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Highlights 

Huntington disease is a multi-system disorder and huntingtin is expressed 

ubiquitously. 

Metformin is a pleiotropic drug which may reach most tissues, and activates a range 

of targets beneficial to treat HD. 

Gut microbiota interplay with metformin substantially increases complexity of using 

this drug to treat HD 

Studying targets of metformin, gut microbiota and using pharmacogenetics, may help 

design personalised medicine to treat HD  

 

 

 

 

 

 

 

 

 

 

Running title: Pleiotropic metformin to bend ubiquitous mutant huntingtin 

 



ABSTRACT 

Huntington disease (HD) is a neurodegenerative disorder produced by an expansion of CAG 

repeats in the HTT gene. Patients of HD show involuntary movements, cognitive decline and 

psychiatric impairment. People carrying abnormally long expansions of CAGs (more than 35 

CAG repeats) produce mutant huntingtin (mHtt), which encodes tracks of polyglutamines 

(polyQs). These polyQs make the protein prone to aggregate and cause it to acquire a toxic gain 

of function. Principally affecting the frontal cortex and the striatum, mHtt disrupts many cellular 

functions. In addition, this protein is expressed ubiquitously, and some reports show that many 

other cell types are affected by the toxicity of mHtt. 

Several studies reported that metformin, a widely-used anti-diabetic drug, is neuroprotective 

in models of HD. Here, we provide a review of the benefits of this substance to treat HD. 

Metformin is a pleiotropic drug, modulating different targets such as AMPK, insulin signalling 

and many others. These molecules regulate autophagy, chaperone expression, and more, which 

in turn reduce mHtt toxicity. Moreover, metformin alters gut microbiome and its metabolic 

processes. The study of potential targets, interactions between the drug, host and microbiome, or 

genomic and pharmacogenomic approaches may allow us to design personalised medicine to treat 

HD.  
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INTRODUCTION 

Huntington disease (HD) is a rare, progressive monogenic dominant 

neurodegenerative disorder characterised by involuntary movements, cognitive decline 

and psychiatric alterations. It is considered a rare disease due to its low prevalence (5-10 

per 100,000 people within the Caucasian population) (reviewed by Kay et al., (Kay et al., 

2017)). Patients of HD show severe motor defects, such as chorea and dystonia, which 

usually manifest during adulthood (reviewed by Talukder and co-workers (Talukder et 

al., 2021). However, before motor diagnosis, these patients may show psychiatric and 

cognitive defects, as well as mild motor symptoms (Ghosh and Tabrizi, 2018). 

Huntington is caused by an abnormally long expansion of CAG triplets in the first exon 

of the HTT gene (Macdonald, 1993). This gene encodes huntingtin (Htt), a protein whose 

function is still the subject of debate (see below and also a review by Jimenez-Sánchez et 

al., (Jimenez-Sanchez et al., 2017). When HTT has 36 or more CAG triplets, mutant 

huntingtin (mHtt) contains a long polyglutamine (polyQ) track, and acquires a toxic gain-

of-function which disrupts a number of cellular processes, from macroautophagy 

(hereinafter autophagy) to synaptic function (reviewed by Cisbani and Cicchetti (Cisbani 

and Cicchetti, 2012). Consequently, there is a protein homeostasis imbalance that affects 

several cellular functions (Krobitsch, S. and Kazantsev; 2011). In this regard, some 

evidence supports the toxic role of soluble species rather than larger aggregates or 

inclusion bodies, although this topic is still controversial (Kopito, 2000; Takahashi et al., 

2010).  Abnormal polyQ expansions are also known to produce other neurodegenerative 

diseases (Orr, 2012). In HD patients,  the age at onset inversely correlates with the length 

of CAG expansion (Holmans et al., 2017). However, this inverse correlation is far from 

perfect (Holmans et al., 2017), which reflects the importance of environment and genetic 

background in the disease.  

Although Htt is expressed ubiquitously, neurons seem to be more susceptible to mHtt 

toxicity and they become impaired, eventually leading to cell death (Cisbani and 

Cicchetti, 2012). The regions of the brain most affected by mHtt are the striatum and the 

cortex (Bohanna et al., 2011). However, nuclear resonance imaging of the nervous system 

shows many affected regions, among which are the cerebellum and hippocampus, in 

addition to a reduction in the volume of the whole brain (reviewed by Montoya et al., 

(Montoya et al., 2006)). The affliction of these regions explains many of the symptoms 

HD patients exhibit. For example, the striatum is principally responsible for motor and 



action planning (Provost et al., 2015), which explains motor symptoms. Complex 

problem solving and abstract thinking lie within some areas of the human cortex. 

Deterioration of these regions of the brain account for the cognitive decline of HD patients 

(Provost et al., 2015). 

Huntingtin is a ubiquitously expressed protein with many functions 

As stated above, the function of Htt is not completely understood, although much effort 

has gone into attempting to decipher its role in mammals. The structure of Htt provides 

some clues about its function (reviewed by Saudou and Humbert (Saudou & Humbert, 

2016)). For example, Htt is involved in axonal transport (Vitet et al., 2020), vesicle 

trafficking (Velier et al., 1998) and cell signalling (Luthi-Carter, 2000). In addition, Htt 

works to regulate the transcription of various genes (Dunah, 2002), including the brain-

derived neurotrophic factor (BDNF) (Zuccato, 2001), and it also modulates its own 

expression (Culver et al., 2016). Htt has been widely conserved throughout evolution:  the 

protein is encoded in some invertebrates and all mammals, with all orthologues showing 

what are known as HEAT repeats (from Huntingtin, Elongator factor3, PR65/A 

regulatory subunit of PP2A and Tor1) (Takano and Gusella, 2002). These domains are 

believed to participate in protein-protein interactions, suggesting that Htt may function as 

a scaffold, docking molecule or adaptor protein (reviewed by Kobe et al., (Kobe et al., 

1999)). In this regard, Htt has been shown to act as a scaffolding protein for selective 

autophagy (agregophagy, lipophagy and mitophagy) (reviewed by Rui et al., (Rui et al., 

2015)). Another clue is provided by a nuclear import signal (located in the N-terminal 

fragment), which suggests that Htt is translocated from cytoplasm to nucleus (Lunkes et 

al., 2002). Various researchers have validated this hypothesis in animal models (see for 

example Hackam and coworkers (Hackam et al., 1999). However, nuclearization of this 

protein seems to happen only in a cell's neuronal origin (Didiot et al., 2018). Indications 

are that the function of Htt is essential for life in mammals because Htt-defective mice do 

not develop a brain (Reiner et al., 2003). Nevertheless, this may not apply to all 

vertebrates because it does not happen in zebrafish (Sidik et al., 2020).  

