is defined by

AG(R) ≡ AG(R;n, k, t) = H [pG] , 0 < R < 1, (6)

where pG = Ir
[
tI−1

r [1−R]/v
]
.

The optimal gamma G(r, θ) RDT plans (n∗, k∗) with fixed
test time for α0 = 0.05, α1 = 0.10, R0 = 0.98, 0.99, R1 =

0.88, 0.90, r = 1, 2, 3, c = 0.8, 1.2 and d = 0.000, 0.002,
0.004, 0.006 are reported in Table II. Evidently, the optimal
Weibull and gamma RDT plans coincide in the exponential
case (i.e., when s = r = 1).

The reliability engineer considers now that the log-lifetime
variable Y = log(T ) has a normal distribution with mean µ

and variance σ2 > 0, which implies that the time-to-failure
variable T follows a lognormal LN(µ, σ) distribution. If Φ[·]
denotes the standard normal cumulative distribution function,
the reliability function of T ∼ LN(µ, σ) is then given by

RT (t) = 1− Φ[(log(t)− µ)/σ], t > 0.

From (2), it turns out that the OC function of the lognormal
RDT plan St = (n, k) can be expressed as

AL(R) ≡ AL(R;n, k, t) = H [pL] , 0 < R < 1, (7)

where pL = Φ
[
log(t/v)/σ +Φ−1[1−R]

]
.

Table III shows the optimal lognormal LN(µ, σ) RDT plans
(n∗, k∗) with fixed test time for α0 = 0.05, α1 = 0.10,

R0 = 0.98, 0.99, R1 = 0.88, 0.90, σ = 1, 2, 3, c = 0.8,

1.2 and d = 0.000, 0.002, 0.004, 0.006.
In view of Tables I, II and III, as the dispersion parameter

d grows, the optimal sample size n∗ and acceptance number

k∗ tend to increase in most cases, especially n∗. Similarly, n∗

and k∗ grow when the prefixed test duration is reduced. The
influence of d on the optimal design S∗

t is often considerable.
Generally, as d increases, n∗ grows rapidly, while k∗ is more
stable. For example, if R0 = 0.98, R1 = 0.90, s = 1 and
c = 0.8, it is seen in Table I that n∗ is 81, 102, 125 and 150
and k∗ is 3, 4, 5 and 6 when d is 0.000, 0.002, 0.004 and
0.006, respectively. Identical results are observed in Table II
when the lifetime distribution is gamma with r = 1. In the
lognormal case with σ = 1, it follows from Table III that n∗

is 100, 105, 134 and 189 and k∗ is 3, 3, 4 and 6 when d is
0.000, 0.002, 0.004 and 0.006, respectively.

For comparative purposes, Table IV reports the optimal
fixed-duration RDT plans (n∗, k∗) for Weibull W (s, λ),

gamma G(r, θ) and log-normal LN(µ, σ) distributions with
identical coefficients of variation when s = 2, α0 = 0.05 and
α1 = 0.10.

From Table IV, it is clear that n∗ and k∗ tend to increase
as the dispersion degree becomes higher and/or the test time
is reduced. According to Table IV, the optimal RDT plans
S∗
t = (n∗, k∗) when d = 0 and the prefixed test duration

is t = 0.8v, where v is the minimal conforming lifetime,
are (101, 3), (119, 3) and (128, 2) in the Weibull, gamma and
lognormal cases. The corresponding best inspection schemes
when d = 0.006 are (242, 8), (325, 9) and (471, 9). In
this situation, the high impact of the overdispersion on the
reliability test planning is evident.

