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3 Universidad Politécnica de Valencia (Spain)

February 16, 2022

Abstract

The Length Constrained K-Drones Rural Postman Problem (LC K-DRPP) is a con-
tinuous optimization problem where a set of curved or straight lines of a network have to
be traversed, in order to be serviced, by a fleet of homogeneous drones, with total mini-
mum cost. Since the range and endurance of drones is limited, we consider here that the
length of each route is constrained to a given limit L. Drones are not restricted to travel
on the network, and they can enter and exit a line through any of its points, servicing
only a portion of that line. Therefore, shorter solutions are obtained with “aerial” drones
than with “ground” vehicles that are restricted to the network.

If a LC K-DRPP instance is digitized by approximating each line with a polygonal
chain, and it is assumed that drones can only enter and exit a line through the points of
the chain, an instance of the Length Constrained K-vehicles Rural Postman Problem (LC
K-RPP) is obtained. This is a discrete arc routing problem, and therefore can be solved
with combinatorial optimization techniques. However, when the number of points in
each polygonal chain is very large, the LC K-RPP instance can be so large that it is very
difficult to solve, even for heuristic algorithms. Therefore, it is necessary to implement a
procedure that generates smaller LC K-RPP instances by approximating each line by a
few but “significant” points and segments.

In this paper, we present a new formulation for the LC K-RPP with two binary vari-
ables for each edge and each drone representing the first and second traversals of the edge,
respectively. We make a polyhedral study of the set of solutions of a relaxed formulation
and prove that several families of inequalities induce facets of the polyhedron. We de-
sign and implement a branch-and-cut algorithm for the LC K-RPP that incorporates the
separation of these inequalities. This B&C is the main routine of an iterative algorithm
that, by solving a LC K-RPP instance at each step, finds good solutions for the original
LC K-DRPP. The computational results show that the proposed method is effective in
finding good solutions for LC K-DRPP, and that the branch-and-cut algorithm for the
LC K-RPP outperforms the only published exact method for this problem.
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1 Introduction

Given a graph representing a network, Arc Routing Problems (ARPs) consist of designing
tours traversing (servicing) a set of “required” links (arc or edges) and satisfying some con-
ditions, with total minimum cost (see [7, 8, 30]). The Chinese postman problem (CPP), the
rural postman problem (RPP), and the capacitated arc routing problem (CARP) are among
the best known ARPs. In these “classic” ARPs, the lines (streets, roads, pipelines etc.) that
need to be serviced (cleaned, inspected, snow cleared, etc.) are represented by links of a
network regardless of the shape of the real lines, because ground vehicles have to traverse a
link from one endpoint to the other and cannot travel off the network. In [5] these problems
were named Postman ARPs to distinguish them from Drone ARPs, in which the vehicles
used are “aerial” drones. As pointed out in [4], the use of drones to perform the service
involves important changes in the way of modeling and solving the ARPs. Drones can travel
off the network, going directly between any two points, not necessarily endpoints of the links
of the graph. This makes the problem a continuous optimization problem with an infinite
and non-countable number of feasible solutions, in which it is necessary to take into account
the shape of the lines to service. In order to address this problem, each line is digitized as
a polygonal chain consisting of many points defined by their coordinates. If we assume that
drones can only enter and exit a line through these points, the Drone ARP transforms into a
Postman ARP where the segments of the polygonal chain are the required edges (see [4, 5]).

Drones (or UAVs) are increasingly being used for inspection and monitoring of infrastruc-
ture and facilities that can be modeled as networks or collections of lines. Two of the main
application areas are in energy and transportation. Jordan et al. [22] provides examples of
applications of drone inspection in a wide variety of areas including for power lines, railways,
sewers, geographical features, bridges, buildings and structures (e.g., wind turbines). In some
areas, such as power line inspection, drones are now regularly used (Rauhakallio [35]), as they
provide cost effective, faster and safer inspections, and a new industry has developed to pro-
vide commercial power line inspection services. There has been limited academic research on
power line inspection by drones, such as Liu et al. [27] which models the inspection of straight
line segments representing power lines by drones that are launched from ground vehicles at
a set of nodes on the road network. Constructive and improvement heuristics are presented
to route the drones and the ground vehicles. Another energy-related drone inspection topic
receiving attention is wind turbine inspection, especially for offshore wind farms, which are
expensive and difficult to access ([16], [37]). Mansouri et al. [29] provides a model for drones
inspecting 3D objects (with an example of a wind turbine) based on a spiral pattern of drone
flights to trace a sequence of parallel slices of the 3D structure. This could be viewed as an
arc routing problem where the 3D slices define circular trajectories around the outside of an
object. Another interesting application for drone arc routing is the inspection and monitoring
of offshore oil and gas facilities (platforms) and pipelines ([24], [21]). For example, Jones et
al. [21] discuss the use of sea drones that can be autonomous vehicles that travel underwater,
on the surface, or crawling on the seabed, to assist in the decommissioning of offshore oil and
gas installations. (This is an important problem as there are, for example, 475 offshore oil
and gas facilities being decommissioned in the UK, along with an associated >45,000 km of
pipeline in the North Sea.)

In transportation systems, drone arc routing examples arise in areas such as road traffic
monitoring, railroad and transit (light rail) track inspections, roadway surface inspection,
monitoring railroad right-of-ways, bridge inspection and managing vegetation. Monitoring
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road traffic ([26], [28], [23]), roadways ([31]) and rail lines ([39], [33], [38], [40]) provide impor-
tant applications for drone arc routing along infrastructure naturally modeled with curved
line features. Drone fleets are becoming common among major railroads (e.g., [19]), and
even for some regulatory agencies ([6]). Bridges and buildings associated with transportation
systems also provide opportunities for drone arc routing to ensure efficient inspections ([31],
[33], [38]).

With the growing regulatory approvals of BVLOS (beyond visual line of sight) drone
operations, inspection and monitoring of large scale transportation and energy transmission
systems that stretch over hundreds of km becomes feasible using long range drones. On a
smaller scale, representing structures such as bridges, buildings, oil platforms or wind turbines
as 3D networks of linear features creates 3D arc routing problems for drones as well (whether
in the air or underwater).

One recent paper that includes drone arc routing as a special case is Puerto and Valverde
[34], in which a drone route is designed to visit parts or all of a set of dimensional facilities,
including polygonal chains. This is a generalization of the crossing postman problem ([17]),
but if the problem includes only polygonal chains where 100% of the length of each must be
visited, then it can be viewed as a single drone RPP. Amorosi et al. [1] extends this model
to include a ground vehicle that serves as a moving base for the drone with limited range.

The two papers most directly related to this work are [4] and [5]. In [4], the differences
between postman ARPs and Drone ARPs are highlighted, and the Drone RPP is introduced.
For this problem, a sequential algorithm is proposed that solves a larger RPP instance at each
step. It begins with the RPP instance where each line is represented by a single segment. At
each iteration, each segment is divided in two by adding an intermediate point taken from
the original line. Also in [4] the Length Constrained K-drones Rural Postman Problem (LC
K-DRPP) is defined and briefly discussed, and it is studied further in [5]. There, a “directed”
formulation for the Length Constrained K-vehicles Rural Postman Problem (LC K-RPP),
with two variables xkij and xkji for each edge (i, j) and each drone k, is proposed. Based on
this formulation, a branch-and-cut procedure is presented, but it is tested only in LC K-RPP
instances with a single segment representing each line. The computational results show the
difficulty of the problem, as only the smallest instances are solved optimally and the final
lower bounds are far from the upper bounds. A matheuristic algorithm is also proposed for
the solution of the LC K-DRPP, which iteratively finds good solutions for some instances
of LC K-RPP with an increasing number of intermediate points, but in a more clever way
than the one proposed in [4]. Instead of adding an intermediate point for all the segments,
the procedure only does it for the most “promising” ones. Also, the procedure removes some
points added in previous iterations that have been proven useless.

The contribution of this work is multiple. We propose a formulation for the LC K-
RPP based on the idea, exposed in [10] for the maximum benefit CPP (MBCPP), of using
two binary variables for each edge that indicate the first and second traversals of the edge,
respectively, for each drone. We carry out a polyhedral study of the set of solutions of a
relaxed formulation, and we present some families of valid inequalities and the conditions for
them to induce facets of the polyhedron. Based on this formulation, we design and implement
a branch-and-cut algorithm, with separation procedures for the new inequalities. We integrate
this B&C into a solution procedure for LC K-DRPP with a sequential scheme that iteratively
solves instances of LC K-RPP generated by adding and removing some intermediate points
in a way that is a refinement of the one presented in [5]. The computational results confirm
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the benefits of our approach, clearly improving the results reported in [5].

The rest of the paper is structured as follows. In Section 2 we present the LCK-DRPP and
the LC K-RPP, and propose a new formulation for the last problem. The polyhedral study
of the set of solutions of a relaxed formulation of the LC K-RPP is done in Section 3, where
several families of inequalities are proved to be facet inducing for the defined polyhedron. In
Section 4 we present a branch-and-cut algorithm for the LC K-RPP that incorporates new
separation procedures for the proposed inequalities. A global algorithm that produces good
solutions for the LC K-DRPP is described in Section 5. At each iteration, the algorithm solves
a different LC K-RPP instance using the branch-and-cut algorithm described before. The
computational results in Section 6 show that the global algorithm is effective in finding good
solutions for the LC K-DRPP, and that the branch and cut for the LC K-RPP outperforms
the only published exact method for this problem. Finally, some conclusions are presented
in Section 7.

2 The Length Constrained K–Drones RPP and K–RPP

The LC K-DRPP, presented in [4] and studied in [5], is defined as follows: “Given a set
of lines, each one with an associated service cost, and a point called the depot, assuming
that the cost of deadheading between any two points is the Euclidean distance, and given a
constant L, find a set of drone routes starting and ending at the depot and with lengths no
greater than L such that they jointly traverse all the given lines completely with minimum
total cost”.

Given that drones can travel off the network and go directly between any two points, not
necessarily the endpoints of the required lines, the LC K-DRPP is a continuous optimization
problem in which the shape of the lines to service must be taken into account. To deal
with this problem, the LC K-DRPP instances are digitized, that is, each line to be served is
described as a polygonal chain, with a sequence of points given by their coordinates. If we
assume that drones can only enter and exit a line through these points, we have an instance of
the LC K-RPP, a postman ARP, defined on an undirected graph G = (V,E) = (V,ER∪ENR).
The set of vertices V contains the points of the polygonal chains plus the depot, denoted by
1. The set of required edges ER contains the segments of the polygonal chains, while the set
of non-required edges ENR contains an edge between each pair of vertices in V , i.e., (V,ENR)
is a complete graph. Note that all the vertices in V , except maybe the depot, are incident
to, at least, one required edge.

Each e ∈ ER (a segment) has a service cost cse ≥ 0 that is proportional to the service cost
of the line, so that the sum of the costs of the segments that approximate a line is equal to
the service cost of the line. Each non-required edge e ∈ ENR has a deadheading cost ce ≥ 0
equal to the cost of traveling directly between its endpoints (e.g., the Euclidean distance
computed from their coordinates). Note that each e ∈ ER has a parallel non-required edge,
which we denote as e′, and we assume that the cost of traveling while servicing the required
segment (i, j) is greater than or equal to the cost of flying directly from i to j (cse ≥ ce′ ). E′NR
represents the set of non-required edges parallel to a required one, while E′′NR = ENR \E′NR.
The goal of the LC K-RPP is to find K tours (closed walks starting and ending at the depot)
with length no greater than L, that jointly traverse (and service) all the required edges, with
minimum total cost.
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We want to point out that in the LC K-RPP instances the non-required edges form a
complete graph, whereas in postman ARPs the graph often corresponds to a sparse network.
To make a more general study, in the following sections we do not assume that the edges in
ENR form a complete graph, although we keep the assumption that in E there is an edge e′

parallel to each e ∈ ER.

