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Abstract

In recent years, deep learning (DL) has become one of the main areas of
artificial intelligence (AI), driven mainly by the advancement in processing
power. DL-based algorithms have achieved amazing results in understanding
and manipulating various types of data, including images, speech signals and
text.

The digital revolution in the healthcare sector has enabled the generation
of new databases, facilitating the implementation of DL models under the
supervised learning paradigm. Incorporating these methods promises to
improve and automate the detection and diagnosis of diseases, allowing
the prediction of their evolution and facilitating the application of clinical
interventions with higher efficacy.

One of the main limitations in the application of supervised DL algorithms is
the need for large databases annotated by experts, which is a major barrier
in the medical field. To overcome this problem, a new field of developing
unsupervised or weakly supervised learning strategies using the available
unannotated or weakly annotated data is opening up. These approaches make
the best use of existing data and overcome the limitations of reliance on precise
annotations.

To demonstrate that weakly supervised learning can offer optimal solutions,
this thesis has focused on developing different paradigms that allow training
models with weakly annotated or non-expert annotated databases. In this
regard, two data modalities widely used in the literature to study various
types of cancer and inflammatory diseases have been used: omics data and
histological images. In the study on omics data, methods based on deep
clustering have been developed to deal with the high dimensions inherent to
this type of data, developing a predictive model without requiring annotations.
In comparison, the results of the proposed method outperform other existing
clustering methods.

vii



Regarding histological imaging studies, the detection of different diseases has
been addressed in this thesis, including skin cancer (spitzoid melanoma and
spindle cell neoplasms) and ulcerative colitis. In this context, the multiple
instance learning (MIL) paradigm has been employed as the baseline in
all developed frameworks to deal with the large size of histological images.
Furthermore, diverse learning methodologies have been implemented, tailored
to the specific problems being addressed. For the detection of spitzoid
melanoma, an inductive learning approach has been used, which requires a
smaller volume of annotations. To address the diagnosis of ulcerative colitis,
which involves the identification of neutrophils as biomarkers, a constraint
learning approach has been utilized. With this method, the annotation cost
has been significantly reduced while achieving substantial improvements in the
obtained results. Finally, considering the limited number of experts in the field
of spindle cell neoplasms, a novel annotation protocol for non-experts has been
designed and validated. In this context, deep learning models that work with
the uncertainty associated with such annotations have been developed.

In conclusion, this thesis has developed cutting-edge techniques to address
the medical sector’s challenge of precise data annotation. Using weakly
annotated or non-expert annotated data, novel paradigms and methodologies
based on deep learning have been proposed to tackle disease detection and
diagnosis in omics data and histological images. These innovations can improve
effectiveness and automation in early disease detection and monitoring.
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Resumen

En los últimos años, el aprendizaje profundo (DL) se ha convertido en una de
las principales áreas de la inteligencia artificial (IA), impulsado principalmente
por el avance en la capacidad de procesamiento. Los algoritmos basados en
DL han logrado resultados asombrosos en la comprensión y manipulación de
diversos tipos de datos, incluyendo imágenes, señales de habla y texto.

La revolución digital del sector sanitario ha permitido la generación de nuevas
bases de datos, lo que ha facilitado la implementación de modelos de DL bajo
el paradigma de aprendizaje supervisado. La incorporación de estos métodos
promete mejorar y automatizar la detección y el diagnóstico de enfermedades,
permitiendo pronosticar su evolución y facilitar la aplicación de intervenciones
clínicas de manera más efectiva.

Una de las principales limitaciones de la aplicación de algoritmos de DL
supervisados es la necesidad de grandes bases de datos anotadas por expertos,
lo que supone una barrera importante en el ámbito médico. Para superar este
problema, se está abriendo un nuevo campo de desarrollo de estrategias de
aprendizaje no supervisado o débilmente supervisado que utilizan los datos
disponibles no anotados o débilmente anotados. Estos enfoques permiten
aprovechar al máximo los datos existentes y superar las limitaciones de la
dependencia de anotaciones precisas.

Para poner de manifiesto que el aprendizaje débilmente supervisado puede
ofrecer soluciones óptimas, esta tesis se ha enfocado en el desarrollado de
diferentes paradigmas que permiten entrenar modelos con bases de datos
débilmente anotadas o anotadas por médicos no expertos. En este sentido, se
han utilizado dos modalidades de datos ampliamente empleadas en la literatura
para estudiar diversos tipos de cáncer y enfermedades inflamatorias: datos
ómicos e imágenes histológicas. En el estudio sobre datos ómicos, se han
desarrollado métodos basados en deep clustering que permiten lidiar con las
altas dimensiones inherentes a este tipo de datos, desarrollando un modelo
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predictivo sin la necesidad de anotaciones. Al comparar el método propuesto
con otros métodos de clustering presentes en la literatura, se ha observado una
mejora en los resultados obtenidos.

En cuanto a los estudios con imagen histológica, en esta tesis se ha abordado
la detección de diferentes enfermedades, incluyendo cáncer de piel (melanoma
spitzoide y neoplasias de células fusocelulares) y colitis ulcerosa. En este
contexto, se ha empleado el paradigma de multiple instance learning (MIL)
como línea base en todos los marcos desarrollados para hacer frente al
gran tamaño de las imágenes histológicas. Además, se han implementado
diversas metodologías de aprendizaje, adaptadas a los problemas específicos
que se abordan. Para la detección de melanoma spitzoide, se ha utilizado
un enfoque de aprendizaje inductivo que requiere un menor volumen de
anotaciones. Para abordar el diagnóstico de colitis ulcerosa, que implica la
identificación de neutrófilos como biomarcadores, se ha utilizado un enfoque de
aprendizaje restrictivo. Con este método, el coste de anotación se ha reducido
significativamente al tiempo que se han conseguido mejoras sustanciales en los
resultados obtenidos. Finalmente, considerando el limitado número de expertos
en el campo de las neoplasias de células fusiformes, se ha diseñado y validado
un novedoso protocolo de anotación para anotaciones no expertas. En este
contexto, se han desarrollado modelos de aprendizaje profundo que trabajan
con la incertidumbre asociada a dichas anotaciones.

En conclusión, esta tesis ha desarrollado técnicas de vanguardia para abordar
el reto de la necesidad de anotaciones precisas que requiere el sector médico.
A partir de datos débilmente anotados o anotados por no expertos, se han
propuesto novedosos paradigmas y metodologías basados en deep learning para
abordar la detección y diagnóstico de enfermedades utilizando datos ómicos
e imágenes histológicas. Estas innovaciones pueden mejorar la eficacia y la
automatización en la detección temprana y el seguimiento de enfermedades.
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Resum

En els últims anys, l’aprenentatge profund (DL) s’ha convertit en una de les
principals àrees de la intel·ligència artificial (IA), impulsat principalment per
l’avanç en la capacitat de processament. Els algorismes basats en DL han
aconseguit resultats sorprenents en la comprensió i manipulació de diversos
tipus de dades, incloent-hi imatges, senyals de parla i text.

La revolució digital del sector sanitari ha permés la generació de noves
bases de dades, la qual cosa ha facilitat la implementació de models de
DL sota el paradigma d’aprenentatge supervisat. La incorporació d’aquests
mètodes promet millorar i automatitzar la detecció i el diagnòstic de malalties,
permetent pronosticar la seua evolució i facilitar l’aplicació d’intervencions
clíniques de manera més efectiva.

Una de les principals limitacions de l’aplicació d’algorismes de DL supervisats
és la necessitat de grans bases de dades anotades per experts, la qual cosa
suposa una barrera important en l’àmbit mèdic. Per a superar aquest
problema, s’està obrint un nou camp de desenvolupament d’estratègies
d’aprenentatge no supervisat o feblement supervisat que utilitzen les dades
disponibles no anotades o feblement anotats. Aquests enfocaments permeten
aprofitar al màxim les dades existents i superar les limitacions de la
dependència d’anotacions precises.

Per a posar de manifest que l’aprenentatge feblement supervisat pot oferir
solucions òptimes, aquesta tesi s’ha enfocat en el desenvolupat de diferents
paradigmes que permeten entrenar models amb bases de dades feblement
anotades o anotades per metges no experts. En aquest sentit, s’han utilitzat
dues modalitats de dades àmpliament emprades en la literatura per a estudiar
diversos tipus de càncer i malalties inflamatòries: dades ómicos i imatges
histològiques. En l’estudi sobre dades ómicos, s’han desenvolupat mètodes
basats en deep clustering que permeten bregar amb les altes dimensions
inherents a aquesta mena de dades, desenvolupant un model predictiu sense la
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necessitat d’anotacions. En comparar el mètode proposat amb altres mètodes
de clustering presents en la literatura, s’ha observat una millora en els resultats
obtinguts.

Quant als estudis amb imatge histològica, en aquesta tesi s’ha abordat la
detecció de diferents malalties, incloent-hi càncer de pell (melanoma spitzoide
i neoplàsies de cèl·lules fusocelulares) i colitis ulcerosa. En aquest context,
s’ha emprat el paradigma de multiple instance learning (MIL) com a línia
base en tots els marcs desenvolupats per a fer front a la gran grandària de
les imatges histològiques. A més, s’han implementat diverses metodologies
d’aprenentatge, adaptades als problemes específics que s’aborden. Per a la
detecció de melanoma spitzoide, s’ha utilitzat un enfocament d’aprenentatge
inductiu que requereix un menor volum d’anotacions. Per a abordar el
diagnòstic de colitis ulcerosa, que implica la identificació de neutròfils com
biomarcadores, s’ha utilitzat un enfocament d’aprenentatge restrictiu. Amb
aquest mètode, el cost d’anotació s’ha reduït significativament al mateix
temps que s’han aconseguit millores substancials en els resultats obtinguts.
Finalment, considerant el limitat nombre d’experts en el camp de les neoplàsies
de cèl·lules fusiformes, s’ha dissenyat i validat un nou protocol d’anotació
per a anotacions no expertes. En aquest context, s’han desenvolupat models
d’aprenentatge profund que treballen amb la incertesa associada a aquestes
anotacions.

En conclusió, aquesta tesi ha desenvolupat tècniques d’avantguarda per a
abordar el repte de la necessitat d’anotacions precises que requereix el sector
mèdic. A partir de dades feblement anotades o anotats per no experts,
s’han proposat nous paradigmes i metodologies basats en deep learning per a
abordar la detecció i diagnòstic de malalties utilitzant dades *ómicos i imatges
histològiques. Aquestes innovacions poden millorar l’eficàcia i l’automatització
en la detecció precoç i el seguiment de malalties.
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Introduction

This chapter introduces the motivation and the objectives
pursued in this thesis, as well as the main contributions. It also
includes the thesis framework and the thesis outline.
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1.1 Motivation

1.1 Motivation

Evolution of artificial intelligence

In the 1950s, Professor John McCarthy from Stanford University coined
artificial intelligence as “the science and engineering of making intelligent
machines” [1]. Artificial intelligence (AI) enables machines to imitate human
cognitive functions such as problem-solving and learning. Machine learning
(ML), a branch of AI, leverages data to develop computer systems that can
learn and improve from experience without being explicitly programmed [2].
ML is a type of hand-driven learning since a feature engineering process
should be carried out before the classification or regression stage. Therefore,
a considerable understanding and expertise for representation, i.e., selection
of features, is required [3]. Among others, outstanding approaches to feature
extraction include texture analysis via local binary patterns (LBPs) [4], HoG
[5] or SIFT [6]. The features extracted by these descriptors subsequently feed
ML algorithms. There is a wide range of ML algorithms, and the choice of
a particular approach is often informed by several factors, such as the type,
size and complexity of the data and the task to be solved. Common ML
methods include support vector machines (SVM) [7], ensemble-based methods
such as random forests (RF) [8], K-means clustering [9], and others. ML
has revolutionized various industries, including healthcare, by enabling the
development of intelligent systems capable of extracting insights and making
predictions from vast amounts of data.

Deep learning (DL) has rapidly gained popularity, emerging as a powerful
subfield within ML [10]. One of the main advantages of DL is its ability
to automatically extract features from raw data, eliminating the need for
manual feature engineering. Unlike traditional ML approaches, DL models
can process raw data directly, enabling them to uncover complex patterns
and make decisions based on the learned representations. DL algorithms,
inspired by the structure and function of the human brain, have demonstrated
remarkable success in addressing complex classification tasks [11]. This success
can be attributed, in part, to the availability of powerful computing machines
equipped with graphical processing units (GPUs) and the availability of
large-scale datasets [12]. DL techniques, such as artificial neural networks
(ANN) with multiple layers, exhibit exceptional capabilities in analyzing
diverse healthcare data types, encompassing medical images, genomic data and
electronic health records [13]. By automatically learning intricate patterns
and representations from these data, DL models have the potential to
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provide valuable insights, enhance diagnosis accuracy and support personalized
treatment decisions [14].

The advances in DL have led to significant progress in the computer vision
(CV) domain. Convolutional neural networks (CNNs)-based methods have
significantly advanced the CV field, particularly in medical image analysis and
classification [15]. Although these methods have been used since 1980, they
are now considered the fundamental component of various vision tasks due to
increased computation power and algorithmic development. CNNs can capture
the underlying representation of the images using several convolution layers,
followed by activation functions and pooling layers. The repeated application
of filters (kernels) to the input image generates activation maps, often referred
to as feature maps, highlighting salient regions of the image.

The problem of supervised frameworks

In DL-based systems, supervised learning is the predominant approach, where
the model is trained using labeled data. In this process, each data sample is
associated with a corresponding class or label of interest, which participates
in the training process. The objective is to establish a relationship within the
learning system that maps input data from the training set to its output labels.
In medicine, input data can include medical acquisitions (e.g., images. clinical
data, physiological signals, etc.), while the output label can be, for example,
the disease diagnosis, the patient condition (e.g., the disease stage at a given
follow-up time) or the outcome after therapy (e.g., recurrence, survival). Once
this relationship is learned during the training phase, it can subsequently be
applied to classify new input data with unknown labels into the predefined
classes established during training.

Nevertheless, supervised DL models require large and curated datasets with
high-quality annotations to perform appropriately. Achieving large and
fully annotated datasets in real-world applications can be challenging. The
annotation process is expensive and prone to subjectivity, making the task of
obtaining such curated labeled datasets a cumbersome and complex task in
practice. To overcome this problem, techniques such as transfer learning have
been applied. In short, transfer learning is a common technique that involves
leveraging knowledge gained from one task and applying it to a different but
related task [16]. One of the main advantages of transfer learning is its ability
to extract useful features from large and diverse datasets. Models trained on
massive datasets, such as ImageNet [17], CIFAR [18] or COCO [19], which
contain millions of labeled images, have learned to recognize general visual
patterns and features. These pre-trained models serve as a valuable starting
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point for various computer vision tasks, including image classification, object
detection, and image segmentation.

Towards a less-supervised perspective

While transfer learning can be effective in numerous scenarios, it may not be
sufficient with domains that exhibit substantial dissimilarities. In this sense,
there is a need to explore and develop novel deep-learning techniques that
can perform well in label-poor scenarios where standard supervised learning
approaches become infeasible or impractical [20]. This includes algorithms
capable of incorporating any type of knowledge into learning that are easily
accessible and also models able to learn on scarce, imbalanced datasets that
lack precise labels. These challenges are particularly evident in the medical
sector, where the complexities inherent in the medical data present a pressing
demand for such algorithms. Unsupervised learning plays a crucial role in
addressing these challenges by operating on unlabeled training and discovering
hidden patterns or structures that can differentiate the data into subsets
of similar samples by leveraging the inherent structure within the data.
Unsupervised learning algorithms uncover meaningful representations and
relationships without explicit labels. This approach has been widely applied
in various domains, demonstrating its utility in data clustering, dimensionality
reduction, anomaly detection and generative modeling. In the middle ground
before the unsupervised and supervised scenarios, other learning strategies aim
to build predictive models with weak supervision. Typically, there are three
types of weak supervision. The first is incomplete supervision, i.e., only a
(usually small) subset of training data is given with labels while the other data
remain unlabeled. The second type is inexact supervision, i.e., only coarse-
grained labels are given and the third type is inaccurate supervision, i.e., the
given labels are not always ground truth [21]. These approaches offer promising
avenues for effectively learning from partially labeled data, augmenting the
capabilities of traditional supervised learning methods.

As mentioned earlier, the need for less supervised learning paradigms to
improve diagnosis is particularly pronounced in the medical sector. The
complexity of the data, combined with the high cost of annotation, presents
significant hurdles for the development of accurate and efficient diagnostic
systems. In this Ph.D. thesis, our motivation lies in developing novel
learning methodologies that can be applied to the medical sector, extracting
discoveries to advance medical research and enhance patient diagnosis. We
overcome the limitations of scarce and imprecise labels in medical datasets
by exploring various families of learning methods, including unsupervised
and weakly supervised approaches. Concretely, our research aims to design
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new methodologies that can be applied to two cutting-edge research areas
within diagnosis: genomic data analysis and digital pathology. Genomic
data holds immense potential for personalized medicine, offering insights into
individual genetic profiles and disease risk factors. In addition, we are entering
the field of digital pathology, which digitizes microscopic tissue samples for
analysis, representing the gold standard for a definitive diagnosis of numerous
diseases. By applying DL techniques to these digital pathology images, we
aim to develop advanced algorithms capable of accurate disease detection. In
summary, this Ph.D. thesis aims to bridge the gap between the challenges faced
in the medical sector regarding supervision information and the potential of
AI-powered solutions to deal with the lack of accurate and amount of labels.

1.2 Objectives

The main objective of this Ph.D. thesis is dual, to make novel discoveries
in the field of medicine and simultaneously develop cutting-edge techniques
to address the challenge of precise data annotation, reducing the burden on
medical professionals. In this sense, this thesis focuses on leveraging deep
learning methodologies to create advanced diagnostic-aid systems capable of
effectively analyzing weakly annotated medical databases. We aim to address
several learning methods to cover different data domains and problems, e.g.,
unsupervised learning, self-training, weakly supervised learning, inductive
learning, calibration and constraint learning. Each chapter of this thesis
presents distinct methodologies tailored to specific data types and problem
domains. In concrete, this thesis is focused on genomic and histological
data. For genomic data, our primary focus is developing algorithms capable
of effectively processing high-dimensional data to improve breast cancer
diagnosis. Regarding histological data, our research focuses on diagnosing
various types of cancer that have not been extensively studied in the literature,
such as spitzoid melanoma and fusocellular skin cancer. Additionally, we aim
to investigate a well-known inflammatory bowel disease, ulcerative colitis. To
achieve the main purpose, all chapters share these specific objectives:

• Collecting, processing and conditioning the databases used and under-
standing the disease patterns that need to be detected.

• Designing and developing DL-based predictive algorithms tailored to
analyze the medical data under study. The learning paradigm employed
should be capable of handling the features of the disease and data
modality. A comprehensive exploration of state-of-the-art methods is
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necessary to propose cutting-edge solutions for automatic data-driven
diagnostics.

• Conducting quantitative and qualitative evaluations of the proposed
models and trying to improve the interpretability of the developed models.
If possible, a comparative analysis with other state-of-the-art models
should be performed to demonstrate the effectiveness of the proposed
solutions.

1.3 Main contributions

As was mentioned earlier, this thesis incorporates outstanding contributions
to the medical community and deep learning fields, introducing innovative
discoveries in medicine and developing cutting-edge techniques to address
the challenges of limited sample availability and the difficulties medical
professionals face in accurately annotating data. These advancements
represent a significant stride towards facilitating efficient and precise medical
data analysis while reducing the workload on medical professionals.

1.3.1 Contribution to Genomic Data Analysis: Advanced
Computing for Insightful Discoveries

Epigenetic mechanisms, one specific subset of genomic studies, play a crucial
role in the normal development and maintenance of tissue-specific gene
expression profiles. In mammalian cells, DNA methylation (DNAm) is based
on the selective addition of a methyl group to the cytosine nucleotide under the
action of DNA methyltransferases. Specifically, DNAm takes place in cytosines
that precede guanines, known as CpG dinucleotides. There are CpG-rich areas
(CpG islands) often located in the gene-promoting regions. The methylation
of these CpG sites silences the promoter activity and correlates negatively with
the gene expression. The methylation of the promoter regions in some vital
genes and, therefore, their inactivation has been firmly established as one of the
most common mechanisms for cancer [22, 23] and autoimmune/inflammatory
disorders development [24]. Because the methylation patterns can be observed
in the early stages, DNA methylation analysis becomes a powerful tool in the
early diagnosis, treatment and prognosis of several disorders, such us cancer.
Nowadays, DNA methylation is made at a molecular level generating large
amount of data. The extremely high dimensions of the methylation data
compared to the generally small number of available samples leads to the
so-called curse of dimensionality problem, the main limitation in developing
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appropriate methods for DNAm data analysis. To overcome this challenge,
it is crucial to devise effective approaches to transform the high-dimensional
data space into a more meaningful and lower-dimensional representation while
addressing the constraints imposed by the limited sample size. Therefore, one
of the main contributions of this thesis is the development of new models that
effectively address the challenges posed by DNAm data to enhance cancer
diagnosis. Specifically, to tackle the issue of overfitting in scenarios with a
limited number of samples, an innovative unsupervised algorithm is presented
in this work. Notably, a novel deep clustering approach that combines self-
training through autoencoders with clustering techniques is proposed (see
Chapter 2).

Curse of dimensionality & Deep clustering

Several approaches based on high dimensional data reduction have been
proposed to deal with the curse of the dimensionality problem. In this
context, PCA and Fisher Criterion [25], non-negative matrix factorisation
(NMF) [26], Random Boltzmann Machine (RBM) [27], deep autoencoder [28]
and variational autoencoders (VAEs) [29] have been proposed. Several state-
of-the-art methods propose different unsupervised and supervised classification
algorithms for cancer identification after performing a dimensionality reduction
of the DNA methylation data [26–28, 30]. However, no previous studies
have been focused on the development of both tasks simultaneously. In
this thesis, we propose a novel deep clustering algorithm for dimensionality
reduction followed by a soft-assignment algorithm to perform an unsupervised
classification, see Chapter 2. As the main novelty, the method is optimized
through a weighted loss function in an end-to-end way. This loss function
comprises two terms: (1) a reconstruction term in charge of optimizing the
latent features provided by the autoencoder algorithm and (2) a clustering
term used to improve the classification based on the latent features of the
autoencoder.

Using this new methodology, this thesis brings noticeable contributions to
the diagnosis of breast cancer [31] and spitzoid melanoma detection [32].
Regarding breast cancer, the proposed algorithm outperforms other state-of-
the-art methods evaluated under the same conditions [26, 27]. Regarding the
work proposed in [27], they obtain an error rate of 2.94 using a deep neural
network (DNN) following a self-organizing feature map (SOM) compared to
0.73 obtained by the proposed method. Furthermore, their algorithm predicts
four cancer examples as healthy, while our method only misclassifies one cancer
sample. In the work proposed in [26], when they reduce the number of features
to 540, the accuracy drops to 97.85 %, lower than achieved with the proposed
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method. Additionally, our latent space has only ten features, reducing the
dimensionality to 99.9637 %. Therefore, this work could contribute to a
faster and more effective diagnosis of breast cancer, improving cancer care and
advancing the future of breast cancer research technologies. See Chapter 2 for
more details.

In the case of spitzoid melanoma detection [32], the proposed method achieves
approximately 0.90 accuracy, outperforming other supervised methods with
which we made various comparisons. To conduct these comparisons, we
employed an AE and VAE, along with a multi-layer perceptron classifier,
resulting in accuracies of 0.85 and 0.65, respectively. Consequently, the
unsupervised end-to-end training approach propsed not only minimizes data
reconstruction but also enhances the classification process, enabling a more
effective differentiation between benign and malignant spitzoid melanoma.
This work represents a significant contribution as, in collaboration with
pathologists from Hospital Clínico of Valencia, we have developed the first
approach to diagnosing these challenging neoplasms.