As graphical illustrations, Figs. 1 and 2 display the optimal
sample size n∗ and acceptance number k∗ versus the disper-
sion parameter d assuming Weibull W (s, λ), gamma G(r, θ)

and lognormal LN(µ, σ) lifetime distributions with identical
coefficients of variation when s = 2, R0 = 0.99, R1 = 0.90,

c = 0.8, α0 = 0.05 and α1 = 0.10. Clearly, both n∗ and
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TABLE II
OPTIMAL RELIABILITY TEST PLANS (n∗, k∗) FOR GAMMA G(r, θ) DISTRIBUTIONS WHEN α0 = 0.05 AND α1 = 0.10.

r = 1 r = 2 r = 3

c = 0.8 c = 1.2 c = 0.8 c = 1.2 c = 0.8 c = 1.2

R0 R1 d n∗ k∗ n∗ k∗ n∗ k∗ n∗ k∗ n∗ k∗ n∗ k∗

0.98 0.88 0.000 67 3 46 3 79 3 40 3 72 2 37 3
0.002 70 3 47 3 83 3 41 3 95 3 37 3
0.004 72 3 48 3 86 3 42 3 120 4 38 3
0.006 90 4 49 3 109 4 43 3 126 4 47 4

0.90 0.000 81 3 55 3 96 3 48 3 110 3 52 4
0.002 102 4 68 4 122 4 59 4 141 4 54 4
0.004 125 5 70 4 150 5 61 4 175 5 55 4
0.006 150 6 84 5 205 7 73 5 268 8 66 5

0.99 0.88 0.000 39 1 26 1 46 1 23 1 52 1 21 1
0.002 40 1 27 1 48 1 24 1 55 1 21 1
0.004 57 2 27 1 68 2 33 2 79 2 30 2
0.006 59 2 39 2 71 2 34 2 82 2 31 2

0.90 0.000 65 2 44 2 77 2 38 2 64 1 35 2
0.002 67 2 45 2 80 2 39 2 93 2 35 2
0.004 70 2 46 2 84 2 40 2 98 2 36 2
0.006 73 2 47 2 88 2 41 2 103 2 37 2

TABLE III
OPTIMAL RELIABILITY TEST PLANS (n∗, k∗) FOR LOGNORMAL LN(µ, σ) DISTRIBUTIONS WHEN α0 = 0.05 AND α1 = 0.10.

σ = 1 σ = 2 σ = 3

c = 0.8 c = 1.2 c = 0.8 c = 1.2 c = 0.8 c = 1.2

R0 R1 d n∗ k∗ n∗ k∗ n∗ k∗ n∗ k∗ n∗ k∗ n∗ k∗

0.98 0.88 0.000 64 2 40 3 53 2 47 3 49 2 49 3
0.002 85 3 41 3 68 3 48 3 64 3 50 3
0.004 88 3 50 4 71 3 49 3 66 3 52 3
0.006 111 4 52 4 88 4 60 4 82 4 64 4

0.90 0.000 100 3 57 4 80 3 67 4 75 3 59 3
0.002 105 3 59 4 101 4 69 4 94 4 73 4
0.004 134 4 70 5 105 4 83 5 98 4 88 5
0.006 189 6 72 5 148 6 86 5 119 5 91 5

0.99 0.88 0.000 47 1 32 2 38 1 27 1 36 1 28 1
0.002 49 1 33 2 39 1 27 1 37 1 29 1
0.004 50 1 33 2 40 1 39 2 38 1 41 2
0.006 52 1 34 2 58 2 40 2 54 2 42 2

0.90 0.000 58 1 38 2 47 1 44 2 43 1 47 2
0.002 83 2 39 2 66 2 45 2 62 2 48 2
0.004 87 2 40 2 69 2 47 2 64 2 49 2
0.006 91 2 41 2 72 2 48 2 66 2 51 2

k∗ tend to increase as the dispersion grows in the Weibull,
gamma and lognormal cases.

Fig. 3 depicts the optimal sample size n∗ as a function of
the censoring factor c = t/v when the dispersion parameter
is d = 0.001, 0.003, 0.005, the lifetime distribution is Weibull
W (2, λ), R0 = 0.99, R1 = 0.90, α0 = 0.05 and α1 = 0.10.