The LC K-RPP can be formulated using a binary variable xke for each edge e ∈ ER and
for each drone k ∈ {1, . . . ,K}, and two binary variables xke and yke for each edge e ∈ ENR
and for each drone k ∈ {1, . . . ,K}. Variable xke for each edge e ∈ ER takes the value 1
if e is traversed (and serviced) by drone k and 0 otherwise. Variables xke and yke for each
edge e ∈ ENR take the value 1 if e is traversed once or twice, respectively, by drone k and
0 otherwise. In other words, variables xke and yke represent the first and second traversal by
drone k of the non-required edge e. The use of these variables is inspired by the work in [10]
for the MBCPP.

Note that, for each drone, there are three variables to represent the traversals between
the two endpoints i,j of a required edge e. The reason is that we need to distinguish among
traversing e while serving it (with a cost cse) and deadheading e′ once or twice (with a cost
ce′ ≤ cse). Although in all the optimal solutions the three variables will never be non-zero
simultaneously (see Theorem 1), we need the three variables to state the objective function
of the problem formulation.

Theorem 1 For each e ∈ ER and its parallel edge e′ ∈ E′NR, and for each k ∈ {1, . . . ,K},
the inequality xke + yke′ ≤ 1 is satisfied by any optimal solution of the LC K-RPP (if ce′ > 0).

Proof: If a solution satisfies xke + yke′ = 2, necessarily xe′ = 1 (because xe′ ≥ ye′ holds) and
the drone travels three times between i and j, so we can remove two copies and get a better
feasible solution. �

In this paper we use the following notation. Given two subsets of vertices S, S′ ⊆ V ,
(S : S′) denotes the edge set with one endpoint in S and the other one in S′. Given a
subset S ⊆ V , let us denote δ(S) = (S : V \S) and E(S) = (S : S). For simplicity, when
S = {i}, i ∈ V , we write δ(i) instead of δ({i}). For any subset F ⊆ E = ER∪ENR, we denote
FR = F ∩ ER and FNR = F ∩ ENR, and, for simplicity, we write δR(S) instead of δ(S)R.
Moreover, given a vector x indexed on the edges set E and a subset of edges F ⊂ E, x(E)
denotes

∑
e∈F xe, while (x+ y)(F ) and (x− y)(F ) represent x(F ) + y(F ) and x(F )− y(F ),

respectively.

The LC K-RPP can be formulated as follows:

Minimize

K∑
k=1

∑
e∈ER

csex
k
e +

∑
e∈ENR

ce
(
xke + yke

)
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s.t.∑
e∈δR(i)

xke +
∑

e∈δNR(i)

(
xke + yke

)
≡ 0 (mod 2), ∀i∈V, ∀k = 1, . . . ,K (1)

∑
e∈δR(S)

xke +
∑

e∈δNR(S)

(
xke + yke

)
≥ 2xkf , ∀S⊆V \{1}, ∀f∈E(S), ∀k=1,. . .,K (2)

∑
e∈ER

csex
k
e +

∑
e∈ENR

ce
(
xke + yke

)
≤ L, ∀k = 1, . . . ,K (3)

K∑
k=1

xke ≥ 1, ∀e ∈ ER (4)

xke ≥ yke , ∀e∈ENR, ∀k = 1, . . . ,K (5)

xke ∈ {0, 1}, ∀e∈ER, ∀k = 1, . . . ,K (6)

xke , y
k
e ∈ {0, 1}, ∀e∈ENR, ∀k = 1, . . . ,K (7)

Constraints (1) force each drone to visit each vertex an even number of times, possibly
zero. Conditions (2) ensure each single route is connected and connected to the depot, while
constraints (3) guarantee that the length of each route does not exceed L. The traversal
of all the required edges is ensured by constraints (4). Constraints (5) guarantee that a
second traversal of a non required edge by a drone can only occur when it has been traversed
previously by this drone. Constraints (6) and (7) are the binary conditions for the variables.

Note that constraints (1) are not linear, although they could be linearized by introducing
additional general integer variables, zki , as follows∑

e∈δR(i)

xke +
∑

e∈δNR(i)

(
xke + yke

)
= 2zki .

Instead, as we will see in Section 3.2, we will introduce some linear inequalities on the
variables xke , y

k
e (parity and KC inequalities). Note also that the previous formulation allows

“not feasible” solutions with isolated subtours of non-required edges, although these solutions
are not optimal.

3 Polyhedral study of the K-RPP

In this section we study a polyhedron of solutions associated with the proposed formulation for
the LC K-RPP. Since this formulation is based on the one presented in [10] for the MBCPP,
some of the inequalities proposed in that article for the MBCPP can be transformed into valid
inequalities for the K-RPP (see Theorem 2). However, to prove that these new inequalities,
and the inequalities in the K-RPP formulation, are facet inducing, we must to first discuss
the polyhedron associated with the K-RPP in the special case when K=1.

As with other routing problems with several vehicles, determining the dimension of the
polyhedron defined as the convex hull of the LC K-RPP solutions is a very difficult task,
because it depends also on the edge costs ce and cse, the number of vehicles K, and the length
limit L. Even in some cases, the polyhedron could be empty. However, if we remove the
constraints (3) that limit the length of each route, the problem becomes the K vehicles Rural
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Postman Problem (K-RPP), whose polyhedron can indeed be studied. This is interesting
because some of its facets could also be facets of the original LC K-RPP polyhedron, and it
is a way of guaranteeing the strength of the constraints in the formulation and of the valid
inequalities we can find.

Let a K-RPP solution denote any set of K tours on graph G starting and ending at the
depot and jointly servicing (traversing) all the required edges. Associated with each K-RPP
solution we can consider:

(a) K incidence vectors (xk, yk) ∈ Z2|ENR|+|ER|, one for each tour, where variables xke take
the value 1 if edge e is traversed once, variables yke take the value 1 if edge e is traversed
twice, and

(b) K support graphs (V,E(xk,yk)), one for each tour, where E(xk,yk) contains one copy of
edge e ∈ E for each variable xke = 1 or yke = 1.

Note that the support graphs are even and connected. Conversely, any even and connected
subgraph of G corresponds to a tour on G. In fact, an incidence vector or a subgraph may
correspond to several different closed walks, but all of them have the same cost and they can
be easily computed (with the Hierholzer algorithm [20], for example). Hence, and for the
sake of simplicity, we will let “tour on G” denote the closed walk, its incidence vector, and
its corresponding support graph.

In what follows, we study the K-RPP polyhedron defined as the convex hull of the vectors
(x1, y1, x2, y2, . . . , xK , yK) ∈ ZK(2|ENR|+|ER|) corresponding to K-RPP solutions on G, that
is, (a) each (xk, yk), k = 1, . . . ,K, is a tour on G starting and ending at the depot, and
(b) all the required edges are traversed by, at least, one drone. Let K-RPP(G) denote this
polyhedron. Note that we do not consider inequalities xke + yke′ ≤ 1 from Theorem 1, and

we use inequalities (4) instead of
∑K

k=1 x
k
e = 1. Although the feasible solutions that satisfy

xke + yke′ = 2 or
∑K

k=1 x
k
e > 1 cannot be optimal solutions (if 0 < ce′ < cse), we will use these

solutions to make the proofs in Section 3.2.

To make this polyhedral study, we need some results presented in [10] for the MBCPP.
Given an undirected connected graph G = (V,E), where 1 ∈ V represents the depot, with
two benefits for each edge e ∈ E associated with the first and the second traversals of e,
respectively, the MBCPP consists of finding a tour starting from the depot, traversing some
of the edges in E at most twice and returning to the depot, with maximum total benefit. The
MBCPP is formulated with two binary variables xe and ye for each edge e ∈ E representing
the first and second traversal of e, respectively. It is shown that the convex hull of all the
MBCPP tours, i.e., the vectors (x, y) satisfying∑

e∈δ(i)

(
xe + ye

)
≡ 0 (mod 2), ∀i∈V (8)

∑
e∈δ(S)

(
xe + ye

)
≥ 2xf , ∀S⊂V \ {1}, ∀f ∈ E(S) (9)

xe ≥ ye, ∀e∈E (10)

xe, ye ∈ {0, 1}, ∀e∈E, (11)

is a full dimensional polytope and several families of valid and facet-inducing inequalities are
described.
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In this paper we study the K-RPP formulated with only one variable associated with
each required edge, while, if we consider the MBCPP on the same graph, we have two
variables for each edge, including the required ones. Nevertheless, given a K-RPP solution
(x1, y1, x2, y2, . . . , xK , yK) ∈ ZK(2|ENR|+|ER|), each single route (xk, yk) is a closed walk start-
ing and ending at the depot, and it can be completed with variables ye = 0 for each e ∈ ER
to obtain a MBCPP tour. Hence we have the following theorem:

Theorem 2 Let f(x, y) ≥ α a valid inequality for the MBCPP on graph G. By removing all
the variables ye, e ∈ ER, the resulting inequality f(xk, yk) ≥ α is valid for the K-RPP, for
each drone k ∈ {1, . . . ,K}.

For example, from inequalities (9) we obtain inequalities (2). Furthermore, from sev-
eral families of valid inequalities for the MBCPP, namely parity, p-connectivity and K-C
inequalities, we will obtain valid inequalities for the K-RPP (see Sections 3.2.1, 3.2.2, and
3.2.3).

Besides some results from the MBCPP, we need some polyhedral results from the 1-RPP
for the proofs for the general case K ≥ 2. These results are detailed in [12] and summarized
in the next section.

3.1 The 1-RPP polyhedron

The K-RPP for K = 1, or 1-RPP, is the well known RPP ([14], [15], [18], [9], [13], [36]) but
with some special features. First, it is defined on a graph that has a non-required edge parallel
to each required one. Second, the problem is formulated with three variables associated with
the traversal of a required edge e and its parallel non-required one e′. Note that for the
1-RPP, xe = 1 holds for each e ∈ ER and, from Theorem 1, we obtain that ye′ = 0 for each
e′ ∈ E′NR in all optimal 1-RPP tours. Hence, these variables could be removed from the
formulation. However, since this is not true for K > 1, we will keep these variables because
they are necessary in the proofs of the polyhedral study of the K-RPP(G) for K > 1. Hence,
we will accept feasible (but not optimal) solutions with some variables ye′ = 1.

In the same way, although it is natural in problems with drones to assume that all the
vertices (except, maybe the depot) are incident with required edges, we will not consider
here this assumption to make a more general study. Therefore, in this section we consider
an undirected and connected graph G = (V,E), with a set ER ⊂ E of required edges, and
where the set VR formed with the vertices incident with some edge in ER plus the depot,
is not necessarily equal to V . We assume E = ER ∪ E′NR ∪ E′′NR, where E′NR is the set of
non-required edges parallel to an edge in ER.

Let a 1-RPP tour denote to a closed walk on graph G starting and ending at the depot
and servicing all the required edges. As before, we will use 1-RPP tour also to denote its
incidence vector (x, y) ∈ Z2|ENR|+|ER| and its support graph. The polyhedron 1-RPP(G) is
defined as the convex hull of all the 1-RPP tours in G. Note that the set of constraints of
the K-RPP formulation, adapted to the case K = 1, is:
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∑
e∈δR(i)

xe +
∑

e∈δNR(i)

(
xe + ye

)
≡ 0 (mod 2), ∀i∈V (12)

∑
e∈δR(S)

xe +
∑

e∈δNR(S)

(
xe + ye

)
≥ 2xf , ∀S⊆V \{1}, ∀f∈E(S), (13)

xe = 1, ∀e ∈ ER (14)

xe ≥ ye, ∀e∈ENR (15)

xe, ye ∈ {0, 1}, ∀e∈ENR. (16)

In [12], it is proved the following theorem about the dimension of polytope 1-RPP(G).

Theorem 3 If (V,ENR) is a 3-connected graph, then, dim(1-RPP(G))= 2|ENR|.

Moreover, in [12], conditions under which some of the constraints in the formulation and
other valid inequalities define facets of 1-RPP(G) are studied. Here we summarize these
results, where we assume that graph (V,ENR) is 3-connected:

Theorem 4 The following are facet-inducing inequalities for 1-RPP(G):

1. Inequality ye ≥ 0, ∀e∈ENR,

2. inequality xe ≤ 1, ∀e∈ENR, and

3. inequality xe ≥ ye, ∀e∈ENR, if graph (V,ENR\{e}) is 3-edge connected.

Regarding the connectivity inequalities (13), note that, given that xe = 1 for all e ∈ ER,
if δR(S) 6= ∅ they are obviously satisfied.