1.3.2 Contribution to Whole Slide Image Analysis: Empowering
Diagnostics with Cutting-Edge Techniques

Digital Pathology (DP) has experienced significant growth in recent years,
becoming essential for the diagnosis and prognosis of tumors. DP involves
capturing, storing, and analyzing high-resolution digital images of tissues,
known as Whole Slide Images (WSIs) [33]. A WSI is a digital scanning
technology that captures and converts glass slides for use in pathology,
histology, and other healthcare fields into high-resolution digital images. A
digital image can be viewed, analyzed, and shared electronically, which makes
diagnosis, research, and collaboration between healthcare professionals more
efficient and accurate [34]. The development of CAD systems based on
WSI analysis presents important hardware limitations because of their large
size. For this reason, the typical approach generally involves extracting
small patches from larger WSIs, resulting in thousands of patches per image.
Unfortunately, for these deep learning techniques to perform effectively, they
require large and diverse annotated datasets [35]. To address this limitation,
this thesis introduces notable contributions encompassing the development
and validation of annotation tools, creating and publishing an extensive
annotated database and designing innovative deep learning methods that
do not require accurate annotations [36–42]. Specifically, an inductive
training approach based on multiple instance learning is introduced to address
complex neoplasms, such as spitzoid tumors. Additionally, a constraint-based
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convolutional neural network (CNN) is proposed to enhance the prediction of
ulcerative colitis and reduce the workload associated with annotating small
elements. Techniques for calibration in deep learning models are also explored
to improve their accuracy when trained with annotations from non-expert
pathologists. These contributions aim to advance the diagnosis and treatment
in the medical field by addressing specific challenges and optimizing the
performance of machine learning models.

Multiple Instance Learning

Multiple Instance Learning (MIL) is a weakly supervised paradigm that works
to group the data on bags of instances, and only bag-level labels are known
during training. In this setting, instances are independent of each other
and the global label is positive if at least one of the instances belongs to
the given category. Under an embedded-based method, a combination of
transformed instances using a symmetric (permutation-invariant) function
are aggregated to produce a bag-level representation that produces a global
classification. In this thesis, we focus on embedded-based methods in the
context of gigapixel histology WSI classification. In this application, each
WSI is considered a bag, and extracted patches constitute instances. This
method allows for incorporating information from all patches to perform the
final diagnosis. However, all patches may not be equally important in reaching
the final diagnosis. Therefore, in Chapter 3, we propose attention-based
inductive learning to solve this problem. This learning paradigm is composed
of two models: source and target models. In particular, the source model
is trained to predict tumor regions by a patch-based CNN using inaccurate
annotations. An improved CNN called SeaNeT, which effectively refines the
extracted features is developed. After that, the backbone of the source model
is retrained to classify nevus and malignant biopsies resulting in a target model
characterized by a reduced number of labels as this model is retrained at the
biopsy level. The target model is trained under an attention MIL paradigm.
Each bag contains the tumor region pseudo-labeled by the source model, which
facilitates the model training loop since the number of available biopsies is
limited. Additionally, we employ a learnable weighting scheme to assign higher
importance to instances that the model considers more important.

The application of this methodology in spitzoid detection, as presented in this
thesis, is a significant contribution to the field. This lesion has been studied
with deep learning techniques for the first time, obtaining an accuracy of 0.9231
and 0.80 for tumor region detection and melanoma diagnosis, respectively. In
addition, after visualizing saliency maps of representative samples indicating
the presence of tumor regions in WSIs, we can conclude that the developed
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algorithm could help the decision-making in cases of ambiguity for pathologists.
At times, due to the large amount of different patterns in a lesion, pathologists
can overlook some tumor areas and the developed method enhances the
detection of these regions. Since there are no public databases for this type of
neoplasm, the database and the relevant demographic data will be published
in the article "A Spitzoid Tumor dataset with clinical metadata and Whole
Slide Images for Deep Learning models" which has already been accepted in
the journal Scientific Data.

The methodology based on MIL is also the backbone of the methods proposed
in Chapter 4 and Chapter 5, incorporating the essential components and
employing the most appropriate learning strategy to effectively solve the given
problems.

Constraint formulations on weak supervision

Constrained classification aims to guide the training of an artificial neural
network towards a solution that satisfies a given condition, which takes
advantage of additional knowledge of the global labels. This learning paradigm
has gained popularity in weakly-supervised scenarios (e.g., weakly supervised
segmentation or MIL) since it allows to incorporate local information for
improving the final task. Recent works have tackled weakly-supervised
segmentation by imposing constraints on deep CNNs [43–46]. In particular,
an L2 penalty term was proposed in [44] to impose equality constraints on the
size of the target regions in the context of histopathology image segmentation.
Additionally, the authors showed in [45] that imposing inequality constraints on
size directly in gradient-based optimization, via also L2 penalty term, provided
better accuracy and stability when few pixels of an image are labeled. In
this thesis, Chapter 4 further along this line of research. In particular, we
propose a constrained formulation that leverages prior knowledge of relative
tissue location by imposing constraints on the activation maps of the feature
extractor at the bag (WSI)-level. Including an L2 penalty in the loss function,
we strict the expansion of positive instances during training. Additionally,
under the MIL paradigm, we propose a new weighted average of instances
where weights are obtained from the constrained activation maps.

The proposed constrained MIL approach is validated in the context of
ulcerative colitis (UC), a chronic inflammatory bowel disease (IBD) affecting
the colon and the rectum. The treatment of UC aims to extinguish bowel
inflammation and prevent complications. Histological assessment plays a
critical role in determining inflammatory activity. To identify UC activity
effectively, neutrophil detection has proven to be an accurate indicator.
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Therefore, the aim is to distinguish histological remission (favorable clinical
outcomes) from activity based on the detection of neutrophils.

In most MIL-based works, the WSIs employed have broad features that
determine a positive bag. However, in this case, small cells (neutrophils)
with features very similar to others in the tissue differentiate whether a
bag is positive, which poses a significant challenge. Therefore, the typical
MIL approach is not useful as the extracted activations are degraded and
do not allow satisfactory classification. This is demonstrated in Chapter 4
when comparing the proposed method with state-of-the-art MIL methods.
In collaboration with pathologists from 7 centers in UK, Germany, Belgium,
Italy, Canada, and the USA, the new index, PICaSSO Histologic Remission
Index (PHRI), has been designed and validated using artificial intelligence
for improved prognosis of ulcerative colitis [41]. The application of new AI
algorithms developed during this thesis has had a significant impact on the
detection of neutrophils [40, 42] and ulcerative colitis, achieving an accuracy
of 87% when tested on a large cohort of 375 WSI [39]. These achievements have
prompted our research group to become a leader in ulcerative colitis detection.

Uncertainty estimation in weakly annotations

Deep learning models require large, curated datasets with high-quality
annotations to perform properly. In many cases, recruiting expert pathologists
to annotate large databases is not feasible. Unfortunately, without sufficient
labels, the data-hungry learning-based methods often struggle with overfitting,
leading to inferior performance [47]. To alleviate this issue, collecting
additional labeled data with varying label qualities, e.g., pathologists-in-
training (henceforth, non-expert annotators) or using machine-generated
labels, is a common practice. In this sense, one of the main contributions
of this thesis (see Chapter 5) is the design and validation of a new annotation
protocol for non-expert annotators. However, directly introducing data with
low-quality (noisy labels) may confuse the network training, which easily leads
to performance degradation [48, 49]. A main body of literature exploits
multiple annotators in a crowdsourcing scenario to extract the underlying
noise-free label distribution. Nevertheless, gathering multiple annotators in
the medical context may be unrealistic. To tackle this issue, Chapter 5 of this
thesis introduces a novel approach: an uncertainty-aware pipeline designed
to handle the inherent uncertainty in the annotation process, which may not
require multiple label sources. In concrete, we proposed a novel formulation
based on dual-branch entropy calibration (DBEC) to calibrate overconfident
outputs and uncertain soft labels. We use a set of 10 non-expert annotators
to validate the proposed methodology. It is worth mentioning that, we use 10
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annotators to validate the model and demonstrate that it is invariant to the
level of experience of the non-expert pathologist, the hospital they belong to,
etc., as well as to study its limitations. However, it should be noted that in
all cases, the model has only been trained with the labels of one non-expert
annotator.

The proposed uncertainty-aware method presented in Chapter 5 is applied to
cutaneous spindle cell neoplasm detection, one of the most challenging skin
neoplasms not studied in previous studies. We develop a new annotation tool
for WSI labeling and validate it with ten non-expert pathologists, showing that
this new tool can improve the accuracy of non-expert annotation. Using these
annotations, we evaluate the proposed method finding average improvements of
nearly ∼ 4.0% in averaged F1-score using the baseline methods, which increases
up to ∼ 6.6% using the proposed dual-branch calibration. Additionally,
in collaboration with pathologists of Hospital Clínico of Valencia, we have
prepared a large WSI dataset containing both global biopsy-level labels and
pixel-level annotations by expert and non-expert pathologists that will be
published in the article "Annotation Protocol and Crowdsourcing Multiple
Instance Learning Classification of Skin Histological Images: the CR-AI4SkIN
Dataset" currently under review in the journal Artificial Intelligence in
Medicine.

1.4 Framework

This Ph.D. thesis is part of four different research projects, as detailed below:

• SAMUEL − Artificial Intelligence System for Molecular and Morphologi-
cal Skin Cancer Characterization. This is a regional project that aims to
improve the diagnosis of melanocytic lesions by exploring new diagnosis
aid systems based on artificial focus on digitized histological images, epi-
genetic information and clinical data. SAMUEL project was funded by
Agencia Valenciana de la Innovación (AVI) (INNEST/2021/321). Chap-
ter 2 contributes to this project by developing new diagnostic methods
using epigenetic data.

• CLARIFY − Cloud artificial intelligence for pathology. This is an
European project that proposes the creation of a research infrastructure
based on AI and cloud-oriented data algorithms to facilitate the
interpretation and diagnosis of triple-negative breast cancer (TNBC),
high-risk non-muscle-invasive bladder cancer (HR-NMIBC) and spitzoid
melanocytic lesions (SML) from histopathological images. CLARIFY
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project was funded by the European Union’s Horizon 2020 research and
innovation program under the Marie Sklodowska Curie grant agreement
(No 860627). Chapter 3 contributes to this project giving rise to a
weakly supervised framework for assessing spitzoid melanocytic lesions
using histological images.

• PICASSO − Paddington International Virtual ChromoendoScopy ScOre.
This multi-center consortium aims to improve the detection of ulcerative
colitis using histological and endoscopic data. PICASSO was funded
through a contract with Eli Lilly and Company. Chapter 4 contributes
to this project in the design and development of a classification
system capable of identifying ulcerative colitis from specific histological
structures.

• AI4SKIN − Artificial intelligence for cutaneouS spindle cell neoplasm
hIstopathological diagNosis. This is a national project whose objective
is to develop an artificial intelligence-based diagnostic aid system
for detecting spindle cell melanoma and non-melanoma skin cancer.
AI4SKIN project was funded by the Ministerio de Economía, Industria
y Competitividad (PID2019-105142RB-C21). Chapter 5 contributes to
this project in designing and developing a classification system capable
of identifying spindel cell cancer from non-expert labels.

1.5 Outline

This thesis is divided into 6 chapters. The current chapter introduces the
motivation behind the research involved in this thesis, the proposed objectives
and the main contributions. Subsequently, this chapter also details the
framework and the thesis outline.

Chapter 2 corresponds to the paper: "A Deep Embedded Refined Clustering
Approach for Breast Cancer Distinction based on DNA Methylation" [31]. It
was published in the journal Neural Computing and Applications belonging
to the editorial Springer. Neural Computing and Applications had an impact
factor of 5.102 when the article was published in 2021, an impact score of 5.60
and an h-index of 94. The best rank was in the category computer science,
artificial intelligence with a percentile of 69.31 (Q2).

Chapter 3 corresponds to the paper: "An Attention-based Weakly Supervised
framework for Spitzoid Melanocytic Lesion Diagnosis in Whole Slide Images"
[50]. It was published in the journal Artificial Intelligence in Medicine (AIIM)
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belonging to the editorial ELSEVIER. AIIM journal had an impact factor of
7.011 when the article was published in 2021, an impact score of 8.30 and an
h-index of 93 in 2021. The top ranking was in the category Engineering and
biomedical with a percentile of 79.08 (Q1).

Chapter 4 corresponds to the paper "Constrained Multiple Instance Learning
for Ulcerative Colitis prediction using Histological Images" [42], published in
the journal Computer Methods and Programs in Biomedicine (CMPB). The
paper was published in 2022, but the publication data is from 2021. CMPB
journal had an impact factor of 7.027, an impact score of 7.64 and an h-index
of 115 in 2021. The best rank was in the category computer science, theory &
methods with a percentile of 89.55 (Q1).

Chapter 5 corresponds to the paper "Labeling confidence for uncertainty-aware
histology image classification" [38], published in the journal Computerized
Medical Imaging and Graphics (CMIG). The paper was published in 2023,
but the publication details date from 2021. CMIG journal had an impact
factor of 7.422, an impact score of 8.40 and an h-index of 87 in 2021. The top
ranking was in the category radiology, nuclear medicine medical imaging with
a percentile of 90.07 (Q1).

Note that Chapters 2, 3, 4 and 5 are based on the same communication
structure. First, they present an abstract followed by an introduction
containing a review of the literature and the contribution of the proposed work.
Next, the material section explains the datasets used to train and evaluate the
developed ML algorithms, which are explained in the following methodology
part. Then, the performance reached by the proposed methods is presented
and discussed in the results and discussion sections, respectively. At the end, a
brief conclusion recapitulates each work’s main results and contributions and
also establishes some future research directions.

In Chapter 6, the findings from each paper along with the global aim of
this Ph.D. thesis are presented. Final remarks from a global perspective are
exposed and future research lines are suggested. Then, in Merits, the journal
publications and international conferences, as well as research awards derived
from this thesis are included. Note that this thesis has generated additional
scientific publications beyond the papers included in the manuscript. Finally,
the Bibliography is displayed.
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Chapter 2

A Deep Embedded Refined Clustering Approach for
Breast Cancer Distinction based on DNA

Methylation

The content of this chapter corresponds to the author version
of the following published paper: del Amor, R., Colomer, A.,
Monteagudo, C. & Naranjo, V. A Deep Embedded Refined
Clustering Approach for Breast Cancer Distinction based on
DNA Methylation. Neural Computing and Applications, 34,
10243–10255 (2021).
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Abstract

Epigenetic alterations have an important role in the development of several
types of cancer. Epigenetic studies generate a large amount of data, which
makes it essential to develop novel models capable of dealing with large-scale
data. In this work, we propose a deep embedded refined clustering method
for breast cancer differentiation based on DNA methylation. In concrete, the
deep learning system presented here uses the levels of CpG island methylation
between 0 and 1. The proposed approach is composed of two main stages.
The first stage consists in the dimensionality reduction of the methylation data
based on an autoencoder. The second stage is a clustering algorithm based on
the soft-assignment of the latent space provided by the autoencoder. The whole
method is optimized through a weighted loss function composed of two terms:
reconstruction and classification terms. To the best of the authors’ knowledge,
no previous studies have focused on the dimensionality reduction algorithms
linked to classification trained end-to-end for DNA methylation analysis. The
proposed method achieves an unsupervised clustering accuracy of 0.9927 and
an error rate (%) of 0.73 on 137 breast tissue samples. After a second test
of the deep-learning-based method using a different methylation database, an
accuracy of 0.9343 and an error rate (%) of 6.57 on 45 breast tissue samples
is obtained. Based on these results, the proposed algorithm outperforms other
state-of-the-art methods evaluated under the same conditions for breast cancer
classification based on DNA methylation data.



2.1 Introduction

2.1 Introduction

Epigenetic mechanisms are crucial for the normal development and mainte-
nance of tissue-specific gene expression profiles in mammals. Recent advances
in the field of cancer epigenetics have shown extensive reprogramming of every
component of the epigenetic machinery, including DNA methylation, histone
modifications, nucleosome positioning and non-coding RNAs [51]. In concrete,
several studies demonstrate that DNA methylation (DNAm) plays a crucial
role in the tumorigenesis process [22, 23].

In mammalian cells, DNA methylation is based on the selective addition
of a methyl group to the cytosine nucleotide under the action of DNA
methyltransferases [52], Figure 2.1. Specifically, DNAm takes place in cytosines
that precede guanines, known as CpG dinucleotides [53].

Figure 2.1: DNA methylation process. Methylation at the 5’ position of the cytosine
catalyzed by DNMT (DNA methyltransferases) in the presence of S-adenosyl methionine
(SAM).

CpG sites are not randomly distributed throughout the genome but there are
CpG-rich areas known as CpG islands often located in the gene promoting
regions. CpG islands are usually largely unmethylated in normal cells. The
methylation of these CpG sites silences the promoter activity and correlates
negatively with the gene expression. The methylation of the promoter
regions in some vital genes, such as tumor suppressor genes, and therefore
their inactivation, has been firmly established as one of the most common
mechanisms for cancer development [30, 54]. Because the methylation patterns
can be observed in the early stages of cancer [51], DNA methylation analysis

19
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becomes a powerful tool in the early diagnosis, treatment and prognosis of
cancer.

The DNA methylation analysis has experienced a revolution during the last
decade, especially due to the adaptation of microarray technology to the
study of methylation and the emergence of Next-Generation Sequencing (NGS)
[55, 56]. These technological advances combined with the development of
techniques such as reduced representation bisulfite sequencing (RRBS), which
is an efficient and high-throughput approach for analyzing the genome-wide
methylation profiles, have allowed the DNA methylation analysis at the
molecular level [57]. This is the reason why, current methylation studies
generate a large amount of data. Additionally, since the study of DNA
methylation is still a bit expensive, the number of available samples is relatively
low. The extremely high dimensions of the methylation data compared to
the generally small number of available samples leads to the so-called curse of
dimensionality problem, the main limitation in the development of appropriate
methods for DNAm data analysis.

The curse of dimensionality (COD) was introduced by Belman in 1957 [58] and
refers to the difficulty of finding hidden structures when the number of variables
is large. The high data dimensionality has different adverse effects: increased
computational effort, large waste of space, overfitting and poor visualization
[59]. In most cases, a dimensional increase has no significant benefit, since
a lower data dimensionality might contain more relevant information. In
machine learning problems, a small increase in data dimensionality requires
a large increase in data volume to maintain a similar level of performance
on tasks such as clustering, regression, etc. A well-established settlement to
mitigate the curse of dimensionality is to transform the data from a higher-
dimensional space to a more useful lower-dimensional space [59]. There are
different types of dimensionality reduction algorithms. Some of them, such
as Principal component analysis (PCA) or Manifold learning, use linear or
nonlinear combinations of existing features to create new features. Others,
such as Forward selection or Random forests, only keep the most important
features in the dataset and removes redundant ones.

More recently, several state-of-the-art approaches based on high dimensional
data clustering have been proposed to deal with the curse of dimensionality
problem. Among these approaches, stand out the methods based on divisive
hierarchical clustering [60, 61] and subspace clustering algorithms [62, 63].
Tasoulis et al. introduced a new approach to divisive hierarchical clustering
identifying clusters in nonlinear manifolds. This approach uses isometric
mapping (Isomap) to recursively embed subsets of data in one dimension and
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then performs a binary partition designed to avoid the splitting of clusters [60].
In [61], the authors proposed a new divisive hierarchical clustering method in
which each partition in the hierarchy is induced by a hyperplane separator.
Subspace clustering splits the data samples into groups such that each group
contains only data samples lying in the same low-dimensional subspace of
the given high-dimensional feature space. In [62], the author proposed a
local extension of the well-known iterative subspace clustering algorithms in
which the entire cluster is approximated with a single linear/affine subspace.
Araújo et al. introduced a soft-subspace clustering algorithm, a Self-organizing
Map (SOM) with a time-varying structure, to cluster data without any prior
knowledge of the number of categories or of the neural network topology, both
determined during the training process [63].

To mitigate the curse of dimensionality problem existing in the DNAm data,
a dimensionality reduction is necessary before implementing any algorithm
that identifies the presence of cancer using methylation profiles [25]. In
this context, Yuvaraj et al. presented different algorithms for dimensionality
reduction based on PCA and Fisher Criterion [25]. However, the DNA
methylation datasets cannot be efficiently described by these dimensionality
reduction methods due to its non-Gaussian character. Jazayer et al. used
a non-negative matrix factorization (NMF) for the dimensionality reduction
of breast methylation data, followed by ELM and SVM classifiers for cancer
identification. However, with the NMF algorithm, it is not possible to directly
transfer the input to a smaller dimensional space than the number of samples
because this method transfers the data to an output space with a dimension
equal to the minimum of {samples, DNAm dimension}. That is the reason
why, in this study, the authors use a column-splitting method to overcome the
curse of the dimensionality problem [26].

Recent advances in the field of artificial intelligence have allowed the
development of deep learning algorithms that perform an embedding of CpG
methylation states to extract biologically significant lower-dimensional features
[27–29]. Zhongwei et al. presented a stack of Random Boltzmann Machine
(RBM) layers with the aim of reducing the dimensionality of a breast DNAm
set composed of cancer and non-cancer samples. The proposed model first
selected the best 5,000 features based on variance from over 27,000 features
and subsequently used four RBM layers to reduce the number of features to 30.
After reducing the data dimensionality, they carried out a binary classification
of the generated features using unsupervised methods [27]. Khwaja et al.
proposed a deep autoencoder system for differentiation of several cancer
types (breast cancer, lung carcinoma, lymphoblastic leukemia and Urological
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tumors) based on the DNA methylation states. After a statistical analysis, in
which the features providing non-useful information for differentiation between
cancer classes are eliminated, the authors used a Deep Belief Network for
dimensionality reduction with a posterior supervised classification [28]. Titus
et al. proposed an unsupervised deep learning framework with variational
autoencoders (VAEs) to learn latent representations of DNA methylation from
three independent breast tumor datasets. They demonstrate the feasibility of
VAEs to track representative differential methylation patterns among clinical
sub-types of breast tumors but they do not perform any classification with the
extracted characteristics [29].

Several state-of-the-art methods propose different unsupervised and supervised
classification algorithms for cancer identification after performing a dimension-
ality reduction of the DNA methylation data [26–28, 30]. However, to the best
of the author’s knowledge, no previous studies have been focused on the de-
velopment of both tasks simultaneously. Novel deep learning algorithms have
emerged optimizing the dimensionality reduction with unsupervised classifica-
tion at the same time. These methods, called deep clustering algorithms, have
outperformed the state-of-the-art results for different tasks as image classifica-
tion [64–66], image segmentation [67], speech separation [68, 69] or RNA se-
quencing [70]. Therefore, our hypothesis is that since these algorithms perform
well with high-dimensional data, they are likely to perform well for methylation
data.

For all of the above, in this work, we proposed a deep-embedded refined
clustering to distinguish cancer through DNA methylation data. In concrete,
this work is developed using two public databases containing DNAm data from
breast tissues with and without cancer. The proposed method is composed
of an autoencoder to carry out the dimensionality reduction followed by a
soft-assignment algorithm to perform an unsupervised classification. This
algorithm is end-to-end trained to accomplish the data classification while
optimizing the dimensionality reduction. As the main novelty, the method
is optimized through a weighted loss function. This loss function is composed
of two terms: (1) a reconstruction term in charge of optimizing the latent
features provided by the autoencoder algorithm and (2) a clustering term used
to improve the classification based on the latent features of the autoencoder.
To the best of the authors’ knowledge, no previous studies have addressed
the distinction of cancer based on DNAm using an end-to-end trained
dimensionality reduction and classification method. The proposed method
is widely validated and compared to the use of autoencoder and variational
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autoencoder for dimensionality reduction with a subsequent unsupervised
classification.