Huntington disease is a multi-organ disorder 

As previously stated, Htt is ubiquitously expressed in both the nervous system and 

peripheral tissues (DiFiglia et al., 1995; Macdonald, 1993) (“Tissue expression of HTT - 



Summary - The Human Protein Atlas,” n.d.); (Uhlen et al., 2015). Although HTT is 

widely expressed in neurons, in the brain, mHtt is particularly detrimental for the corpus 

striatum and the cortex (Saudou & Humbert, 2016). This is probably because these areas 

are more sensitive to mHtt-induced toxicity. It is due to this neuronal vulnerability that 

HD is usually considered a purely neurodegenerative disease. However, work performed 

in animal models and observations of patients have revealed disturbances caused by mHtt 

toxicity in the skin (Aladdin et al., 2019; Seo et al., 2004), liver (Chiang et al., 2011), 

testicles (Van Raamsdonk et al., 2007), metabolism (Goodman et al., 2008), heart 

(Abildtrup and Shattock, 2013; Melkani, 2016; Pattison et al., 2008; Pattison and 

Robbins, 2008), digestive system (Stan et al., 2020), adipose tissue (Fain, 2001), lungs 

(Jones et al., 2016), and many other tissues and organs (Figure 1). Therefore, HD must 

be considered a multi-system disorder, as Mielcarek  suggests (Mielcarek, 2015).  

Based on this literature, it seems that therapeutic approaches to fight HD should be 

systemically directed rather than exclusively targeting the nervous system. For instance,  

one clinical trial (Tabrizi et al., 2019) has researched a strategy based on silencing the 

expression of mHtt in HD patients using intrathecally injected antisense oligonucleotides 

(ASOs). The trial was a success, meaning that it managed to reduce huntingtin in 

cerebrospinal fluid and it was well tolerated by patients (Tabrizi et al., 2019).  Two 

different clinical trials subsequently employed  these strategies to test the efficacy of 

ASOs were, unfortunately, unsuccessful (Kingwell, 2021). However, in the future it is 

possible that technical issues will be overcome to achieve successful silencing mHtt. If 

this were to occur, mHtt might be successfully blocked within the nervous system and 

neurons would be safer from the harm caused by mHtt, but HD patients would still suffer 

from other non-neuronal symptoms. Therefore, research into systemic treatments that 

reach all organs and tissues is a line of investigation that is guaranteed.   

Metformin to treat systemic dysregulation of the metabolism 

The herb Galega officinalis, which contains high levels of guanidines  with anti-

diabetic effects, has been in use since the Middle Ages to treat a number of conditions, 

including type 2 diabetes (Bailey and Day, 2004). Galegine, one of the guanidines present 

in G. officinalis, was used as a scaffold to synthesise other compounds (Bailey and Day, 

2004).  Of these, metformin proved to be the best of the antidiabetic compounds (Bailey 

and Day, 2004). Currently, metformin is widely used to treat type 2 diabetes (Rojas and 



Gomes, 2013), in which it improves insulin resistance and glucose uptake by hepatic 

gluconeogenesis suppression (He and Wondisford, 2015). However, metformin is also 

able to modulate metabolism in other ways. For example, metformin modulates lipid 

metabolism by increasing fatty acid uptake in adipose tissue and inhibiting lipid 

accumulation in skeletal muscle among type 2 diabetes patients (Virtanen et al., 2003; 

Wang et al., 2014). A disruption of metabolism was also observed in Drosophila HD 

models, which exhibit an alteration of body weight and lipid levels, contributing to an 

energy deficiency (Aditi et al., 2016). Moreover, it is likely that metformin can reach 

most organs and tissues, based on the data from mouse models, and research in humans 

(Gormsen et al., 2016; Sundelin et al., 2020; Zake et al., 2021). Taken as a whole, these 

data suggest that metformin modulates several metabolic pathways in a systemic manner 

in non-insulin dependent diabetes patients, and it may also restore the metabolic 

dysregulation associated with other diseases, thus providing evidence of a clear 

relationship between HD and type 2 diabetes. Patients of HD show a tendency to develop 

glucose intolerance (reviewed by Farrer (Farrer, 1985)) and also metabolic dysregulation 

(Patassini et al., 2016). Patassini and co-workers identified the dysregulation of several 

metabolites from the tricarboxylic-acid and urea cycles in addition to amino acid 

metabolism in the post-mortem brains of HD patients (Patassini et al., 2016). This has 

also been observed in mice and in vitro models of HD-altered lactate metabolism, which 

can be restored after overexpression of a neuronal glucose transporter, GLUT3 (Solís-

Maldonado et al., 2018). In accordance with these data, transcriptomic analysis shows the 

altered expression of glucose-related genes such as the glucose receptors GLUT1 and 

GLUT4, in striatal cell lines from HD mice (Chaves et al., 2017). Another interesting 

aspect of the study also shows upregulation of Sorcs1, which encodes a protein of the 

vacuolar protein sorting-10 (Vps10) family (Chaves et al., 2017). This gene is required 

for insulin secretion and lipid metabolism, but also plays a role in β-amyloid secretion 

(Lane et al., 2012; Savas et al., 2015) and synaptic function (doi: 

10.1371/journal.pbio.3000466), therefore linking lipid metabolism and 

neurodegenerative diseases (Chaves et al., 2017). Before this, it had been observed that 

HD patients show a disruption in cholesterol metabolism, which produces lower levels of 

24S-hydroxycholesterol in plasma and is directly proportional to disease progression 

(Leoni and Caccia, 2015). Finally, a cross-sectional study showed that HD patients who 



take metformin to treat type 2 diabetes show better cognitive function than metformin-

untreated HD patients (Hervás et al., 2017). 

These data support the hypothesis that HD progression runs parallel to metabolic 

dysregulation and, therefore, drugs that modulate or restore this metabolic failure could 

be potential therapeutic strategies to alleviate mHtt associated toxicity.  Thus, the use of 

metformin may constitute a good approach to treat dysregulated metabolism in HD 

patients simultaneously with many other issues (see below). Among the many targets of 

metformin, the AMP-activated protein kinase is one of the most investigated. Moreover, 

this enzyme is expressed in all tissues and organs in the human body, making it a systemic 

target to treat HD (Figure 1). 

AMPK as a target of metformin to treat HD  

The AMP-activated protein kinase (AMPK) is one of the best studied targets of 

metformin as a potential therapy to treat HD (Figures 1 and 2) (Hervás et al., 2017; Jin et 

al., 2016; Sanchis et al., 2019; Tang, 2020; Vázquez-Manrique et al., 2016; Walter et al., 

2016). This heterotrimeric serine-threonine kinase is a master regulator of energy 

homeostasis in cells (Barnes et al., 2002; Kim et al., 2016). It is activated allosterically 

by AMP when ATP levels drop, but also by many other substances and signals (Figure 

2). Composed of a catalytic (AMPKα) and two regulatory (AMPKβ and AMPKγ) 

subunits (Barnes et al., 2002; Sanz et al., 2013), AMPK is an obligate heterotrimer and 

can be activated by endogenous signals (metabolites, protein kinases, hormones, and 

many others) or synthetic drugs (Kim et al., 2016). A common mechanism of AMPK 

activation involves the LKB1 kinase (Liver kinase B1/serine threonine kinase 11) when 

raising AMP levels is required (Ramamurthy and Ronnett, 2012). In addition, the 

Ca2+/calmodulin-dependent kinase, kinase β (CaMKKβ) also activates AMPK by raising 

intracellular Ca2+ levels (Ramamurthy and Ronnett, 2012). AMPK requires the 

phosphorylation of threonine-172 residue to catalyse several substrates related to cell 

growth, autophagy, and metabolism pathways (Mihaylova and Shaw, 2011).  