Theorem 5 Let S ⊆ V \ {1} such that ER(S) = δR(S) = ∅. Let f ∈ E(S) (f ∈ E′′NR). The
connectivity inequality (13), which now takes the form

(x+ y)(δ(S)) ≥ 2xf , (17)

is facet-inducing for 1-RPP(G) if subgraph (S,ENR(S)) is 3-edge connected and either V\S =
{1} or subgraph (V \S,ENR(V \S)) is 3-edge connected.

If, in addition, δR(S) 6= ∅ holds, then inequalities (13) are dominated by

(x+ y)(δ(S)) ≥ 2,

which are also facet-inducing for 1-RPP(G).

In the remainder of this section, we describe several families of valid inequalities for the
1-RPP proposed in [12]: parity, p-connectivity and K-C inequalities.
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Parity inequalities

In [10], the following constraints, which generalize the well known co-circuit inequalities ([2]),
were proposed for the MBCPP:

(x− y)(δ(S)\F ) ≥ (x− y)(F )−|F |+1, ∀S⊂V, ∀F ⊆δ(S) with |F | odd. (18)

If δR(S) ⊆ F , after removing all the variables ye, e ∈ ER, and replacing all the variables xe,
e ∈ ER, by one, inequalities (18) can be writen as:

(x− y)(δ(S)\F ) ≥ (x− y)(FNR)− |FNR|+ 1, ∀S⊂V, ∀F ⊆δ(S) with |F | odd, (19)

which are valid for the 1-RPP from Theorem 2. These inequalities cut off (infeasible) solutions
in which there is a cut-set with an odd number of edges traversed exactly once (these edges
define the set F ) and the other edges are traversed twice or none.

Theorem 6 Parity inequalities (19), for all S ⊂ V , F ⊆ δ(S) with |F | odd and δR(S) ⊆
F , are facet-inducing for 1-RPP(G) if subgraph (S,ENR(S)) is 3-edge connected and either
V \S = {1} or subgraph (V \S,ENR(V \S)) is 3-edge connected.

p-connectivity inequalities

These constraints were introduced in [10] to cut off some fractional solutions in which several
edges forming a cycle have variables xe = ye = 0.5. They are defined as follows.

Let {S0, . . . , Sp} be a partition of V such that δ(Si) ∩ ER = ∅ for all i (see Figure 1(a),
where a triangle represents the depot and a required edge is represented within some sets
E(Si)). Assume we divide the set {0, 1, . . . , p} = R∪N (from ‘Required’ and ‘Non-required’)
in such a way that

• i ∈ R if either 1 ∈ Si or ER(Si) 6= ∅ (note that 1 ≤ |R| ≤ p+ 1), and

• i ∈ N if 1 /∈ Si and ER(Si) = ∅ (note that 0 ≤ |N | ≤ p, and |R|+ |N | = p+ 1),

and select one edge ei ∈ E(Si) for every i ∈ N . Note that ei ∈ E′′NR. Given that the
p-connectivity inequality

(x+ y)(δ(S0)) + 2
∑

1≤r<t≤p
x(sr : St) ≥ 2

∑
xei (20)

is valid for the MBCPP ([10]), after replacing all the variables xe, e ∈ ER by one, we obtain
the following p-connectivity inequality valid for the 1-RPP:

(x+ y)(δ(S0)) + 2
∑

1≤r<t≤p
x(Sr : St) ≥ 2

∑
i∈N

xei + 2 (|R| − 1) (21)

This inequality with p = 2 and |N | = 1 is represented in Figures 1(b) and 1(c), where
for each pair (a, b) associated with an edge e, a and b represent the coefficients of xe and ye,
respectively.

Theorem 7 p-connectivity inequalities (21) are facet-inducing for 1-RPP(G) if subgraphs
(Si, ENR(Si)), i = 0, . . . , p, are 3-edge connected, |(S0 :Si)| ≥ 2, ∀ i = 1, . . . , p, and the graph
induced by V \ S0 is connected.
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Figure 1: p-connectivity inequalities.

K-C inequalities

K-C inequalities are a well-known family of inequalities for ARPs, which jointly address the
parity and connectivity conditions of the solutions.

Let {S0, . . . , SK}, with K ≥ 3, be a partition of V such that δ(Si) ∩ ER = ∅ for all
i = 1, 2, . . . ,K − 1. Assume we divide the set {1, . . . ,K − 1} = R∪N (from ‘Required’ and
‘Non-required’) in such a way that

• i ∈ R if either 1 ∈ Si or ER(Si) 6= ∅ (note that 0 ≤ |R| ≤ K − 1), and

• i ∈ N if 1 /∈ Si and ER(Si) = ∅ (note that 0 ≤ |N | ≤ K − 1, and |R|+ |N | = K − 1),

and select one edge ei ∈ E(Si) for every i ∈ N . Note that ei ∈ E′′NR. Let F ⊆ (S0 : SK)
be a set of edges, with |F | ≥ 2 and even, and (S0 : SK)R ⊆ F . The K-C inequalities are as
follows:

(K − 2)(x− y)
(

(S0 : SK) \ F
)
− (K − 2)(x− y)(FNR) +

+
∑

0≤i<j≤K

(i,j)6=(0,K)

(
(j − i)x(Si : Sj) + (2− j + i)y(Si : Sj)

)
− 2

∑
i∈N

xei ≥ 2|R| − (K − 2)|FNR| (22)

The coefficients and structure of the K-C inequalities are shown in Figure 2, where we
assume R = {1, . . . , |R|} and N = {|R| + 1, . . . ,K − 1}. Edges in F (required and non-
required, if any) are represented by thick lines. For each pair (a, b) associated with an
edge e, a and b represent the coefficients of xe and ye, respectively. From Theorem 2, K-C
inequalities (22) are valid for 1-RPP(G) because they are obtained from the corresponding
K-C inequalities for the MBCPP after replacing each xe by one and by removing the ye
variables for all the required edges e.

Theorem 8 K-C inequalities (22) are facet-inducing for 1-RPP(G) if subgraphs
(Si, ENR(Si)), i = 0, . . . ,K, are 3-edge connected, |(Si : Si+1)| ≥ 2 for i = 0, . . . ,K − 1,
and |FR| ≥ 2.
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Figure 2: Coefficients of the K-C inequality

3.2 The K-RPP polyhedron (K ≥ 2)

In this section we study the K-RPP with K ≥ 2 on graph G = (V,E) = (VR, ER ∪ E′NR ∪
E′′NR). Recall that K-RPP(G) denotes the polytope defined as the convex hull of the vectors
(x1, y1, x2, y2, . . . , xK , yK) ∈ Z(2|ENR|+|ER|)K corresponding to K-RPP solutions.

Theorem 9 If (V,ENR) is a 3-connected graph, then K-RPP(G) is a full-dimensional
polyhedron, i.e., dim(K-RPP(G))= K(2|ENR|+ |ER|).

Proof: See the Appendix. �

In the following, we will assume that (V,ENR) is a 3-connected graph and thus K-RPP(G)
is full-dimensional. Therefore every facet of the polyhedron is induced by a unique inequality
(except scalar multiples).

The proofs of the following theorems can be found in the Appendix.

Theorem 10 Inequality yke ≥ 0, for each edge e ∈ ENR, and for each drone k ∈ {1, 2, . . . ,K},
is facet-inducing of K-RPP(G).

Theorem 11 Inequality xke ≤ 1, for each edge e ∈ ENR, and for each drone k ∈ {1, 2, . . . ,K},
is facet-inducing of K-RPP(G).

Theorem 12 Inequality (5) xke ≥ yke , for each edge e ∈ ENR, and for each drone k, is
facet-inducing of K-RPP(G) if graph (V,ENR \ {e}) is 3-edge connected.

Theorem 13 Inequality xke ≤ 1, for each edge e ∈ ER, and for each drone k, is facet-
inducing of K-RPP(G).

Theorem 14 Inequality xke ≥ 0, for each edge e ∈ ER, and for each drone k, is facet-
inducing of K-RPP(G).
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Theorem 15 Inequalities (4),

K∑
k=1

xke ≥ 1, for each edge e ∈ ER, are facet-inducing of

K-RPP(G).

Theorem 16 Connectivity inequalities (2), xk
(
δR(S)

)
+ (xk + yk)

(
δNR(S)

)
≥ 2xkf , ∀S⊆V \

{1}, ∀f∈E(S), and ∀k=1,. . .,K, are facet-inducing of K-RPP(G) if subgraph (S,ENR(S))
is 3-edge connected and either |V \S| = 1 or subgraph (V \S,ENR(V \S)) is 3-edge connected.

3.2.1 Parity inequalities

Since parity inequalities (18) are valid for the MBCPP on G, from Theorem 2 we have that
the following parity inequalities

xk(δR(S)\F ) + (xk − yk)(δNR(S)\F ) ≥ xk(FR) + (xk − yk)(FNR)−|F |+1, (23)

for each drone k, any S⊂V , and F ⊆δ(S) with |F | odd, are valid for the K-RPP on G,

Theorem 17 Parity inequalities (23) are facet-inducing of K-RPP(G) if subgraph
(S,ENR(S)) is 3-edge connected and either V \S = {1}, or subgraph (V \S,ENR(V \S)) is
3-edge connected.

Proof: See the Appendix. �

3.2.2 p-connectivity inequalities

Let {S0, . . . , Sp} be a partition of V . Assume that 1 ∈ Sd, d ∈ {0, . . . , p} and consider one
edge ej ∈ E(Sj) for every j ∈ {0, . . . , p} \ {d}. Since the p-connectivity inequality (20) is
valid for the MBCPP on G, from Theorem 2, the following inequality for each drone k

xk(δR(S0)) + (xk + yk)(δNR(S0)) + 2
∑

1≤r<t≤p
xk(Sr : St) ≥ 2

p∑
i=0,i 6=d

xkei , (24)

is valid for the K-RPP and will be referred to as p-connectivity inequality.

Theorem 18 p-connectivity inequalities (24) are facet-inducing for K-RPP(G) if subgraphs
(Si, ENR(Si)), i = 0, . . . , p, are 3-edge connected, |(S0 : Si)| ≥ 2, ∀ i = 1, . . . , p, and the
graph induced by V \ S0 is connected, and all the edges ej ∈ E(Sj) are required edges.

Proof: See the Appendix. �

3.2.3 K-C inequalities

Let {S0, . . . , SK}, with K ≥ 3, be a partition of V . We assume that the depot 1 ∈ (S0 ∪SK)
and E(Si) 6= ∅, for all i = 1, 2, . . . ,K − 1. We select one edge ei ∈ E(Si) for all i. Let
F ⊆ (S0 : SK) be a set of edges, with |F | ≥ 2 and even. For each drone k, the following
inequalities

13



(K − 2)xk
(

(S0 : SK)R \ F
)
− (K − 2)xk(FR)+

+ (K − 2) (xk − yk)
(

(S0 : SK)NR \ F
)
− (K − 2) (xk − yk)(FNR)+

+
∑

0≤i<j≤K

(i,j)6=(0,K)

(j−i)xk(Si : Sj)R +
∑

0≤i<j≤K

(i,j)6=(0,K)

(
(j−i)xk(Si : Sj)NR + (2−j+i) yk(Si : Sj)NR

)
≥

≥ 2

K−1∑
i=1

xkei − (K − 2)|F |. (25)

will be referred to as K-C inequalities. If the depot 1 ∈ Sd, d ∈ {1, . . . ,K−1}, the RHS of
the K-C inequalities is:

≥ 2

K−1∑
i=1
i 6=d

xkei + 2− (K − 2)|F |. (26)

From Theorem 2, K-C inequalities (25) and (26) are valid for the K-RPP because they are
obtained from the corresponding K-C inequalities for the MBCPP (see [10]) after removing
the ye variables for all the required edges e.

Theorem 19 K-C inequalities (25) and (26) are facet-inducing for K-RPP(G) if subgraphs
(Si, ENR(Si)), i = 0, . . . ,K, are 3-edge connected, |(Si : Si+1)| ≥ 2 for i = 0, . . . ,K − 1, and
|FR| ≥ 2 and ei ∈ ER(Si) for all i.