In accordance with Fig. 3, n∗ is rapidly reduced as the
prefixed test duration t increases. Moreover, n∗ becomes larger
when d grows. Note also that the influence of the dispersion
level on the required sample size is reduced when the test time
(or, equivalently, the censoring factor) increases.

Based on the results obtained above, in addition to consid-

ering historical data and expert opinions, it would be advisable
to select a preliminary random sample and perform goodness-
of-fit tests to choose the most appropriate lifetime model.

V. RDT PLANS WITH OPTIMAL TEST TIMES

The experimental duration t is not prefixed in this section.
Hence, we have also to find the optimal test time. An RDT
plan is now characterized by a triple (n, k, t), where n and k

are integers such that 0 ≤ k < n and t > 0. The optimal RDT
plan should minimize the incurred cost for lot sentencing in
addition to providing the required protections to producers and
consumers.
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TABLE IV
OPTIMAL RELIABILITY TEST PLANS (n∗, k∗) FOR WEIBULL W (s, λ), GAMMA G(r, θ) AND LOGNORMAL LN(µ, σ) DISTRIBUTIONS WITH IDENTICAL

COEFFICIENTS OF VARIATION WHEN s = 2, α0 = 0.05 AND α1 = 0.10.

Weibull case Gamma case Lognormal case

c = 0.8 c = 1.2 c = 0.8 c = 1.2 c = 0.8 c = 1.2

R0 R1 d n∗ k∗ n∗ k∗ n∗ k∗ n∗ k∗ n∗ k∗ n∗ k∗

0.98 0.88 0.000 84 3 38 3 78 2 35 3 102 2 30 3
0.002 87 3 39 3 103 3 35 3 108 2 37 4
0.004 110 4 40 3 108 3 36 3 147 3 38 4
0.006 135 5 41 3 138 4 44 4 190 4 38 4

0.90 0.000 101 3 46 3 119 3 50 4 128 2 43 4
0.002 128 4 57 4 153 4 51 4 175 3 50 5
0.004 159 5 58 4 192 5 52 4 270 5 52 5
0.006 242 8 70 5 325 9 62 5 471 9 60 6

0.99 0.88 0.000 49 1 22 1 57 1 20 1 74 1 24 2
0.002 50 1 22 1 59 1 28 2 78 1 24 2
0.004 72 2 23 1 85 2 29 2 83 1 25 2
0.006 75 2 32 2 89 2 29 2 88 1 25 2

0.90 0.000 80 2 37 2 69 1 33 2 93 1 28 2
0.002 84 2 37 2 101 2 34 2 100 1 29 2
0.004 89 2 38 2 107 2 34 2 149 2 29 2
0.006 119 3 39 2 113 2 35 2 161 2 37 3

Fig. 1. Optimal sample size n∗ versus the dispersion parameter d for
Weibull W (s, λ), gamma G(r, θ) and lognormal LN(µ, σ) distributions with
identical coefficients of variation when s = 2, R0 = 0.99, R1 = 0.90,
c = 0.8, α0 = 0.05 and α1 = 0.10.

In our situation, a suitable cost function must be increasing
in both n and t, and also represents an appropriate trade-off
between test duration and sample size. A linear combination of
n and t is the natural and simplest choice. Given the positive
constants c0, c1, and c1, the cost function is defined by

C[n, k, t] = c0 + c1n+ c2t, (8)

where c0 is the initial cost of the life experiment, c1 is the
cost per sampled item, and c2 is the cost per test time unit.

The constrained optimization problem to determine the min-
imum number of devices to test, n∗, the maximum tolerable
number of failures, k∗, to accept the submitted lot and the best
test duration, t∗, is a mixed integer nonlinear programming
problem, which can be formulated as follows:

Fig. 2. Optimal acceptance number k∗ versus the dispersion parameter d
for Weibull W (s, λ), gamma G(r, θ) and lognormal LN(µ, σ) distributions
with identical coefficients of variation when s = 2, R0 = 0.99, R1 = 0.90,
c = 0.8, α0 = 0.05 and α1 = 0.10.