 Assays of AMPK as a potential treatment for HD used the nematode 

Caenorhabditis elegans. In these animals, the activation of AMPK by genetic means or 

using metformin reduced the neuronal toxicity induced by the first exon of HTT-carrying 

expanded CAG triplets (Vazquez-Manrique et al., 2016). In the same work, using murine 



models, the authors showed that activation of this enzyme in early phases of HD reduced 

mHtt aggregation in brains (in vivo), and reduced toxic unfolded mHtt (in vitro) 

(Vázquez-Manrique et al., 2016). In parallel, other authors showed that AMPK-mediated 

activation of autophagy reduced HD phenotypes (Walter et al., 2016). Previous work had 

used metformin as a therapeutic agent, in the R6/2 mouse model of HD, showing that 

male mice lived longer than controls (Ma et al., 2007) although the authors did not 

investigate the mechanisms involved. Later, a preclinical trial in the zQ175 mouse model 

of HD (Menalled et al., 2012) showed that activation of AMPK using metformin, may be 

a good strategy to fight this disease (Sanchis et al., 2019). Three months of metformin 

treatment reduced motor and psychiatric symptoms of zQ175 mice, reduced mHtt 

aggregation, in parallel with activation of autophagy, in the striatum and cortex, and 

decreased neuroinflammation (Menalled et al., 2012). Recently, other authors have 

shown that AMPKβ-dependent activation of AMPK, using salicylate, induces 

neuroprotection against polyQ and alpha-synuclein-associated stress in C. elegans 

(Gómez-Escribano et al., 2020).   

In contrast with the findings described above, Ju and co-workers showed that 

overactivation of AMPK by AICAR (5-aminoimidazole-4-carboxamide-1-d-

ribofuranoside) contributed to brain atrophy, neuronal loss, and increased mHtt 

aggregates in the R6/2 mouse model of HD (Ju et al., 2011). They showed that striatal 

neurodegeneration is caused by the nuclear translocation of AMPKα1, in R6/2 mice and 

post-mortem samples of HD patients (Ju et al., 2011). However, these apparently 

conflicting results may be explained by differences in the models and biological samples 

used. Firstly, Ju and co-workers used R6/2 mice, which show the earliest disease onset 

and fastest disease progression of all HD mouse models(Reviewed by Farshim and Bates 

(Farshim and Bates, 2018). In contrast, zQ175 mice remain healthy much longer and 

begin to have mild behavioural defects at three months of age (Menalled et al., 2012). 

Secondly, the post-mortem samples from HD patients that show nuclearized AMPKα1 

represent probably the most extreme endpoint to be investigated, and may not show 

physiologically relevant features of AMPK function. We believe that is fair to 

hypothesise that activation of AMPK, in early phases of the disease, may activate 

autophagy, which in turn reduces toxic molecules from neurons, thus promoting survival. 

In contrast, activation or overactivation of AMPK in later phases, either by endogenous 

means or by drugs, may produce autophagy-induced apoptosis. 



Whatever the case, we strongly believe that activation of AMPK using metformin 

needs further exploration, which is why members of our team registered a clinical trial to 

use this drug against cognitive decline in HD patients (NCT04826692). 

Metformin is a pleiotropic drug 

Besides characterisation of the beneficial effects of AMPK-mediated metformin in HD 

models, other authors have considered the different pharmacological pathways of 

metformin. Arnoux and co-workers described how treating the Hdh150 mouse model of 

HD with metformin from a pre-symptomatic age restored hyperactivity in neuronal 

networks of the visual cortex and affected the anxiety of mice (Arnoux et al., 2018). Some 

earlier work had shown that the MID1/PP2A/mTOR protein complex may regulate 

translation of mHtt (Krauß et al., 2013). Based on that, Arnoux et al., studied whether 

treatment with metformin, which is known to interfere with this complex (Kickstein et 

al., 2010a), may rescue HD phenotypes through this pathway. As expected by the authors, 

in vitro and in vivo experiments showed that this was the case (Arnoux et al., 2018).  

How can we reconcile that metformin seems to act to reduce symptoms in HD models 

through what are in principle two different mechanisms? Both mechanisms show that the 

action of metformin can decrease the amount of mHtt aggregated, either by an mTOR-

dependent pathway or through AMPK signalling. However, these pathways are not 

independent, since AMPK phosphorylates mTOR to reduce protein synthesis. In fact, it 

has been shown that there is a metformin-induced interplay between AMPK and mTOR 

in anti-cancer activity (Chomanicova et al., 2021). Moreover, the MID1/PP2A complex 

is a direct inhibitor of AMPK activity (Joseph et al., 2015); hence, if metformin 

destabilises this complex, it may also maintain higher levels of AMPK activity. To 

conclude, we believe that both are compatible, and could possibly be cooperating to 

reduce the toxicity of mHtt.  

It has recently been shown that metformin may modulate RAN (Repeat associated 

Non-AUG) translation through inhibition of the PKR (RNA-dependent protein kinase) 

pathway in ALS/FTD mice (Zu et al., 2020). This has therapeutic implications for HD, 

since research has described how toxic RAN peptides are produced in models of this 

disease (Bañez-Coronel et al., 2015).  



Many more targets of metformin exist, although they have not been characterized in 

biological models of HD. For example, metformin induces pleiotropic effects to attenuate 

atherosclerosis in mice (Forouzandeh et al., 2014). This process involves activation of 

AMPK and repression of ATR1 (angiotensin II type 1 receptor) and SOD-1 (Superoxide 

dismutase-1) (Forouzandeh et al., 2014). In addition, metformin antagonizes glucagon 

signalling by inhibiting adenylate cyclase, which reduces PKA activity (Figure 2), 

resulting in a reduction of glucose during fasting (Miller et al., 2013a). Furthermore, 

metformin activates degradation of Hypoxia Inducible Factor 1 Subunit Alpha (HIF-1α) 

in hepatocellular carcinoma, hence reducing tumour growth (X. Zhou et al., 

2016).Metformin is therefore a highly pleiotropic drug that induces modulation of a wide 

range of pathways and molecules (Figure 2, Table 1). Moreover, it may be possible that 

more molecules modulated by this drug emerge in the future as potential druggable targets 

to fight HD. To summarise, metformin is able to tune the function of a wide range of 

targets, in many cells and tissues to modulate all sorts of pathways and metabolic 

processes (Table 1). 

Synergistic use of metformin enhances its therapeutic potential  

Metformin may have detrimental and/or collateral undesirable effects. For example, 

Espada and co-workers described a negative effect of metformin in aged worms, which 

reduced their lifespan and survival, due to mitochondrial impairment (Espada et al., 

2019). Moreover, metformin treatment in 20-month-old mice alters cardiac metabolism 

and longevity, compared to 2-month-old metformin-treated mice (Zhu et al., 2021). 