The rest of the paper is organized as follows: in Section 2.2, we introduce
the databases used in this work, DNAm sets containing the methylation level
(between 0 and 1) of different CpG regions related to cancer. In Section
3, we describe the methodology. In particular, Section 2.3.1 describes the
statistical analysis performed on the DNAm data, Section 2.3.2 presents
the dimensionality reduction algorithms used in this work, conventional and
variational autoencoder, and Section 2.3.3 describes the details of the proposed
deep clustering method. In Section 2.4, we describe the performed experiments
in order to validate our method and in Section 2.5 we discuss the results
obtained. Finally, Section 2.6 summarises the conclusions extracted with the
carried out experiments.

2.2 Material

For this study, we used two methylation datasets obtained from Gene
Expression Omnibus (GEO) website [71]. GEO is a public functional genomics
data repository supporting MIAME-compliant data submissions. Specifically,
we used the GSE32393 [72] and the GSE50220 [73] series to evaluate the
proposed method. Note that the methodology proposed in this work was
applied to the first series. The second series was used as an external database
to perform an additional test and demonstrate the robustness of the proposed
methodology. The GSE32393 series is composed of breast tissue samples from
114 breast cancers and 23 non-neoplastic breast tissues. The breast cancer
tissue samples come from women from the United Kingdom (mean age 59.4)
who were diagnosed with breast cancer. Among the cancers, 33 were at stage
1 and 81 at stage 2/3/4. All 23 non-neoplastic samples are from healthy
women (mean age 47.6). The GSE50220 series is composed of breast tissue
samples from 39 breast cancer and 9 normal control acquired at the Norwegian
Radium Hospital (Norway). Among the breast cancer, 20 were non-irradiated
breast cancer and the rest were irradiated tumors. In all cases, to obtain
the methylation data, the Illumina Infinium 27k Human DNA methylation
Beadchip v1.2 was used at approximately 27,000 CpGs from women with and
without breast cancer. For each sample, 27,578 DNA methylation profiles were
obtained. The methylation status of each CpG site varies from 0 to 1. Under
ideal conditions, a value of 0 means the CpG site is completely unmethylated
and the value of 1 indicates the site is fully methylated.
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2.3 Methods

2.3.1 Statistical analysis

To conduct the prescreening procedure and obtain the methylation sites with
the most differential methylation expression, a previous statistical analysis of
the CpG methylation data was carried out. First, a hypothesis contrast to
analyze the level of independence between pairs of variables was performed.
For this purpose, the correlation coefficient ρ and the p-value of the correlation
matrix were calculated to remove those variables that meet both p-value ≤
α and |ρ| ≤ 0.90, being α the level of significance with a value of 0.05 for
this application. After that, we performed different contrasting hypotheses
to analyze the discriminatory ability of each variable regarding the class.
Depending on if the variables fit a normal distribution or not, the hypothesis
test performed was the t-student or the Wilcoxon Rank-Sum, respectively.
After the statistical analysis, we reduced the 27,578 DNA methylation features
of the GSE32393 series to 10,153. These features were the input for the
following stage.

2.3.2 Dimensionality reduction

In order to explore the well-known non-supervised algorithms to reduce the
data dimensionality based on deep learning techniques, the conventional
and the variational autoencoder were tested. In this section, we detail the
characteristics of both algorithms as well as their main differences.

• Conventional autoencoder

Autoencoder (AE) is one of the most significant algorithms in unsupervised
data representation. The objective of this method is to train a mapping
function to ensure the minimum reconstruction error between input and output
[74]. As it can be observed in Figure 2.2, the conventional autoencoder
architecture is composed mainly of two stages: the encoder and the decoder
stages. The encoder step is in charge of transforming the input data X into
a latent representation Z through a non-linear mapping function, Z = fϕ(X),
where ϕ are the learnable parameters of the encoder architecture. The
dimensionality of the latent space Z is much smaller than the corresponding
input data to avoid the curse of dimensionality [65]. Since the latent space is
a non-linear combination of the input data with smaller dimensionality, it can
represent the most salient features of the data. The decoder stage produces the
reconstruction of the data based on the features embedded in the latent space,
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R = gθ(Z). The reconstructed representation R is required to be as similar to
X as possible. Therefore, given a set of data samples X = {xi, ..., xn}, being
n the number of available samples, the autoencoder model is optimized with
the following formula:

min
θ,ϕ

Lrec = min
1

n

n∑
i=1

||xi − gθ(fϕ(xi))||2 (2.1)

where θ and ϕ denote the parameters of encoder and decoder, respectively.

Figure 2.2: Architecture of the proposed conventional autoencoder used for the non-
supervised dimensionality reduction.

The autoencoder architecture can vary between a simple multilayer perceptron
(MLP), a long short-term memory (LSTM) network or a convolutional neural
network (CNN), depending on the use case. In case the input data is 1-D and
unrelated in time, both the encoder and decoder are usually constructed by a
multilayer perceptron.

• Variational autoencoder

Variational autoencoder (VAE) is an unsupervised approach composed
also of an encoder-decoder architecture like the conventional autoencoder
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aforementioned [29]. However, the main difference between a conventional
and a variational autoencoder lies in the fact that the VAE introduces a
regularisation into the latent space to improve its properties. With a VAE,
the input data is coded as a normal multivariate distribution p(z|x) around
a point in the latent space. In this way, the encoder part is optimized to
obtain the mean and covariance matrix of a normal multivariate distribution,
see Figure 2.3.

Figure 2.3: Main differences between a conventional and a variational autoencoder.
Instead of just learning a function representing the data (a compressed representation) like
conventional autoencoders, variational autoencoders learn the parameters of a probability
distribution representing the input data.

The VAE algorithm assumes that there is no correlation between any latent
space dimensions and, therefore, the covariance matrix is diagonal. In this way,
the encoder only needs to assign each input sample to a mean and a variance
vectors. In addition, the logarithm of the variance is assigned, as this can take
any real number in the range (−∞,∞), matching the natural output range
from a neural network, whereas that variance values are always positive, see
Figure 2.4.

In order to provide continuity and completeness to the latent space, it is
necessary to regularize both the logarithm of the variance and the mean of
the distributions returned by the encoder. This regularisation is achieved by
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Figure 2.4: Architecture of a variational autoencoder. The proposed algorithm is
optimized by minimizing two loss functions. One of them corresponding to the latent space
regularisation and the other one corresponding to the input data reconstruction.

matching the encoder output distribution to the standard normal distribution
(µ = 0 and σ = 1).

After obtaining and optimizing the parameters of the mean and variance
of the latent distributions, it is necessary to take samples of the learned
representations to reconstruct the original input data. Samples of the encoder
output distribution are obtained as follows:

Z ≈ p(z|x) = µ+ σ · ϵ (2.2)

where ϵ is randomly sampled from a standard normal distribution and σ =

exp( log(σ
2)

2
).

The minimized loss function in a variational autoencoder is composed of two
terms: (1) a reconstruction term that compares the reconstructed data to the
original input in order to get as effective encoding-decoding as possible and (2)
a regularisation term in charge of regularizing the latent space organization,
Figure 2.4. The regularisation term is expressed as the Kulback-Leibler
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(KL) divergence that measures the difference between the predicted latent
probability distribution of the data and the standard normal distribution in
terms of mean and variance of the two distributions [75]:

DKL[N(µ, σ)||N(0, 1)] =
1

2

∑
(1 + log(σ2)− µ2 − σ2) (2.3)

The Kulback-Leibler function is minimised to 0 if µ = 0 and log(σ2) = 0
for all dimensions. As these two terms begin to differ from 0, the variational
autoencoder loss increases. The compensation between the reconstruction error
and the KL divergence is a hyper-parameter to be adjusted in this type of
architecture.

2.3.3 Proposed method: Deep embedded refined clustering

Once the data dimensionality is reduced, we classify the samples in cancerous
and non-cancerous. Reducing the data dimensionality without information
about the different subjacent data distributions weakens the representativeness
of the embedded features concerning the class and thereby, the performance
of the subsequent classification worsens. For this reason, we consider that
dimensionality reduction and classification should be optimized at the same
time. In this context, we propose a deep refined embedded clustering (DERC)
approach for classifying the DNA methylation data, see Figure 2.5. It is
composed of an autoencoder in charge of the dimensionality reduction and
a cluster assignment corresponding to the unsupervised classification stage
(clustering layer in Figure 2.5). This approach is trained end-to-end optimizing
the dimensionality reduction and the unsupervised classification in the same
step and not in two different steps as all the algorithms proposed for DNA
methylation analysis in the literature.

During the training process, the encoder and decoder weights of the
autoencoder, W and W ′ respectively, are updated in each iteration in order
to refine the latent features of the encoder output Z. The proposed clustering
layer (linked to the encoder output) obtains the soft-assignment probabilities
qi,j between the embedded points zi and the cluster centroids {µj}kj=1

every
T iterations, being k the number of cluster centroids. The soft-assignment
probabilities (qi,j) are obtained with the Student’s t-distribution proposed
in [65]. Using qi,j, the target probabilities pi,j are updated, see Algorithm
1. These target probabilities allow the refinement of the cluster centroids by
learning from the current high-confidence assignments. To take into account
the refinement of the latent space carried out by the autoencoder while the
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2.3 Methods

Figure 2.5: Architecture of the proposed method (DERC) to detect breast cancer using
DNA methylation data. The proposed algorithm is trained to minimize both, clustering and
reconstruction loss.

samples are classified in one of the two clusters (cancer and non-cancer), the
proposed model is trained end-to-end minimizing both reconstruction Lrec and
clustering loss Lcluster terms:

L = Lcluster + βLrec (2.4)

where β balances the importance of the losses due to the reconstruction of the
data. The term Lrec was defined in Equation (2.1) and it is minimized to obtain
the maximum similarity between the input and the output data improving the
representation of the latent space. Lcluster is defined by the Kullback–Leibler
(KL) divergence loss between the soft assignments and the target probabilities,
qi,j and pi,j respectively:

Lcluster =
∑
i

∑
j

pi,jlog
pi,j
qi,j

(2.5)
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The clustering term is minimized to achieve the soft-assignments qi,j and
the target pi,j probabilities to be as similar as possible. In this way, the
centroids are refined and the latent space obtained by the autoencoder is
regularized to achieve a correct distinction between breast cancer and non-
breast cancer samples. As discussed above, the hyper-parameter β balances
the importance of losses due to the data reconstruction. If β is high, the data
reconstruction term will predominate and the classification between cancerous
and non-cancerous samples will worsen. Otherwise, if this term is too low,
the reconstruction losses will be marginal and the features of the latent space
will not be optimized correctly. Consequently, the latent features will be very
different from the input data, decreasing the accuracy of the unsupervised
classification. Therefore, β is a hyper-parameter that needs to be properly
adjusted. In Step 2 of Algorithm 1, the methodology used to optimize the
proposed DERC algorithm is detailed.

Note that to train the proposed method, a previous initialization of the
centroids with latent characteristics is necessary (Step 1 of the Algorithm 1).
In the experimental section, we present an experiment (Section 2.4.1.1) aimed
at determining which of the dimensionality reduction models is optimal for
this initialization.

2.4 Experimental Results

As we mentioned in Section 2.2, the DNA methylation databases used were
obtained from the Gene Expression Omnibus (GEO) website. In this section,
we used the dataset GSE32393 to evaluate the dimensionality reduction and
the unsupervised deep clustering performance. The dataset GSE50220 was
used as an external validation to demonstrate that the proposed method can
generalise to other breast methylation databases. It should be noticed that all
experiments were performed on an Intel i7 @ 3.10 GHz of 16 GB of RAM with
a Titan V GPU of 12 GB of RAM. The proposed methods were executed in
Python 3.5 using TensorFlow 2.0.
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Algorithm 1 Proposed methodology for the DERC approach.
Input: Methylation data X; number of clusters k; update interval T ; batch-size bs; learning

rate lr; number of samples n.
Output: Cluster assignment {ci}ni=1 of each methylation sample {xi}ni=1.

Step 1: Previous data dimensionality reduction
(1) Pre-train the proposed autoencoder algorithm.
(2) Obtain the centroid initialisation {µj}kj=1 by running K-means on the latent space Z of
the pre-trained autoencoder.

Step 2: Clustering using the proposed DERC method
End-to-end DERC optimization:
for ite← 1 to MAXiter do

%Choose a batch of samples Xbs ⊂ X
if ite%T == 0 then

zi ← fϕ(xi), ∀xi ∈ X update qi,j ← (1+||zi−µj ||2)−1∑
j′ (1+||zi−µj ||2)

, j ̸= j′ update pi,j ←
q2i,j/fj∑

j′ q2
i,j′/fj′

, fj =
∑

i qi,j

% Update encoder weights W , decoder weights W ′ and centroids {µj}kj=1:

update W ←W − lr
bs

∑bs
i=1

[
β ∂Lrec

W ′ + ∂Lcluster
∂W

]
;

update W ′ ←W ′ − lr
bs

∑bs
i=1

∂Lrec
W ′ ;

update µj ← µj − lr
bs

∑bs
i=1

∂Lcluster
∂µj

;

Final prediction stage:
for i← 1 to n do

ci = argmaxj(qi,j)

2.4.1 GSE32393 Series: Performance evaluation

2.4.1.1 Dimensionality reduction and unsupervised classification separately

As mentioned above, an initial latent space with a lower dimensionality
than the input data for the cluster centroid initialisation is necessary. In
this section, we detail a comparison between the latent space obtained
using the conventional and the variational autoencoder and the unsupervised
classification results after applying the K-means algorithm on each latent space.
In this way, it will be demonstrated which algorithm is the most suitable for
dimensionality reduction in the end-to-end proposed method.

Ablation experiment. The 10,153 CpG sites obtained after statistical anal-
ysis of the raw methylation data were the input of the proposed dimensional-
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ity reduction algorithms, conventional and variational autoencoders. In both
cases, the dimensionality reduction was carried out using an architecture com-
posed of 4 stacks. The number of neurons (input, output) of the 3 top layers
were set to {(10153, 2000), (2000, 500), (500, 70)}, respectively (see Figure 2.6).
These layers were composed of a dense layer with ReLU as activation function
except for the last decoder layer that was constituted of the sigmoid function
in order to obtain an output value between 0 and 1, range of the methylation
data values. The kernel weights were initialised with random numbers drawn
from a uniform distribution within [−l, l], where l =

√
3 · s/ninput, being s = 1

3
and ninput the number of input units. The top layer output (latent space di-
mension) was set to {10, 20, 30}. Note that, these settings were obtained
from empirical evaluations with a wide range of settings and we use only the
best parameters here. After intense experiments, the optimal dimension of the
latent space for both algorithms turned out to be 10 neurons.

To show the performance of AE and VAE and to demonstrate that they
are not over-adjusted to the data, a first experiment was performed using
10% of the GSE32393 database as a validation set and the rest 90% as a
training set. Subsequently, both algorithms were trained using the whole
database (Entire prediction). The optimal hyper-parameters combination was
achieved by training both algorithms during 300 epochs, using the Stochastic
Gradient Descent (SGD) optimizer with a learning rate of 1 and a batch
size of 8. Regarding the loss function, in the case of the conventional
autoencoder, the mean square error (MSE) was used. However, the variational
autoencoder loss function was composed of two terms: MSE weighted by
0.8 and Kullback–Leibler (KL) divergence. After training the dimensional
reduction algorithms with the entire GSE32393 series and obtaining the
features in the embedding space (encoder output), the classification results
were obtained using K-means. To achieve this unsupervised classification, we
ran K-means with 80 restarts and selected the best solution.

Qualitative and quantitative results. After training the proposed
dimensionality reduction algorithms, the results in terms of reconstruction
error for both autoencoders are shown in Table 2.1.

Table 2.1: Reconstruction error of the proposed dimensionality reduction algorithms.
Conventional autoencoder (AE) and variational autoencoder (VAE).

Method Reconstruction Loss
Training Validation Entire prediction

AE 0.0062 0.0054 0.0057
VAE 0.0082 0.0074 0.0082
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Figure 2.6: Final dimensionality reduction architectures. (a) Conventional autoencoder
architecture composed of 4 stacks. (b) Variational autoencoder architecture composed of 4
stacks. Note that with the variational autoencoder algorithm, the latent space is obtained
in two stages, two dense layers of 10 neurons representing the mean and the logarithm of
the variance of the latent distribution and a sampling layer to obtain the points of the latent
space.

In order to visualize in a qualitative way the effect of the tested dimensionality
reduction methods (AE and VAE) over the data distribution, we used the
t-distributed stochastic neighbor embedding (t-SNE) method to represent the
latent space into a two-dimensional space. T-SNE is a nonlinear dimensionality
reduction technique that embeds high-dimensional data into a space of two or
three dimensions, which can then be visualized by a scatter plot [76]. In Figure
2.7, we show the representation of the data (latent space of the pre-trained
variational autoencoder (a) and latent space of the pre-trained conventional
autoencoder (b)) in a two-dimensional space.

To quantitatively evaluate the performance of the clustering assignments,
several metrics were computed: the unsupervised clustering accuracy (ACC)
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(a) (b)

Figure 2.7: Latent space of the dimensionality reduction algorithms. (a) Visualization
of 10-dimensional features extracted by the latent space of the pre-trained variational
autoencoder. (b) Visualization of 10-dimensional features extracted by the latent space
of the pre-trained conventional autoencoder.

[74], the error rate (ER), the false positive (FP) and the false negative
(FN) ratios, the adjusted rand index (ARI) [77] and the normalized mutual
information (NMI) [78]. The ACC metric is defined as follows:

ACC = maxm

(∑n
i=1 1{yi = m(ci)}

n

)
(2.6)

where yi is the ground-truth label, ci is the cluster assignment generated by
the algorithm, m is a mapping function that ranges over all possible one-to-
one mappings between assignments and labels and n is the total number of
samples. The error rate (%) is calculated according to the following formula:

ER (%) = (1−ACC) · 100 (2.7)

The adjusted rand index is defined as follows:

ARI =
RI − E[RI]

max(RI)− E[RI]
(2.8)
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where RI = TP+TN
TP+FN+TN+FP

, TP and TN are true positive and true negative
ratios and E[RI] is the expected index. The ARI can yield negative values if
the index (RI) is less than expected index E[RI].

The normalized mutual information is defined by the following formula:

NMI =

∑k
i=1

∑k
j=1 ni,jlog

ni,j

ni·n̂j√
(
∑k

i=1 nilog
ni

n
)(
∑k

j=1 n̂jlog
n̂j

n
)

(2.9)

where ni,j denotes the number of data points which are in the intersection
between cluster ci and class yi, ni is the number of data points in cluster ci
and n̂j is the number of data points in class yj.

In Table 2.2, the above-mentioned metrics were calculated for the input data +
K-means clustering, the latent space of the pre-trained autoencoder(AE)+K-
means and the latent space of the pre-trained variational autoencoder (VAE)+
K-means. Note that the input data is referred to the 10,153 features extracted
after the statistical analysis.

Table 2.2: Comparison of the K-means clustering effect based on different feature
extraction.

Method ACC ER(%) FN FP ARI NMI
Input Data + K-means 0.6715 32.85 45 0 0.1140 0.2355
AE + K-means 0.9343 6.57 9 0 0.7184 0.6300
VAE + K-means 0.5693 43.07 50 9 0.0133 0.0142
Proposed method 0.9927 0.73 1 0 0.9643 0.9212

2.4.1.2 Dimensionality reduction and unsupervised classification jointly
(DERC)

After initializing the centroids using the algorithm with the lowest losses and
the better prediction when K-means was used, in this case, the conventional
autoencoder, the deep embedded refined clustering algorithm was trained.
As we explained in Section 2.3.3, the β value, which weights the terms that
composed the loss function of the DERC algorithm, is an important parameter
to adjust. For this reason, we develop in this section a comparison between
different β values exposing their influence on the clustering assignment.
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Ablation experiment. After pre-training the conventional autoencoder
model (with the parameters detailed in Section 2.4.1.1), we added the
clustering layer to the output of the autoencoder latent space, see Table 2.3
for the layer layout in the final architecture.

Table 2.3: Architecture of the proposed deep embedded refined clustering model.

Layer name Output shape Connected to
Input_layer 10153 N/A
Encoder_0 2000 Input_layer
Encoder_1 500 Encoder_0
Encoder_2 70 Encoder_1
Encoder_3 10 Encoder_2
Decoder_3 70 Encoder_3
Decoder_2 500 Decoder_3
Decoder_1 2000 Decoder_2

Clustering_layer 2 Encoder_3
Decoder_0 10153 Decoder_1

In order to evaluate the β value on the performance of the clustering algorithm,
we kept the rest of the hyper-parameters constant during the different
experiments. In particular, the entire deep embedding clustering method was
optimized by stochastic gradient descent (SGD) with a learning rate of 0.01 and
a momentum of 0.9. The proposed method was trained during 50 epochs using
a batch size of 8 samples and the target distribution of the clustering layer was
updated every 10 iterations. Note that these hyper-parameters were obtained
from empirical evaluations with a wide range of settings. β was a variable
parameter and various experiments were conducted by setting its value with
{0.95, 0.85, 0.75, 0.65}.

Quantitative results. In this case, we show the unsupervised classification
results provided by the proposed deep embedded refined clustering (DERC)
method depending on the β value (see Table 2.4).

Table 2.4: Comparison of the clustering effect of the proposed DERC based on different β
values.

Method ACC ER(%) FN FP ARI NMI
DERC (β = 0.95) 0.9708 2.92 4 0 0.8643 0.7796
DERC (β = 0.85) 0.9781 2.19 3 0 0.8965 0.8198
DERC (β = 0.75) 0.9927 0.73 1 0 0.9643 0.9212
DERC (β = 0.65) 0.9854 1.4600 2 0 0.9298 0.8659
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2.4.2 GSE50220 Series: Generalization ability of the DERC
algorithm

In this section, we expose the results for the prediction of an external test set,
see Table 2.5. The goal of this section is to demonstrate that the proposed
DERC method could be valid to perform feature extraction and unsupervised
classification from methylation data. Therefore, we made use of the GSE50220
series as an external test set to check the behavior of the proposed methods
with new breast cancer samples.

Table 2.5: Results obtained over the external dataset. Note that in this case, the input
data corresponds to the GSE50220 series after selecting the CpG sites extracted with the
statistical analysis in the GSE32393 series.

Method ACC ER(%) FN FP ARI NMI
Input Data + K-means 0.6042 39.58 18 0 0.0445 0.2133
AE + K-means 0.8542 14.57 7 0 0.4727 0.4541
DERC (β = 0.75) 0.9375 6.25 3 0 0.7374 0.6554

2.4.3 Comparison with the state of the art

In order to provide the superiority of the proposed method for DNAm analysis,
we compared our approach with well-known methods for high-dimensional
clustering. In concrete, we use the divisive hierarchical clustering methods
based on isometric mapping using the maximum distance between consecutive
one-dimensional embeddings and the global minimum of the corresponding
density estimator (i-DivClu-M and i-DivClu-D, respectively) [60] and the
subspace methods based on local affine and convex hull [62] (LSC-aff. hull
and LSC-conv. hull, respectively), see Table 2.6.

Table 2.6: Results reached by the state-of-the-art approaches in comparison with the
proposed method when predicting the DNAm databases. Note that S1 refers to the primary
set (GSE32393 series) and S2 to the external database (GSE50220 series).

ACC ER (%) FN FP ARI NMI
S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

i-DivClu-D [60] 0.7600 0.6700 24.00 33.00 33 16 0 0 0.2546 0.1000 0.3113 0.2422
i-DivClu-M [60] 0.8832 0.7917 11.68 20.83 11 10 5 0 0.5149 0.3203 0.3391 0.3618
LSC-aff. hull [62] 0.8248 0.5208 17.52 47.92 24 23 0 0 0.3934 -0.0560 0.3921 0.1545
LSC-conv. hull [62] 0.8248 0.5625 17.52 43.75 24 21 0 0 0.3934 -0.0210 0.3921 0.1700
Proposed 0.9927 0.9375 0.73 6.25 1 3 0 0 0.9643 0.7374 0.9212 0.6554
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2.5 Discussion

In this work, we present a deep embedded refined clustering approach to
automatically detect patients suffering for cancer using DNA methylation
data. In concrete, the proposed algorithm was evaluated using two breast
methylation datasets.