Proof: See the Appendix. �

3.3 Other valid inequalities for the LC K-RPP

Although we have removed the constraints (3), which limit the length of each route, for
the polyhedral study, they have to be taken into account when solving the problem. Based
on these constraints, we present some sets of valid inequalities for the LC K-RPP, called
max-length inequalities.

Let F ⊆ ER be a subset of required edges. Consider the General Routing Problem, GRP,
defined on graph G, with required edges F and required vertex 1 (the depot), if it is not
incident with an edge in F . This problem consists of finding a minimum cost tour traversing
the edges of F at least once and visiting the depot. Let grp(F ) be its optimal value (or a
lower bound of it). If grp(F ) > L, then we have that the following inequalities are valid for
the LC K-RPP:

xk(F ) ≤ |F | − 1, ∀k ∈ K, (27)

which indicate that a single vehicle cannot service all the arcs in F .

14



Let S be the set of vertices incident with the edges in F , and suppose that 1 /∈ S. Then,
at least two vehicles must enter in S, and we have

∑
k∈K

(
xk(δR(S)) + (xk + yk)(δNR(S))

)
≥ 4 (28)

Moreover, to force two different vehicles to enter S, instead of a single vehicle entering S
twice, we have the following inequalities

∑
k 6=k′

(
xk(δR(S)) + (xk + yk)(δNR(S))

)
≥ 2, ∀k′ ∈ K. (29)

The above inequalities, can be easily generalized to any value p = dgrp(F )
L e > 1 if grp(F )

> (p− 1)L.

4 Branch-and-cut algorithm for the LC K-RPP

Based on the polyhedral study described in the previous section, we have designed and
implemented a branch-and-cut algorithm for the LC K-RPP. This method is based on a
cutting-plane algorithm that incorporates separation procedures for the inequalities presented
in this article. These procedures are similar to some already proposed for other arc routing
problems.

The initial LP relaxation contains inequalities (3), (4), and (5), the bounds on the vari-
ables, and a parity inequality (23) with F = δ(v) for each odd-degree vertex v. Moreover, in
order to avoid equivalent solutions produced by the symmetry among the vehicles, the follow-
ing symmetry-breaking inequalities are also added. Assume the required edges are ordered in
descending order according to the distances between them and the depot as e1, e2, . . . , e|ER|.
Then, we add:

• x1
e1 = 1.

• xkei <=
∑i−1

j=1 x
k−1
ej , k = 2, ..., |K|, i >= 2.

• xkei = 0, k = i+ 1, ..., |K|, i = 1, ..., |ER| − 1.

In addition, to prune the search tree, we use a bound obtained by the heuristic algorithm
proposed in [5].

4.1 Separation algorithms

Given a solution of the current LP in an iteration of the cutting-plane algorithm, we describe
here the separation algorithms that have been used to identify violated inequalities of the
following classes: connectivity, parity, p-connectivity, and KC inequalities.
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Given a fractional solution for a vehicle k, (x̄k, ȳk), and a parameter ε > 0, we will use
two support graphs, Gk+(ε) and Gk−(ε), which are the graphs induced by the edges e ∈ E such
that x̄k(e) + ȳk(e) > ε and x̄k(e)− ȳk(e) > ε, respectively, plus the depot, if necessary.

4.1.1 Connectivity inequalities

For each vehicle k, connectivity inequalities (2) can be exactly separated in polynomial time
with the following well-known algorithm. For each edge f such that x̄k(f) > 0, compute the
minimum cut in graph Gk+ separating edge f from the depot. If the weight of this cut is less
than 2x̄k(f), then the corresponding inequality (2) is violated.

This algorithm is very time consuming and can produce many violated inequalities that
are very similar to each other. Therefore, we avoid studying the edges close to an edge f
for which a violated connectivity inequality has already been found. Thus, the number of
calculated minimum cuts and inequalities added to the LP are reduced.

We also use two heuristic algorithms. The first one computes the connected components
of graph Gk+(ε). For each connected component and for the edge f in it with maximum x̄k(f),
the corresponding inequality (2) is checked for violation.

The second is based on reducing the size of the graph on which the minimum cuts are
calculated, by shrinking the connected components of the graph induced by edges with
x̄k(e) ≥ 1 − ε′ into a single vertex each, where ε′ is a parameter. Then, we calculate all
the minimum cuts between the vertex corresponding to the component containing the de-
pot and the remaining ones. The corresponding connectivity inequalities are checked for
violation.

4.1.2 Parity inequalities

If we replace x− y by x in the parity inequalities (23) for a vehicle k, we obtain

xk(δ(S)\F )≥ xk(F )−|F |+1, ∀S⊂V, ∀F ⊂δ(S) with |F | odd,

which are the well-known cocircuit inequalities presented in [18]. They can be exactly sepa-
rated in polynomial time with an algorithm (see [3], for example) based on the computation
of odd minimum cuts, which can be computed with the classical Padberg-Rao procedure [32]
or with the improved one by Letchford et al. [25].

For the special case where S = {v}, there is an exact and simple procedure to define the
set F ⊆ δ(v) that corresponds to the most violated parity inequality inequality (see [18]).

We also use a heuristic algorithm based on the computation of the connected components
of Gk−(ε). For each cut-set corresponding to a connected component, the set F is found by
applying the same procedure as for S = {v}.
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4.1.3 p-connectivity inequalities

For each vehicle k, we use a heuristic algorithm similar to the one proposed in [10] for
the MBCPP. The algorithm starts by searching for a cut-set (S, S̄) corresponding to a tight
connectivity inequality (2) among those obtained with the connectivity separation procedures.
Let us suppose that 1 ∈ S̄ and S0 = S̄. Then we compute the connected components in the
subgraph induced in G(S) by the edges e ∈ E(S) with x̄k(e) ≥ 1 − ε, where ε is a given
parameter. For each pair Ci, Cj of such components, we compute

sij = 2x̄k(Vi, Vj)− 2 min{x̄k(ei), x̄k(ej)},

where Vr is the set of vertices in component Cr and er is the edge in Cr with the highest value
of x̄k(e). The value sij represents the savings in the left-hand side of the inequality obtained
after shrinking components Ci and Cj . We iteratively shrink the components that maximize
sij while sij > 0. This procedure defines sets S1, . . . , Sp. The p-connectivity inequality
associated with this partition is checked for violation.

4.1.4 KC inequalities

For each vehicle k, we have implemented a heuristic algorithm that is an adaptation of the
one proposed in [9] for the General Routing Problem. In that problem, the required edges
determine the way in which set V is partitioned in S0, . . . , SK . Here, we partition V in the
same way but considering as required edges those with x̄k(e) ≥ 1 − ε. Then, the set F is
defined by the required edges with ȳk(e) ≤ ε′, where ε, ε′ are two given parameters.

4.1.5 Max-length inequalities

Two heuristic algorithms are used to separate max-length inequalities.

The first heuristic looks for violated inequalities (27). It tries to cut fractional solutions
in which, for a vehicle k, several xke variables, for e ∈ ER, take values close to 1 and another
one takes a value close to 0.5. Let {e1, e2, . . . , em} be a set of required edges such that
xke1 ≥ xke2 ≥ . . . ≥ xkem ≥ 0.5. We define F = {e1, e2, . . . , ef}, where f is the maximal
number such that xk(F ) > |F |−1 + ε (initially we set ε = 0.5), and we call “potential edges”
the remaining {ef+1, . . . , em}. We check if grp(F ) is greater than L and, therefore, the
corresponding inequality (27) is violated. Otherwise, for each potential edge e, we iteratively
consider the set F = F ∪ {e} and check if grp(F ) is greater than L. Finally, if no violated
inequality has been found for any set F , we set ε = 0 and repeat the process. For each subset
F (or F ) whose corresponding inequality (27) is violated, we look for the cutset of minimum
weight between the depot and the edges in F and the corresponding max-length inequalities
(28) and (29) are checked for violation.

The second heuristic looks for inequalities (28). We first construct the aggregate solution
xe =

∑K
k=1 x

k
e and ye =

∑K
k=1 y

k
e . The procedure starts by selecting the vertex i 6= 1 farthest

from the depot such that the maximum flow from 1 to i is less than 2K. Then a sequence of
vertices is iteratively added in such a way that

∑K
k=1 x

k(δR(S)) +
∑K

k=1(xk + yk)(δNR(S)) is
minimum for the resulting subset S. For each subset S generated, we compute the minimum
number of vehicles needed to service all the edges in ER(S) by solving the associated GRP,
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and the corresponding inequality (28) is checked for violation. If a violated constraint (28)
is found, at least one of the inequalities (29) is also violated and it is added. Furthermore,
the corresponding inequality (27) is also checked for violation.

Given a set of edges F , the value of grp(F ) is computed by solving the corresponding
GRP with the branch-and-cut algorithm described in [11]. To minimize the number of GRPs
solved, two lists containing the already studied sets F of edges are managed.

4.2 The cutting-plane algorithm and branching strategies

The cutting-plane algorithm applies, at each iteration, the separation procedures in this
specific order:

1. The first heuristic algorithm for connectivity inequalities with ε = 0, 0.25, 0.5. The
value of ε is increased only if the previous one results in no violated inequalities found.

2. If no violated inequalities are found so far, the second connectivity heuristic is exe-
cuted for all the values ε′ = 0, 0.1, 0.2, 0.3, 0.4. For each tight cut-set obtained, the
p-connectivity heuristic separation algorithm is invoked with ε ∈ {0, 0.15, 0.3}.

3. The exact parity separation procedure for single vertices is applied.

4. The heuristic procedure for parity inequalities with ε = 0, 0.25, 0.5. The different values
of ε are used only if no violated inequalities are obtained with the previous ones.

5. If no violated connectivity nor parity inequalities have been found for a given vehicle k,
the separation algorithm for K-C inequalities for this vehicle is applied with parameters
(ε, ε′) = (0, 0). If it fails, values (0, 0.2), (0.2, 0), (0.2, 0.2)} are tried.

6. Only at the root node and nodes whose depth in the search tree is a multiple of 3, we
apply the max-length separation algorithms.

7. Only at the root node and if no violated connectivity, parity nor K-C inequalities have
been found, we apply the exact procedure for parity inequalities.

8. Finally, only at the root node and if no violated connectivity, parity nor K-C inequalities
have been found, we apply the exact procedure for connectivity inequalities. Again, for
each tight cut-set obtained, the p-connectivity heuristic separation algorithm is invoked
with ε ∈ {0, 0.15, 0.3}.

5 Global algorithm for the LC K-DRPP

Given a LC K-DRPP instance, if the number of intermediate points to which each line is
approximated is large, the size of the LC K-RPP instance is huge and, therefore, very hard
to solve. Hence, it is necessary to implement a procedure that iteratively generates LC K-
RPP instances by approximating each line by a polygonal chain with few but “significant”
points and segments. These smaller LC K-RPP instances are solved with the branch-and-cut
procedure described in Section 4.
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It begins by applying the heuristic algorithm described in [5] and solving with the branch-
and-cut algorithm the LC K-RPP instance, called LC K-RPP(1), in which each original line
is approximated by only one (required) edge without intermediate points. We will call Vo the
set of endpoints of the original lines. The set of non-required edges defines a complete graph
and their costs are the Eulerian distances.

From the two solutions obtained with the heuristic and the branch and cut, we generate
a new LC K-RPP instance in the following way. Let W1 be the set of vertices incident with
non-required edges in any of these two solutions. Note that all the vertices in W1 obtained
from the solution of the LC K-RPP(1) instance are vertices of Vo, while some vertices in W1

obtained from the heuristic solution can be intermediate points. From W1 we define another
set W2 of intermediate points to generate the next LC K-RPP instance as follows.

For each line incident with an endpoint in W1, we add to W2 the intermediate vertex that
splits the line in two segments of the same length. Furthermore, all the vertices in W1 \ Vo
are added to W2 to guarantee that the solution from the heuristic is a feasible solution of the
new instance.

The instance with vertex set Vo ∪ W2, LC K-RPP(2), is generated with the segments
joining vertices in Vo∪W2 as required edges and it is solved with the branch-and-cut algorithm.