Minimize c0 + c1n+ c2t

Subject to A(R0;n, k, t) ≥ 1− α0,

A(R1;n, k, t) ≤ α1,

n, k ∈ N0, n > k, t > 0.

(9)

This minimization problem can be stated more compactly as

min{C[n, k, t] : (n, k, t) ∈ D},

where D = {(n, k, t) : (n, k) ∈ Dt} denotes the feasible
region associated with (9).

The RDT plan with minimal cost that simultaneously sat-
isfies the risk requirements (3), i.e. the global solution of (9),
would be denoted by S∗ = (n∗, k∗, t∗).
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Fig. 3. Optimal sample size n∗ versus the censoring factor c = t/v when
the dispersion parameter is d = 0.001, 0.003, 0.005, the lifetime distribution
is Weibull W (2, λ), R0 = 0.99, R1 = 0.90, α0 = 0.05 and α1 = 0.10.

Suppose that k0 denotes the smallest feasible value of k.

Assuming that Si = (ni, ki, ti) is the optimal RDT plan when
ki = k0 + i is the acceptance number for i ∈ N0, it then
follows that

C[S∗] = min{C[Si] : i ∈ N0}.

is the minimum cost. In addition, ni is the feasible value of
n that minimizes C[n, k, tn,k] when k = ki, where

tn,k = min{t > 0 : (n, k, t) ∈ D}.

Clearly, ti = tni,ki is the optimal test duration when k = ki. It
is also evident that, if C[S∗] = C[Si∗ ], then the best plan S∗

is Si∗ = (ni∗ , ki∗ , ti∗), which implies that n∗ = ni∗ , k
∗ = ki∗

and t∗ = ti∗ .

In order to solve the optimization problem (9) for Weibull,
gamma and lognormal lifetime distributions, we refer to the
corresponding computational methods proposed by Fernández
[25], [51], [58] in the binomial case.

Several tables and figures are now presented with the aim
of studying the influence of the dispersion parameter d on the
optimal sample size, acceptance number and test time. Table V
reports the optimal-duration RDT plan S∗ = (n∗, k∗, t∗) and
minimal cost C∗ for Weibull W (s, λ) lifetime distributions
when α0 = 0.05, α1 = 0.10, the conforming lifetime is v =

10 and the cost function is defined by C[n, k, t] = n+5t. The
corresponding values when C[n, k, t] = 5n + t are provided
in Table VI.

In light of Tables V and VI, the influence of the overdis-
persion on reliability test planning with optimal test duration
is less significant. That is, S∗ = (n∗, k∗, t∗) is reasonably
insensitive to slight changes in d. For example, if C[n, k, t] =

n + 5t, R0 = 0.98, R1 = 0.90, s = 1 and c = 0.8, then it
follows from Table V that n∗ is 58, 64, 64 and 59 and k∗

is 3, 4, 4 and 4 when d is 0.000, 0.002, 0.004 and 0.006,
respectively. According to Table VI, if the cost function is

Fig. 4. Optimal sample size, test time and cost versus the dispersion parameter
d when the lifetime distribution is Weibull W (1, λ), R0 = 0.99, R1 = 0.90,
α0 = 0.05, α1 = 0.10, v = 10 and C[n, k, t] = n+ t.

Fig. 5. Optimal sample size, test time and cost versus the dispersion parameter
d when the lifetime distribution is Weibull W (2, λ), R0 = 0.99, R1 = 0.90,
α0 = 0.05, α1 = 0.10, v = 10 and C[n, k, t] = n+ t.

C[n, k, t] = 5n + t, the corresponding sample sizes are 13,
13, 13 and 15, while the respective acceptance numbers are 3,
3, 3 and 4.