As it can be observed in Table 2.2, an optimal data dimensionality reduction
is essential to improve the classification results when working with high-
dimensional data. Using the K-means algorithm as non-supervised classifier,
the dimensionality reduction carried out by the pre-trained AE on the input
data (DNAm profiles obtained after statistical analysis) improves the ACC
results from 0.6715 to 0.9343. However, with the VAE algorithm, the ACC
results do not improve, obtaining a value of 0.5693. As it can be seen in Figure
2.7, the latent space of the VAE is centered around 0 due to the regularisation
effect. This fact makes it impossible to distinguish between the different classes.
Additionally, the reconstruction losses obtained by the VAE are higher than
those reached by the AE (see Table 2.1). Therefore, it can be concluded that
the conventional autoencoder is the most suitable algorithm to reduce the
DNAm dimensionality.

Moreover, regarding the comparison between classifying separately and jointly
to the dimensionality reduction, ACC results show an improvement from
0.9343 to 0.9927 when the dimensionality reduction and the unsupervised
classification are optimized all at once. In Table 2.4, it can be observed the
effect of the β value on the unsupervised classification results. In this way, it
can be demonstrated that when the contribution of the reconstruction losses
is too low (low β) or too high (high β), the ACC results are worse compared
to a more balanced contribution. However, all the accuracy results shown in
Table 2.4, joint optimization, are higher than those obtained when applying
K-means in the autoencoder latent space, separate optimization. Therefore, it
is proven that when the classification is carried out at the same time as the
dimensionality reduction is optimized, the best results are obtained.

This fact can also be demonstrated when the results of the proposed method
are compared to those obtained in the literature [26, 27]. As discussed in
Section 2.1, in [27], the authors proposed a dimensionality reduction algorithm
followed by several unsupervised classification algorithms. They applied their
methods to the same breast cancer database used in this paper (GSE32393
series). Note that they obtained an error rate of 2.94 using a deep neural
network (DNN) following a self-organizing feature map (SOM) compared
to 0.73 obtained by the proposed method. Furthermore, their algorithm
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predicted 4 cancer examples as healthy, while our method only misclassifies
one cancer sample. Therefore, it confirms that the proposed deep embedded
refined clustering algorithm improves the results when it is applied to DNA
methylation data. Additionally, the algorithm proposed in [26] used the same
breast cancer database (GSE32393 series). In this case, they used a Non-
negative matrix factorisation (NMF) for dimensionality reduction following
by supervised algorithms for classification. Their main limitation is that,
according to the authors, the NMF algorithm cannot directly reduce the
number of features (27,578) to a lower dimension than the number of samples
(137). Therefore, they used a method called column-splitting in which they
separated the original data into different matrices. They could not reduce
the original data to a single latent space because they had to reduce each
data matrix independently. In this way, the overall information of all original
features is not taken into account. They used a K-fold for the algorithm
validation and obtaining a 100 % of accuracy when they used 900 and 2700 CpG
sites. However, both resulting models were overfitted as it is demonstrated
when they reduced the number of features to 540 and the accuracy dropped
to 97.85 %, lower than achieved with the proposed method. Additionally, the
authors of [26] claimed that it is important to reduce the number of features to
a smaller space than the total number of examples. However, they were only
able to reduce the features to 540 (due to NMF restrictions) which is about 5
times the number of examples they used to train their models.

The results obtained by our proposed method on the external database
(GSE50220 series) reported closely similar values to those reached in the
primary set (GSE32393 series). This fact indicates that the proposed deep
clustering model is perfectly applicable to other breast tissue databases (see
Table 2.5).

Furthermore, to objectively contrast the proposed method with other state-of-
the-art high-dimensional clustering approaches, we replicated the experiments
performed by [60, 62] with the two DNAm databases proposed in this
paper (see Table 2.6). The results obtained show a clear outperformance
of the proposed method with respect to the rest of the state-of-the-art
models for all metrics. The methods based on convex hull clustering do
not achieve satisfactory results on the DNAm databases due to their strong
dependence on initialization. Both methodologies, isometric mapping for
Divisive Clustering (i-Div) and Local Subspace Clustering (LSC) show a
decrease in the performance when tested on the external database (S2),
demonstrating that they are not scalable for the classification of methylation
data, especially when the number of samples is limited.
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2.6 Conclusion

In this paper, a deep embedded refined clustering based on breast cancer
classification using DNA methylation data has been presented. To the best
of the authors’ knowledge, no previous studies using DNA methylation are
based on algorithms that can optimise the dimensionality reduction and the
classification of the data at the same time. As demonstrated throughout
the manuscript, the method proposed in this paper improves the results of
algorithms using dimensionality reduction and subsequent classification.

The proposed method allows the breast cancer classification using a latent
space of only 10 features, which means a reduction in the dimensionality of
99.9637 %. The technology used in this study for data acquisition is the
Illumina Infinium 27k Human DNA methylation Beadchip v1.2 which uses
probes on the 27k array target regions of the human genome to measure
methylation levels at 27,578 CpG dinucleotides in 14,495 genes. As verified
through this work, many of the CpG sites obtained in the DNA methylation
analysis are not relevant in the breast cancer classification. After ensuring
model viability with a larger breast cancer database, the CpG sites from
which the level of methylation is obtained could be reduced decreasing the
cost and time of methylation analysis. Therefore, this work could contribute
to a faster and more effective diagnosis of breast cancer, improving cancer care
and advancing the future of breast cancer research technologies.

From a technical perspective, future lines of work will focus on adapting and
applying the proposed method to identify and appropriately classify other
challenging disorders, such as melanocytic tumours. In this way, the general
applicability of the model for the detection of different types of cancer could
be demostrated.
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Abstract

Melanoma is an aggressive neoplasm responsible for the majority of deaths
from skin cancer. Specifically, spitzoid melanocytic tumors are one of the most
challenging melanocytic lesions due to their ambiguous morphological features.
The gold standard for its diagnosis and prognosis is the analysis of skin biopsies.
In this process, dermatopathologists visualize skin histology slides under a
microscope, in a highly time-consuming and subjective task. In the last years,
computer-aided diagnosis (CAD) systems have emerged as a promising tool
that could support pathologists in daily clinical practice. Nevertheless, no
automatic CAD systems have yet been proposed for the analysis of spitzoid
lesions. Regarding common melanoma, no system allows both the selection of
the tumor region and the prediction of the benign or malignant form in the
diagnosis. Motivated by this, we propose a novel end-to-end weakly supervised
deep learning model, based on inductive transfer learning with an improved
convolutional neural network (CNN) to refine the embedding features of the
latent space. The framework is composed of a source model in charge of
finding the tumor patch-level patterns, and a target model focuses on the
specific diagnosis of a biopsy. The latter retrains the backbone of the source
model through a multiple instance learning workflow to obtain the biopsy-level
scoring. To evaluate the performance of the proposed methods, we performed
extensive experiments on a private skin database with spitzoid lesions. Test
results achieved an accuracy of 0.9231 and 0.80 for the source and the target
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models, respectively. In addition, the heat map findings are directly in line with
the clinicians’ medical decision and even highlight, in some cases, patterns of
interest that were overlooked by the pathologist.

3.1 Introduction

According to the World Health Organization, nearly one in three diagnosed
cancers is a skin cancer [79]. The most dangerous skin cancer is melanoma
which is responsible for 80 percent of skin cancer-related deaths [80]. Melanoma
is an aggressive melanocytic neoplasm with numerous resistance mechanisms
against therapeutic agents. In most melanocytic tumors, a precise pathological
distinction between benign (nevus) and malignant (melanoma) is possible.
However, there are still uncommon melanocytic lesions that represent a
diagnostic challenge for pathologists. Among these, one of the most challenging
lesions to diagnose is the so-called ‘spitzoid melanocytic tumors’ (SMTs),
composed of spindled and/or epithelioid melanocytes with a large nucleus [81].

The final diagnosis of SMTs is confirmed by skin biopsies. The skin tumor is
excised, laminated, stained with Hematoxylin and Eosin (H&E) and finally
stored in crystal slides. Then, dermatopathologists analyze the sample
under the microscope [81]. During the analysis of spitzoid lesions, different
histopathological characteristics can be observed depending on the malignancy
degree, see Figure 3.1. The regions with benign spitzoid lesions generally
have a confluence of melanocytes in well-defined and organized nests. Figure
3.1 (a)-(b) shows sub-regions of a benign spitzoid melanocytic lesion. These
regions show cellular and architectural maturation (both melanocytes and nests
decrease in size towards the base of the lesion) throughout the dermis. In this
case, this type of benign lesion is known as compound Spitz nevus. If the lesion
only occurs in the epidermis and does not show extension into the dermis it
would be called junctional nevus. In the case of spitzoid malignant lesions,
cellular disorder is a frequent pattern, the melanocytic nests are ill-defined
and are usually devoid of maturation, see Figure 3.1 (c). Additional features
associated with malignancy of spitzoid melanocytic lesions include marked
nuclear pleomorphism, pagetoid spread (individual cells or small aggregates
of melanocytic cells grow and invade the upper epidermis from below) and a
poor circumscription of lesions at their peripheries [82]. Figure 3.1 (d) shows an
example of the pagetoid pattern. In addition to the cellular disorder, there are
other local-level features associated with malignancy. Among these patterns,
typical (bipolar and symmetrical) and atypical (aberrant mitotic figures,
usually asymmetrical and/or multipolar) mitoses stand out. Note that benign

43



Chapter 3. Weakly Supervised framework for Spitzoid Cancer Diagnosis

melanocytic lesions can also have occasional typical mitoses, particularly in
the most superficial areas. Therefore, if we find a typical mitosis in a spitzoid
lesion, we should take into account additional factors such as the number of
mitoses and their location within the lesion (deep typical mitoses are more
suspicious of malignancy than the superficial ones) to determine if the neoplasm
is malignant. Typical mitoses are only a sign of cellular proliferation and
their mere presence cannot establish that a neoplasm is malignant. However,
if numerous typical mitoses (≻ 6/mm2) are found without evidence of a
traumatic event, the probability of malignancy is high. Similarly, the presence
of atypical mitoses in a spitzoid tumor favors malignancy. An example of
typical and atypical mitoses on a malignant lesion are shown in Figure 3.1
(e)-(f), respectively. Table 3.1 summarizes the main features distinguishing
normal tissue, tissue with benign and malignant spitzoid lesion. The manual
diagnosis process is highly time-consuming and commonly leads to discordance
between histopathologists due to the ambiguity of these neoplasms [83]. This
is why these lesions represent a formidable diagnostic challenge.

Table 3.1: Main histological features of normal melanocytes and spitzoid lesions.

Histological
features

Normal
tissue

Benign spitzoid
lesion

Malignant spitzoid
lesion

Basal and periodically
distributed isolated
melanocytes

Yes No No

Melanocytic nests No Well defined Ill defined
Pagetoid patterns No Rare Yes/No
Typical mitoses No No/Few Common (usually numerous)
Atypical mitoses No No Yes/No
Necrosis No No Yes/No
Ulceration No Very rare Yes/No
Marked nuclear
pleomorphism No No Common

The computer-aided diagnosis systems (CADs) aim to support pathologists
in the daily analysis of skin biopsies, reducing both the workload and
the inconsistency generated. With the emergence of digital pathology, the
digitization of histological crystals into whole-slide images (WSIs) has been
standardized [84], leading the way to the application of computer vision
methods. The development of CADs based on WSI analysis presents important
hardware limitations because of their large size. For this reason, the
typical approach generally involves extracting small patches from larger WSIs,
resulting in thousands of patches per image. The convolutional neural networks
(CNN)-based approaches have been extensively tested for the detection of
breast cancer [85–87], prostate cancer [87–89] or lung cancer [90, 91]. However,
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Figure 3.1: Representative patches extracted from WSIs presenting different spitzoid
melanocytic lesions; (a)-(b): Benign spitzoid nevus containing well-defined melanocytic nests
in an organized fashion; (c): Malignant lesion representative of the cellular disorder with ill-
defined large tumor nest; (d): Malignant lesion with pagetoid spread, very common in this
type of lesions; (e): Typical mitosis; (f): Atypical mitosis.

regarding skin cancer diagnosis, specifically for melanoma detection, most
research was based on the analysis of dermoscopic images [92–100] and few
studies have focused on the analysis of WSIs [101–104]. Hekler et al. [101]
used transfer learning on a pre-trained ResNet50 CNN to differentiate between
two classes, benign and melanoma tissues. The main limitation of this work is
that they are not able to analyze entire WSIs but only a characteristic tumor
sub-region. In De Logu et al. [102], a pre-trained Inception-ResNet-v2 network
was then used to distinguish cutaneous melanoma areas from healthy tissues.
However, this work didn’t discriminate melanoma from nevi WSIs. In [103], the
authors developed a deep learning system to automatically detect malignant
melanoma in the eyelid from histopathological sections. The main limitation
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of this work is that the input of the algorithm is the tumor region and not the
entire WSI image.

To the best of the authors’ knowledge, no previous studies have focused on the
SMTs distinction based on data-driven approaches. There is only one method
based on hand-crafted feature extraction for SMTs identification [104]. In
[104], the authors used a machine learning algorithm to assist in the diagnosis
of SMT. In this study, a random forest classifier was used on numerical
morphological characteristics extracted by the pathologists from histological
images [104]. Therefore, the method does not extract features directly from
the histological images. As SMTs are uncommon skin lesions, the available
data is generally scarce. This is why this study used data from 54 patients.

Inspired by the main limitations of the studies focused on melanoma detection
and more specifically on SMTs diagnosis, in this work, we put forward a novel
semi-supervised inductive transfer learning strategy to conduct both the local
automatic detection of tumor regions and the global prediction of an entire
biopsy. In summary, the main contributions of this work are:

• Spitzoid histological images are used for the first time to develop an
automatic feature extractor.

• A new attention-based backbone is proposed to extract more accurate
features.

• A novel framework based on inductive transfer learning to solve at the
same time ROI selection and malignancy detection is developed.

• Multiple instance learning-based solutions are formulated in a novel
framework for spitzoid lesion detection using biopsy-level labels.

• A wide clinical interpretability of the results achieved with the proposed
methods is provided.

The rest of the paper is structured as follows. Section 2 details the related work
regarding inductive transfer learning and multiple instance learning strategies,
then the underlying methodologies of the present work, and finally highlights
the improvement introduced in medical research. In Section 3, we present
the data used in this work, CLARIFYv1, a private database comprised of
skin WSIs from patients with spitzoid tumors. In Section 4, we describe the
proposed methodology, mainly composed of two stages: i) the development
of a source model in charge of performing a patch-level classification to select
tumor regions and ii) a target model based on a multiple instance learning
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approach to predict the malignancy degree at the biopsy level. Sections 5, 6
and 7 provide information on the performance outcomes related to the different
classification tasks. Finally, in Section 8 we present our conclusions along with
the future work.

3.2 Related work

Inductive transfer learning

Given a source domain DS with a corresponding source task TS, and a
target domain DT with a corresponding task TT , transfer learning (TL) is the
process of improving the target predictive function fT (·) by using the related
information from DS and TS, where DS ̸= DT or TS ̸= TT [105]. In the context
of this work, we refer to inductive transfer learning (ITL) as the ability of the
learning mechanism to enhance the performance on the target task (with a
reduced number of labels) after having learned a different but related concept
or skill on a previous task in the same domain [106]. The intuition behind
this idea is that learning a new task from related tasks should be easier, faster
and with better solutions or using less amount of labeled data than learning
the target task in isolation. When the source and the target domain labels
are available, the inductive transfer learning approach is known as multi-task
learning.

Interest in this technique has grown in recent years in applications related to
medical issues due to the promising results obtained. In this context, Caruana
et al. suggested using multi-task learning in artificial neural networks and
proposed an inductive transfer learning approach for pneumonia risk prediction
[107]. Silver et al. introduced a task rehearsal method (TRM) as an approach
to life-long learning that used the representation of previously learned tasks as
a source of inductive bias. This inductive bias enabled TRM to generate more
accurate hypotheses for new tasks that have small sets of training examples
[108]. Zhang et al. used a technique based on inductive transfer learning to
solve two-step classification problems: classification of malignant-nodule and
non-nodule, and to classify the Serious-Malignant and the Mild-Malignant
in malignant-nodule [109]. Tokuoka et al. provided an inductive transfer
learning approach to adopt the annotation label of the source domain datasets
to tasks of the target domain using Cycle-GAN based on unsupervised domain
adaptation (UDA) [110]. Zhou et al. used an inductive transfer learning
method to improve the performance of ocular multi-disease identification. In
this case, the source and the target domain data were fundus images, but the
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source and target domain tasks were diabetic retinopathy lesion segmentation
and multi-disease classification, respectively [111]. De Bois et al. used an
inductive transfer learning approach to build a better glucose predictive model
using a CNN-based architecture. A first model was trained on source patients
that may come from different datasets and then, the model was fine-tuned
to the target patients. Adding a gradient reversal layer, the patient classifier
module made the feature extractor learn a feature representation that was
general across the source patients [112].

In that context, we adopt an inductive transfer strategy to accurately classify
instances from WSIs. The source model is trained to predict tumor regions
by a patch-based CNN using inaccurate annotations with a large number of
labels. After that, the backbone of the source model is retrained to classify
nevus and malignant biopsies using a target model where the number of labels
is reduced as this model is retrained at the biopsy level.

Multiple instance learning

Multiple instance learning (MIL), a particular form of weakly supervised
learning, aims at training a model using a set of weakly labeled data [113]. In
MIL tasks, the training dataset is composed of bags, where each bag contains
a set of instances. A positive label is assigned to a bag if it contains at
least one positive instance. The goal of MIL is to teach a model to predict
the bag label. MIL approach has been successfully applied to computational
histopathology for tasks such as tumor detection based on WSIs, reducing the
time required to perform precise annotations [114–117]. In this vein, [114,
115] assigned the global label (cancerous against non-cancerous) to all patches
of a slide. Campanella et al. [114] proposed a MIL-based deep learning
system to accomplish the identification of three different cancers: prostate
cancer, basal cell carcinoma and breast cancer metastases. In this case, they
used an instance-level paradigm to obtain a tile-level feature representation
through a CNN. These representations were then used in a recurrent neural
network to integrate the information across the whole slide and report the final
classification result to obtain a final slide-level diagnosis. Das et al. [115] used
an embedded-space paradigm based on multiple instance learning to predict
breast cancer. Specifically, they used a deep CNN architecture based on the
pre-trained VGG19 network to extract the features of each bag. Then, the bag
level representation is achieved by the aggregation of the features through the
batch global max pooling (BGMP) layer at the feature embedding dimension.
Silva et al. [117] used a novel weakly supervised deep learning model, based on
self-learning CNNs, that leveraged only the global Gleason score of gigapixel
whole slide images during training to accurately perform both, grading of
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patch-level patterns and biopsy-level scoring. Other works like [116] treated
the tumor areas manually annotated by pathologists as a bag. In this case,
the authors proposed a MIL method based on a deep graph convolutional
network and feature selection for the prediction of lymph node metastasis
using histopathological images of colorectal cancer. To the best of the authors’
knowledge, no previous works have taken advantage of the promising MIL-
based approaches for the diagnosis of melanocytic tumors yet. Our starting
premise is that since there is at least one identifying patch of malignancy in a
melanoma lesion, the MIL-based approach could assist in diagnosing a spitzoid
lesion based on its whole context lessening the ambiguity between malignant
and benign lesions. Additionally, in contrast to the works cited above, as in
this study each bag contains the tumor region pseudo-labeled by the source
model, the number of noisy labels is reduced, which will facilitate the model
training-loop since the number of available samples is particularly limited.

3.3 Material

To evaluate the proposed learning methodology, we resort to a private
database, CLARIFYv1, with histopathological skin images from different body
areas that contain spitzoid melanocytic lesions. The database is composed
of 53 biopsies from 51 different patients who signed the pertinent informed
consent. The number of patients used in this study is relatively limited
because these lesions are uncommon among the population. The tissue
samples were sliced, stained and digitized using the Ventana iScan Coreo
scanner at 40x magnification obtaining WSIs. The slides were analyzed by an
expert dermatopathologist at the University Clinic Hospital of Valencia (CM).
Specifically, 21 of the 51 patients under study were diagnosed as malignant
melanocytic lesions (melanoma) and the rest as benign melanocytic lesions
(nevus).

The global tumor regions, areas with spitzoid lesions, were annotated by the
pathologists (AM, AM-Z and CM) using an in-house software based on the
OpenSeadragon libraries [118]. With these annotations, WSIs were divided
into regions of interest or ROI (tumor region) and non-interest regions (the rest
of the WSI). Note that the tumor region denotes the part of the biopsy where
the spitzoid lesion is found. After defining the tumor regions, the pathologist
classified them as benign or malignant. Figure 3.2 shows the annotation
of benign and malignant regions. To streamline the annotation task, these
annotations were performed in a coarse way, so in some sub-regions there are
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Figure 3.2: Annotation of a benign and a malignant spitzoid lesion. Patches (a) and
(c) show characteristic patterns of the tumor region, benign and malignant respectively.
Although patches (b) and (d) are inside the interest region annotated by the pathologists,
these patches correspond to reactive stroma and do not contain tumor cells.

tumor discontinuities not considered. This fact is shown in Figure 3.2 (b) and
(d), where these patches have not patterned related to the tumor lesion.

In order to process the large WSIs, these were downsampled to 10x resolution,
divided into patches of size 512x512x3 with a 50% overlap among them. Aiming
at pre-processing the biopsies and reduce the noisy patches, a mask indicating
the presence of tissue in the patches was obtained by applying the Otsu
threshold method over the magenta channel. Subsequently, the patches with
less than 20% of tissue were excluded from the database. A summary of the
database description is presented in Table 3.2. Note that, due to the irregular
morphology of these lesions, the tumor shape is very different among patients,
with the number of patches per patient varying considerably.

Table 3.2: CLARIFYv1 database description. Amount of whole slide images with their
respective biopsy label (first row), number of patches of each tumor region (second row) and
number of non-interest region (third row).

Benign Malignant
# WSI 30 21
# Tumor patches 3652 4726
# Non tumor patches 5842 8139
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3.4 Methods

The methodological core of the proposed approach is a semi-supervised CNN
classifier able to detect the tumor region in a WSI and classify it into either
benign or malignant spitzoid lesions. The proposed workflow is composed of
a source and a target model, (θs) and (θt) respectively. The first model (θs)
allows to automatically obtain the patches with significant features of spitzoid
neoplasms, Figure 3.3. Tumor patches selected by the first model are then
transferred to a second model (θt), Figure 3.4. This second model discerns
malignant and benign biopsies using a MIL paradigm.

Figure 3.3: Overview of the proposed source model to conduct the tumor region detection.
Blue and orange frames correspond to the base encoder network consisting of feature
extraction and refinement. Note that VGG16 has been used as the feature extractor.
After that, a projection head (green frame) maps the embedded representations in a lower-
dimensional space to maximize the agreement in the classification stage (cyan frame).

3.4.1 Source model: ROI selection

The objective of this stage is to build a 2D-CNN architecture able to extract
discriminatory features from WSI patches to distinguish tumor regions.