Given the solution of instance LC K-RPP(i), i ≥ 2, with vertex set Vo ∪Wi, we generate
the instance LC K-RPP(i+1) with vertex set Vo ∪Wi+1, where Wi+1 is defined as follows.
We initialize Wi+1 with the vertices of Wi incident with a non-required edge used by the
solution. Then, for each required edge of LC K-RPP(i) having at least one endpoint incident
with a non-required edge used by the solution, we add to Wi+1 the intermediate point that
splits this edge into two parts of equal length. Note that the vertices of Wi that are not used
in the solution are not included in the new instance. This procedure is iteratively applied up
to i = 5 and while the computing time does not exceed two hours.

Although with this procedure the size of the vertex sets of the instances does not increase
much, the number of non-required edges is still huge, since they induce a complete graph.
In order to reduce the number of non-required edges, we apply the following preprocessing
procedure to each instance LC K-RPP(i), i ≥ 1.

First, all the non-required edges (i, j) such that there is a vertex k with cij ≥ 0.99(cik+ckj)
are removed. Moreover, if cmax is the length of the longest non-required edge, we remove
those edges (i, j) such that cij > cmax/3 and there is a vertex k with cij ≥ 0.95(cik + ckj).
However, for i ≥ 2, if a non-required edge is used in the solution of LC K-RPP(i-1), it is not
removed in order to guarantee that the solution of the new instance is not worse than the
previous one.

Since we have removed some non-required edges in the previous preprocessing, it is pos-
sible that the solution of an instance contains two adjacent non-required edges (i, k), (k, j).
If this happens, we replace them with the non-required edge (i, j) if the resulting solution is
not disconnected.
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6 Computational experiments

Here we will present the computational experiments carried out to assess the performance of
our algorithm. First we will describe the LC-DRPP instances used, which were introduced in
[5]. Then we will show the results obtained by the proposed procedure. Finally, a comparison
of the branch-and-cut for the LC-RPP with the one used in [5] will be presented.

The algorithms have been implemented in C++ and all the tests have been run on an
Intel Core i7 at 3.4 GHz with 32 GB RAM. The B&C uses CPLEX 12.6 MIP Solver with
a single thread. CPLEX heuristic algorithms were turned off, and CPLEX’s own cuts were
activated in automatic mode. The optimality gap tolerance was set to zero and best bound
strategy was selected.

6.1 Instances

The procedure has been tested on two sets of instances presented in [5], which were based on
the ones from [4] for the Drone RPP. The first set consists of 30 random instances, while the
second one, called even, contains 15 instances obtained by modifying the set of required edges
of some of the random instances to reduce the number of odd-degree vertices. The goal in [4]
to generate even instances was to obtain instances such that: their solutions were significantly
different from those obtained for instances of classical ARPs; they were more difficult for the
branch-and-cut algorithms; and the graphs of these instances resemble the shapes that appear
in cutting path problems. These instances have between 18 and 92 lines and between 22 and
83 nodes (see Table 1). Each row of Table 1 corresponds to three instances (two random and
one even) sharing the same grid, and shows the average number of vertices and lines.

Instance Original Original
name vertices lines

DroneRPP56 22.3 21.3
DroneRPP66 27.0 23.3
DroneRPP58 34.0 29.6
DroneRPP68 36.6 35.0
DroneRPP77 38.6 41.6
DroneRPP510 41.6 42.0
DroneRPP610 50.0 46.6
DroneRPP79 50.3 53.6
DroneRPP88 56.3 51.0
DroneRPP710 58.3 56.6
DroneRPP89 60.3 56.3
DroneRPP99 66.3 65.3
DroneRPP810 68.6 67.0
DroneRPP910 78.6 74.6
DroneRPP1010 82.0 81.0

Table 1: Characteristics of the instances

In [5], five different values for the length limit L were generated for each instance in such
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a way that the number of drones for each one ranges from 2 to 6. Hence, there are 5 LC K-
DRPP instances for each one of the 45 Drone RPP instances above, resulting in a total of 225
instances. These instances are available at http://www.uv.es/corberan/instancias.htm.

6.2 Computational results of the global algorithm

In this section we present the results obtained with the global algorithm on the 225 LC
K-DRPP instances presented before with a time limit of two hours. Table 2 summarizes
these results organized by set of instances and number of vehicles. Columns 4, 5, and 6
report the average values obtained for all the instances of each group. The “Imp(%)” column
shows the percentage improvement of the deadheading cost of the best solution found by
the algorithm with respect to the solution provided by the heuristic proposed in [5], while
columns “Time” and “#iter” present the average computing time in seconds and the average
number of iterations done by the global algorithm, respectively. Column 7 gives the number
of instances in which the global algorithm was able to find a better solution than the one
given by the heuristic procedure. The next three columns report the same figures as columns
4 to 6, but only for those instances for which a better solution was found. Last column
“#itb” gives the average number of iterations of the global algorithm needed to reach the
best solution.

All instances Improved instances

Type #veh #inst Imp(%) Time #iter #impr Imp(%) Time #iter #itb

R

2 30 0.41 3815.2 4.2 13 0.87 2842.1 4.4 3.6
3 30 2.12 5253.2 3.2 22 2.65 5182.3 3.4 2.3
4 30 3.38 6310.1 2.5 19 5.33 5773.5 3.2 2.5
5 30 1.89 6959.2 1.9 14 3.77 6673.4 2.3 1.5
6 30 0.66 7130.6 1.8 8 2.47 6819.1 3.1 2.0

E

2 15 1.05 2583.2 4.3 13 1.21 1872.9 4.8 4.1
3 15 1.44 5922.3 3.1 10 2.16 4003.3 4.1 3.4
4 15 2.07 6587.9 2.5 9 3.46 5070.5 3.6 2.8
5 15 0.62 5423.2 2.0 5 1.87 3990.1 3.6 3.4
6 15 0.38 6364.0 1.9 5 1.13 5363.6 3.6 3.4

Total 225 1.50 118 2.77

Table 2: Improvement of the global algorithm over heuristic

As we can see in Table 2, the algorithm has improved the results provided by the heuristic
in 118 out 225 instances and the average improvement obtained ranges from 0.87% to 5.33%.
In the case of the random instances, when the number of vehicles is 2, our algorithm improves
only 13 out of 30 instances, despite being able to complete the 5 iterations in most of them.
This is probably due to the high quality of the solutions provided by the heuristic algorithm
for these instances. Note that with 3, 4, and 5 vehicles, the number of improved solutions
increases, as well as the average improvement. The results with 6 vehicles present lower
improvements, but in this case this may be due to the global algorithm not being able to
complete more than 2 iterations on average. Regarding the even instances, except those with
2 vehicles, both the number of instances in which the global algorithm improves the heuristic,
as well as the percentage of improvement, are smaller. This may be due to the fact that,
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as pointed out before, even instances are more difficult for branch-and-cut algorithms. The
improvements obtained by the global algorithm require a considerable running time, but note
that the number of iterations needed to reach the best solution is lower than the total number
of iterations.

In order to describe with more detail the behavior of the proposed procedure, we present
in Table 3 the results for a specific instance with 2 to 6 vehicles. Column “Heur” reports
the deadheading cost of the solution provided by the heuristic. Columns labeled 1 to 5 show
the deadheading costs of the solutions obtained in the corresponding iteration of the global
algorithm. All these costs correspond to optimal solutions of the branch-and-cut for the
LC K-RPP instances except those marked with an “asterisk”, which are associated with the
best feasible solution known when the time limit was reached. The total computing time
in seconds is reported in the last column. In the instance with 2 vehicles, the algorithm is
capable of doing 5 iterations in only 5 minutes, but no improvement is obtained. However, in
the instances with 3 and 4 vehicles a better solution is found in each of the 5 iterations. When
5 and 6 vehicles are considered, the two hour time limit is reached without the algorithm
being able to complete all 5 iterations, although the last feasible solutions found improve
those of the heuristic.

iteration number

#veh Heur 1 2 3 4 5 Time

2 1889.37 1889.37 1889.37 1889.37 1889.37 1889.37 294.0
3 2154.41 2060.28 1989.41 1946.42 1924.66 1913.69 526.2
4 2709.32 2634.49 2459.05 2413.75 2388.51 2377.05 6888.3
5 3369.75 3348.92 3348.91 3348.91∗ 7200
6 4588.93 4626.03 4399.8∗ 7200

Table 3: Detailed results on random instance DroneRPP77 1

6.3 Testing the branch-and-cut algorithm for the LC K-RPP

Although the main goal of this paper is to find good solutions for the LC K-DRPP, to
do so we have studied the LC K-RPP, for which we have presented a new formulation,
studied its associated polyhedron, and based on this, we have designed and implemented
a sophisticated branch-and-cut algorithm. Since the LC K-RPP and its solution have an
interest by themselves, in this section we test the performance of the proposed B&C (BC2
in what follows). In order to do so, we compare it with that presented in [5] (BC1 ). In that
paper, the branch and cut was run only on the LC K-RPP instances in which each original
line is approximated by only one (required) edge, without intermediate points, denoted LC
K-RPP(1). Therefore, we compare both branch-and-cut algorithms only on these instances,
with a time limit of two hours. The results are reported in Table 4, where columns 4 and 7
show the percentage average gaps of the lower bounds obtained with both procedures with
respect to the cost of the best solution known, while columns labeled “#opt” and “#ub”
report, for both algorithms, the number of instances for which an optimal solution or a
feasible solution has been found, respectively.

Overall, the performance of BC2 is very good and clearly superior to that of BC1. In
particular, it finds the optimal solution in 137 instances and obtains a feasible solution in 211
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out of 225, while the BC1 obtains 74 optimal solutions and 162 feasible ones. Regarding the
gaps, in most of the cases the gap obtained by BC2 is about half the gap by BC1. Moreover,
in the 53 random instances that are optimally solved by both methods, the proposed B&C
uses 367.2 seconds on average, while the other one needs 726.0 seconds. The average times
corresponding to the 21 even instances solved by both methods are 165.1 and 1391.0 seconds,
respectively.

BC1 BC2

Type #veh #inst Gap (%) #opt #ub Gap (%) #opt #ub

R

2 30 0.02 28 30 0.01 29 30
3 30 0.95 16 30 0.23 24 30
4 30 3.21 3 24 1.48 19 30
5 30 5.85 3 16 2.98 11 27
6 30 8.51 3 8 5.09 10 25

E

2 15 0.09 13 15 0.09 13 15
3 15 1.67 5 15 0.45 11 15
4 15 4.02 1 13 1.94 9 15
5 15 6.59 1 6 3.71 6 12
6 15 8.11 1 5 4.94 5 12

Total 225 74 162 137 211

Table 4: Comparison of branch-and-cut procedures on the LC K-RPP(1) instances

7 Conclusions

In this paper we have presented an iterative procedure to solve the Length Constrained K-
Drones Rural Postman Problem. This is a continuous optimization problem that we discretize
by approximating each required line by a polygonal chain, thus obtaining an instance of the
Length Constrained K-Rural Postman Problem. In order to avoid the size of the instances
growing too much, we have included only a reduced number of intermediate points to each
polygonal chain. Furthermore, at each iteration these intermediate points are dynamically
changed depending on the solution obtained in the previous iteration.

To solve the LC K-RPP instance at each iteration, we have designed and implemented a
branch-and-cut algorithm based on a new formulation and its corresponding polyhedral study.
This procedure has shown to be very effective in the solution of LC K-RPP instances from
the literature and the obtained results improve those previously published. This algorithm
has allowed us to obtain very good solutions for the LC K-DRPP.