Therefore, it is important to consider undesired pleiotropic effects and the time of 

treatment when designing therapies using metformin. In this regard, it has been shown 

that AMPK may be activated synergistically using metformin and salicylate (or 

derivatives of salicylate) (Ford et al., 2015; Gómez-Escribano et al., 2020; O’Brien et al., 

2015; Talarico et al., 2016; Ye et al., 2016). This pharmacological synergistic action of 

the drugs activates AMPK, with  an approximately ten-fold reduction in the dose of each 

of the two drugs (Gómez-Escribano et al., 2020). Hence, reducing the amount of the drugs 

offers the advantage of avoiding activation of undesired targets, but still reducing polyQ-

induced toxicity, improving healthspan and restoring neuronal function in C. elegans 

(Gómez-Escribano et al., 2020). Therefore, these strategies that use a synergistic 

combination of metformin with other natural or synthetic drugs to treat diseases should 

be further explored. 



Pharmacogenetics and metformin: personalised medicine in HD 

Personalised medicine or precision medicine provides tools to improve the way that 

patients are treated, based on their genetic background and environmental context. 

Treatment is customised based on genetics and on people's lifestyles, and directed for an 

individual according to their specific features. In this regard, metformin may not be 

equally effective for every HD patient. In some cases it may produce mild side effects, 

for example gastric discomfort for a few patients or low blood sugar levels in patients 

treated with other antidiabetic compounds (Nasri and Rafieian-Kopaei, 2014). Moreover, 

the drug may cause more serious side effects, such as lactic acidosis in limited specific 

contextual conditions (patients with infections, kidney malfunction, etc.) (Nasri and 

Rafieian-Kopaei, 2014). In contrast, metformin is sometimes not sufficient to provide 

glycaemic control in diabetic patients (Kahn et al., 2006; Turner et al., 1999) due to 

factors that may have an impact on its response and strongly depend on a patient's genetic 

background. In pharmacogenetic studies, allelic variants in genes related to metformin 

absorption, distribution, and excretion (e.g. membrane transport proteins encoded by the 

solute carrier (SLC) gene family) have been found to modify pharmacodynamics and 

pharmacokinetics, which ultimately affect response to the drug (Florez, 2017; Gong et 

al., 2012; Shikata et al., 2007; Shu et al., 2008, 2007; Song et al., 2008; Tzvetkov et al., 

2009; Wang et al., 2011). Table 2 shows all the variants that the Pharmacogenomics 

Knowledge Base (PharmGKB, www.pharmgkb.org, last accessed 17 January 2022) 

contains in its clinical annotations section regarding metformin within known genes. 

These variants are mainly single nucleotide polymorphisms (SNPs). PharmGKB is the 

main source of information on pharmacogenomics (Cita PharmGKB), and its website 

offers all the information compiled and curated from publications and other relevant 

sources (drug labels, e.g.) by a team of experts. It is financially supported by 

NIH/NHGRI/NICHD, managed at Stanford University, and the data is under a Creative 

Commons Attribution-ShareALike 4.0 license. In the clinical annotations section, a 

phenotypic impact is given to a genetic variant regarding a concrete drug. PharmGKB 

curators assign a level of evidence to each "drug-variant" pair according to predefined 

criteria about the quality of the studies and sources analysed. The table shows the SNPs, 

the genes where they are located, the possible alleles and their mean frequency among all 

the populations according to the Genomes Aggregation Database (gnomAD), also 

included in the PharmGKB website (the frequency of the different alleles can vary 

http://www.pharmgkb.org/


slightly depending on the database). PharmGKB also shows the proposed effect of 

different genotype variants on metformin results. Hence, it would be logical to treat HD 

patients with metformin, as long as they fit the criteria for inclusion/exclusion within the 

clinical trial, since the possible benefits seem to clearly surpass the minor side effects and 

small direct costs. By genotyping the most relevant SNPs influencing metformin effects, 

clinicians would be able to adjust the treatment in a personalized manner, increasing 

efficacy and minimizing toxicity, thus achieving the best possible results. 

Various studies have highlighted several SNPs in the SLC22A1, SLC22A2, and 

SLC22A3 genes which codify organic cation transporters 1, 2 and 3 (OCT1, OCT2 and 

OCT3, respectively). These membrane proteins can transport metformin from the 

intestinal lumen, distribute it through the bloodstream and facilitate its intake into cells 

(reviewed by Koepsell, (Koepsell, 2013)). They have also been linked to the availability 

and effect of metformin (Al-Eitan et al., 2019; Florez, 2017; Santoro et al., 2018; Shu et 

al., 2008, 2007; Tzvetkov et al., 2009). In various studies involving healthy volunteers, 

several genetic variants of OCT1 wielded a significant effect on pharmacokinetics and 

the therapeutic response to metformin after oral administration (Shu et al., 2008, 2007; 

Tzvetkov et al., 2009). Individuals carrying hypomorphic alleles of OCT1 showed a lower 

assimilation of the drug than those with wild-type alleles and therefore the treatment had 

a reduced effect. Moreover, it is reported that reduced function alleles encoding OCT1, 

showed less activation of AMPK by metformin in mice (Shu et al., 2007). Similar results 

were observed in patients with a reduced function in OCT2 and OCT3, suggesting the 

importance of this family of cation carriers in the response to metformin treatment 

(Becker et al., 2009; Tzvetkov et al., 2009).  

Other SLC-encoded carrier proteins, such as the multi-drug and toxin extrusion 

proteins 1 and 2-K (MATE1/SLC47A and MATE2-K/SLC47A2), have also been 

proposed as potential modulators of metformin pharmacological effectiveness (Becker et 

al., 2009; Choi et al., 2011; Mousavi et al., 2017; Pedersen et al., 2018). In this regard, an 

allele of an intronic variant of MATE1/SLC47A1, rs2289669 G>A, was significantly 

associated with a greater reduction in haemoglobin A1c (HbA1c) in a cohort of 116 

metformin users, suggesting that this allele encodes a less effective MATE1 efflux 

transporter, which translates to a reduced transport of metformin (Becker et al., 2009). 

Likewise, an impaired MATE1 transporter, which results in a reduced efflux of 

metformin through renal and hepatic cells, leads to an increase in metformin plasma 



levels, and possibly to a larger undesirable decrease in glucose levels (Santoro et al., 

2018). Later studies in type II diabetes mellitus (T2DM) patients further supported the 

association between SNP rs2289669 in SLC47A1 and the glucose-lowering effect of 

metformin (He et al., 2015; Mousavi et al., 2017; Tkáč et al., 2013). Furthermore, 

homozygous individuals for 130G>A rs12943590 in MATE2-K had a significantly lower 

response to metformin therapy (Choi et al., 2011). Moreover, variants in the plasma 

membrane monoamine transporter (PMAT) (SLC29A4) can influence metformin 

pharmacokinetics, as reported in a study by Moon et al. (Dawed et al., 2019; Moon et al., 

2018). 

These data are extremely relevant because these proteins are expressed within the 

nervous system (“The Human Protein Atlas,” n.d.). Since these transporters show a 

broad substrate specificity, they can also deliver certain pharmacological compounds to 

the brain. For instance, it has been reported that SLC22A family members are expressed 

in the brain, OCT1 and OCT2 are found in the blood-brain barrier (BBB) while OCT3 is 

found in neurons and glia (Reviewed by Aykac and Sehirli  (Aykac & Sehirli, 2020)). 