A. Backbone

(1) Feature extractor. The patch-level feature extractor Gf : x → F is a CNN
which maps an image x into an F feature volume. Since the deep learning
models trained from scratch report worse performance in comparison to fine-
tuned models when the amount of available data is limited, we fine-tuned
several well-known architectures: VGG16 [119], ResNet50 [120], InceptionV3
[121] and MobileNetV2 [122]. All architectures were pre-trained with around
14 million natural images corresponding to the ImageNet dataset. For the
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Figure 3.4: Pipeline showing the embedded-level approach for spitzoid melanocytic lesion
classification. The weights of the pre-trained feature extractor and feature refinement of the
source model (σs and δs) are used to initialize this approach. After that, we use the output
of the projection head and tile-level attention to weight the patches in the prediction of a
whole biopsy. Using an aggregated bag-level feature vector we classify the entire biopsy.

feature extraction stage, the base model is extracted from those pre-trained
models and partially retrained. Since the patterns of the ImageNet dataset
are very different from the histological ones (the value of the Frechet Inception
Distance metric is around 68), it is optimal to keep the low-level features
only (contours, combination of basic colors, general shapes, etc.). To this
end, the weights of the first convolutional blocks from the pre-trained model
are frozen, while the rest are re-trained to adapt the model to the specific
application. The layer from which the freezing strategy is applied is empirically
optimized for each architecture and it is specified in the experimental part of
the paper, Section 5. Therefore, given a histological image x ∈ RM×N×d, where
M×N×d = 224×224×3, a feature-embedded map F ∈ RH×W×C is provided
by the feature extractor. It is denoted as F = Gf (x;σ

s) where σs is the set of
trainable parameters of this source model.

(2) Feature refinement (SeaNet). Medical images always contain some
irrelevant information that can disrupt the decision-making. For this reason,
to solve ambiguous classification problems, it is essential to refine the features
extracted by the CNN model. To this end, an attention module GA(F ; δs) was
proposed to mimic the clinical behavior by focusing on the key features for
the prediction, GA : F → A. In this case, the input of the attention module
corresponds to the output feature map generated by the feature extractor,
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F ∈ RH×W×C . The proposed attention module works as a kind of autoencoder
composed of 1×1 convolutions in which the filters are decreased and increased,
respectively. Therefore, the feature maps obtained at the output of each of
these convolution layers will have the same spatial dimension as the previous
feature map, with the difference that the number of channels will have been
changed to accomplish a combination of the features. In order to explore
the dependencies existing among the different feature channels as well as the
contextual information, the blocks called ‘Squeeze-and-Excitation’ (SE) [123]
were implemented between the different convolutional reduction layers of the
attention module, see Figure 3.5.

The input to the SE block, G ∈ RH×W×R, is embedded into a s ∈ R1×1×R vector
by a global average pooling (GAP) layer, which provides a global distribution
of responses by channels. Note that the number of filters R, corresponds to the
number of channels at the output of the convolutional layers of the attention
module. In the following step, s is transformed into ŝ = ϕ(W2(∂(W1s)))

where ϕ is the sigmoid activation function, W1 ∈ RR
r ×R and W2 ∈ RR×R

r
are

the weights of two completely fully-connected layers (FC) and ∂ is the Relu
activation function. The parameter r is the reduction ratio for dimensionality
reduction, in this case r = 4, indicating the bottleneck. After the sigmoid
activation, the activations of ŝ are ranged to [0,1] and it is used to recalibrate
the input G = [g1, g2, ..., gc] where gi ∈ RHxW . The output feature map of this
block is Gse = [ŝ1g1, ŝ2g2, ..., ŝcgc].

Figure 3.5: Architecture of the Squeeze-and-Excitation blocks used to exploit the
dependencies between feature channels.

The last reduction layer of the attention module has the sigmoid as activation
function to recalibrate the inputs and force the network to learn useful
properties from the input representations. After increasing the number of
filters to the same number as the input layer to this module, the output of
the attention module is pondered with the output of the feature extractor
obtaining a refined feature map A ∈ RH×W×C .

B. Projection head module
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In this paper, we instantiate a projection head network, Gh : A → Z, that
maps the representations A to an embedding vector Z where the classification
stage is addressed in a lower-dimensional space. In this case, different
configurations already applied in the literature were tested in Section 5. In
contrast to other widely used approaches such as the flattening of the activation
volume resulting from the final convolutional block and the class prediction
through consecutive fully-connected layers, the global max pooling (GMP)
and the global average pooling (GAP) layers reduce the number of parameters
decreasing the complexity of the model. At the end of the convolutional
network, a softmax-activated dense layer is applied to address the tumor region
identification.

3.4.2 Target model: WSI prediction

The target model aims to classify spitzoid lesions under an embedded-space
paradigm using the biopsy-level labels for learning. To that end, our main goal
is to find a compact embedding for the instances of a bag/WSI and combine
these instance embeddings to a single embedding that represents the entire
bag, see Figure 3.4.

Specifically, we denote each individual bag as Xt
n =

{
xt
n,1, ..., x

t
n,i, x

t
n,In

}
, where

xt
n,i is the i-th predicted tumor instance by the source model and In denotes

the total number of predicted tumor region patches in a slide. Note that In
can vary across bags. Hence, the objective of the target model becomes to
obtain the label of a slide (Ŷ t

n) from the tumor instances predicted by the
source model (xt

n,i), which can be defined as follows:

Ŷ t
n = f(

{
xt
n,1, ..., x

t
n,i, ..., x

t
n,In

}
, ωt) (3.1)

where ωt denotes the target model weights.

In order to find an embedding representation of each bag, we use the pre-
trained backbone and the projection head module of the source model. In
this manner, following an inductive learning strategy, the backbone already
has prior knowledge concerning basic features of the histological database.
After embedding each bag, hn = Gh(GA(Gf (X

t
n))), we obtain a C-dimensional

feature vector for each instance. The bag label predictor Gy : {hi}i∈In
→ Ŷ t

n

aggregates the C-dimensional feature vectors {hi}i∈In
into a feature vector

Zn ∈ R1×C representative of the bag. In the literature, there exist different
aggregation functions such as batch global max pooling (BGMP) or batch
global average pooling (BGAP). However, such functions are not flexible since
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they do not have trainable parameters. For this reason, in this work we use a
trainable aggregation function [124]. In this case, Gy(·;ωt) is characterized by
a set of trainable parameters V ∈ RL×C and w ∈ RL×1. The embedded feature
vector per bag is obtained as Zn =

∑
i∈In

ai · hi, where ai is defined as:

ai =
exp(wT tanh(Vhi))∑

j∈In
exp(wT tanh(Vhj))

(3.2)

The attention-based aggregation function is differential and can be trained
in a end-to-end manner using gradient descent. Additionally, the attention
module not only provides a more flexible way to incorporate information from
instances, but also enables us to localize informative tiles. The superiority of
this aggregation function for spitzoid prediction will be shown in Section 5.
Finally, the Zn vector attaches to the dense layer with a sigmoid function-
activated neuron to obtain the prediction at the biopsy level.

3.5 Ablation Experiments

In this section, we present the results of the different experiments carried out to
show the performance of the proposed approach for the different classification
tasks: patch-level classification (source model) and WSI prediction (target
model). Note that a comparison with the current state-of-the-art methods
was not possible as there are no algorithms focused on histological images of
spitzoid tumors. Additionally, no public databases of histological images with
melanocytic neoplasms have been found to apply our algorithms.

3.5.1 Database partitioning

Making use of the spitzoid database (CLARIFYv1), we carried out a patient-
level data partitioning procedure to separate training and testing sets, aiming
at avoiding overestimating the performance of the system and ensuring its
ability to generalize. Specifically, 30% of patients were used to test the models,
whereas the remainder of the database was employed to train the algorithm.
To train the proposed models and optimize the hyperparameters involved in
this process, the training set was divided following a 4-fold cross-validation
strategy. We used four validation cohorts to optimize both the source and the
target models. To encourage the source model to select the most relevant tiles,
we used an instance dropout over the non-tumor region, since these represent
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the majority class. Specifically, instances were randomly dropped during the
training, while all instances were used during the model evaluation.

3.5.2 Source model selection

A. Backbone optimization

According to the literature for histopathological image analysis, we compared
as feature extractors the well-known ResNet50 and VGG architectures since
they have reported the best performance [101, 103]. Additionally, we
applied the proposed feature refinement SeaNet, Squeeze and Excitation
Attention Network, on each of these feature extractors in order to evaluate
the enhancement introduced. To address an objective comparison of the
proposed backbones, we kept the projection head module constant using a GAP
layer. In Table 3.3, we contrast the validation results achieved by the different
backbones trained in a binary-class scenario. The comparison was handled by
means of different figures of merit, such as sensitivity (SN), specificity (SPC),
positive predictive value (PPV), false positive rate (FPR) negative predictive
value (NPV), F1-score (F1S), accuracy (ACC) and area under the ROC Curve
(AUC). Note that the figures of merit listed above report the results for the
average of the validation cohorts in the cross-validation process.

Table 3.3: Classification results reached during the validation stage with the proposed
fine-tuned architectures. SeaNet: Squeeze-and-Excitation network.

VGG16 SeaNet (with VGG16) RESNET50 SeaNet (with RESNET50)
SN 0.8057± 0.1247 0.8310± 0.1061 0.8200± 0.1223 0.7494± 0.1736
SPC 0.9070± 0.0343 0.9298± 0.0185 0.8850± 0.0243 0.9290± 0.0422
PPV 0.8448± 0.0856 0.8814± 0.0495 0.8061± 0.1005 0.8800± 0.0316
FPR 0.0930± 0.0343 0.0702 ± 0.0185 0.1150± 0.0243 0.0828± 0.0235
NPV 0.8894± 0.0649 0.9100± 0.0232 0.8830± 0.0761 0.8693± 0.0516
F1S 0.8183± 0.0865 0.8654± 0.0805 0.8022± 0.1126 0.8100± 0.0927
ACC 0.8752± 0.0357 0.9031± 0.0262 0.8611± 0.0558 0.8770± 0.0329
AUC 0.8600± 0.0584 0.8810± 0.0566 0.8400± 0.0813 0.8500± 0.0737

Additionally, class activation maps (CAMs) were computed to highlight the
regions of interest at patch-level in which the proposed source model paid
attention to predict the samples, see Figure 3.6 and Figure 3.7. The backbone
reporting the best performance during the validation stage was selected as the
base encoder network to address the head projection optimization.
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Pagetoid spread

Figure 3.6: Class activation maps (CAMs) for images correctly classified as tumor region or
ROI (first row) and non-tumor regions (second row). First column: original images; Second
column: CAMs obtained using the VGG16 model. Third column: CAMs using Squeeze and
excitation network (SeaNet) with VGG16 as the backbone. SeaNet model focuses on the
most distinctive features and, in this case, pays attention to the pagetoid spread to define a
patch as tumorous and to the healthy stromal region for the non-tumoral region.

Training details. All the contrasting approaches were implemented using
Tensorflow 2.3.1 with Python 3.6. Experiments were conducted on the
NVIDIA DGX A100 system. NVIDIA DGX A100 is the universal system
for all artificial intelligence (AI) workloads, offering unprecedented compute
density, performance, and flexibility in a 5 petaFLOPS AI system. After
intense experiments, the optimal hyperparameters combination was achieved
by training the models for 120 epochs using a learning rate of 0.001 with a
batch size of 64. A stochastic gradient descent (SGD) optimizer was applied
to minimize the binary cross-entropy (BCE) loss function at each epoch. The
base model of the fine-tuned feature extractor was also optimized, selected to
freeze the first convolutional block for VGG16 and setting all layers as trainable
for ResNet50.

B. Head projection optimization

In this section, we report the validation performance using different projection
head modules. Specifically, we compare a small multi-layer perceptron (MLP)
with one hidden layer of 128 neurons non-linearly activated by the ReLU
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Figure 3.7: Original images (first column) and Class Activation Maps (CAMs) obtained
with the VGG16 model (second column) and the Squeeze and excitation network (SeaNet)
with VGG16 (third column). (b) and (e): Patches misclassified by the VGG16 model
predicted as no ROI and ROI, respectively; (c) and (f): Patches well classified, ROI and
No ROI respectively.

function, a global max-pooling (GMP) layer and a global average-pooling
(GAP) layer, see Table 3.4. It is important to note that the comparison
was conducted using the proposed SeaNet (with VGG16) backbone for all
the scenarios.

Training details. The same hardware and software systems as for the
backbone section were used to optimize the head projection. Additionally,
we use the same learning rate, batch size, loss function and number of epochs
as in the previous section. In this case, we only changed the head projection.

3.5.3 Target model selection

A. WSI label predictor optimization

As mentioned throughout the manuscript, the backbone and the projection
head module of the target model were optimized during the ROI selection, via
the source model. After obtaining an embedded feature vector of each tile in
a bag, it is necessary to implement an aggregation function. In this section,
we compare the results, when three different aggregation functions were used:
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Table 3.4: Classification results reached during the validation stage using different
projection head modules. SeaNet: Squeeze-and-Excitation network (with VGG16 as
backbone), MLP: multi-layer perceptron, GMP: global max-pooling, GAP: global average-
pooling.

SeaNet+MLP SeaNet+GMP SeaNet+GAP
SN 0.8716± 0.3000 0.8729± 0.0371 0.8310± 0.1061
SPC 0.9076± 0.0478 0.9143± 0.0131 0.9298± 0.0185
PPV 0.8460± 0.1018 0.8589± 0.0710 0.8814 ± 0.0495
FPR 0.0927± 0.0340 0.0857± 0.0131 0.0702 ± 0.0185
NPV 0.9100± 0.0348 0.9140± 0.0283 0.9100± 0.0232
F1S 0.8606± 0.0655 0.8708± 0.0541 0.8654± 0.0805
ACC 0.8940± 0.0320 0.9020± 0.0164 0.9031± 0.0262
AUC 0.8800± 0.0391 0.8935± 0.2490 0.8810± 0.0566

batch global max pooling (BGMP), batch global average pooling (BGAP) and
batch global attention summary (BGAS), Table 3.5.

Table 3.5: Classification results reached during the validation stage using different
aggregation functions. BGMP: batch global max-pooling; BGAP: batch global average-
pooling; BGAS: batch global attention summary.

BGMP BGAP BGAS
SN 0.5000± 0.3953 0.5833± 0.3062 0.7500± 0.2764
SPC 0.9000± 0.3953 0.8500± 0.1658 0.8500± 0.2764
PPV 0.6250± 0.4330 0.8375± 0.1709 0.8667± 0.1414
FPR 0.1000± 0.2909 0.1500± 0.3062 0.1500± 0.2764
NPV 0.7625± 0.1546 0.7848± 0.1388 0.8869± 0.1207
F1S 0.5018± 0.3873 0.6000± 0.1541 0.7472± 0.1473
ACC 0.7361± 0.0977 0.7361± 0.0417 0.8229± 0.0262
AUC 0.7000± 0.1744 0.7167± 0.0841 0.8000± 0.0963

Training details. In order to generate bags and train the algorithms, a
maximum of 300 image patches were randomly extracted from the source model
prediction. In this case, the optimal results were obtained re-training the whole
models during 100 epochs using a learning rate of 0.001 and a batch size of
1, in other words, one slide per batch. To minimize the BCE loss function at
every epoch, the SGD optimizer was used.
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3.6 Prediction Results

In this section, we show the quantitative and qualitative results achieved by
the proposed strategies during the prediction of the test set. For both methods
developed in this work, ROI selection and WSI classification, predictions
were performed using the architectures with the best performance during the
validation stage.

Quantitative results. Table 3.6 shows the results reached in the test
prediction for the proposed source and target models.

Table 3.6: Classification results reached during the prediction stage. SM: source model;
TM: target model. The proposed source model (SM) was composed of the SeaNet (with
VGG16) + global max-pooling (GMP). The proposed target model (TM) used the batch
global attention summary (BGAS) layer as an aggregation function.

SM TM
SN 0.9285 0.6700
SPC 0.9202 0.8900
PPV 0.8622 0.8000
FPR 0.0798 0.1111
NPV 0.9599 0.8000
F1S 0.8942 0.7300
ACC 0.9231 0.8000
AUC 0.9244 0.7800

Qualitative results. To qualitatively show the performance of the ROI
selection model, we obtained probability heatmaps of representative samples
indicating the presence of tumor region in the WSIs, Figure 3.8.

In the probability maps, for each pixel, the predicted probabilities for the
ROI are estimated by bilinearly interpolating the predicted probabilities of the
closest patches in terms of euclidean distance to the center of the patches.
In addition, using these heatmaps, we visualize the distribution of attention
weights, which were calculated for cases correctly classified into benign and
malignant neoplasms, see Figure 3.9.
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Figure 3.8: Whole slide image-level prediction for the source model (ROI estimation). (a)
Manual annotation by experts; (b) System prediction completely in line with the annotation
of (a); (c) Manual annotation by experts with expansion of areas with melanocytic nests
characteristic of the lesion; (d) System prediction with certain areas annotated by the
pathologists predicted as non-tumor regions. The expansion of the areas where there are no
activations demonstrate that there are no melanocytic nests characteristic of the lesion;
(e) Manual annotation by experts with expansion of area where melanocytic cells with
melanosomes are found; (d) System prediction with expansion in the regions not annotated
by the pathologist to demonstrate the presence of tumor cells.
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Figure 3.9: Visualization of the attention weights of the bag aggregation function in heat
maps. (a) Benign sample; (b) Malignant sample.

3.7 Discussion

In this section, we make reference to the main contributions detailed
throughout the paper and review the results obtained.

In contrast to the state-of-the-art studies for histological images classification,
in which the input of the prediction model is the tumor region annotated by the
pathologist, in this paper, we propose a framework able to first automatically
select neoplastic regions of interest and then predict the malignancy or
benignity of spitzoid neoplasms. Note that no previous studies seem to
have proposed any automated method for the detection of these challenging
neoplasms. Due to the absence of public spitzoid databases, the developed
algorithms could not be validated with external databases, which can lead to
biased results, according to the database used.

3.7.1 Source model: ROI selection

A. About the ablation experiment

Backbone selection. As a first stage, we carried out an optimization of
the feature extractor for the selection of the tumor regions. Considering
the limited amount of available samples, we decided to use the fine-tuning
technique on the VGG16 and RESNET architectures. Particularly, from Table
3.3 we can observe that the use of sequential approaches (VGG16) provided
slightly better results than architectures with residual blocks (RESNET). This
fact is evidenced in several works in the literature for histopathological analysis
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where the sequential models used outperform residual ones [88]. Additionally,
the proposed SeaNet module, characterized by the refinement of the features
via convolutional attention blocks, reported a significant outperforming.
Specifically, the SeaNet module via fine-tuning VGG16 architecture, achieved
the best results. The use of the attention module provides more distinctive
feature maps and allows a considerable reduction in the incidence of false
positive and false negative samples, leading to improve global metrics. Aiming
at qualitatively observing the enhancements introduced by the refinement
module, the CAMs of the best models (SeaNet with VGG16 and VGG16
alone) were obtained for correctly classified images (see Figure 3.6) and for
images misclassified by the VGG16 model (see Figure 3.7). In Figure 3.6,
we can see that both for the prediction of patches belonging to the tumor
region (a) and for non-tumor ones (b), the SeaNet activations are focused on
smaller regions. For the ROI prediction, the SeaNet (with VGG16) model is
mainly focused on the pagetoid pattern present within the epidermis, defining
the region as tumor. However, the VGG16 model extends its activations to
lymphocytes found within the dermis. In this case, the lymphocytes do not
necessarily determine that the region is tumorous, since this small amount
of lymphocytes can also be found in healthy regions. Therefore, the VGG16
model without the attention module introduces certain noise in the prediction.
Regarding the prediction of non-tumor regions, both models are focused on the
epidermis and stromal region of the dermis. Regarding the cases where VGG16
misclassifies tumor regions, Figure 3.7 (b), the activations are focused on the
epidermis region. In this case, the epidermis region has no patterns indicative
of a melanocytic lesion, but for a correct classification, the activations would
have to be focused on the melanocyte aggregate found in the upper region, as
in the case of the SeaNet model, see Figure 3.7 (c). In this region, we find a
large number of melanocytic cells with a high concentration of lymphocytes
indicating an inflammatory reaction to a tumor region. For the case of the
non-tumor region shown in Figure 3.7 (d), the VGG16 model erroneously
predicts it by focusing on the melanocytic cells found in the epidermis, see
Figure 3.7 (e). Normally, in healthy skin, the dermo-epidermal junction is
composed of isolated melanocytic cells with a certain spacing between them.
It is representative of a tumor when these cells ascend to the upper layers of the
epidermis forming what is known as a pagetoid pattern or infiltrate the dermis
forming nests. Furthermore, in this case, the epidermis has no patterns that
would be representative of a melanocytic lesion. Unlike the VGG model, the
SeaNet (with VGG16) model reports its activations in the epidermal region
and based on it establishes the correct prediction, classifying this patch as
non-characteristic of a spitzoid lesion, see Figure 3.7 (f).
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In any case, the inclusion of the proposed attention module outperforms the
popular pre-trained architectures of the state of the art and reduces the number
of noisy patches used as input to the target model.

Projection head module selection. After optimizing the backbone,
we proceeded to select the projection head module that provided the best
results. For this purpose, we tested three projection head modules: multilayer
perceptron (MLP), global average pooling (GAP) and global max pooling
(GMP). Table 3.4 shows that the modules based on GAP and GMP provide
very similar and significantly better results than those reported by the
MLP. The outperforming of GMP and GAP compared to the fully-connected
configuration could be explained by the reduction in the number of weights to
be optimized, making the model simpler and more capable of generalizing
to new images. Comparing the results provided by GAP and GMP, we
can conclude that they are very similar. The main difference between these
techniques lies in the method of squeezing the spatial dimension. While GMP
considers only the maximum value for the feature map, in the GAP layer the
whole spatial region contributes to its output. This explains why the GMP
layer enhances SN results and the GAP layer improves SPC results. With the
GMP layer, it is more likely to correctly classify a patch belonging to the tumor
region, even if it contains a minimal tumor region. However, GAP takes into
account the whole context so that regions with small tumor areas are likely to
be discarded. Although both show a very similar result, global metrics such as
F1S and AUC exhibit a slight improvement with the GMP layer. Therefore,
the GMP layer will be preferred as the optimal head projection module.

B. About the prediction results

Table 3.6 shows the results reached by the proposed ROI selection model.
All the metrics reported here outperform those obtained in the validation
phase. Figure 3.8 shows the probability maps for the lesion region of three
test samples. The majority of the lesion regions predicted by the algorithm
are depicted in Figure 3.8 (b), in which the prediction is completely in line with
the annotation performed by the pathologists, Figure 3.8 (a). Some activation
maps, such as those shown in Figure 3.8 (d), predict certain areas annotated by
the pathologists as non-tumor regions. However, if we visualize the expansion
of the areas where there are no activations, we can see that there are no
melanocytic nests characteristic of the lesion, and therefore, we may be facing
a discontinuity of the lesion as explained in Section 3.3. In contrast, in the
lower part of Figure 3.8 (d), there are activations of tumor regions that have
not been annotated by expert pathologists, see Figure 3.8 (c). However, if
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these regions are enlarged, it can be concluded that tumor cells are present.
At times, due to the large amount of material in a lesion, pathologists can
overlook some tumor areas. In the case of Figure 3.8 (e) and (f), there is also
some discrepancy between the annotations performed by the pathologists and
the activations predicted by the model. In these figures, we find melanocytic
cells with melanosomes that give them their characteristic brown color. It is
difficult to differentiate these tumor cells from melanophages (cells with brown
staining and all of the same size) that are not tumor cells. In this case, if
we zoom the activations of the algorithm (Figure 3.8 (f)) in those regions
not annotated by the pathologist, we can see that there are also tumor cells.
Therefore, the developed algorithm could help the decision-making in cases
where there is ambiguity for the pathologists. In this context, the developed
method enhances the detection of tumor areas.

3.7.2 Target model: WSI prediction

A. About the ablation experiment

WSI label predictor optimization. As discussed throughout the document,
the backbone used by the target model was optimized during the selection of
the source model. Therefore, in this case, it was only necessary to optimize the
aggregation function required to perform a prediction using a MIL approach.
From Table 3.5, we can observe that the use of the feature average of all
patches containing a bag to obtain the embedded representation provides the
best results (BGAP and BGAS aggregation functions). Additionally, the
BGAS aggregation function improves the results provided by BGAP thanks
to the introduction of optimized attention weights by updating the bag-level
predictor weights (ωt), achieving a validation accuracy of 0.8229. Therefore,
we can conclude that the introduction of the attention module allows focusing
on more relevant patterns, thus improving the final classification.