Assuming that the lifetime distribution is Weibull W (s, λ),

R0 = 0.99, R1 = 0.90, α0 = 0.05, α1 = 0.10, v = 10 and
C[n, k, t] = n+ t, Figs. 4, 5 and 6 shows the optimal sample
size, test time and cost versus the dispersion parameter d when
the shape parameter s is 1, 2 and 3.

From Figs. 4, 5 and 6 it is clear that the effects of the
dispersion parameter d on the optimal sample size, test time
and cost are not crucial in most cases. Generally, optimal-
duration RDT plans S∗ are much more robust than fixed-
duration RDT plans S∗

t to small variations in the dispersion
level.
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TABLE V
OPTIMAL RELIABILITY TEST PLAN (n∗, k∗, t∗) AND MINIMAL COST C∗ FOR WEIBULL W (s, λ) DISTRIBUTIONS WHEN α0 = 0.05, α1 = 0.10, v = 10

AND C[n, k, t] = n+ 5t.

s = 1 s = 2 s = 3

R0 R1 d n∗ k∗ t∗ C∗ n∗ k∗ t∗ C∗ n∗ k∗ t∗ C∗

0.98 0.88 0.000 53 3 10.153 103.77 34 3 12.690 97.448 24 3 13.256 90.281
0.002 53 3 10.445 105.22 33 3 13.005 98.027 24 3 13.314 90.569
0.004 53 3 10.726 106.63 33 3 13.117 98.587 24 3 13.370 90.851
0.006 53 3 10.999 108.00 33 3 13.226 99.130 23 3 13.625 91.123

0.90 0.000 58 3 11.228 114.14 36 3 13.565 103.83 25 3 13.934 94.670
0.002 64 4 12.627 127.14 36 3 13.698 104.49 25 3 13.997 94.986
0.004 64 4 12.994 128.97 38 4 14.796 111.98 26 4 14.820 100.10
0.006 59 4 14.432 131.16 38 4 14.923 112.62 26 4 14.880 100.40

0.99 0.88 0.000 40 1 7.7047 78.524 27 1 10.718 80.589 20 1 11.602 78.009
0.002 40 1 7.9312 79.656 27 1 10.824 81.120 20 1 11.659 78.294
0.004 31 1 10.431 83.157 27 1 10.928 81.638 20 1 11.715 78.573
0.006 47 2 9.8176 96.088 20 1 12.768 83.839 20 1 11.769 78.846

0.90 0.000 51 2 10.106 101.53 33 2 12.569 95.845 23 2 13.200 88.999
0.002 51 2 10.423 103.11 32 2 12.896 96.481 23 2 13.262 89.311
0.004 51 2 10.729 104.65 32 2 13.018 97.091 23 2 13.323 89.616
0.006 51 2 11.027 106.14 32 2 13.137 97.684 23 2 13.383 89.914

TABLE VI
OPTIMAL RELIABILITY TEST PLAN (n∗, k∗, t∗) AND MINIMAL COST C∗ FOR WEIBULL W (s, λ) DISTRIBUTIONS WHEN α0 = 0.05, α1 = 0.10, v = 10

AND C[n, k, t] = 5n+ t.

s = 1 s = 2 s = 3

R0 R1 d n∗ k∗ t∗ C∗ n∗ k∗ t∗ C∗ n∗ k∗ t∗ C∗

0.98 0.88 0.000 12 3 50.446 110.45 6 3 35.433 65.433 4 3 30.564 50.564
0.002 12 3 50.776 110.78 6 3 35.487 65.487 4 3 30.556 50.556
0.004 12 3 51.104 111.10 6 3 35.541 65.541 4 3 30.547 50.547
0.006 12 3 51.430 111.43 6 3 35.595 65.595 4 3 30.539 50.539

0.90 0.000 13 3 55.757 120.76 6 3 39.029 69.029 6 3 24.789 54.789
0.002 13 3 56.154 121.15 6 3 39.089 69.089 6 3 24.814 54.814
0.004 13 3 56.546 121.55 6 3 39.148 69.148 6 3 24.839 54.839
0.006 15 4 60.489 135.49 7 3 35.020 70.020 7 3 23.061 58.061