Moreover, SLC47A1 and SLC47A2 encoded proteins MATE1 and MATE-2K were 

detected in isolated human brain micro-vessels (Geier et al., 2013). Finally, PMAT 

(Slc29a4) is strongly expressed in the brain, with some areas such as the dentate gyrus 

and choroid plexus particularly enriched (Dahlin et al., 2007; Engel et al., 2004). For this 

reason, reduced function of these transporters will affect metformin entry to the brain, 

one of the most damaged organs in HD, lessening the effectiveness of a possible future 

treatment. 

These variants, which are located on genes that modulate the transport and metabolism 

of metformin, may be used as pharmacogenetic markers to determine which patients may 

likely be better responders to this drug. As for its use in HD therapy, analysis of these 

variants in patients prior to a treatment proposition would avoid subjecting patients to 

ineffective therapy and prevent delays in adopting a more adequate approach in a situation 

where time is a key factor. Moreover, as HD is a systemic disorder, the presence of some 

allelic variants in genes that code for tissue-specific cation transporters may alter the 

effect of metformin in certain tissues. Furthermore, some authors suggest that these 

variants worsen some side effects and intolerance derived from metformin treatment due 

to reduced excretion therefore causing accumulation of the drug (Dawed et al., 2019; 



Dujic et al., 2016). In such cases, lower doses of the compound may be considered to treat 

these specific patients. Overall, these data highlight the importance of considering each 

patient's genetic context when it comes to metformin treatment, so personalised medicine 

can be applied.  Currently, we have a large body of evidence about strategies to guide 

treatments with pre-emptive pharmacogenetics testing (García-Alfonso et al., 2021; 

Theken et al., 2020; Whirl-Carrillo et al., 2021). In this regard, all HD patients should be 

treated with metformin, independently of their genetic background since the possible 

benefits surpass the minor side effects of this drug. Hence, it is worthwhile genotyping 

the most relevant SNPs that influence the effects of metformin in clinical studies. With 

this, clinicians would expand their knowledge of the association between the genetic 

background of patients and the side effects and/or benefits of using this drug. This in turn 

will bring use of metformin closer to personalised medicine. 

Microbiota alteration and HD 

The human gut microbiota is a complex and metabolically active system formed 

by microorganisms of different phyla that colonise the digestive tract after birth. The 

symbiotic relationship established between gut microbiota and the organism is essential 

for human health and alterations in its composition or function, also called dysbiosis, may 

induce a pathological context (reviewed by DeGruttola et al., 2016). 

Gut dysbiosis has been reported in several neurological and psychiatric disorders 

(Scheperjans et al., 2015; Settanni et al., 2021; Vogt et al., 2017).  For instance, a gut-

driven regulation of brain inflammatory pathways might be linked to some of the clinical 

signs or brain abnormalities seen in Huntington disease. Some studies reflect a 

communication axis between the metabolites produced from bacteria present in the gut 

microbiome and the nervous and immune systems (Wang and Wang, 2016). This 

communication system, known as the gut-brain axis, allows the flow of information 

between the cells that compose the microbiota and the central nervous system, and 

alterations of this signalling pathway have profound consequences for the progression of 

many neurodegenerative diseases (reviewed by Ma and co-workers (Q. Ma et al., 2019)). 

Communication between the gut microbiota and the nervous system is bidirectional, and 

when the composition or function of the microbiome is not within healthy ranges, it has 

a detrimental impact on cognition and behaviour (reviewed by Wang and Kasper (Y. 

Wang & Kasper, 2014).       



Recent findings suggest that gut dysbiosis may have a regulatory role in the onset and 

progression of HD (Du et al., 2020; Kong et al., 2020; Wasser et al., 2020).  Kong et al., 

found evidence of gut dysbiosis in a mouse model of HD, with a substantial change in the 

microbiome of the R6/1 mice at 12 weeks of age, compared to wildtype animals (Kong 

et al., 2020). These authors observed an increase in the Bacteroidetes phylum and a 

decrease in the Firmicutes family of eubacteria (Kong et al., 2020). It is widely accepted 

that the ratio between these phyla provides information about intestinal homeostasis (Ley 

et al., 2005; Turnbaugh et al., 2006). Moreover, when analysing microbiome sequencing 

data, it is common to use terms such as alpha and beta diversity. Alpha diversity measures 

microbiome diversity (richness) within a sample, whereas beta diversity indicates the 

similarity or dissimilarity between two groups. On this subject, although Kong and co-

workers found no differences in female HD mice, there was higher microbial alpha-

diversity in male HD mice compared to wild type animals, with significantly higher 

Shannon and Inverse Simpson diversity indices in the male HD specimens (Kong et al., 

2020). These two indices inform about the number of species and their relative 

abundance, and the average proportional abundance, respectively. Concerning beta-

diversity,  the authors identified a signature of bacteria, which allowed them to 

discriminate between HD and wild type mice from the same sex, using principal 

coordinates analysis (PCoA). For male HD mice, this signature consisted of bacterial 

families from the Clostridiales, Bacteroidales and Lactobacillales orders, whereas the 

bacterial families present in the female HD group's signature were Coriobacteriales, 

Clostridiales, Erysipelotrichales, Bacteroidales, and Burkholderiales. This microbiota 

alteration finally correlated with weight gain impairment despite higher food intake and 

the shift in the microbiome composition coincided with the onset of motor impairments 

tested on the rotarod (Kong et al., 2020). 

 In 2020, Wasser et al. provided the first evidence of gut dysbiosis in HD patients, 

and found a link between gut bacteria, cognitive ability and clinical outcomes (Wasser et 

al., 2020). Using faecal samples, they investigated whether the gut microbiota of carriers 

of mutant CAG expansion differed from that of age- and gender-matched healthy 

controls. The HD patients showed a lower alpha diversity, indicating less species richness 

within each participant and lower relative abundance; as well as variations in beta 

diversity, indicating a different microbial community structure between participants 

(Wasser et al., 2020). Moreover, these researchers identified changes in gut microbes, gut 

functional pathways and levels of enzymes in the Huntington disease gene expansion 

https://www.sciencedirect.com/topics/medicine-and-dentistry/principal-coordinate-analysis
https://www.sciencedirect.com/topics/medicine-and-dentistry/principal-coordinate-analysis


carrier (HDGEC) group in comparison to healthy controls (HCs) (Wasser et al., 2020). 