B. About the prediction results

Table 3.6 shows the results reached by the proposed target model in the test set.
The results are in line with those obtained in the validation phase. Although
the results are promising, there are some biopsies that are misclassified by
the algorithm. This is because these types of lesions occasionally do not
have universally accepted guidelines that can guarantee their specific diagnosis.
Figure 3.9 shows the attention weights of the BGAS aggregation function for
benign (Figure 3.9 (a)) and malignant (Figure 3.9 (b)) samples. The attention
weights were normalized between 0 to 1 in each bag. The red regions in the
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attention weight maps represent the highest contribution for classification in
each bag. Therefore, the bag class label is predicted by only using instances for
which the attention values are large. In the case of a benign sample (Figure 3.9
(a)), the regions contributing to the class establishment are distributed over a
wide area of the lesion, these areas being aggregates of melanocytes. However,
the large attention weights for a malignant lesion are focused on small region
characteristics of malignancy (in this case pagetoid pattern) as shown in Figure
3.9 (b).

3.8 Conclusion

In this work, we propose an inductive transfer learning framework able to
perform both ROI selection and malignant prediction in spitzoid melanocytic
lesions using WSIs. Our proposed framework is composed of a source model in
charge of selecting the patches with characteristic lesion patterns. The source
model introduces an attention module able to refine the features of the latent
space to maximize the classification agreement. Using the backbone of the
source model as a patch-level feature extractor and under a multiple instance
learning approach, the target model predicts the malignancy degree by taking
as input the tumor patches predicted by the first model. This innovative
approach carried out in an end-to-end manner reported promising results for
both ROI selection and WSI classification, achieving a testing accuracy of
0.9231 and 0.8000 for the source and the target models, despite the limited
number of samples. Thus, our framework bridges the gap with respect to
the development of automatic diagnostic systems for spitzoid melanocytic
lesions. In future research lines, efforts should focus on improving the
discrimination of malignancy and benignity with the acquisition of new samples
and enhancements to the implemented attention module in the multiple
instance learning approach.
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Abstract

Deep learning-based models applied to digital pathology require large, curated
datasets with high-quality (HQ) annotations to perform correctly. In many
cases, recruiting expert pathologists to annotate large databases is not feasible,
and it is necessary to collect additional labeled data with varying label qualities,
e.g., pathologists-in-training (henceforth, non-expert annotators). Learning
from datasets with noisy labels is more challenging in medical applications
since medical imaging datasets tend to have instance-dependent noise and
suffer from high inter/intra-observer variability. In this paper, we design an
uncertainty-driven labeling strategy with which we generate soft labels from
10 non-expert annotators for multi-class skin cancer classification. Based on
this soft annotation, we propose an uncertainty estimation-based framework
to handle these noisy labels. This framework is based on a novel formulation
using a dual-branch min-max entropy calibration to penalize inexact labels
during the training. Comprehensive experiments demonstrate the promising
performance of our labeling strategy. Results show a consistent improvement
by using soft labels with standard cross-entropy loss during training (∼ 4.0%
F1-score) and increases when calibrating the model with the proposed min-max
entropy calibration (∼ 6.6% F1-score). These improvements are produced at
negligible cost, both in terms of annotation and calculation.



4.1 Introduction

4.1 Introduction

Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) affecting
the colon and the rectum with a propensity to arise in adolescents and young
adults. The incidence of UC has been increasing globally [125] and currently
ranges from 4 to 20 per 100,000 in North America and Europe [126].

The treatment of UC aims to extinguish bowel inflammation and prevent
complications. Histological assessment plays a critical role in determining
inflammatory activity. In this vein, histologic remission (HR) (also referred to
as histologic healing, HH) is emerging as the most rigorous target of treatment
and is associated with favorable clinical outcomes [127–130]. However,
incorporating histology into clinical practice remains challenging. This is due
to: (1) the lack of a universal definition of HR that varies depending on the
histological score/index applied, (2) the complexity of most scores and (3) the
high inter-observer variability between pathologists [128, 131–133].

Over the past decades, more than 30 histological scores have been developed,
although their adoption in clinical practice remains modest [134, 135].
Similarly, different definitions and criteria of HR have been proposed, ranging
from ‘elimination of mucosal ulceration/erosion’ to ‘complete histological
normalization’. Almost all investigators now agree that the absence of
neutrophilic infiltration (‘neutrophil-free’ mucosa) is the key to define HR [135–
138]. Indeed, this has been endorsed by two independent expert panels [138,
139]. Recently, our medical team developed a simplified histological score,
PICASSO Histological Remission Index or PHRI, see Table 4.1 [41].

The primary aim of PHRI was to create a simple ‘neutrophil only’ histologic
evaluation that predicted specified clinical outcomes. The structures of the
biopsy where to evaluate the presence or absence of neutrophils and predict
histological remission are: (a) lamina propia, (b) surface epithelium, (c) cryptal
epithelium and (d) cryptal lumen, see Figure 4.1.

The computer-aided diagnosis systems (CADs) based on artificial intelligence
(AI) aim to support pathologists in the daily analysis of histological biopsies,
reducing both the workload and the inconsistency generated. Their final goal is
to produce a reliable and reproducible real-time assessment of disease activity.
With the emergence of digital pathology, the digitization of histological tissue
sections into whole-slide images (WSIs) has been standardized, leading to
the application of computer vision methods. Additionally, previous research
showed the applicability of computer vision methods based on deep-learning
approaches using WSIs for cancer detection, inflammatory prediction, etc.
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Table 4.1: PICaSSO Histologic Remission Index (PHRI) to predict histological remmision.

Histologic finding Score
Neutrophil infiltration in lamina propria

Absent (No) 0
Present (Yes) 1

Neutrophil infiltration in epithelium
Absent (No) 0
Present (Yes)
- Surface epithelium 1
- Cryptal epithelium 1
- Crypt abscess 1

Total Score = sum of all above (maximum 4)

Regarding the detection of UC activity based on deep learning techniques,
available research has focused on the analysis of endoscopic images [140–144],
but so far, only one study has approached the analysis of WSIs [145]. In
[145], the authors used a deep learning algorithm to quantify the density
of eosinophils in sigmoid colon biopsies from consecutive UC patients with
histologically active disease. The algorithm was applied to sigmoid and colon
biopsies from a cross-sectional cohort of 88 UC patients with histologically
active disease as measured by the Geboes score and Robarts histopathology
index (RHI). However, this study does not differentiate between remission and
active WSI.

To the best of our knowledge, no previous study based on deep learning has
been carried out to identify UC activity based on neutrophils detection using
WSI, which has proven to be an accurate indicator of disease activity. In
this work, we present a novel deep learning strategy to distinguish histological
remission from activity based on the detection of neutrophils following the
PHRI index. In summary, the main contributions of this work are:

• A deep learning framework used for the first time to accurately predict
ulcerative colitis activity based on neutrophil detection.

• A novel constrained formulation that leverages prior knowledge in terms
of relative tissue location (i.e. neutrophil location in the WSI) by
imposing constraints on the feature extractor at bag (WSI)-level.

• A new attention weight for embedding-level MIL, which enlarges the
relevance of the positive instances.
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Figure 4.1: The larger image corresponds to a Whole-Slide Image (WSI) of a patient
suffering from ulcerative colitis. The patches marked with colours denote different interest
structures. Specifically: (a) lamina propia, (b) surface epithelium, (c) cryptal epithelium
and (d) cryptal lumen. The black mark indicates the presence of a neutrophil.

• We benchmark the proposed model against relevant body of literature on
PICASSO-MIL, a large cohort of biopsies collected and digitalized in 7
centers in the UK, Germany, Belgium, Italy, Canada and USA.

• Comprehensive experiments demonstrate the superior performance of our
model. By simply incorporating information about neutrophil location
during the training, we found improvements of nearly 10% for bag-level
classification compared to prior MIL methods.

4.2 Related work

4.2.1 Multiple instance learning

Multiple instance learning (MIL), a particular form of weakly-supervised
learning, aims at training a model using a set of weakly labeled data [113].
In MIL tasks, the training dataset is composed of bags, where each one
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contains a set of instances and its goal is to teach a model to predict the
bag label. A positive label is assigned to a bag if it contains at least
one positive instance. MIL approaches have been successfully applied to
computational histopathology for tasks such as tumor detection based on
WSIs, reducing the time required to perform accurate annotations [114–
117, 146, 147]. Some of these works use convolutional neural networks
(CNNs) for the feature extraction process in each instance independently
and then combine the instance-level information into one bag-level output.
Methods that combine instance-level features are known as embedding-based,
which require a later classification layer. In the case of [115], the bag level
representation is achieved by the aggregation of the features through a simple
batch global max-pooling (BGMP). Recent methods have proposed weighted-
average embeddings, using instance-specific attention weights learned via a
multi-layered perceptron projection or recurrent neural networks. In contrast,
instance-based architectures combine instance-level predictions directly into
the bag classification. In this vein, [114] obtained a tile-level feature
representation through a CNN. These representations were then used in a
recurrent neural network to integrate the information across the whole slide
and report the final classification result to obtain a final slide-level diagnosis.

In most MIL-based papers, the WSIs employed have broad features that
determine that a bag is positive. However, in this case, small cells (neutrophils)
with features very similar to others in the tissue differentiate whether a bag is
positive. Therefore, the typical MIL approach is not useful as the extracted
activations are degrade and do not allow satisfactory classification.

4.2.2 Constrained CNNs

Constrained classification aims to guide the training of a CNN towards a
solution that satisfies a given condition, which takes advantage of additional
knowledge to the global labels. This learning paradigm has gained popularity
on weakly-supervised scenarios (e.g. weakly supervised segmentation or
MIL) since it allows to incorporate local information for improving the
final task. Several works have tackled the problem of weakly-supervised
segmentation by imposing constraints on deep CNNs [43–46]. In [43], the
authors proposed a latent distribution and KL-divergence to constrain the
output of a segmentation network. It is used in a semi-supervised setting
to impose size constraints and image-level tags (i.e., force the presence or
absence of given labels) on the regions of unlabeled images. Moreover, an
L2 penalty term was proposed in [44] to impose equality constraints on the
size of the target regions in the context of histopathology image segmentation
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which considerably improved the results. More recently, the authors showed
in [45] that imposing inequality constraints on size directly in gradient-based
optimization, also via an L2 penalty term, provided better accuracy and
stability when few pixels of an image are labeled. Similarly, Zhou et al.
embedded prior knowledge on the target size in the loss function by matching
the probabilities of the empirical and predicted output distributions via the
KL divergence. As directly minimizing this term by standard SGD is difficult,
they proposed to optimize it by using stochastic primal-dual gradient [46].
While these works have helped to improve segmentation in a weakly-supervised
setting, few studies focused on classification frameworks. In this work, by
means of location constraints, we force the activations of the feature extractor
to focus on those regions where neutrophils are localized. In this way, a reduced
number of annotations can significantly improve the classification results.

4.3 Methodology

Here, we build an end-to-end MIL method as our baseline to perform image-
to-image learning and prediction. The MIL formulation, based on CNNs,
enables to detect neutrophils in WSIs and classify them into either histological
remission or adverse outcome (UC activity). In Figure 4.2, the proposed
framework is shown. In the following, we describe the problem formulation
and each of the proposed components.

4.3.1 Problem formulation

In MIL tasks, the training dataset is composed of bags, where each bag contains
a set of instances (patches). A positive label is assigned to a bag if it has at
least one positive instance. The goal of MIL is to teach a model to predict the
bag label.

We denote our training dataset by S = (Xk, Yk) with k = {1, 2, 3, . . . , N},
where Xk denotes the k-th input bag (WSI) and Yk ∈ 0, 1 refers to the global
label (ground truth label) assigned to the k-th input WSI. Here, Yk = 0 refers
to a WSI with remission and Yk = 1 refers to ulcerative colitis activity. Note
that we denote each individual bag or WSI as: Xk = {xk,1, ..., xk,t, xk,In},
where xk,t is the t-th instance of the bag and In denotes the total number of
patches or instances in a slide. The number of instances varies considerably
between slides.
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Figure 4.2: Pipeline showing the embedded-level approach for ulcerative colitis detection.
By incorporating the proposed location constraints, we force the backbone to extract more
significant features from each patch belonging to a given bag. After that, we classify the entire
biopsy using an aggregated bag-level feature vector weighted by the proposed attention-
embedding weights.

The loss function used to optimize the end-to-end MIL approach is the cross-
entropy cost function:

Lmil =
∑
k

(I(Yk = 1)logŶk + I(Yk = 0)log(1− Ŷk) (4.1)

where I(�) is an indicator function.

4.3.2 MIL backbone with location constraints

As will be shown in the experiment section, our baseline MIL formulation
produces a decent result for the proposed task but still with room for
improvement. One problem is that the positive instances predicted by the
algorithm tend to outgrow the true regions with inflammation (UC activity)
progressively. We propose using a neutrophil area constraint term to restrict
the expansion of positive instances during training. We refer to our algorithm
as location constrained MIL, abbreviated as LCMIL.

We denote our training set as S = (Xk, Yk, Ak) with k = {1, 2, 3, . . . , N}, where
Xk denotes the k-th bag, Yk ∈ {0, 1} refers to the global label (ground truth
label) assigned to the k-th input WSI and Ak specifies a rough estimation

74



4.3 Methodology

of the relative area in which the neutrophils are located within the image
Xk. Being a(i, j)k,t the pixel (i, j) in the t-th patch from the bag k-th,
a(i, j)k,t = 1 if it corresponds to a pixel that is located around a neutrophil,
whereas a(i, j)k,t = 0, otherwise. Note that the rough annotations of neutrophil
areas only are used for optimizing the parameters of the networ (θ) and not
for the prediction phase.

A Global-aggregation layer is implemented to obtain an activation map
representing the distribution of the features extracted from each of the
instances belonging to a given bag. This layer summarizes the information
from all spatial locations in the feature-embedded map Fk,t ∈ RH×W×C

(corresponding to the last volume of features extracted by the backbone) to
one representative map ρ ∈ RH×W . Note that H × W are the dimensions of
the instances and C is the number of filters. Therefore, ρ ∈ RH×W is defined
as follows:

ρ(i, j)k,t =
1

C

∑
c∈C

Fk,t(i, j, c) (4.2)

In this way, we have a representation of how the backbone attention is
distributed over the instance surface. In order to have the same dimension
as the input instances (2242), a bilinear interpolation is performed to the
activation map ρ. In the following step, ρ is transformed into ρs = ϕ(ρ),
where ϕ is the sigmoid activation function. The aim of the sigmoid activation
function is to range the map activation function into [0-1]. Then, we define an
area constraint as the L2 penalty:

Llc =
∑
k,t

I(Yk = 1 and a(ij)k,t > 0) ((ak,t − ϕ(ρk,t))
2) (4.3)

Naturally, the global loss function can be updated from Equation (4.1) to:

L = Lmil + λlcLlc (4.4)

where λlc ∈ R+ weights the importance of the constraint during training.
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4.3.3 MIL attention-embedding weights

After the feature extraction of each instance, we obtain a C-dimensional feature
vector. The bag label predictor is in charge of aggregating the C-dimensional
feature vectors {ht}t∈In

into an embedding vector Zk ∈ R1×C representative of
each bag. In the literature, there exist different simple aggregation functions
such as batch global max-pooling (BGMP) or batch global average pooling
(BGAP). However, these operators have a clear disadvantage. They are pre-
defined and non-trainable. Other works use trainable aggregation functions
[124]. However, in some situations, these attention weights have the same
value for all instances in the bag, which is not suitable to determine a positive
bag. This could be due to the complexity of the instance in some bags and the
over-fitting tendency of neural networks. To solve this problem, we propose
to use a weighted average of instances where weights are obtained from the
representative maps ρk,t. Note that the weights of these maps are updated
each epoch using the Llc term. Additionally, the weights must sum to 1 to be
invariant to the size of a bag.

Therefore, the embedded feature vector per bag is obtained as Zk =
∑

t∈In
at ·

ht, where at is defined as:

at =
exp{

∑
ρ(i, j)/S}∑

In
exp{

∑
ρ(i, j)/S}

(4.5)

where S = H ·W .

This attention vector promotes variability between instances of a positive bag.
If there is no activation corresponding to neutrophils in the map (ρk,t), the
value of at will be low and therefore, the embedding features ht will have
smaller weight in the final prediction. In the case of a negative bag, the
attention values will be very similar and all instances will contribute equally.
The superiority of this aggregation function for neutrophil identification and
HR prediction will be shown in Section 4.

4.4 Experiments and Results

4.4.1 Implementation

All the tested approaches were implemented using Tensorflow 2.3.1 with
Python. Experiments were conducted on the NVIDIA DGXA100 system.
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Table 4.2: Database description. Amount of whole-slide images (first row), number of
patches (second row) and percentage of slides with PHRI>0, ulcerative colitis (third row).

Training Validation Test
Number of WSI 84 (64,6%) 46 (35,4%) 100
patches 61.1 ± 54.2 58.2 ± 36.4 481.2 ± 292.1
PHRI score>0 51,1 % 39,15% 48%

1) Dataset (PICASSO-MIL):We analyzed 230 colorectal biopsies from UC
patients enrolled in a prospective international multicenter study to evaluate
the proposed deep-learning methodology. Note that the slides belong to 7
different hospitals [148]. To process the large WSIs, these were downsampled
to 20x resolution, divided into patches of size 512x512x3 with a 50% overlap
among them. Aiming at pre-processing the biopsies and reducing the noisy
patches, a mask indicating the presence of tissue in the patches was obtained by
applying the Otsu threshold method over the magenta channel. Subsequently,
the patches with less than 20% of tissue were excluded from the database.
Using this database, we carried out a patient-level data partitioning procedure
to separate training and validation sets, aiming to avoid overestimating the
system’s performance and ensuring its ability to generalize. Additionally, 100
non-annotated images at pixel-level were used to test the framework, see Table
4.2. During training, the human pathologists (with more than 35-year clinical
experience) make two image-level annotations for each WSI, indicating each
image as HR or UC activity depending on PHRI, and roughly estimating which
areas of the image show neutrophils and inflammation. Only the bag label is
necessary to evaluate the proposed method.

2) Model parameters: The MIL loss is known to be hard to train and special
care is required for choosing training hyperparameters. To reduce fluctuations
in optimizing the MIL loss, all training data are used in each iteration (the
minibatch size is equal to the size of the training set). The network is trained
with stochastic gradient descent (SGD) optimizer and a fixed learning rate
of 0.01. The number of epochs was adapted in function of the experiment
performed.

3) Backbone network: We choose the SeaNet (with VGG16) proposed in
[50] as the CNN architecture of our framework since it demonstrated the
improvement over standard methods in histological imaging. This framework
is composed of VGG16 as a feature extractor and a squeeze and excitation
attention network. In addition, we performed fine-tuning of this model, as it
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had previously been trained with histological images, in a different task, the
detection of skin tumors.

4) Evaluation: The quantitative comparison of the different methodologies
was handled by means of different figures of merit, such as sensitivity (SN),
specificity (SPC), positive predictive value (PPV), false-positive rate (FPR)
negative predictive value (NPV), F1-score (F1S), accuracy (ACC) and area
under the ROC Curve (AUC).

4.4.2 Ablation experiments

In the following, we provide comprehensive ablation experiments to validate
several elements of our model (LCMIL), and motivate the choice of the values
employed in our formulation, as well as our experimental setting.

1) Weight of location constraint loss: The weight of the constraint loss
is crucial for LCMIL since it directly decides the strength of constraints.
Strong constraints may make the network unable to converge, while weak
constraints have little help with learning. Therefore, we optimized the
proposed formulation with the location constraint term in Eq. 4. Using the
training setting previously described, we cross-validated different values of λac

= {0.1, 0.1, 1, 1, 5}. Additionally, we tried two loss functions, L1 and L2, to
check for differences. We obtained bag-level ACC from the validation subset
using the ACC on validation subset as early stopping criteria. Results are
presented in Figure 4.3.

These results show that the inclusion of the Llc term improves the performance
at bag level. Nevertheless, using a too large slope once the performance is
satisfied can lead to a worsening of the results. Thus, we selected λlc = 1,
which led to the best results at bag level in the validation cohort.

Additionally, we want to get a more intuitive view of how the proposed method-
ology location constraint term influences the extraction of discriminative fea-
tures. For that purpose, we depict the feature representation of the embedding
space produced by the encoder networks of MIL without Llc and the proposed
encoder on the instance-level labeled validation. Concretely, we obtained the
class activation maps for regions of a bag where neutrophils are found (cryptal
lumen, cryptal epithelium, lamina propia and surface epithelium). In Figure
4.4, the annotations made by the pathologists, the activation maps obtained
by a MIL module without Llc and the proposed method are compared.
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Figure 4.3: Ablation studies on MIL formulation. Hyperparameters study for λac are
performed for bag-level accuracy on validation set. Confidence intervals are shown at 95%.

The MIL without location constraint module does not focus its attention on the
areas where neutrophils are located by the pathologist but on other cells found
in the tissue. Note that neutrophils are very similar to other cells found in
the tissue, such as eosinophils, macrophages, etc., but in this case, they do not
determine that a patient has active ulcerative colitis. This is why the specificity
of this model is very low. In contrast, the inclusion of the location constraints
module forces the network to focus its attention on the real determining cells,
the neutrophils. In this way, we can therefore obtain precise instance-level
maps for unannotated images that allow us to detect the neutrophils.

2) Attention weights for bag classification: Using the best configuration
reached for the λlc term, we optimized the embedded feature vector per bag, see
Table 4.3. This Table compares the best-known methodologies for constructing
the embedded vector (BGAP, BGMP and MIL-Attention) versus the proposed
method. Since the features that discriminate a positive bag are relatively small
compared to the dimension of the different instances, in this case, the BGMP
layer improves the results of the BGAP and MIL-Attention layers. However,
the proposed aggregation method outperforms all previous methods.

To compare the distribution of the attention weights of [124] with those
proposed here, we show the histogram of these values in a positive bag,
see Figure 4.5. In this case, the bag comprises 80 instances, of which
only 15% are positive, i.e., contain neutrophil structures. In Figure 4.5
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Figure 4.4: Class activation maps (CAMs) of some regions where neuthophils are found.
First column: original images with pathologist annotation (green and red annotations);
Second column: CAMs obtained using the normal MIL model. Third column: CAMs using
the proposed location constraints.

(b), attention proposed in [124], the different values of weights have similar
probabilities. Therefore, no discriminatory weighting is performed to separate
negative and positive instances. However, with the proposed method, most
instances (around 60) have a low weight, which would belong to the instances
without neutrophils. The remaining weights are spread across instances
with neutrophils, with higher weights assigned to those with more significant
features. Therefore, the proposed attention-based MIL allows to assign
more discriminate weights to instances within a bag and hence the final
representation of the bag is highly informative for the bag-level classifier.
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Table 4.3: Comparison of the different attention embedding weights on the validation set.
BGAP: batch global average pooling, BGMP: batch global max-pooling, LCMIL: neutrophil
constrained weak supervision (proposed). Note that in all cases the location constraint
proposed is integrated into the backbone.

BGAP BGMP Attention [124] LCMIL
SN 0.9643 0.9643 0.8889 0.9643
SPC 0.6667 0.7778 0.7778 0.8333
PPV 0.8182 0.8710 0.8571 0.9000
NPV 0.9231 0.9333 0.8235 0.9375
F1S 0.8852 0.9153 0.8727 0.9310
ACC 0.8478 0.8913 0.8444 0.9130
AUC 0.8155 0.8710 0.8333 0.8988

4.4.3 Comparison to the literature

To compare the proposed method with the MIL baselines, a comparative
analysis of the test cohort is performed in this section, see Table 4.4. For
this purpose, we included the current state-of-the-art deep MIL models, the
attention based pooling operator (ABMIL) [124], non-local attention based
pooling operator (DSMIL) [146], single-attention-branch (CLAM-SB) [147] and
recurrent neural network (RNN) based aggregation (MIL-RNN) [114].