0.99 0.88 0.000 8 1 40.779 80.779 4 1 29.837 49.837 3 1 23.365 38.365
0.002 8 1 41.021 81.021 4 1 29.879 49.879 3 1 23.380 38.380
0.004 8 1 41.262 81.262 4 1 29.921 49.921 3 1 23.395 38.395
0.006 8 1 41.502 81.502 4 1 29.963 49.963 3 1 23.410 38.410

0.90 0.000 11 2 50.912 105.91 5 2 36.450 61.450 4 2 26.443 46.443
0.002 11 2 51.260 106.26 5 2 36.504 61.504 4 2 26.461 46.461
0.004 11 2 51.605 106.61 5 2 36.557 61.557 4 2 26.479 46.479
0.006 11 2 51.948 106.95 5 2 36.609 61.609 4 2 26.496 46.496

VI. ILLUSTRATIVE EXAMPLES

Several practical applications are discussed in this section
in order to illustrate the conclusions outlined above.

A. Checking of microelectronic chips

Suppose that a reliability engineer wishes to decide the
acceptability of a submitted lot of microelectronic chips using
an RDT plan based on failure count data. The selected chips
are tested at specified high levels of temperature and voltage
in order to accelerate the occurrence of wear-out failures.
Weibull, gamma and lognormal distributions are adopted to
describe the random behavior of the time-to-failure variable
in hours, T.

The analyst deems that the minimum lifetime of a conform-
ing chip under the extreme conditions assumed is v = 5 hours.
Moreover, the minimal acceptable and maximal rejectable reli-
ability levels at v are R0 = 0.98 and R1 = 0.88, respectively.
That is, a chip is acceptable if its reliability at v, denoted as R,

is at least R0 = 0.98, and it is rejectable if R is not greater than
R1 = 0.88. In addition, the corresponding maximum tolerable
producer and consumer risks are α0 = 0.05 and α1 = 0.10.

A random sample of n chips is chosen from the submitted
lot. These chips are then simultaneously place on life test for
a certain time t. Assuming the above quality and risk require-
ments, the reliability engineer wants to judge the acceptability
of the lot using the number of observed failures by time t,

denoted as Xn,t.
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Fig. 6. Optimal sample size, test time and cost versus the dispersion parameter
d when the lifetime distribution is Weibull W (3, λ), R0 = 0.99, R1 = 0.90,
α0 = 0.05, α1 = 0.10, v = 10 and C[n, k, t] = n+ t.

The engineer considers that the dispersion parameter is
d = 0 and also that the lifetime variable T follows a Weibull
distribution with shape parameter s = 2. Thus, as the failure
rate is proportional to the test time when s = 2, the engineer
intrinsically assumes that the wear-out of the chips is linear.
According to Fernández [25] the choice of the Weibull shape
parameter s is usually based on previous data, expert opinions,
and available knowledge of the underlying failure mechanism.
In general, the RDT plans are quite robust to slight changes
in s.

In view of Table IV, the best t-duration Weibull W (s, λ)

RDT plan with t = 4 hours (i.e., c = 0.8) is S∗
t = (84, 3).

Hence, the analyst has to test 84 chips randomly selected
from the submitted lot during t = 4 hours under the assumed
extreme conditions, and the entire lot is accepted iff there are
at most three failures. The corresponding optimal inspection
schemes in the gamma and lognormal cases with identical
coefficients of variation are S∗

t = (78, 2) and S∗
t = (102, 2).

The best RDT plans when d = 0.006 would be (135, 5),

(138, 4) and (190, 4) when T has Weibull, gamma and log-
normal distributions. Clearly, the impact of the dispersion on
the best fixed-duration schemes is substantial.