The authors also discovered affected functional gut pathways in the HDGEC group, 

including the superpathway of serine and glycine biosynthesis, the starch degradation V 

pathway, methylerythritol phosphate pathways I and II and the NAD biosynthesis I 

pathway, whose relative abundance increases. Regarding enzyme analysis, the relative 

abundance of glutathione transferase was significantly lower in the HDGEC group 

compared to HCs (Wasser et al., 2020). This change  is related to increased oxidative 

stress and neuroinflammation and has been observed in Parkinson’s and Alzheimer’s 

disease (Mazzetti et al., 2015). In addition, in comparison with non-HD people, the 

authors found a correlation between a reduced presence of the Eubacterium hallii bacteria 

and more severe motor symptoms in the HDGEC group. Among pre-symptomatic 

individuals, there was an inverse correlation between the abundance of E. hallii in their 

microbiome and the age-at-onset of symptoms (Wasser et al., 2020). In another study, Du 

et al. compared the microbiota and peripheral cytokine levels of 33 HD patients and 33 

HCs (Du et al., 2020). According to their analysis, the faecal microbiota of the HD and 

healthy control group differed significantly, suggesting that certain gut microbiome 

components are linked to HD. Consistent with the preclinical study by Kong et al. (2018) 

but contrary to the observations of Wasser et al. (2020) in HD patients, Du's group found 

that alpha diversity in the gut microbiota of HD patients was significantly higher than that 

of HCs. They argued that this disparity could be due to different ethnic origins, 

geography, host, genetics, age, and other subject-related factors. Their research found a 

higher abundance of the Intestinimonas and Bilophila genus in HD patients, which 

positively correlated with plasma concentrations of IL-4 (an anti-inflammatory cytokine) 

and negatively correlated with proinflammatory IL-6 concentrations, respectively. This 

suggests the presence of a systemic chronic inflammatory condition linked to altered gut 

microbiota (Du et al., 2020). These authors also found correlations between microbiota 

and clinical scores. A greater abundance of the Intestinimonas genus in HD patients 

correlated with total functional capacity (TFC) scores (Du et al., 2020), which measure 

the ability to work, manage finances, complete household duties, undertake self-care 

tasks and live independently. Higher scores indicate better performance (Shoulson and 

Fahn, 1979). In contrast, the higher abundance of the Lactobacillus genus observed in 

HD patients negatively correlated with Mini-Mental State Examination (MMSE) scores, 

which measure general cognitive function (Folstein et al., 1975). 



The evidence stated above suggests that there is a link between gut dysbiosis and 

HD. However, there is insufficient data to understand how the gut microbiome affects the 

course of this disease. Longer-term studies with a higher number of patients and more 

advanced technology (shotgun metagenome analysis and more advanced association 

analysis) are necessary to understand whether microbiomes modulate HD. If 

microbiomes play an important role in the progression of HD, investigating them may 

uncover gut biomarkers in HD patients that will help in early diagnosis of the disease. 

Finally, this avenue of research suggests the intriguing possibility that the gut might 

constitute a future target for therapeutic intervention in HD and other neurodegenerative 

diseases.  

Crosstalk between microbiome and metformin modulates progression of the 

disease 

Commonly used non-antibiotic drugs influence the composition of gut 

microbiota  (Jackson et al., 2018; Vich Vila et al., 2020), and inversely, the microbiome 

influences the effects of drugs on people (see for example (Klünemann et al., 2021; Rinse 

K Weersma et al., 2020; Zimmermann et al., 2021)).  The notion that metformin has an 

impact on microbiota has been shown in the nematode worm C. elegans. As previously 

mentioned, this drug was known to extend the lifespan and fitness of the worms, in an 

AMPK-dependent manner (Onken and Driscoll, 2010a).  Cabreiro and co-workers found 

that the beneficial effects of metformin in worms required the administration of live 

bacteria (Cabreiro et al., 2013). C. elegans feeds on different species of bacteria in the 

wild, and usually on E. coli in the laboratory (Zečić et al., 2019). Treating the worms with 

metformin in the presence of dead bacteria unexpectedly had the opposite effect, reducing 

the lifespan of the animals (Cabreiro et al., 2013). The researchers found that metformin 

impacted the metabolism of folate and methionine of E. coli, which in turn extended the 

worms' lifespan (Cabreiro et al., 2013). This was the first mechanism provided for the 

microbiota-mediated beneficial effects of metformin in an animal, and C. elegans became 

a very useful system , to study the relationships between microbiota and animal aging and 

health thanks to the simplicity of the animal and its genetic tractability (reviewed by 

Cabreiro and Gems (Cabreiro and Gems, 2013)). Using this microbe-animal system 

model, Pryor et al. performed a screening for host-microbe-drug-nutrient interactions 

between metformin, E. coli and C. elegans (Pryor et al., 2019), providing the proof-of-

concept that this system may be of interest to further explore such complex relationships.  



The interaction between microbiota and metformin can also be found in mammals. 

Treating obese mice with metformin increased their gut population of the mucin-

degrading bacterium Akkermansia spp. (Shin et al., 2014), which in turn resulted in better 

glucose tolerance and reduced inflammation of the adipose tissue of the mice (Shin et al., 

2014). In diabetic rats, intravenous was less effective than intraduodenal metformin 

administration at lowering blood glucose levels (Stepensky et al., 2002). This strongly 

suggests that the benefits of treatment with metformin require the drug to interact with 

the microbiota (Stepensky et al., 2002), as is the case in worms (Cabreiro et al., 2013). In 

addition, Bauer et al. discovered a shift in the composition of microbiota following upper 

small intestine metformin treatment of high-fat diet rats (Bauer et al., 2018), with an 

increase in the relative abundances of the Lactobacillaceae family and Lactobacillus 

genus. In mice fed with a diet rich in fat, metformin  restores the abundance of 

Lactobacillus and A. muciniphila, known to have positive effects on the host (Z.-Y. Zhou 

et al., 2016) and metformin treatment also increases the population of the mucin-

degrading bacteria Akkermansia muciniphila (Shin et al., 2014)., As the study of Ma et 

al. (Ma et al., 2018) revealed, microbiome alteration also occurs in healthy conditions: 

metformin treatment in healthy mice alters the abundance of microbes in faecal samples, 

compared to non-treated controls. A human study reported similar findings of  metformin 

treatment resulting in a significant change in the abundance of more than 80 bacterial 

strains in individuals with type-2-diabetes (T2D), with the Firmicutes and Proteobacteria 

phyla most affected (Wu et al., 2017). Moreover, according to other authors, metformin 

enhances the number of bacteria that generate short chain fatty acids, thus mediating its 

therapeutic effects (Forslund et al., 2015). A different study corroborated this conclusion 

observing the presence of higher faecal levels of these lipids in metformin users 

(Zhernakova et al., 2016).  

However, interaction between gut microbes and drugs is bi-directional, and increasing 

evidence suggests that the gut microbiota may have a direct impact on the response of an 

individual to a treatment by enzymatically modifying drug structure and altering its 

disposition, action or toxicity; a phenomena known as pharmacomicrobiomics (reviewed 

by Weersma (Weersma et al., 2020)). On balance, it seems that the particular gut microbial 

population of each person may affect their response to metformin treatment, and 

modification of the microbiome could be a particularly appealing target to enhance 

metformin effectiveness. Given the evidence supporting the idea that metformin targets 



the gut microbiota to mediate its beneficial effects, it is not unfair to speculate that 

metformin may mitigate the alterations in microbiota seen in HD patients, contributing to 

amelioration of the disease. Taken together, future strategies for HD should consider 

analysis of the modulating effect of metformin on gut microbiota and the specific 

microbiome population of each patient, as this would allow selection of the most suitable 

therapy for each person, further empowering the capacity of personalized medicine in 

HD.  