The figures of merit are obtained at the biopsy label because only these
labels are available in the test set. In general, the specificity of the MIL
baseline models drops considerably. The best state-of-the-art model (CLAM-
SB) achieves a specificity of 0.8033 compared to 0.9615 obtained by the
proposed model (LCMIL). State-of-the-art models are not able to discriminate
between neutrophils and other tissue cells and therefore are not optimal for
predicting diseases such as ulcerative colitis, which are caused by very precise
histological patterns. Under our proposed formulation (LCMIL), the model
can detect neutrophils at the instance level and, therefore, predicts ulcerative
colitis with a good performance. Obviously, there is a high consistency
between the fine annotation area and CAMs obtained in Figure 4.4, illustrating
great interpretability and attention visualization of the proposed framework.
Therefore, with a small volume of training annotations, the model can improve
the accuracy of the best baseline MIL approach by almost 10%.
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Figure 4.5: Distribution of embedding weights across the instances that comprise a WSI.
(a) Proposed attention embeddings. (b) Attention weights proposed in [124].

Table 4.4: Comparison of the different baseline frameworks in the test cohort. Note that
for the test cohort only the global bag label are available.

ABMIL DSMIL CLAM-SB MIL-RNN LCMIL
SN 0.9583 0.8293 0.9302 0.8667 0.9583
SPC 0.6923 0.7288 0.8033 0.7797 0.9615
PPV 0.7419 0.6800 0.7692 0.7500 0.9583
NPV 0.9473 0.8600 0.9423 0.8846 0.9615
F1S 0.8393 0.7473 0.8421 0.8041 0.9583
ACC 0.8200 0.7700 0.8558 0.8173 0.9600
AUC 0.8253 0.7546 0.8321 0.8009 0.9599

4.5 Conclusion

Whole-slide images (WSI) have shown applicability to developing computer
vision models, but few studies have approached the use of deep learning models
to detect ulcerative colitis (UC). In this work, we propose an location constraint
framework able to perform histological remission prediction using WSIs of
patients with UC. Our framework comprises a feature extraction backbone with
an attention module to refine the patch-level features and a MIL approach to
predict the UC activity in each bag. We introduce a location constraint module
that forces the feature extractor to focus on the most significant patterns in the
patches that form a bag. The biopsy classification comes from the bag-level
feature vector that the attention embedding has ponderated. This approach
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reaches a test accuracy of 0.9600 in a more significant subset than the training
set, which shows that the extra pixel-level annotation gives crucial information
to the algorithm.

Future research lines need to focus on detecting neutrophils in the different
biopsy regions and grading PHRI accordingly, not being limited to the
histological activity or remission prediction. The location constraint approach
also promises applicability to other pathologists in which histological analysis
is based on identifying single cells.
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Chapter 5

Labeling confidence for uncertainty-aware histology
image classification

The content of this chapter corresponds to the author version
of the following published paper: Del Amor, R., Silva-Rodríguez, J.
& Naranjo, V. Labeling confidence for uncertainty-aware histology
image classification. Computerized Medical Imaging and Graphics,
102231 (2023).
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Abstract

Deep learning-based models applied to digital pathology require large, curated
datasets with high-quality (HQ) annotations to perform correctly. In many
cases, recruiting expert pathologists to annotate large databases is not feasible,
and it is necessary to collect additional labeled data with varying label qualities,
e.g., pathologists-in-training (henceforth, non-expert annotators). Learning
from datasets with noisy labels is more challenging in medical applications
since medical imaging datasets tend to have instance-dependent noise and
suffer from high inter/intra-observer variability. In this paper, we design an
uncertainty-driven labeling strategy with which we generate soft labels from
10 non-expert annotators for multi-class skin cancer classification. Based on
this soft annotation, we propose an uncertainty estimation-based framework
to handle these noisy labels. This framework is based on a novel formulation
using a dual-branch min-max entropy calibration to penalize inexact labels
during the training. Comprehensive experiments demonstrate the promising
performance of our labeling strategy. Results show a consistent improvement
by using soft labels with standard cross-entropy loss during training (∼ 4.0%
F1-score) and increases when calibrating the model with the proposed min-max
entropy calibration (∼ 6.6% F1-score). These improvements are produced at
negligible cost, both in terms of annotation and calculation.



5.1 Introduction

5.1 Introduction

Digital pathology research has experienced significant growth in recent years
thanks to the advent of novel computer vision techniques based on deep
learning [34]. The deployment of convolutional neural networks (CNNs) has
allowed the automatic identification of new biomarkers and innovative features
in the whole slide images (WSIs) that support the diagnostic process. In
particular, these techniques have shown promising results for computer-aided
diagnosis on different applications such as prostate [149], breast [150] and skin
cancer detection [50], tissue segmentation [151], or mitosis detection [152],
among others. Nevertheless, deep learning models require large and curated
datasets with high-quality (HQ) annotations to perform properly. In the
case of digital pathology, a popular choice is the use of weakly supervised
strategies with WSI-level annotations. In the multi-class scenario, an expert
pathologist assigns a unique label to the whole biopsy based on diagnostic or
prognostic features. Then, deep learning models are trained using multiple
instance learning (MIL) to automatically solve the task at hand. However,
this pipeline does not consider real-world limitations and noise sources inherent
to the annotation process, which may hinder the performance of the model.
These limitations are accentuated in some applications requiring a high level
of expertise, such as several skin neoplasm diagnosis (i.e., cutaneous spindle
cell neoplasms, one of the most challenging skin neoplasms not studied in
previous studies [153]). In many cases, recruiting expert pathologists to
annotate large databases is not feasible. Unfortunately, without sufficient
labels, the data-hungry learning-based methods often struggle with overfitting,
leading to inferior performance [47]. To alleviate this issue, collecting
additional labeled data with varying label qualities, e.g., pathologists-in-
training (henceforth, non-expert annotators) or using machine-generated labels
is a common practice. However, directly introducing data with low-quality
(LQ) noisy labels may confuse the network training, which easily leads to
performance degradation [48, 49]. Therefore, how to effectively and robustly
exploit the additional information in plentiful LQ noisy labeled data is crucial
to the medical image analysis community.

Learning from noisy labels is a widely recognized challenge in classical image
recognition. Several efforts have been made to mitigate the negative impact
of LQ labels in medical image analysis [49, 154–156]. However, this is still an
under-explored area, as existing literature on learning with noisy labels lacks
a clear distinction of applicable scenarios, leading to ambiguous benchmarks.
Some approaches [155, 156] assumed mixed data from multiple sources, i.e.,
set-HQ and set-LQ labels are indiscriminate. In contrast, other techniques [49,
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154] were developed for a scenario where experts label a small data set, making
LQ and high-quality (HQ) labels separated. A main body of literature exploits
multiple annotators in a crowdsourcing scenario, to extract the underlying
noise-free label distribution. Nevertheless, gathering multiple annotators in
the medical context may be unrealistic. The high level of expertise required,
as well as the time-consuming nature of such annotation, is a barrier to the
implementation of these methods in real-world applications. These findings
highlight the need for developing uncertainty-aware pipelines to address the
inherent uncertainty in the annotation process, which may not require from
multiple label sources.

Based on these observations, we propose a novel uncertainty-driven labeling
strategy for histology skin cancer classification. The key contributions of our
work can be summarized as follows:

• A single-annotator uncertainty-aware labeling strategy with which we
generate soft labels from 10 non-expert annotators for multi-class skin
cancer classification that quantify uncertainty in the annotations.

• Based on these annotations, we present an extensive study for the use of
soft label model calibration compared to the ground truth, labeled by an
expert pathologist.

• In addition, we propose a novel formulation based on dual-branch
entropy calibration (DBEC) to calibrate both, overconfident outputs and
uncertain soft labels, during training.

• Comprehensive experiments demonstrate the promising performance of
our labeling strategy. By incorporating uncertainty during labeling we
found average improvements of nearly ∼ 4.0% in averaged F1-score using
the baseline methods, which increases up to ∼ 6.6% using the proposed
dual-branch calibration.

5.2 Related work

5.2.1 Skin WSIs

According to the World Health Organization, nearly one in three diagnosed
cancers worldwide is a skin cancer [79]. Different techniques, such as
dermatoscopy, wood lamp, CT scan and histopathology, are utilized for the
diagnosis of skin diseases. However, the gold standard for skin cancer detection
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is histological image analysis. Traditionally, histological slides would be viewed
with a light microscope. However, digitization has created opportunities for
automated analysis using WSI. Applying deep-learning models to computer
vision problems shows excellent potential in skin cancer detection. Most
research was based on the analysis of dermoscopic images [96–100, 157, 158]
and few studies have focused on the analysis of WSI [50, 101, 102, 104,
150, 159]. In this vein, MIL approaches have been successfully applied to
Basal carcinoma (BCC) [150] or melanoma [50], reducing the time required
to perform precise annotations. However, many types of skin cancer have not
yet been explored. These include cutaneous spindle cell neoplasms (CSC),
predominantly composed of spindle-shaped neoplastic cells arranged in sheets
and fascicles [160]. These lesions are relatively common. For example,
cutaneous squamous cell carcinoma is the second most common epidermal
cancer representing 20 % to 50% of skin cancers [161] and spindle cell melanoma
contributes 3% to 14% of all melanoma cases [162]. CSC neoplasms are
challenging to diagnose due to the considerable morphological overlap between
the different tumor types that make up this group [153], which poses a
particular problem for less experienced pathologists. This hampers an accurate
diagnosis and the application of effective clinical treatment [163] in neoplasms
in which early detection and appropriate treatment are essential for a good
prognosis in malignant cases. Despite the complexity of these neoplasms, they
had not been previously studied in the literature. Therefore, the main objective
of this paper is to classify, under a MIL-based approach, the seven types
of fusocellular skin neoplasms identified by expert pathologists as the most
challenging: leiomyomas (lm), leiomyosarcomas (lms), dermatofibromas (df),
dermatofibrosarcomas (dfs), spindle cell melanomas (mfc), fibroxanthomas
(fxa) and squamous cell carcinoma (cef).

5.2.2 Uncertainty estimation

Uncertainty estimation methods are expected to improve the understanding
and quality of deep learning models to enhance their generalization during
inference. These methods have an outstanding interest in medical applications
due to the high expertise required to obtain quality labels, the variability
in acquisition systems and noise present in many databases [164], and the
known inter-annotator variability in different medical applications [165, 166].
For these reasons, training uncertainty-aware models is key to the success
of diagnostic support systems in medical applications. An uncertainty-
aware deep learning model training usually covers two steps: uncertainty
quantification and model calibration. Uncertainty quantification aims to assess
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the prior probability of error for certain samples during training. From the
perspective of noisy labels, a main core of previous literature use multiple
annotators in crowd-sourcing scenarios to quantify inter-observer agreement
for each sample [167–170]. Thus, crowd-sourcing methods aim to predict the
underlying noise-free label distribution by simultaneously training annotator-
specific projections over the feature space [167–171]. Other solutions focus
on prior task-specific knowledge such as avoiding overconfident outputs on
neural networks [172] or leveraging high confidence on non-informative regions
[173]. Other uncertainty quantification approaches focus on sample noise
estimation, which may raise from image quality, feature extraction, or out-
of-distribution domains. Previous literature in this regard use a trained
student model to study the confidence of the model via Monte Carlo dropout
with image augmentations [159, 170, 174], curriculum learning [175], or co-
teaching [176, 177]. After uncertainty estimation, deep learning models are
calibrated to overcome the limitations detected in the training samples. Some
approaches include sample weighting based on divergence observed by the
Student-based methods [170], or calibrating the output of the network based
on label smoothing [178] and entropy regularization [172, 179, 180].

In this paper, we focus on label-noise calibration, and we study the feasibility
of estimating uncertainty from single annotator labels. Contrary to much of
the previous literature, we study the case in which multiple annotators are
not available. To this end, we define a soft label-based annotation protocol.
Then, we propose a dual-branch criterion for calibrating the trained neural
network based on entropy regularization. The underlying idea is two-fold: (i)
penalizing overconfident predictions on high-certain samples, and (ii) forcing
the network to produce confident outputs on uncertain cases, to overcome the
limitations of the noisy labels based on the features of each sample. Note
that although we trained 10 models, one for each non-expert to validate the
proposed methodology, these models are independent since only the labels of
a single annotator are used to train the algorithm each time.

5.3 Methods

An overview of our proposed method is depicted in Figure 5.1. In the following,
we describe the problem formulation and each of the proposed components.
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Dataset Confidence Annotation

Figure 5.1: Method overview. In this work, we address weakly supervised histology
image classification on skin WSIs by quantifying the uncertainty of the individual annotators
during labeling. Concretely, we train an embedding-based Multiple Instance Learning (MIL)
model to predict up to six different categories using standard cross-entropy loss. We propose
to quantify annotator-specific uncertainty by following a soft labels annotations protocol,
such that Y sl

k = [0, 1], and
∑

k Y
sl
k = 1. In this fashion, our model captures information

regarding inter-category dependencies and avoids over-fitting to uncertain, noisy annotations.
Then, we propose a dual-branch min-max uncertainty calibration (DBEC) based on the
annotated soft labels. Based on uncertainty calibration using Shannon entropy regularization
(see Eq. 5.3), we propose to (i) maximize the entropy on high-confidence labeled samples, by
entropy maximization (H+), and (ii) to minimize the entropy on samples labeled with low-
confidence (H−). Thus, entropy minimization encourages the network to produce confident
outputs on uncertain cases, based on the features of the sample, and thus diminishing noise
propagation. A threshold τ is empirically fixed to differentiate low and high certain labels,
and the dual-branch min-max uncertainty is combined with cross-entropy loss (see Eq. 5.5).
Circles in bag-level predictions and references indicate soft-max scores. The more intense
the color, the higher the score.
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Problem Formulation Under the paradigm of Multiple Instance Learning
(MIL), instances are grouped in bags of instances X = {xn}Nn=1 that exhibit
neither dependency nor ordering among them, and its number N is arbitrary
for each bag. In the multi-class scenario, each bag is a member of one of K
mutually exclusive classes, such that Yk ∈ {0, 1}. Note that, in contrast to
other MIL formulations, the individual instances do not have an associated
label, but rather the label of the bag is determined by the combination of
features of the different instances.

Embedding-based MIL In this work, we aim to train a model capable of
predicting bag-level labels using a combination of features extracted at the
instance level. This learning strategy falls under the embedding-based MIL
paradigm1. Let us denote a neural network model, f(·) : X → Z, parameterized
by , which projects instances x ∈ X to a lower dimensional manifold ∈ Z ⊂ Rd,
with d the embedding dimension. Then, we define an aggregation, fa(·), which
is in charge of combining the instance-level projections into a global embedding,
Z. In particular, we use a global-average pooling along instances, such that:
Z = 1

N

∑
n{f(xn)}Nn=1. Finally, a neural network classifier, f(·) : Z → S, is in

charge of predicting softmax bag-level class scores, Sk, such that Sk ∈ [0, 1].
The optimization of the model parameters and is driven by the minimization
of standard categorical cross-entropy loss between the reference labels and
predicted scores such that:

Lce = − 1

K

K∑
k=1

Yk · log(Sk) (5.1)

5.3.1 Labeling uncertainty

Uncertainty estimation methods assume that different noise sources are
present in the dataset, both in image noise and inter and intra- annotator
variability. The objective is to calibrate the trained model to account for
quantified uncertainties. Regarding inter-annotator variability, a large body
of literature quantifies this uncertainty by obtaining labels from multiple
annotators. However, obtaining multiple annotators may not be possible in
specific scenarios requiring a high level of specialization or covering proprietary
solutions, such as medical applications. To overcome this limitation, we
propose an annotator-level uncertainty quantification by annotating the
confidence associated with each sample in the form of soft labels. To this

1Based on the denomination proposed in [181]
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end, we differentiate between the labeled samples using hard labels (HL), Y hl
k ,

and soft labels (SL), Y sl
k . As previously described, hard labels assign a discrete

value for each label such that Y hl
k ∈ {0, 1}, where Yk = 1 indicates that the

corresponding sample belongs to the class k. It is worth mentioning that,
in the multi-class scenario, categories are considered mutually excluded, and
only one tag is given to each sample. Nevertheless, this labeling strategy fails
to capture the certainty of the annotator for each sample. To gather this
information, we propose to use soft labels, such that Y sl

k ∈ [0, 1]. Note that
in this case, Yk is a continuous value that corresponds to the probability that
the annotator assigns to each class, such that:

∑
k Y

sl
k = 1. For instance, in

a case with high uncertainty, the annotator might assign the following labels:
Y sl = [0, 0, 0, 0, 0.9, 0.1, 0], whereas in a uncertain case, the total probability
might be more distributed among categories: Y sl = [0.2, 0.2, 0, 0, 0.6, 0, 0].
Then, the MIL classification model previously described is trained using
standard cross-entropy loss in Eq. 5.1 using soft annotation labels. We believe
that, in this fashion, the model might capture information regarding inter-
category dependencies and avoid over-fitting to uncertain cases, as supported
in the experimental stage of the present work.

5.3.2 Dual-branch uncertainty calibration

The aforementioned soft-labeling strategy can differentiate between high-
certain and uncertain labels provided by the annotator. Still, using standard
cross-entropy might produce ill-calibrated models. These limitations include
reaching trivial solutions by producing overconfident outputs from high-certain
samples or trivial, uniform outputs on low-certainty samples. In addition, we
want to consider that samples labeled with low confidence might belong to
a class other than the one most likely to be noted. To this end, we propose
calibrating the model during training to deal differently with both types of
samples in a dual-branch fashion.

Shannon entropy for confidence regularization One of the main
approaches to calibrating neural networks is using an auxiliary term to
regulate the output probabilities. Originally developed to reduce overconfident
predictions, which are produced by training models using cross-entropy and
hard labels, one of the main approaches lies in forcing the output distribution to
approximate a uniform distribution [172, 178]. To this end, the neural network
is trained to minimize the Kullback − Leibler (KL) distance, DKL(p||u) =
H(p, u)−H(p) between an output distribution, p and an uniform distribution,
u. Note that H(p, u) indicates the cross-entropy between both distributions,
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and H(p) = H(p, p) is the Shannon entropy or self-entropy, such that H(p) =
− 1

K

∑
k pk · log(pk). It is straightforward to see that, in the case of a target

uniform distribution, minimizing the KL distance is equivalent to maximizing
the Shannon entropy of the output distribution.

DKL(p||q) = H(p, q)−H(p) =c −H(p) (5.2)

where =c indicates equality up to an additive constant.

Thus, standard model calibration using Shannon entropy includes a regulariza-
tion term to the standard cross-entropy loss weighted by an hyper-parameter
β > 0, such that:

L = Lce − βH(p) (5.3)

Dual-branch min-max entropy calibration Inspired by previous litera-
ture on model calibration, we propose to use the Shannon entropy regulariza-
tion in a dual-branch fashion. First, we want the model to avoid overconfident
outputs on high-certainty labeled samples, similarly to Eq. 5.3. Secondly, we
aim to calibrate the model to assign a confident category to each sample, even
though the annotator might have high uncertainty in the label. For the latter,
we draw on Shannon entropy minimization, which encourages the output scores
to differ from the uniform distribution (see Eq. 5.2). It is worth mentioning
that, in the case of minimum entropy, the output scores tend to produce hard
labels. Thus, we hypothesize that the model may be able to overcome the
potential noise from the uncertain labels, and produce more accurate predic-
tions based on the features of the sample. This formulation is inspired by the
semi-supervised learning literature, in which entropy maximization is used as a
proxy to learn from unlabeled samples [182]. From now on, and for simplicity
in the context of loss functions, we refer to the entropy-maximization criteria
−H(p) as H+, and the opposite minimization term as H− = H(p).

Thus, we propose a dual-branch optimization criterion to independently
calibrate low and high-certainty labeled samples, using the bag-level predicted
scores, Sk, such that:

LH =

{
H+(Sk), if maxk Y

sl
k > τ

H−(Sk), otherwise
(5.4)
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where τ is an empirically-fixed threshold that divides the input samples based
on its certainty, quantified by the confidence of the predominant category per
sample, maxk Y

sl
k .

Since using entropy calibration alone may yield trivial results [183], the MIL
model is trained with annotated soft labels, Y sl

k , and the dual-branch entropy
calibration, using the overall following loss function:

L = α+/−Lce + β+/−LH (5.5)

Note that LH is the cross entropy loss at bag level in Eq. 5.1, and LH refers
to the dual-branch calibration presented in Eq. 5.4, and α+/− and β+/−
are disentangled in two terms, one for high-certainty labeled samples (α+,
β+), and other for the opposite case (α−, β−). It is worth mentioning that
the values of threshold value τ in Eq. 5.4 as well as the relative weight of
the min-max entropy duality, β+ and β−, and cross-entropy loss, α+ and
α−, are hyperparameters empirically optimized during the experimental stage.
Hereafter, we refer to this dual-branch min-max entropy calibration term as
DBEC.

5.4 Experimental setting

5.4.1 Dataset

To validate the proposed approach, we use the AI4SKINV1 database. This
database comprises two private databases (DSV and DSG) from the Univer-
sity Clinic Hospital of Valencia (Spain) and San Cecilio University Hospital in
Granada (Spain). DSV and DSG are composed of histopathological skin im-
ages from different body areas that contain cutaneous spindle cell (CSC) neo-
plasms, i.e, leiomyomas (lm), leiomyosarcomas (lms), dermatofibromas (df),
dermatofibrosarcomas (dfs), spindle cell melanomas (mfc), fibroxanthomas
(fxa) and squamous cell carcinoma (cef). Each database (DSV and DSG)
comprises 180 and 91 different patients who signed the pertinent informed
consent. Two expert pathologists established the WSI-level label of the whole
database, 271 images. A summary of the database description is presented in
Table 5.1.

Regarding the non-experts labeling, an annotation protocol was designed to
ensure that 106 WSIs were annotated by all non-expert annotators (dense set).
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Table 5.1: Database distribution. DSV: database from Valencia; DSG: database from
Granada. Lm:leiomyomas; lms: leiomyosarcomas; df:dermatofibromas; dfs: dermatofibrosar-
comas; fxa: fibroxanthomas; spindle cell melanomas; cef: squamous cell carcinoma.

lm lms df dfs mfc fxa cef Total
DSV 28 19 52 11 32 28 10 180
DSG 27 9 16 7 6 26 - 91
Total 55 28 68 28 38 44 10 271

In contrast, the rest were only annotated by some non-expert pathologists
(non-dense set). It is worth mentioning that the use of a dense set allows us
to establish data-balanced comparisons between annotators, without requiring
everyone to annotate the entire data set, with the burden that this process
entails. Table 5.2 shows images used by each non-expert annotator for training,
validation and testing of the models. To establish fair comparisons the
validation and test images belonged to the dense set. Note that the images
were annotated following the soft strategy proposed in Sec. 5.3.1 2.

To process the large WSIs, these were downsampled to 10x resolution and
divided into patches of size 512x512x3 with a 50% overlap. Aiming at pre-
processing the biopsies and reducing the noisy patches, a mask indicating the
presence of tissue in the patches was obtained by applying the Otsu threshold
method over the magenta channel. Subsequently, the patches with less than
20% of tissue were excluded from the database.

Table 5.2: Number of images used for training, validation and testing the models of each
non-expert annotator (ten in total). Note that for the validation and test set the same
samples labeled by all non-experts were used.

1 2 3 4 5 6 7 8 9 10
Tain 148 142 151 143 154 145 155 149 152 150
Val 26
Test 54

5.4.2 ROI extraction

To select the instances with tumor from the WSI to train and validate the
proposed approach, we extend the model proposed in [36] for the six neoplasms
under study. This method was based on a teacher-model paradigm to increase
the annotated database while avoiding manual annotations. In this vein, this
approach enhances the detection of tumor regions in WSI using pseudolabels

2The soft labels will be available on request.
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from non-labeled data. As the output of this section, we obtain the patches
with tumor lesions used as input for the MIL-based model.