One line of research we are currently working on is the study of a more general problem
that combines the visit of vertices and the traversal of certain lines to deliver goods and
inspect areas, for example. Future research includes exploring the dependence of energy
consumption on the speed and altitude of drones.
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A Appendix: Proofs of Theorems 10 to 19

Theorem 10 If (V,ENR) is a 3-connected graph, then K-RPP(G) is a full-dimensional
polyhedron, i.e., dim(K-RPP(G))= K(2|ENR|+ |ER|).
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Proof: Consider the 1-RPP defined on G and its associated polytope 1-RPP(G). From
Theorem 3, and since (V,ENR) is 3-edge connected, we know that dim(1-RPP(G))= 2|ENR| =
m. Since 0 /∈ aff(1-RPP(G)), because all its points satisfy equations (14), there exist m +
1 affinely and linearly independent 1-RPP tours z1, z2, . . . , zm+1 on G, each zi = (xi, yi)
satisfying xi(e) = 1 for all the edges in ER. We can assume that one of them, say z1 = (x1, y1)
is formed with two copies of each edge in ENR and then replacing one copy of each e ∈ E′NR
by the required edge parallel to e. Hence, it satisfies x1(e) = 1 for all e ∈ ER, x1(e) = 1,
y1(e) = 0 for all e ∈ E′NR, and x1(e) = y1(e) = 1 for all e ∈ E′′NR. We can build (m + 1)K
K-RPP solutions in the following way. One drone performs any 1-RPP tour zj above, while
the other drones perform z1. These (m+ 1)K solutions are depicted as the rows of the three
first block rows in the matrix shown in Figure 3, where, for the sake of simplicity, we have
supposed we have K = 3 drones.

Furthermore, we can build K|ER| more K-RPP solutions in the following way. Consider
the 1-RPP solution z1 above. For each required edge e ∈ ER, we define the vector t(e) =
(x(e), y(e)) equal to z1 except for the entries x(e)(e) = x(e)(e

′) = 0, where e′ denotes the
non-required edge parallel to e. This vector represents a tour on graph G because its support
graph is even and connected. For any required edge e, one drone performs t(e) while the other
drones perform z1. These K|ER| solutions are depicted as the rows of the three last block
rows in the matrix shown in Figure 3, where the required edges are {e1, e2, . . . , e|ER|}.

If we subtract the first row from all the other rows and then we remove the null rows,
we obtain the matrix in Figure 4, where all the non-depicted values are zero, and a big zero
in a block means that all the entries of this block are zero. Its K(2|ENR| + |ER|) rows are
linearly independent because the first -1 entry in each pair −1,−1 in the rows of the three
last block rows is associated with each edge e ∈ ER, and since zi − z1 takes value zero in all
the required edges, it is the only non-zero entry in the column corresponding to e. Hence, we
have K(2|ENR|+ |ER|) + 1 affinely independent K-RPP solutions and we are done. �

As in Theorem 10 above, in the proofs of the following theorems we will represent the
K-RPP solutions that we define only for K=3 drones, although they can be extended to any
value of K.

Note 1 The vectors z1, z2, . . . , zm+1, from the dimension of 1-RPP(G), and t(e), for each
e ∈ ER, defined in the proof of Theorem 9 will be used also in the proofs of the following
theorems. In particular, z1 = (x1, y1) satisfies x1(e) = 1 for all e ∈ ER, x1(e) = 1, y1(e) = 0
for all e ∈ E′NR, and x1(e) = y1(e) = 1 for all e ∈ E′′NR. For each e ∈ ER, we define
t(e) = (x(e), y(e)) equal to z1 except for the entries x(e)(e) = x(e)(e

′) = 0, where e′ ∈ E′NR
denotes the non-required edge parallel to e ∈ ER.

Theorem 11 Inequality yke ≥ 0, for each edge e ∈ ENR, and for each drone k ∈ {1, 2, . . . ,K},
is facet-inducing of K-RPP(G).

Proof: Let us suppose first that e ∈ E′NR. Consider the 1-RPP defined on G and its
associated polytope 1-RPP(G). Given that ye ≥ 0 is facet-inducing of 1-RPP(G) (Theorem
4), there exist m = 2|ENR| affinely independent 1-RPP tours w1, w2, . . . , wm on G, each
wi = (xi, yi), satisfying xi(a) = 1 for all a ∈ ER, and yi(e) = 0. Consider also the tours
z1, z2, . . . , zm+1 from Note 1 and assume that z1 = w1, since z1 = (x̄1, ȳ1) satisfies also
ȳ1(e) = 0.
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Drone 1 Drone 2 Drone 3

z1 z1 z1

z2 z1 z1

... ... ...

zm+1 z1 z1

z1 z1 z1

z1 z2 z1

... ... ...

z1 zm+1 z1

z1 z1 z1

z1 z1 z2

... ... ...

z1 z1 zm+1

t(e1) z1 z1

... ... ...

t(e|ER|)
z1 z1

z1 t(e1) z1

... ... ...

z1 t(e|ER|)
z1

z1 z1 t(e1)

... ... ...

z1 z1 t(e|ER|)

Figure 3: K-RPP solutions to prove dimension

Drone 1 Drone 2 Drone 3

z2 − z1

... 0 0
zm+1 − z1

z2 − z1

0 ... 0
zm+1 − z1

z2 − z1

0 0 ...

zm+1 − z1

-1 -1
. . . 0 0

-1 -1

-1 -1

0 . . . 0
-1 -1

-1 -1

0 0 . . .

-1 -1

Figure 4: K-RPP solutions to prove dimension

We can build K-RPP solutions in the following way. Drone k performs any 1-RPP tour
wj above, while the other drones perform z1. These m solutions are depicted as the rows of
the first block row in the matrix shown in Figure 5, where we assume that drone k is the first
one. Now, a drone different from k performs any tour zj above, while the other drones do z1.
These (m+ 1)(K − 1) solutions are depicted as the rows of the second and third block rows
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in the matrix shown in Figure 5.

Drone 1 Drone 2 Drone 3

z1 = w1 z1 z1

w2 z1 z1

... ... ...
wm z1 z1

z1 z1 z1

z1 z2 z1

... ... ...
z1 zm+1 z1

z1 z1 z1

z1 z1 z2

... ... ...
z1 z1 zm+1

t(e1) z1 z1

... ... ...
t(e|ER|)

z1 z1

z1 t(e1) z1

... ... ...
z1 t(e|ER|)

z1

z1 z1 t(e1)

... ... ...
z1 z1 t(e|ER|)

Figure 5: K-RPP solutions to prove Theorem 11 (case e ∈ E′NR)

Furthermore, we can build K|ER| more K-RPP solutions as in the proof of Theorem 9
with the same vectors t(ej) for each required edge in ER = {e1, e2, . . . , e|ER|}. Note that the
corresponding vectors t(ej) also satisfy y(ej)(e) = 0. These solutions are depicted in the three
last block rows in the matrix in Figure 5. As in Theorem 9, if we subtract the first row from
all the other rows and then we remove the null rows, we obtain a matrix similar to that in
Figure 4 but with K(2|ENR|+ |ER|)− 1 rows LI. Hence, we have K(2|ENR|+ |ER|) solutions
affinely independent satisfying yke = 0 and we are done.

Let us suppose now that e ∈ E′′NR. Given that ye ≥ 0 is facet-inducing of 1-RPP(G)
(Theorem 4), there exist m = 2|ENR| affinely independent 1-RPP tours w1, w2, . . . , wm on
G, each wi = (xi, yi), satisfying xi(a) = 1 for all a ∈ ER, and yi(e) = 0. Since dim(1-
RPP(G))= 2|ENR| = m, there exist m + 1 1-RPP tours z1, z2, . . . , zm+1, each zi = (x̄i, ȳi)
satisfying x̄i(e) = 1 for all e ∈ ER. We can assume here that one of them, say z1, satisfies
x̄1(a) = 1 for all a ∈ ER, x̄1(a) = 1, ȳ1(a) = 0 for all a ∈ E′NR, x̄1(a) = ȳ1(a) = 1 for all
a ∈ E′′NR, a 6= e, and x̄1(e) = ȳ1(e) = 0. Thereby, we can assume that z1 = w1. Furthermore,
for each required edge a ∈ ER, the corresponding vector t(a) is equal to z1 except for the
entries x(a)(a) = x(a)(a

′) = 0, and also satisfies y(a)(e) = 0. Hence, we can build the K-RPP
solutions as in the matrix in Figure 5 and the remainder of the proof is similar to the previous
case. �

Theorem 12 Inequality xke ≤ 1, for each edge e ∈ ENR, and for each drone k ∈ {1, 2, . . . ,K},
is facet-inducing of K-RPP(G).

Proof: The proof is similar to that of Theorem 11 and is omitted here for the sake of brevity.
�
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Theorem 13 Inequality (5) xke ≥ yke , for each edge e ∈ ENR, and for each drone k, is
facet-inducing of K-RPP(G) if graph (V,ENR \ {e}) is 3-edge connected.

Proof: The proof is omitted for the sake of brevity. �

Theorem 14 Inequality xke ≤ 1, for each edge e ∈ ER, and for each drone k, is facet-
inducing of K-RPP(G).

Proof: All the K-RPP solutions shown in Figure 3, except the first one of the fourth row
block (the one with drone k performing t(e1)), are affinely independent K-RPP solutions

satisfying xke = 1. �

Theorem 15 Inequality xke ≥ 0, for each edge e ∈ ER, and for each drone k, is facet-
inducing of K-RPP(G).

Proof: The proof is omitted for the sake of brevity. �

Theorem 16 Inequalities (4),

K∑
k=1

xke ≥ 1, for each edge e ∈ ER, are facet-inducing of

K-RPP(G).

Proof: Consider the 1-RPP tours z1, z2, . . . , zm+1 and t(a), a ∈ ER, from Note 1. Let w1

the tour on G obtained by replacing in z1 the traversal of edge e by a second traversal of the
corresponding parallel edge e′.

We can build (m + 1)K K-RPP solutions in the following way. A drone performs any
tour zj above, while the other drones perform w1. These (m+ 1)K solutions are depicted as
the rows of the three block rows in the matrix shown in Figure 6a. Now, for any required
edge a 6= e, a drone performs t(a) while the other drones perform w1 (see Figure 6a, where
the required edges different from e are {e2, . . . , e|ER|}). All the rows in the matrix depicted

in Figure 6a represent K-RPP solutions satisfying
∑K

k=1 x
k
e = 1.

If we subtract the first row from all the other rows we obtain the matrix in Figure 6b. This
matrix is shown in more detail in Figure 6c, where the three leftmost entries in each block k
correspond to the variables xke , x

k
e′ , y

k
e′ , and vectors vi represent the remaining vectors zi− z1

(and of vectors zi−w1), i = 2, . . . ,m+1. Block (1,1) has full rank. If, in blocks (2,2) and (3,3)
we subtract the first row from the remaining rows, we would obtain two blocks where rows 2
to m + 1 are identical to those in block (1,1). Hence, the rows in the first three block rows
are linearly independent. Furthermore, regarding the last three block rows of the matrix, the
value -1 corresponding to each required edge a 6= e is the only non-zero value in its column.
Hence, any of these rows can be obtained as a linear combination of the other rows. Therefore
the matrix in Figure 6c has all its m+(K−1)(m+1)+K(|ER|−1) = K(2|ENR|+|ER|)−1 rows
linearly independent. Hence, we haveK(2|ENR|+|ER|)K-RPP solutions affinely independent
satisfying

∑K
k=1 x

k
e = 1 and the proof is complete. �

Theorem 17 Connectivity inequalities (2), xk
(
δR(S)

)
+ (xk + yk)

(
δNR(S)

)
≥ 2xkf ,

∀S ⊆ V \{1}, ∀f∈E(S), and ∀k= 1,. . .,K, are facet-inducing of K-RPP(G) if subgraph
(S,ENR(S)) is 3-edge connected and either |V \S| = 1 or subgraph (V \S,ENR(V \S)) is
3-edge connected.
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Drone 1 Drone 2 Drone 3

z1 w1 w1

z2 w1 w1

... ... ...

zm+1 w1 w1

w1 z1 w1

w1 z2 w1

... ... ...

w1 zm+1 w1

w1 w1 z1

w1 w1 z2

... ... ...

w1 w1 zm+1

t(e2) w1 w1

... ... ...

t(e|ER|)
w1 w1

w1 t(e2) w1

... ... ...

w1 t(e|ER|)
w1

w1 w1 t(e2)

... ... ...

w1 w1 t(e|ER|)

(a)

Drone 1 Drone 2 Drone 3

z2 − z1

... 0 0
zm+1 − z1

w1 − z1 z1 − w1

w1 − z1 z2 − w1

... ... 0
w1 − z1 zm+1 − w1

w1 − z1 z1 − w1

w1 − z1 z2 − w1

... 0 ...

w1 − z1 zm+1 − w1

t(e2) − z1

... 0 0
t(e|ER|)

− z1

w1 − z1 t(e2) − w1

... ... 0
w1 − z1 t(e|ER|)

− w1

w1 − z1 t(e2) − w1

... 0 ...

w1 − z1 t(e|ER|)
− w1

(b)

Drone 1 Drone 2 Drone 3

0 α β v2

... ... 0 0
0 λ µ vm+1

-1 0 1 1 0 -1 0
-1 0 1 1 α (β-1) v2

... 0 ... ... 0
-1 0 1 1 λ (µ-1) vm+1

-1 0 1 1 0 -1 0
-1 0 1 1 α (β-1) v2

... 0 0 ... ...