Conclusion and future perspectives 

In the future, a cleverly designed gene therapy may offer us a cure for HD. To date, 

this strategy faces many challenges, due to the difficulty of delivering nucleic acids within 

the brain. Another hurdle is that once the nervous system has been cured, many other 

organs and tissues will suffer the devastating effects of mHtt. In the meantime, therefore, 

there is a justification for exploring the use of conventional drugs, such as metformin. 

This drug has shown tremendous beneficial effects in patients for many age-related 

conditions like diabetes, cancer, cognitive decline, etc. (reviewed by Novelle et al., 

(Novelle et al., 2016)). Work on animal HD models, and cross-sectional studies of 

patients with the condition, suggest that metformin may benefit people suffering HD. 

Moreover, metformin is a pleiotropic drug that activates many potential targets to treat 

HD, and reaches nearly every organ and tissue of the human body. Further studies about 

these targets, together with the study of the microbiome, using genomic approaches, and 

the use of pharmacogenetics, will allow the design of precision metformin therapies. 
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Table 1. Targets of metformin and mechanisms of action 

Targets1 Mode of action2 
Model 

organism/cell 
Effect upon treatment References3 

Mitochondrial respiratory chain 

(complex I)  

Direct interaction, 

inhibition. Reduction of 

ATP production, and 

increase in AMP 

Cultured rat 

hepatocytes 

Cultured rat 

hepatocytes 

Metabolic changes 

 

(El-Mir et al., 2000; Owen et al., 2000) 

AMPK Indirect activation by 

drops in ATP after 

inhibition of Complex I 

Cultured rat 

hepatocytes 

C. elegans 

 

Metabolic changes 

Lifespan and healthspan 

increase 

(Onken & Driscoll, 2010; G. Zhou et al., 

2001) 

 GLUT4 Indirect, AMPK-

dependent 

3T3-L1 

preadipocytes 

GLUT4 translocation from 

vesicles to plasma membrane 

(Lee et al., 2012) 

SREBP-2 Indirect, inhibition of 

transcription, partially 

AMPK-dependent 

HepG2, human liver 

cancer cell line 

Reduction of glucose and fat 

production in hepatocytes 

(Madsen et al., 2015; Zhang et al., 2018) 

Adenylate cyclase  Indirect inhibition  Mouse liver and 

mouse and human 

hepatocytes 

TSC complex-mediated 

attenuation of protein 

synthesis  

(Miller et al., 2013) 

Protein kinase A Indirect inhibition   Reduction of gluconeogenesis (Miller et al., 2013) 

Mitochondrial glycerophosphate 

dehydrogenase 

Downregulation of 

expression  

Human thyroid 

cancer cell lines 

Attenuated tumour growth (Thakur et al., 2018) 

Alarmin HMGB1 Direct binding  Rat liver Reduction of inflammation (Horiuchi et al., 2017) 

https://en.wikipedia.org/wiki/GLUT4
https://en.wikipedia.org/wiki/Protein_kinase_A
https://en.wikipedia.org/wiki/Glycerol-3-phosphate_dehydrogenase
https://en.wikipedia.org/wiki/Glycerol-3-phosphate_dehydrogenase


 

KDM6A/UTX, H3K27me3 

demethylase4 

Direct binding Immortalized mouse 

embryonic 

fibroblasts 

Reversion of aging-related 

epigenetics  

(Cuyàs et al., 2018b) 

SIRT1 Direct binding, activation In silico and in vitro 

analysis 

Activation of enzymatic 

activity 

(Cuyàs et al., 2018a) 

PP2A Direct binding Primary neurons Reduction of TAU 

phosphorylation 

(Kickstein et al., 2010b) 

MID1 complex Disrupts MID1 

association to other 

enzymes 

APP/PS1 mice (in 

vivo) and cultured 

murine primary 

cortical neurons 

Reduction of expression of the 

amyloid precursor protein 

(Matthes et al., 2018) 

Double-stranded RNA-

dependent protein kinase 

Indirect inhibition (?) BAC-HD mouse 

model of HD 

Reduction of RAN translation (Zu et al., 2020) 

nuclear pore complex-mTORC1- 

acyl-CoA dehydrogenase 

Indirect inhibition, due to 

inhibition of 

Mitochondrial Complex I 

C. elegans Inhibition of organismal 

growth 

(Wu et al., 2016) 

NF-κB Indirect inhibition, 

AMPK-mediated  

Cultured human 

umbilical vein 

endothelial cells 

 Anti-atherogenic effects (Cacicedo et al., 2004) 

mTORC1 Indirect inhibition, 

partially AMPK-

dependent 

Mouse liver (in vivo) 

and mouse and 

human hepatocytes 

Strong inhibition of protein 

synthesis in liver 

(Howell et al., 2017) 

1This table is not be exhaustive as many targets are indirectly activated/inhibited as a result of the activation of other targets, as it happens, for 

example, with downstream effectors of AMPK. 



2Many mechanisms of action of metformin are linked. For example, inhibition of complex I of the mitochondrial respiratory chain induces indirect 

activation of AMPK, but also induces activation of the adenyl cyclase, which in turns inhibits protein kinase A. 
3Literature not exhaustive. We do not intent to report every target in every organism reported to date. 
4From 41 in silico-predicted targets of metformin, several methylation marks were studied and this demethylase was confirmed as a target of 

metformin. 

 

 

  



Table 2. Allelic frequencies of different alleles implicated in the performance of metformin 

    

gnomAD (Exome/Genome)1    

Associated 

genes 

Variant Alleles Frequency All 

populations(%) 

Major Allele 

Range of freq. 

in 

populations4 

Allelic implications  Evidence2 

ATM or 

C11orf65 

rs11212617 

 

C>A 

 

51.27/48.73 35.85 ASJ-

72.74 AFR 

AC or CC carriers may 

have better response to 

metformin 

Level 43 

SLC47A1 

or 

SNORA59B 

rs2289669 

 

G>A 

 