5.4.3 Implementation details

The proposed methods were trained using the different train subsets for each
non-expert annotator (10 in total), see Table 5.2. The backbone f(·) used
was a VGG16 [184] pre-trained on Imagenet [185], using patches resized to
224× 224 images. Models were trained during 120 epochs with a batch size of
1 whole slide image, using a learning rate of η = 1 · 10−3 with SGD optimizer.
The model performance was continuously monitored on the validation subset,
and early stopping was applied to keep the model with the best accuracy
on this subset. The proposed uncertainty calibration DBEC in Eq. 5.5 was
trained similarly, but the learning rate was exponentially decreased in the last
20 epochs to ensure stability. In this case, early stopping was not applied
since the calibration moved predictions away from the domain of the training
labels. Hyperparameters were fixed empirically such that: α+ = 1, β+ = 0.1,
α− = 0.1, β− = 1, and τ = 0.7. For the motivation of these values, we refer
the reader to the ablation experiments. All the validated experiments were
implemented using Pytorch version 1.9.1 and Python 3.7. Experiments were
conducted on the NVIDIA DGXA100 system. The code is publicly available
on https://github.com/cvblab/Labeling_Uncertainty.

5.4.4 Evaluation metrics

In order o evaluate the performance of the proposed approaches regarding
previous literature, we use standard metrics for multi-class classification. In
particular, we obtain accuracy (ACC) and macro-averaged F1-score. It is worth
mentioning that, although explicitly mentioned, metrics are obtained using as
reference the ground truth, labeled by the expert pathologists, Yk.

5.5 Results

5.5.1 Comparison to the literature

In this subsection, we study the obtained results by the proposed methods,
concerning previous literature. We also carried out a detailed study of the
success cases and limitations encountered, by means of a detailed study of the
annotations made by the in-training pathologists.
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Quantitative evaluation The quantitative results obtained training the
model using expert labels, and non-expert labels using hard labels (HL),
annotated soft labels (SL), and the proposed dual-branch entropy calibration
(DBEC) on the respective test subset of each non-expert annotator are depicted
in Table 5.3. Results obtained using annotated soft labels from non-expert
pathologists reach an average F1-score of 0.364, which shows an improvement
of ∼ 4.0% compared to hard labels by simply training the model using standard
cross-entropy loss. This fact demonstrates that the annotation protocol
developed in the paper is optimal for model training when expert labels are
not available. Once our proposed dual-branch entropy calibration (DBEC,
see Eq. 5.4) is incorporated during training, results achieve an average F1-
score of 0.389. In addition, some noteworthy improvements can be observed
for some non-expert annotators. For example, annotators 1, 2, and 8 show
improvements of ∼ 13.1%, ∼ 21.5% and ∼ 13.2%, respectively. Although
the results obtained are still far from those obtained using the ground truth
from the expert pathologists, the models obtained bridge the gap, going
from a difference of ∼ 25% to ∼ 18% regarding F1-score. Furthermore,
this paper is the first study to address the multi-class problem of spindle
cell neoplasms. While previous studies focus on binary problems to identify
benignity or malignity of neoplasms [36], in this study we try to identify the
distinct neoplasms that have considerable morphological overlap between them.
Therefore, the results obtained in this paper establish a benchmark for the
comparison of further models.

In-depth results analysis Although, as discussed above, the methodology
based on confidence annotation offers promising results, the variability in the
results observed among different annotators calls for an in-depth analysis of the
annotated labels, their advantages, and limitations. To this end, we proceed
to study the accuracy of the annotations made by non-expert pathologists in
the training subset, the number of samples labeled with low confidence, and
their distribution in relation to the classes, in Figure 5.2. Likewise, we display
the confusion matrices obtained by the non-expert annotators concerning the
expert annotations, as well as those obtained using the model trained with
hard labels and the proposed dual-branch entropy calibration, in Figure 5.3.

Regarding the gap observed between models trained using the ground truth
or non-expert labels, this is due to the quality of the latter labels, which
shows an average F1-score of 0.4510 (see Figure 5.2 (a)), which sets an upper
limit on the results that the model can extract using pathologist-in-training
labels. As observed in the corresponding confusion matrix (see Figure 5.3
(a)), this problem accentuates in certain classes such as lms and cef, which
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Table 5.3: Quantitative comparison to prior literature. The metrics presented are the
accuracy and micro-averaged F1-score (ACC/F1-score). The model trained with expert
labels (second column) is used as the upper bound of the non-expert-based models. Colored
values indicate the relative improvement of each method concerning the baseline using hard
labels from non-expert in terms of the F1-score. Green indicates improvement and red a
worsening lack. HL: hard labels; SL: soft labels; H+: entropy maximization.

Annotator Expert Non-Expert
HL+H+ HL SL DBEC

1 0.653/0.620 0.408/0.277 0.428/0.295 ↑ 1.8% 0.530/0.408 ↑ 13.1%
2 0.571/0.467 0.408/0.288 0.530/0.424 ↑ 13.6% 0.571/0.503 ↑ 21.5%
3 0.612/0.584 0.448/0.386 0.489/0.401 ↑ 1.5% 0.428/0.330 ↓ 5.6%
4 0.551/0.520 0.448/0.309 0.428/0.355 ↑ 4.6% 0.489/0.364 ↑ 5.5%
5 0.673/0.601 0.551/0.448 0.571/0.460 ↑ 1.2% 0.530/0.442 ↓ 0.0%
6 0.591/0.555 0.428/0.298 0.428/0.304 ↑ 0.6% 0.428/0.315 ↑ 1.7%
7 0.673/0.602 0.469/0.348 0.551/0.427 ↑ 7.9% 0.530/0.444 ↑ 9.6%
8 0.693/0.655 0.367/0.259 0.408/0.270 ↑ 1.1% 0.469/0.391 ↑ 13.2%
9 0.653/0.614 0.387/0.280 0.469/0.323 ↑ 4.3% 0.387/0.299 ↑ 1.9%

10 0.632/0.525 0.469/0.353 0.530/0.390 ↑ 3.7% 0.530/0.398 ↑ 4.5%
Avg. 0.630/0.574 0.438/0.324 0.473/0.364 ↑ 4.0% 0.489/0.389 ↑ 6.6%

show lower prevalence concerning other classes in the used dataset (see Table
5.1). In addition, it can be observed how non-expert pathologists show lower
confidence when labeling a sample corresponding to those categories (see
Figure 5.2 (b)). This make sense since, for example, in the case of lms the
pathologists-in-training are often confused with lm as they have the same
morphological features. These limitations produce the drop in results between
both types of labels observed in the quantitative metrics, which can be observed
in the corresponding confusion matrix (see Figure 5.3 (b)). Interestingly,
once the proposed dual-branch calibration is used, obtained results for those
low-confidence classes improve (see Figure 5.3 (c)). Concretely, promising
improvements for the classes lms, dfs, and fx are observed, which coincide
with those categories that pathologists show the least confidence (see Figure
5.2 (c)). This may be produced by the lower-confidence entropy minimization,
which encourages the model to produce confident predictions in those cases in
which confidence falls below the fixed threshold τ . In this fashion, predicted
labels move away from the annotator bias, based on the inherent features of
each sample, and show the best generalization compared to expert annotations.
Although the proposed approach offers consistent improvements among most
annotators, still some limitations can be observed. For instance, it shows the
least effect when noise increases. Annotators 3 and 9, which show low accuracy
on the training dataset (see Figure 5.2 (a)), also offer worse results regarding
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(a)

(b)

(c)

Figure 5.2: In-depth study of the soft labels annotated by in-training pathologists. (a)
Quality of the labels, in terms of F1-score, in the training subset. Reference labels are
the expert ground truth. (b) Percentage of samples with maximum confidence above the
threshold τ = 0.7. (c) Average confidence per each class, on positive samples. Dashed, red
lines indicate average values.

the proposed approach. Also, if no use is made of soft labels (see 5.2 (b),
annotator 5), the results remain the same as using hard labels.
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(a) (b) (c)

Figure 5.3: Normalized confusion matrices, averaged among non-expert annotators,
obtained using (a) raw hard labels, (b) the model trained using hard labels, and (c) the
model trained using the dual-branch entropy calibration proposed in Eq. 5.5. Reference
labels are the expert ground truth.

5.5.2 Ablation studies

The following experiments aim to demonstrate the convenience of the proposed
approaches in an empirical fashion. First, we compare the benefits of labeling
uncertainty instead of using a direct calibration of hard labels. Then, we
motivate the choice of the components and hyper-parameters used for the
proposed dual-branch uncertainty calibration setting in Eq. 5.5.

Artificial vs. annotated soft labels As previously discussed, we propose
in this work to calibrate the model training to the inherent uncertainty
of non-expert labeling by annotating the confidence for each independent
class per sample. The benefit of calibrating CNNs to avoid overconfident
predictions has already been demonstrated in previous literature [172]. We
follow two main artificial methods used in this regard: label smoothing (LS)
[178] and entropy regularization (H) [172]. Concretely, LS modifies the hard
labels to assign a uniform distribution over non-positive categories such that:
Y LSR
k = (1 − ϵ)Yk + ϵ

K
. Entropy calibration is based on Shannon entropy

maximization (H+), as described in the method section (see Eq. 5.3). In our
experiments, we empirically optimized the hyper-parameters for both ϵ = 0.2
and β = 0.2. We depict in Figure 5.4 the results using hard labels (HL), both
artificial regularization approaches (LS and H+), and the model trained using
the proposed annotated soft labels (SL).

The obtained results show that regularizing neural network outputs improves
the model performance. In particular, entropy-based regularization outper-
forms label smoothing, as indicated by previous literature [172, 180]. Con-
cretely, average improvements of F1-score of ∼ 0.6% and ∼ 2.4% are obtained,
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Figure 5.4: Ablation study on the use of artificial model calibration of hard labels (HL)
or annotated soft labels (SL). For the first approach, label smoothing (LS) and entropy
maximization (H+) are used. F1-score is presented for each method and non-expert
annotator.

respectively. The proposed labeling confidence approach outperforms the ar-
tificial entropy-based calibration across most annotators (see Figure 5.4 an-
notators 2, 3, 4, 8 − 10). Concretely, an average improvement of ∼ 4% is
observed, as already depicted in Table 5.3. This indicates that labelling the
confidence of the annotator for the different classes for each sample offers ben-
efits beyond preventing the model from producing overconfident outputs. It is
worth mentioning that this improvement is produced at a negligible cost, both
in terms of annotation time and computational level. This may be because
it introduces a sample-dependent distribution over labels, as opposed to these
artificial methods.
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Uncertainty calibration optimization The following experiments aim to
demonstrate the convenience of the different components of the dual-branch
entropy calibration (DBEC) for uncertainty assessment proposed in Eq. 5.4
when trained using soft labels (SL). Concretely, we fix the used threshold
τ = 0.7, then train and modify the relative weight of both branches to emulate
the absence of each term. First, each term is trained individually, by using
β− = 0 and α− = 0, (DBEC (H+) configuration), and β+ = 0 and α+ = 0,
(DBEC (H−) configuration), respectively. Then, both terms are included as
indicated in the implementation details. Average results among the 10 in-
training pathologists are presented in Table5.4.

Table 5.4: Ablation experiment on the components of the proposed calibration formulation.

Target Criteria
SL DBEC (H+) DBEC (H−) DBEC (H+/−)

ACC 0.438 0.461 0.386 0.489
F1-score 0.324 0.334 0.281 0.389

The results show that using only the positive entropy term, which calibrates
the network by penalizing confident predictions, improves around ∼ 2% in
terms of the F1-score. In contrast, using only low-confidence samples during
training does not show good results. However, by incorporating this term into
the general formulation, the figures of merit reach the improvements discussed
earlier in the article. These results show the usefulness of including both terms
in the proposed double-branch formulation.

In the following, we perform a study regarding the threshold used to compute
the positive or negative entropy calibration, τ . Concretely, we sample
homogeneously τ values between [0, 1]. The obtained results for representative
annotators are depicted in Figure 5.5.

The performance of the DBEC proposed in relation to the τ value shows a
characteristic shape. The non-expert annotators that show an improvement in
the model performance using the proposed term first drop the obtained results
when increasing τ . Then, an absolute maxima is reached around τ values of
0.7 and 0.8. Finally, increasing the hyper-parameter from this value worsen the
performance, since entropy minimization is applied to all samples, even when
high confidence is annotated. Based on these observations, we fixed τ = 0.7
for the implementation of the dual-branch calibration.
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Figure 5.5: Ablation study on the effect of the confidence threshold τ on the proposed
dual-branch entropy calibration (DBEC) based on annotated soft labels.

5.6 Conclusion

A relevant body of literature on uncertainty estimation requires multiple
annotators to quantify individual sample noise and inter-annotator variability.
Nevertheless, acquiring multiple rater views is a limiting factor in a wide
range of applications, such as medical imagining. In particular, in the case
of digital pathology imaging, a high level of expertise is required to perform
image labeling, which may make it unfeasible to recruit multiple annotators.
To address this limitation, in this work we have proposed to capture individual
uncertainties by annotating soft labels instead of unique categories. In
addition, and inspired by previous literature on model calibration using
Shannon entropy, we have proposed a dual-branch min-max entropy calibration
(DBEC) criteria that optimize the model training to (i) avoid overconfident
outputs by entropy maximization, and (ii) produce confident outputs on
samples labeled with high uncertainty by Shannon entropy minimization,
which focuses on inherent features of each sample.

The proposed uncertainty estimation method is validated in the challenging
context of skin whole slide image (WSI) multi-class image classification, under
the multiple instance learning (MIL) paradigm. It is worth highlighting
the scarce literature on this field since, to the best of our knowledge,
this is the first work that aims to distinguish among 6 different relevant
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pathological categories. Over the AI4SKIN dataset, we have generated new
uncertainty-driven soft labels from 10 in-training pathologists, so-called non-
expert annotators. Uncertainty-aware MIL models have been trained using
soft labels, and the novel dual-branch min-max entropy calibration, and they
have been evaluated using a ground truth annotated by expert pathologists.
Results show a consistent improvement by using soft labels with standard cross-
entropy loss during training (∼ 4.0% F1-score), and increases when calibrating
the model with the proposed min-max entropy calibration DBCE (∼ 6.6%
F1-score). In addition, we have observed that improvements using the DBCE
appear in categories that non-expert annotators presented high uncertainty,
which supports our claim that the entropy minimization term in this case helps
the model to move away from the annotator bias. These improvements are
produced at a negligible cost, both at the level of annotation and calculation.

Still, during the experimental stage, we found some limitations in our study.
First, the proposed formulations are still highly dependent on the quality
of the produced labels. In the context of non-expert annotators, this may
produce limitations when labels are too noisy. Likewise, the annotation of
soft labels depends on the commitment of the experts recruited and does not
bring improvements when performed in a very low proportion. We believe that
the framework developed in this work opens the door to different interesting
lines of further research. Learning how to combine certain expert labels with
uncertain non-expert labels might be of great interest, such as crowd-sourcing
methods able to obtain the underlying label distribution using the least number
of annotators, among others.

105





Chapter 6

Final conclusions

This chapter relates the findings from each paper to the final
aim of the PhD thesis. It summarises concluding remarks and
suggests future research lines for each proposed learning framework.
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6.1 Global remarks

6.1 Global remarks

In this thesis, we have designed, developed and validated different weakly-
supervised methods to solve real-world challenges in the medical sector when
deep learning techniques are used. Concretely, our research has focused
on comprehensively analyzing two widely used data modalities for detecting
cancer and inflammatory diseases: genomic and histological data. For genomic
data analysis, we have proposed unsupervised learning algorithms based on
deep clustering. These algorithms effectively address the challenge of high-
dimensional data by simultaneously clustering them without requiring any
labels for training. As a result, this approach significantly enhances the
accuracy of prognostic predictions. Then, this thesis has explored weakly
supervised methods in WSI to improve the diagnosis of different disorders:
ulcerative colitis, spitzoid and spindle cell cancer. A significant contribution
of this thesis is the introduction of self-supervised learning algorithms for
classifying gigapixel spitzoid histology images, utilizing inductive learning to
overcome the limited number of available biopsies. Then, we have presented a
novel formulation for applying weakly supervised methods to detect ulcerative
colitis. Our research has also incorporated prior knowledge into constraint
formulations, effectively leveraging valuable insights. Finally, we have created a
new annotation protocol to measure the uncertainty of non-expert annotators.
Leveraging these weak annotations, we have designed an uncertainty-aware
pipeline to effectively handle the inherent uncertainty in the annotation
process. The proposed methods in this thesis have undergone rigorous
validation and, where applicable, have been compared with other state-of-
the-art techniques. The results demonstrate their effectiveness and potential
in advancing medical diagnostics and improving patient outcomes.

6.2 Specific remarks

In Chapter 2, we have presented the application of deep clustering methodolo-
gies for breast cancer detection using genomic data. In concrete, we have used
the CpG island methylation levels related to the development of several types
of cancer. The challenges associated with the high dimension of the methyla-
tion data and the reduced number of samples have prompted the exploration
of cutting-edge techniques based on deep-embedded clustering. Our results
demonstrate the promising performance of this end-to-end method, validated
on two breast cancer databases, achieving accuracies of 0.9927 and 0.9375, re-
spectively. The proposed method allows breast cancer classification using a
latent space of only ten features, reducing the input data dimensionality by
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99,9637%. Moreover, our proposed system outperforms other state-of-the-art
methods based on classical clustering, surpassing their accuracy by more than
10%. This approach has also been validated in other disorders, specifically
spitzoid melanocytic lesions. This study contributes to the advancement of
DNA methylation research, potentially leading to personalized therapy due to
the highly promising results of this technique.

The large size of digitalized histological images (WSIS) and the difficulty for
pathologists to perform accurate annotations make it necessary to apply novel
artificial intelligence-based methods to the automatic analysis of these gigapixel
images. In Chapter 3, we have processed entire WSIs of spitzoid neoplasm in a
weakly supervised manner under the multiple instance learning paradigm. In
this line, we have proposed an inductive transfer learning framework based on
a source CNN that allows for patch-level selection of tumor regions, which
are then fed into a target model that focuses on the specific diagnosis of
the entire biopsy. The inductive learning adopted allows the target model
to start the biopsy-level training process from the backbone weights of the
source model, facilitating its convergence. Different source architectures have
been explored, highlighting the superiority of the new backbone proposed in
this thesis (SeaNet). SeaNet is an improved convolutional neural network
that introduces an attention module that can refine the latent space’s features
to maximize the classification agreement. Additionally, the use of attention
weights on embedded-based MIL (in the target model) has shown the best
performance since the embedding vector is more representative of the WSI.
This innovative approach, carried out in an end-to-end manner, have reported
promising results for both tumor selection and WSI classification, achieving
a testing accuracy of 0.9231 and 0.800 for the source and the target models,
despite the limited number of samples. The heat map findings are directly
in line with the clinicians’ medical decision and even highlight, in some cases,
patterns of interest that were overlooked by the pathologist. Therefore, the
proposed AI-based solution is valuable in addressing human eye fatigue and
assisting inexperienced pathologists by suggesting inadvertent areas of interest
to avoid biased diagnosis.

In most of the state-of-the-art works based on MIL, the WSIs employed have
broad features that determine a positive bag. However, there are cases in
which small cells differentiate whether a bag is positive. Therefore, the typical
MIL approaches are not useful as the extracted activations are degraded and
do not allow satisfactory classification. For that reason, we have presented in
Chapter 4 a constraint optimization able to incorporate prior knowledge, in
the form of relative localization of crucial elements, to the multiple instance
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learning formulation. Additionally, in the literature, there exist different
weighted aggregation functions to obtain the biopsy embedding. However, in
some situations, these attention weights have the same value for all instances
in the bag, which is not suitable for determining a positive bag. To solve
this problem, we have proposed to use a weighted average of instances where
weights are obtained from the representative constrained activation maps
optimized during the training. This new formulation has been applied to detect
histological remission in ulcerative colitis using a new index developed by the
PICASSO group. In the developed index, the leading biomarker for assessing
histologic remission is the presence or absence of neutrophils. Therefore, the
finding of this cell in specific colon structures indicates that the patient has
ulcerative colitis activity. Using neutrophil localization during training, which
pathologists promptly carry out, has greatly enhanced the results. We have
demonstrated the robustness of the deep learning-based model in a multicentre
study composed of a large cohort of biopsies collected and digitalized in 7
centers in the UK, Germany, Belgium, Italy, Canada and the USA. In general,
the specificity of the MIL baseline models drops considerably. The best state-
of-the-art model (CLAM-SB) has achieved a specificity of 0.8033 compared to
0.9615 obtained by the proposed model (LCMIL). Additionally, including the
location constraints module forces the network to focus on the real determining
cells, the neutrophils. In this way, we have obtained precise instance-level maps
for unannotated images that allow us to detect neutrophils.

Finally, we have studied in Chapter 5 the condition that expert labels are not
available since, in many cases, recruiting expert pathologists to annotate large
databases is not feasible. In this line, we have designed an uncertainty-driven
labeling strategy to generate soft labels from 10 non-expert annotators for
multi-class skin cancer classification. The new protocol is based on categorical
labeling and confidence percentage. Based on this soft annotation, we have
proposed an uncertainty estimation-based framework to handle these noisy
labels. This framework is based on a novel formulation using a dual-branch
min-max entropy calibration to penalize inexact labels during the training.
In contrast to the literature on uncertainty estimation that requires multiple
annotators to quantify individual sample noise and inter-annotator variability,
this model only needs individual annotations. Results have shown a consistent
improvement by using soft labels with standard cross-entropy loss during
training (4.0 % F1-score) and increase when calibrating the model with the
proposed min-max entropy calibration DBCE (6.6% F1-score). In addition,
we have observed that improvements using the DBCE appear in categories
that non-expert annotators presented high uncertainty, which supports our
claim that the entropy minimization term, in this case, helps the model to
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move away from the annotator bias. These improvements are produced at
negligible cost in terms of annotation and calculation. The proposed system
aims to assist less experienced pathologists in diagnosing the specific type of
spindle cell neoplasm when they can recognize it as such but are uncertain
about its classification or potential malignancy.

6.3 Future work

In this thesis, different weakly-supervised methods have been explored to
mitigate the dependency of deep learning on expert-labeled data. This
thesis has also aimed to incorporate explainability techniques to enhance the
understanding of the developed models. Specifically, attention mechanisms and
instance-level saliency maps have been employed, enabling the visualization of
relevant elements and their contributions to predictions. However, there are
many research possibilities to go further in the explainability domain. Future
studies can explore cutting-edge methods such as LIME (Local Interpretable
Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations),
which provide instance-level explanations and highlight the most influential
features. Moreover, concept-based explanations can also be sought to discover
the high-level concepts learned by the models, utilizing techniques like Concept
Activation Vectors (CAVs) or Generative Adversarial Networks (GANs).
Using CAVs enables the identification of the attributes or features that
contribute most significantly to specific concepts, thereby providing insights
into how the model interprets and understands that concepts. Additionally,
GANs can generate synthetic examples that maximize the activation of
a particular concept, facilitating a deeper understanding of the model’s
learned representations. Integrating these advanced explainability methods
will offer a more comprehensive understanding of model decisions, encouraging
transparency, trustworthiness, and deeper insights into the developed models.

Finally, we would like to highlight some future possibilities regarding real-world
applications. Within the computer vision field, most research has focused on
developing static models trained when all training data is available at once.
However, this context does not match real-world scenarios like the medical
field, where new data sets are continually arising. To tackle this problem,
further research should focus on incremental learning, also known as continual
or lifelong learning. It attempts to mimic natural vision systems capable of
integrating new information while retaining previous knowledge. Incremental
learning pretends to address the stability-plasticity dilemma. Specifically,
continual learning strategies aim to force the model to retain knowledge from
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the old data (stability) while acquiring the pertinent knowledge to perform
correctly on the novel one (plasticity). In this sense, we also aim to use the
potential of large-scale foundation models for the classification or segmentation
of histological data. Foundation models are trained using various centers,
acquisition systems, study types and tasks. These models tend to offer better
transferability when updated on new tasks and domains.
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