-1 0 1 1 λ (µ-1) vm+1

0 ∗ ∗ -1 -1

...
. . . 0 0

0 ∗ ∗ -1 -1

-1 0 1 1 ∗ ∗ -1 -1

... 0 ...
. . . 0

-1 0 1 1 ∗ ∗ -1 -1

-1 0 1 1 ∗ ∗ -1 -1

... 0 0 ...
. . .

-1 0 1 1 ∗ ∗ -1 -1

(c)

Figure 6: K-RPP solutions to prove Theorem 16
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Proof: In some points of this proof we will distinguish the cases f ∈ ENR and f ∈ ER. Let
z1, z2, . . . , zm+1 and t(a), a ∈ ER, be the 1-RPP tours from Note 1. Consider the graph G∗

obtained by deleting from G the required edges in δR(S) ∪ ER(S). Graphs G and G∗ have
the same set of non-required edges and, given that the hypotheses of Theorem 5 are fulfilled,
there are m affinely and linearly independent 1-RPP tours z∗1 , z

∗
2 , . . . , z

∗
m on G∗, all of them

traversing the required edges a ∈ ER(V \ S) and satisfying (x + y)(δ(S)) = 2xf̄ , where, if
edge f ∈ ER, f̄ = f ′ and f̄ = f otherwise. Each z∗j is transformed into a tour on G, wj , by
adding to it an extra entry xe with value xe = 0 for each removed edge e ∈ δR(S) ∪ ER(S).
In the case f ∈ ER, we replace a traversal of f ′ (if any) by the traversal of f . It can
be seen that the resulting tours w1, w2, . . . , wm on G are also affinely independent, satisfy
x(δR(S)) + (x + y)(δNR(S)) = 2xf , and do not traverse any edge in δR(S) ∪ ER(S) (except
f if it is required). We can assume that one of them, say w1, is equal to z1 in the entries
corresponding to E(V \ S), it traverses the cutset δ(S) twice through a non-required edge,
say ē, and x1(a) = y1(a) = 1 for all a ∈ ENR(S), x1(a) = 0 for all a ∈ ER(S), in the case
f ∈ ENR, and x1(f) = x1(f ′) = 1, y1(f ′) = 0, and x1(a) = 0 for all a ∈ ER(S) \ {f}, in the
case f ∈ ER.

As in previous theorems, we build the K-RPP solutions depicted in the first three block
rows in the matrix shown in Figure 7. We build also the solutions depicted in the last two
block rows in the matrix shown in Figure 7, where a drone different from k performs any t(a),
while drone k performs w1 and the remaining drones perform z1.

For each required edge a ∈ ER(V \ S), we define the vector t∗(a) = (x∗(a), y
∗
(a)) equal to w1

except for the entries x∗(a)(a) = x∗(a)(a
′) = 0. For each required edge a ∈ δR(S), we define

the vector t∗(a) = (x∗(a), y
∗
(a)) equal to w1 except for the entries x∗(a)(ē) = y∗(a)(ē) = 0 and

x∗(a)(a) = x∗(a)(a
′) = 1. Note that if ē = a′ then t∗(a) is equal to w1 except for the entries

y∗(a)(a
′) = 0 and x∗(a)(a) = 1.

In the case f ∈ ENR, for each required edge a ∈ ER(S), we define the vector t∗(a) =

(x∗(a), y
∗
(a)) equal to w1 except for the entries x∗(a)(a) = 1 and y∗(a)(a

′) = 0 (we replace the

second traversal of a′ by the traversal of a). In the case f ∈ ER, for each a ∈ ER(S) \ {f},
we define the vectors t∗(a) = (x∗(a), y

∗
(a)) as before. Moreover, we define a new vector t∗(f) equal

to w1 in E(V \ S) and zero in all the remaining entries. Note that this vector also satisfies
x(δR(S)) + (x + y)(δNR(S)) = 2xf = 0. If drone k performs t∗(a) and the remaining drones
perform z1 we obtain the K-RPP solutions depicted as the rows of the fourth block rows in
the matrix shown in Figure 7.

If K ≥ 3 (the case K = 2 is argued at the end of this proof), all the rows in the matrix
depicted in Figure 7 represent K-RPP solutions satisfying the connectivity inequality (2)
as an equality. If we subtract the first row from all the other rows and then remove the
zero rows we obtain the matrix in Figure 8. It can be seen that the rows of block B∗,
associated with vectors t∗(a) − w1, have the three entries corresponding to each a ∈ ER and

its corresponding parallel edge a′ as follows:

• x(a) = x(a′) = −1, y(a′) = 0, for each a ∈ ER(V \ S),

• x(a) = x(a′) = 1, y(a′) = 0, for each a ∈ δR(S), and

• x(a) = 1, x(a′) = 0, y(a′) = −1, for each a ∈ ER(S) in the case f ∈ ENR, while,

• in the case f ∈ ER, x(a) = 1, x(a′) = 0, y(a′) = −1, for each a ∈ ER(S) \ {f}, and
x(f) = −1, x(f ′) = −1, y(f ′) = 0.
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Drone 1 Drone 2 Drone 3

w1 z1 z1

w2 z1 z1

... ... ...

wm z1 z1

w1 z1 z1

w1 z2 z1

... ... ...

w1 zm+1 z1

w1 z1 z1

w1 z1 z2

... ... ...

w1 z1 zm+1

t∗(a1) z1 z1

... ... ...

t∗(a|ER|)
z1 z1

w1 t(a1) z1

... ... ...

w1 t(a|ER|)
z1

w1 z1 t(a1)

... ... ...

w1 z1 t(a|ER|)

Figure 7: K-RPP solutions to prove Theorem 17

In the case f ∈ ENR, the matrix obtained after merging blocks (1,1) and B∗ of Figure 8
is detailed in Figure 9, with the columns and rows rearranged. Note that, for a ∈ ER the
corresponding values −1 or 1 are the only nonzero entries in its corresponding column of
the matrix in Figure 8. In the case f ∈ ER, the entry corresponding to edge f in the block
(4,4) of this matrix, is -1 instead of 1. In both cases, this matrix has full rank. Hence, the
matrix of Figure 8 has full rank and its m− 1 + (K − 1)m+K|ER| = K(2|ENR|+ |ER|)− 1
rows are linearly independent. Hence, we have K(2|ENR| + |ER|) K-RPP solutions affinely
independent satisfying inequality (2) as an equality and we are done.

If K = 2, the solutions corresponding to some rows of the last block row of the correspond-
ing matrix, [w1, t(ai)], are not actually K-RPP solutions. Note that, if ai ∈ δR(S) ∪ ER(S),
neither drone 1, performing w1, nor drone 2, performing t(ai), traverses this edge. In this
case, for each ai ∈ δR(S) ∪ ER(S) we consider the solution in which drone 1 performs t∗(ai)
(similar to w1 but traversing ai) and drone 2 performs t(ai), which is a K-RPP solution. It
can be seen that the corresponding matrix is also full rank. �

Theorem 18 Parity inequalities (23) are facet-inducing of K-RPP(G) if subgraph
(S,ENR(S)) is 3-edge connected and either V \S = {1}, or subgraph (V \S,ENR(V \S)) is
3-edge connected.

Proof: Let z1, z2, . . . , zm+1 and t(a), a ∈ ER, the 1-RPP tours from Note 1. Consider the
graph G∗ obtained by deleting from G the required edges in δR(S)\F (if any). Graphs G and
G∗ have the same set of non-required edges and, given that the hypotheses of Theorem 6 are
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Drone 1 Drone 2 Drone 3

w2 − w1

... 0 0
wm − w1

z2 − z1

0 ... 0
zm+1 − z1

z2 − z1

0 0 ...

zm+1 − z1

B∗ 0 0

-1 -1

0 . . . 0
-1 -1

-1 -1

0 0 . . .

-1 -1

Figure 8: K-RPP solutions to prove Theorem 17

ENR ER(V \S) δR(S) ER(S)

(w2 − w1)NR

... 0 0 0
(wm − w1)NR

-1

∗ . . . 0 0
-1

1

∗ 0 . . . 0
1

1

∗ 0 0 . . .

1

Figure 9: A submatrix of the matrix in Figure 8

fulfilled, there are m affinely and linearly independent 1-RPP tours w∗1, w
∗
2, . . . , w

∗
m on G∗,

all of them traversing the required edges in G∗ (all the edges in ER except the removed ones,
in δR(S)\F , if any), and satisfying inequalities (19) as equalities. These tours also satisfy
xe = 1 for all e ∈ FR and, by adding x(FR) − |FR| = 0 to the right hand side of (19) we
obtain that the tours w∗j satisfy

(x− y)(δNR(S)\F ) = x(FR) + (x− y)(FNR)− |F |+ 1.

Each w∗j is transformed into a tour on G, wj , by adding to it an extra entry xe for each
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removed edge δR(S)\F with value xe = 0. The resulting tours w1, w2, . . . , wm on G are also
affinely independent, traverse all the required edges except those in δR(S)\F , and satisfy

x(δR(S)\F ) + (x− y)(δNR(S)\F ) = x(FR) + (x− y)(FNR)− |F |+ 1.

Regarding the traversal of the cut-set δ(S), there are only two types of 1-RPP tours wi
that satisfy the inequality as an equality (see [12]). Tours of type 1 traverse one copy of each
edge in F and one more edge in δ(S)\F (if δ(S)\F 6= ∅). Tours of type 2 traverse one copy
of each edge in F , except one edge in FNR (if FNR 6= ∅). We can assume, for example, that
FNR 6= ∅ and that one of the wi above, say w1 = (x1, y1), traverses once each edge in F
except a given edge e ∈ FNR (in the case FNR = ∅, and hence, δ(S)\F 6= ∅, we would proceed
in a similar way).

We build the K-RPP solutions depicted in the first three block rows in the matrix shown
in Figure 7, where vectors zi are the same but vectors wi are different but denoted equal. We
build also the solutions depicted in the last two block rows in the matrix in Figure 7.

For each required edge a we define a vector t∗(a), obtained from w1, that also satisfies the

inequality as an equality (it is of one of the types 1 or 2 above) and, regarding the required
edges, only differs from w1 in the traversals of edge a in the following way (if any edge in
ENR turns to be traversed three times, we would delete two traversals of it):

• For each a ∈ ER(S), the vector t∗(a) is obtained from w1 by replacing the traversal of

a with the traversal of a path joining its two endpoints formed with edges in ENR(S).
For each a ∈ ER(V \ S) we proceed in the same way.

• For each a ∈ FR, the vector t∗(a) is obtained from w1 by replacing the traversal of a with

the traversal of edge e and two paths, formed with edges in ENR(S) and ENR(V \ S),
joining the endpoints of a and e.

• For each a ∈ δR(S) \F , the vector t∗(a) is obtained from w1 by adding the traversal of a

cycle formed with edges a and e and two paths with edges in ENR(S) and in ENR(V \S).

If drone k performs t∗(a) and the remaining drones perform z1 we obtain the K-RPP
solutions depicted as the rows of the fourth block rows in the matrix shown in Figure 7,
although note that vectors t∗(a) are different but share the same name.

If K ≥ 3 (for the case K = 2, the argument is similar to that in the proof of Theorem
17), all the rows in the matrix depicted in Figure 7 represent K-RPP solutions satisfying the
parity inequality (23) as an equality. If we subtract the first row from all the other rows and
then remove the zero rows we obtain the matrix in Figure 8.