68.10/31.90 48.53 ASJ-

91.27 AFR 

AA carriers may have 

better response to 

metformin 

Level 33 

SLC22A1 rs628031  

G>A/C 63.26/36.74/0.01 55.18 FIN-

73.36 AMR 

GG carriers may have 

increased response to 

metformin response and 

decreased risk for 

gastrointestinal side 

effects 

Level 3 

SLC22A1 rs12208357  

C>T 94.83/5.18 90.46 ASJ-

99.98 EAS 

Patients with the CC or 

CT genotypes may have 

increased bioavailability 

of metformin 

Level 3 

SLC22A1 rs72552763  

GAT>del 87.90/12.10 78.32 AMR-

99.93 EAS 

Patients with the 

GAT/GAT genotype who 

Level 3 



are treated with 

metformin may have an 

increased trough 

metformin steady-state 

concentration 

SLC22A1 rs2282143  

C>T 96.24/3.76 86.83 EAS-

99.98 ASJ 

Patients with the CC 

genotype may have 

increased clearance of 

metformin 

Level 3 

SLC22A1 rs594709  

A>G 64.09/35.91 56.23 FIN-

73.10 AMR 

Patients with AA or AG 

genotypes may have 

improved response to 

metformin 

Level 3 

SLC22A1 rs36056065  

GTAAGTTG 

> del 

No data 

available 

 Patients with the 

GTAAGTTG/GTAAGTTG 

genotype may have 

increased risk for 

gastrointestinal side 

effects 

Level 3 

SLC22A1 rs622342 

A>C 70.01/29.99 63.01 NFE-

83.89 EAS 

Patients with the AA 

genotype and the GG 

genotype at rs2289669 

may have a better 

response to metformin 

Level 3 

SLC22A2 rs316019  

C>A 89.85/10.15 84.69 AFR-

94.84 AMR 

Patients with the CC 

genotype may have 

Level 3 



increased clearance of 

metformin 

SLC22A3 rs8187725 

C>T 100/0 99.9-0.01 NFE Cells with the TT 

genotype may have 

decreased uptake of 

metformin 

Level 3 

SLC22A3 rs2076828 

C>G 56.79/43.21 38.65 SAS-

67.63 AMR 

Patients with GG 

genotype may have 

increased response to 

metformin 

Level 3 

SLC2A2 rs8192675 

T>C 58.24-41.76 29.13 AFR-

76.57 EAS 

Patients with the CC or 

CT genotypes may have 

increased response to 

metformin 

Level 3 

SLC47A1 rs2252281 

T>C 67.90-32.10 59.96 ASJ-

82.83 SAS 

Patients with the CC 

genotype treated with 

metformin may have an 

increased response 

Level 3 

SLC47A1 rs2289669 

G>A 68.10-31.90 48.53 ASJ-

91.27 AFR 

Patients with the 

genotype AA may have 

better response to 

metformin 

Level 3 

SLC47A2 rs34834489 G>A 72.58-27.42 60.83 FIN-

90.75 AFR 

Patients with the GG 

genotype may have 

decreased renal clearance 

Level 3 



and secretion clearance of 

metformin 

SLC47A2 rs12943590 G>A 72.63-27.37 54.86 EAS-

78.12 AFR 

Individuals with the GG 

genotype may have 

decreased renal and 

secretory clearance and 

increased response to 

metformin 

Level 3 

AMHR2 rs784892 G>A 91.10-8.90 71.21 AFR-

100 AMJ, 

EAS, FIN 

AA carriers may have 

decreased efficacy 

Level 3 

CAPN10 rs3792269  A>G 85.31-14.69 80.16 SAS-

95.42 AFR 

Patients with AA 

genotype may have an 

increased response 

Level 3 

CPA6 rs2162145  C>T 60.15-39.85 24.69 AFR-

75.29 NFE 

Patients with the CC 

genotype may have 

decreased response to 

metformin 

Level 3 

FMO5 rs7541245  C>A 96.32-3.68 90.57 SAS-

99.81 EAS 

Patients with the AA 

genotype may have a 

decreased response to 

metformin 

Level 3 

KCNJ11 rs5219 C>T 64.02-35.98 52.32 FIN-

93.79 AFR 

Patients with the TT 

genotype may have an 

Level 3 



increased likelihood of 

treatment failure 

NBEA rs57081354 T>C 91.91-8.09 88.42 AFR-

96.34 AMR 

Patients with the TT 

genotype may have 

increased response to 

metformin 

Level 3 

PPARA rs149711321 T>C 94.09-5.91 81.29 AFR-

100 EAS 

CC and TC genotypes 

may be associated with an 

increased secretory 

clearance of metformin, 

leading to reduced 

exposure and decreased 

metformin efficacy 

Level 3 

PRPF31 rs254271 G>C/A 68.17-31.81-

0.02 

57.34 EAS-

76.64 AFR 

Patients with the GG 

genotype may have 

increased response to 

metformin 

Level 3 

SP1 rs2683511 C>T 91.47-8.53 72.37 AFR-

100 

AMI,EAS,FIN 

CC genotype may be 

associated with a 

decreased secretory 

clearance of metformin, 

leading to increased 

exposure and improved 

metformin efficacy 

Level 3 



SP1 rs784888 G>C 89.52-10.48 66.29 AFR-

100 AMI, 

EAS 

Patients with the GG 

genotype may have 

decreased clearance of 

metformin leading to 

improved response to 

metformin 

Level 3 

 1The gnomAD database considered has been “Exome, v2” for exonic variants and “Genome, v3” for 

intronic. Prevalence can slightly change depending on database. 
2PharmGKB ranks the variants, attending at the Clinical Annotation Levels of Evidence 

(https://www.pharmgkb.org/page/clinAnnLevels), from Level 1 (the highest level of evidence) to Level 

4 (unsupported evidence). 
3This variant is ranked Level 3, from recently, due to a change in assessment. This variant used to be 

Level 2. 
4Abreviations of populations: AFR (African people), AMI (Amish), AMR (Amerindian), ASJ 

(Ashkenazi Jewish), EAS (East Asian), FIN (Finnish), NFE (Non-Finnish European), SAS (south Asian) 
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Figure 1. Huntingtin and AMPK are expressed ubiquitously in humans. mHtt is 

ubiquitously expressed through the human body. In agreement with this, expression of 

mHtt causes phenotypes in many tissues, including bones, skin, heart tissue and many 

other organs and tissues, aside of the well-known effects on the brain of patients. These 

tissues affected, are pointed out in the diagram with a cartoon. One of the better-known 

targets of metformin is AMPK. This enzyme has shown to be a potential target to treat 

HD. Many isoforms of the three components of the enzyme exist in humans: two AMPKα, 

two AMPKβ and AMPKγ subunit isoforms. Combinations of one or other of these 

subunits are expressed in all tissues, making them a good target, to treat a ubiquitously 

expressed toxic molecule, such as mHtt. In this diagram, it is represented the expression 

of only one of the subunits (AMPKα2). Blue color means mRNA expression, while 

yellow shows the expression of the protein of this subunit. Diagram made using 

Biorender. Expression data obtained from The Protein Atlas 

(http://www.proteinatlas.org) (Thul et al., 2017). This figure was created using 

Bioredender.  

 

 

 
Figure 2. Metformin is a pleiotropic drug. Diagram showing some of the known targets 

of metformin. (1) Inhibits the complex I of the mitochondrial respiratory chain, by direct 

binding. This in turn induces the rise of the AMP ratio, therefore inhibiting the adenylate 

cyclase (2). This is translated in reduced cAMP concentration, which reduces 

gluconeogenesis. This results in better glucemic indexes and better healthspan. (3) The 

rise in AMP also activates the heterotrimer enzyme AMPK. AMPK is able to activate 

autophagy, which digest mHtt, but also is able to induce oxidative stress scavenging 

resources, which also impacts in better DNA stability. Moreover, activation of AMPK 

results in reduced inflammation. (4) Metformin is also able to directly activate SIRT1, a 

well-known pro-healthspan molecule. (5) This drug also directly activates the 

MID1/PP2A/mTOR complex which in turns inhibits translation of mHtt. (6) Metformin 

inhibits demethylases, which reverts aging-related epigenetic marks. (7) This compound 

also inhibits mitochondrial glycerophosphate dehydrogenase, which results in reduced 



gluconeogenesis. (8) Metformin binds alarmin, and inhibits its binding to the toll-like 

receptor 4, which further reduces inflammation. This figure was created using 

Bioredender. 
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