According to Table IV, the optimal Weibull, gamma and
lognormal t-duration RDT plans when the test time is t = 6

(i.e., c = 1.2) and the dispersion parameter is d = 0 are
(38, 3), (35, 3) and (30, 3), respectively. The corresponding
best inspection schemes when d = 0.006 would be (41, 3),

(44, 4) and (38, 4). The influence of the dispersion parameter
d on the optimal RDT plans is now less drastic.

Suppose now that a reliability engineer wants to also
determine the optimal test duration assuming that the time-to-
failure of a microelectronic chip follows a Weibull W (2, λ)

distribution. When the cost function is defined as C[n, k, t] =

n + 10t, it can be deduced from Table V that the optimal-
duration RDT plan is S∗ = (34, 3, 12.690/2) if d = 0 and

S∗ = (33, 3, 13.226/2) if d = 0.006. The minimum costs
are C∗ = 97.448 and C∗ = 99.130, respectively. In the latter
case, the submitted lot is accepted iff no more than three failed
chips occur in a random sample of 33 chips, which are tested
independently during 13.226/2 hours. Note that in Tables V
and VI, as the conforming lifetime v is 10/2, the cost parameter
c2 must be multiplied by 2, and one has to divide the test times
by 2 to find the optimal durations. In light of Table VI, the
corresponding best schemes would be S∗ = (6, 3, 35.433/2)

and S∗ = (6, 3, 35.595/2) when C[n, k, t] = 5n + 2t. Thus,
the minimum costs would be C∗ = 65.433 and C∗ = 65.595,

respectively.
The robustness of the optimal-duration RDT plans against

slight modifications in the dispersion parameter d is therefore
evident in the above situations.

B. Testing of semiconductor lasers

Assume that a large lot of a certain type of semiconductor
lasers has been submitted for sampling inspection. Semicon-
ductor lasers often fail due to degradation processes, such
as diffusion, migration or corrosion. Testing high-reliability
semiconductors under normal conditions is usually too costly.
Accelerated aging is practically necessary to reduce both
sample size and test time, in addition to the experimental cost.

Suppose that T denotes the time-to-failure in hours of
a semiconductor device under the specified extreme stress
degree. Moreover, v = 10 hours is the minimal lifetime of
a conforming laser, and the corresponding acceptable and
rejectable reliability levels at v are R0 = 0.99 and R1 = 0.90.

In addition, the maximum risks allowed by the producer and
the consumer are 5% and 10%, respectively; i.e., α0 = 0.05

and α1 = 0.10. Furthermore, a quality manager considers that
the lifetime variable T follows a Weibull W (s, λ) distribution.
In this situation, the goal of the manager is to find the optimal
RDT plan based on failure count data in order to determine
whether the submitted lot of semiconductors is admissible.

Assuming that the Weibull shape parameter s is 2, it is seen
in Table IV that the optimal (minimum sample size) RDT plan
with fixed test time t = 8 hours (i.e., c = 0.8) is S∗

t = (80, 2)

when d = 0, whereas S∗
t = (119, 2) if d = 0.006. The impact

of the dispersion parameter on the required sample size is
quite high in this case. The reliability test is successful if no
more than two failures occur, but the manager has to select
119 lasers when d = 0.006 and only 80 lasers when d = 0.

If the fixed test duration was t = 12 hours (i.e., c = 1.2), the
best schemes would be S∗

t = (37, 2) and S∗
t = (39, 2) when

the values of d are 0 and 0.006, respectively. The effect of d

on the optimal plan S∗
t is now much lower.