The matrix obtained after merging blocks (1,1) and B∗ of Figure 8 is detailed in Figure
10, with the columns and rows rearranged. This matrix has full rank. Hence, the matrix of
Figure 8 has full rank and we have K(2|ENR|+ |ER|) K-RPP solutions affinely independent
satisfying inequality (23) as an equality. �

Theorem 19 p-connectivity inequalities (24) are facet-inducing for K-RPP(G) if subgraphs
(Si, ENR(Si)), i = 0, . . . , p, are 3-edge connected, |(S0 : Si)| ≥ 2, ∀ i = 1, . . . , p, and the
graph induced by V \ S0 is connected, and all the edges ej ∈ E(Sj) are required edges.
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ENR ER \ (δR(S) \ FR) δR(S) \ FR
(w2 − w1)NR

... 0 0 0
(wm − w1)NR

-1

∗ . . . 0 0
-1

-1

∗ 0 . . . 0
-1

1

∗ 0 0 . . .

1

Figure 10: A matrix appearing in the proof of Theorem 17

Proof: Let z1, z2, . . . , zm+1 and t(a), a ∈ ER, the 1-RPP tours from Note 1. Consider the
graph G∗ obtained by deleting from G the required edges in δR(Si) for all i (if any). Graphs
G and G∗ have the same set of non-required edges and, given that the hypothesis of Theorem
7 are fulfilled, there are m affinely independent 1-RPP tours w∗1, w

∗
2, . . . , w

∗
m on G∗, all of

them traversing the required edges in G∗ and satisfying

(x+ y)(δ(S0)) + 2
∑

1≤r<t≤p
x(Sr : St) = 2p.

Given that all the w∗i traverse each edge ej ∈ E(Sj), they also satisfy

(x+ y)(δ(S0)) + 2
∑

1≤r<t≤p
x(Sr : St) = 2

p∑
i=0,i 6=d

xei

Each w∗j is transformed into a tour on G, wj , by adding to it an extra entry xe for each
removed edge in δR(Si) for all i, with value xe = 0. The resulting tours w1, w2, . . . , wm on G
are also affinely independent, traverse all the required edges except those in sets δR(Si), and
satisfy

x(δR(S0)) + (x+ y)(δNR(S0)) + 2
∑

1≤r<t≤p
x(Sr : St) = 2

p∑
i=0,i 6=d

xei
(

= 2p
)
.

Furthermore, we can assume that one of the wi above, say w1 = (x1, y1), traverses twice a
given non-required edge in each set (S0 : Si).

We build the K-RPP solutions depicted in the first three and last two block rows in the
matrix shown in Figure 7, where vectors zi, t(a) are the same but vectors wi are different but
denoted equal.

For each required edge a we define a vector t∗(a) obtained from w1 that also satisfies the
inequality as an equality as follows:
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• For each a ∈ ER(Si), a 6= ei, the vector t∗(a) is obtained from w1 by replacing the
traversal of a with the traversal of a path joining its two endpoints formed with edges
in ENR(Si).

• For each edge ei ∈ ER(Si), the vector t∗(ei) is obtained from w1 by removing all the

traversals in (S0 : Si) and in E(Si). Note that this vector satisfies

x(δR(S0)) + (x+ y)(δNR(S0)) + 2
∑

1≤r<t≤p
x(Sr : St) = 2

p∑
i=0,i 6=d

xei
(

= 2(p−1)
)
.

• For each a ∈ (S0 : Si)R, the vector t∗(a) is obtained from w1 by replacing the second

traversal of the non-required edge in (S0 : Si) traversed twice by w1 with the traversal
of a and a path joining its two endpoints formed with edges in ENR(S0) ∪ ENR(Si).

• For each a ∈ (Si : Sj)R, the vector t∗(a) is obtained from w1 by adding one copy of a and

removing a copy of each non-required edge in (S0 : Si) and (S0 : Sj) traversed twice by
w1 and the traversal of the non-required edges in the paths joining their endpoints.

If drone k performs t∗(a) and the remaining drones perform z1 we obtain the K-RPP
solutions depicted as the rows of the fourth block rows in the matrix shown in Figure 7.

If K ≥ 3 (for the case K = 2, the argument is similar to that in the proof of Theorem
17), all the rows in the matrix depicted in Figure 7 represent K-RPP solutions satisfying
the p-connectivity inequality (24) as an equality. If we subtract the first row from all the
other rows and then remove the zero rows we obtain a matrix similar to that in Figure 8.
The matrix obtained after merging blocks (1,1) and B∗ of Figure 8 is detailed in Figure 11,
with the columns and rows rearranged. This matrix has full rank and, therefore, also the
matrix of Figure 8 has full rank. Hence, we have K(2|ENR|+ |ER|) K-RPP solutions affinely
independent satisfying inequality (24) as an equality and it defines a facet of K-RPP(G). �

Theorem 20 K-C inequalities (25) and (26) are facet-inducing for K-RPP(G) if subgraphs
(Si, ENR(Si)), i = 0, . . . ,K, are 3-edge connected, |(Si : Si+1)| ≥ 2 for i = 0, . . . ,K − 1, and
|FR| ≥ 2 and ei ∈ ER(Si) for all i.

Proof: We do the proof only for inequalities (25) since the proof for inequalities (26) is
analogous. Let z1, z2, . . . , zm+1 and t(a), a ∈ ER, be the 1-RPP tours from Note 1. Consider
the graph G∗ obtained by deleting from G the required edges in δR(Si) for all i = 1, . . . ,K−1
and the required edges in (S0 : SK) \ F . Graphs G and G∗ have the same set of non-
required edges and, given that the hypothesis of Theorem 8 are fulfilled, there are m affinely
independent 1-RPP tours w∗1, w

∗
2, . . . , w

∗
m on G∗, all of them traversing the required edges in

G∗, and satisfying inequality (22) with |R| = K − 1 as an equality:

(K − 2)(x− y)
(

(S0 : SK) \ F
)
− (K − 2)(x− y)(FNR) +

+
∑

0≤i<j≤K

(i,j) 6=(0,K)

(
(j − i)x(Si : Sj) + (2− j + i) y(Si : Sj)

)
= 2(K − 1)− (K − 2)|FNR|.
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ENR (Si : Sj)R ER(S0) ER(S1) · · · ER(Sp)

(w2 − w1)NR

... 0 0 0 · · · 0
(wm − w1)NR

1

∗ . . . 0 0 · · · 0
1

-1

∗ 0 . . . 0 · · · 0
-1

-1

∗ 0 0 . . . · · · 0
-1

-1 · · · -1 -1

∗ 0 0 0 . . . 0

-1

∗ 0 0 0 · · · . . .

-1
-1 · · · -1 -1

Figure 11: A submatrix of the matrix in Figure 8 for p-connectivity inequalities

Given that all the w∗j traverse each edge ei ∈ E(Si), they also satisfy

(K − 2)(x− y)
(

(S0 : SK) \ F
)
− (K − 2)(x− y)(FNR) +

+
∑

0≤i<j≤K

(i,j) 6=(0,K)

(
(j − i)x(Si : Sj) + (2− j + i)y(Si : Sj)

)
= 2

K−1∑
i=1

xei − (K − 2)|FNR|.

Each w∗j is transformed into a tour on G, wj , by adding to it an extra entry xe for each
removed edge in δR(Si), for all i = 1, . . . ,K−1 , and in (S0 : SK)R\F , with value xe = 0. The
resulting tours w1, w2, . . . , wm on G are also affinely independent, traverse all the required
edges except those in sets δR(Si) and in (S0 : SK)R \ F , and satisfy

(K − 2)x
(

(S0 : SK)R \ F
)
− (K − 2)x(FR) +

+ (K − 2) (x− y)
(

(S0 : SK)NR \ F
)
− (K − 2) (x− y)(FNR) +

+
∑

0≤i<j≤K

(i,j)6=(0,K)

(j − i)x(Si : Sj)R +
∑

0≤i<j≤K

(i,j)6=(0,K)

(
(j − i)x(Si : Sj)NR + (2− j + i) y(Si : Sj)NR

)
=

= 2

K−1∑
i=1

xei − (K − 2)|F |, (30)
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because each wj traverses each edge in FR and, hence, x(FR) = |FR|. Furthermore, we can
assume that one of the wj above, say w1 = (x1, y1), traverses once each edge in F , and
traverses twice a given non-required edge in each set (Sj : Sj+1) for j = 0, . . . ,K − 2.

We build the K-RPP solutions depicted in the first three and last two block rows in the
matrix shown in Figure 7, where vectors zi, t(a) are the same but vectors wi are different but
denoted equal.

For each edge a ∈ ER we define a vector t∗(a) obtained from w1 and also satisfying

equation (30) as follows:

• For each a ∈ ER(Si), a 6= ei, i = 0, 1, . . . ,K, the vector t∗(a) is obtained from w1 by
replacing the traversal of a with the traversal of a path joining its two endpoints
formed with edges in ENR(Si).

• For each a = ei ∈ ER(Si), i 6= K − 1, the vector t∗(a) is obtained from w1 by

removing all the traversals in E(Si), (Si−1 : Si), and (Si : Si+1), and adding two
copies of a non-required edge in (SK−1 : SK). For the edge a = eK−1, the vector
t∗(a) is obtained from w1 by removing all the traversals in E(SK−1) and in (SK−2 : SK−1).

• For each a ∈ (Sj : Sj+1)R, j = 0, . . . ,K − 1, the vector t∗(a) is obtained from w1 by

replacing the second traversal of the non-required edge traversed twice in (Sj : Sj+1)
with the traversal of a and a path joining its two endpoints formed with edges in
ENR(Sj) ∪ ENR(Sj+1).

• For each a ∈ (Si : Sj)R, |i − j| > 1 the vector t∗(a) is obtained from w1 by adding one
copy of a and removing the second traversal of the non-required edge traversed twice
in (Si : Si+1), . . . , (Sj−1 : Sj) and adding the traversal of the non-required edges in
some paths in E(Si), . . . , E(Sj).

• For each a ∈ FR, the vector t∗(a) is obtained from w1 by removing a and all the second

traversals of the non-required edges traversed twice in sets (Sj : Sj+1), j = 0, . . . ,K−2,
and adding a non-required edge in (SK−1 : SK) and the non-required edges in some
paths in E(S0), E(S1) . . . , E(SK).

• For each a ∈ (S0 : SK)R \F , the vector t∗(a) is obtained from w1 by adding a, removing

all the second traversals of the non-required edges traversed twice in sets (Sj : Sj+1),
j = 0, . . . ,K − 2, and adding a non-required edge in (SK−1 : SK) and the non-required
edges in some paths in E(S0), E(S1) . . . , E(SK).

If drone k performs t∗(a) and the remaining drones perform z1 we obtain the K-RPP
solutions depicted as the rows of the fourth block rows in the matrix shown in Figure 7.

If K ≥ 3 (for the case K = 2, the argument is similar to that in the proof of Theorem
17), all the rows in the matrix depicted in Figure 7 represent K-RPP solutions satisfying the
K-C inequality as an equality. If we subtract the first row from all the other rows and then
remove the zero rows we obtain a matrix similar to that in Figure 8. The matrix obtained
after merging blocks (1,1) and B∗ of Figure 8 is detailed in Figure 12, with the columns and
rows rearranged.

For the sake of simplicity, the elements in the block corresponding to edges in ER(S0∪SK)
are ±1, representing 1 for the edges in FR, and −1 for the edges in ER(S0), ER(SK), and
(S0 : SK)R\F . This matrix has full rank. Hence, we have K(2|ENR|+|ER|) K-RPP solutions
affinely independent satisfying the K-C inequality (25) as an equality. �
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ENR (Si :Sj)R ER(S0∪SK) ER(S1) · · · ER(SK−1)

(w2 − w1)NR

... 0 0 0 · · · 0
(wm − w1)NR

1

∗ . . . 0 0 · · · 0
1

±1

∗ 0 . . . 0 · · · 0
±1

-1

∗ 0 0 . . . · · · 0
-1

-1 · · · -1 -1

∗ 0 0 0 . . . 0

-1

∗ 0 0 0 · · · . . .

-1
-1 · · · -1 -1

Figure 12: A submatrix of the matrix in Figure 8 for K-C inequalities
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