The cost function defined by C[n, k, t] = n + 5t is
adopted by the quality manager. This implies that a test
duration of one hour is five times as important as a single
laser; i.e., a reliability test of 12 minutes is equivalent to a
single semiconductor laser. The quality manager then wishes
to determine the optimal test duration, as well as required
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sample size the maximum number of failures allowed to pass
the test, under the above cost function. According to Table
V, the optimal (minimum cost) RDT plans when d = 0

are S∗ = (51, 2, 10.106), S∗ = (33, 2, 12.569) and S∗ =

(23, 2, 13.200) if the Weibull shape parameters are 1, 2 and 3,
respectively. The corresponding best inspection schemes when
d = 0.006 are S∗ = (51, 2, 11.027), S∗ = (33, 2, 13.137) and
S∗ = (23, 2, 13.383).

Clearly, the optimal-duration RDT plans S∗ are quite insen-
sitive to small changes in the dispersion degree. For example,
if the shape parameter is s = 2, then 33 randomly selected
lasers from the lot must simultaneously put on test for 12.569
and 13.137 hours when d = 0 and d = 0.006, respectively,
and the submitted lot is accepted iff the number of failures is
at most two.

The quality manager now deems that a tested laser is as
costly as a five-hour experiment; i.e., the cost function is
defined by C[n, c, t] = n + 5t. In view of Table VI, the
best designs with d = 0 would be S∗ = (11, 2, 50.912),

S∗ = (5, 2, 36.450) and S∗ = (4, 2, 26.443) when the
values of s were 1, 2 and 3, respectively. The correspond-
ing optimal-duration plans would be S∗ = (11, 2, 51.948)

S∗ = (5, 2, 36.609) and S∗ = (4, 2, 26.496) if d = 0.006. The
robustness of the optimal-duration plans to slight variations of
d is again evident.

VII. CONCLUDING REMARKS

Quality assurance managers often have to demonstrate that
the manufactured devices have achieved the desired reliability
standards. The number of failed devices does not adjust
faithfully to a binomial distribution in many reliability tests
because the failure probability p cannot be assumed constant.

In this paper, the conditional distribution of the number of
observed failures in the experiment given p is binomial, and
the random behavior of the failure probability is modeled by
a beta distribution. Moreover, decision criteria to judge the
acceptability of submitted lots and production processes are
based on uniformly most powerful beta-binomial reliability
tests. In addition, producer and consumer risks are limited in
advance, i.e. the probability of accepting/rejecting bad/good
batches is sufficiently low.

Assuming Weibull, gamma and lognormal lifetime distribu-
tions, the best RDT plans with fixed and optimal test times
have been found by solving pure and mixed integer nonlinear
programming problems. The fixed-duration inspection scheme
minimizes the sample size, whereas the optimal-duration plan
minimizes a cost function selected by the decision maker
according to the objective and subjective information available.
In essence, the cost function to be minimized is a linear
combination of sample size and test time.

The influence of the overdispersion on the best plan with
fixed test time t, S∗

t = (n∗, k∗), is usually noticeable. The op-
timal t-duration RDT plan S∗

t is often quite sensitive to small

variations in the dispersion parameter d. Both the optimal sam-
ple size, n∗, and acceptance number, k∗, tend to increase as d

grows. In most situations, k∗ is fairly stable but n∗ increases
quickly, especially when the prefixed test time t is relatively
small. In contrast, the effect of the overdispersion on the
inspection scheme with optimal duration, S∗ = (n∗, k∗, t∗),

is much smaller.
Clearly, optimal-duration test plans are superior to fixed-

duration schemes in terms of costs. Moreover, the RDT plans
with optimal test times are more robust against overdispersion
than the RDT plans with fixed durations. Generally, the
optimal-duration test plans are rather insensitive to slight
changes in the dispersion level. This novel approach allows
the practitioners to reduce the impact of overdispersion on the
optimal test time and numbers of test devices and failures
tolerated. Consequently, the use of optimal-duration RDT
plans is highly recommended in practical applications where
overdispersion is possible.
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[22] C. J. Pérez-González, A. J. Fernández, A. Kohansal, and A. As-
gharzadeh, ”Optimal truncated repetitive lot inspection with defect
rates,” Applied Mathematical Modelling, vol. 75, pp. 223–235, 2019.
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