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Abstract

Background and Objectives. Hybrid automated insulin delivery systems rely

on carbohydrate counting to improve postprandial control in type 1 diabetes.

However, this is an extra burden on subjects and it introduces a source of

potential errors that could impact control performances. In fact, carbohy-

drates estimation is challenging, prone to errors, and it is known that subjects

sometimes struggle to adhere to this requirement, forgetting to perform this

task. A possible solution is the use of automated meal detection algorithms.

In this work, we extended a super–twisting-based meal detector suggested in

the literature and assessed it on real-life data.

Abbreviations: AID, automated insulin delivery; BG, blood glucose; CGM, continuous
glucose monitor; CHO, carbohydrates; FN, false negative; FP, false positive; MD, meal
detector; SAP, sensor-augmented pump; STMD, super–twisting-based meal detector; T1D,
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Methods. To reduce the false detections in the original meal detector, we

implemented an implicit discretization of the super–twisting and replaced

the Euler approximation of the glucose derivative with a Kalman filter. The

modified meal detector is retrospectively evaluated in a challenging real-

life dataset corresponding to a 2-week trial with 30 subjects using sensor-

augmented pump control. The assessment includes an analysis of the nature

and riskiness of false detections.

Results. The proposed algorithm achieved a recall of 70 [13] % (median [in-

terquartile range]), a precision of 73 [26] %, and had 1.4 [1.4] false positives-

per-day. False positives were related to rising glucose conditions, whereas

false negatives occurred after calibrations, missing samples, or hypoglycemia

treatments.

Conclusions. The proposed algorithm achieves encouraging performance. Al-

though false positives and false negatives were not avoided, they are related

to situations with a low risk of hypoglycemia and hyperglycemia, respectively.

Keywords: type 1 diabetes, automated insulin delivery system,

postprandial control, meal detection

1. Introduction

Type 1 diabetes (T1D) is a chronic endocrine disorder related to an en-

dogenous insulin deficiency due to autoimmune destruction of the pancreatic

β-cells. Insulin promotes glucose disposal by muscles and adipose tissues and

inhibits hepatic glucose production. Thus, the lack of insulin leads to high

plasma glucose concentration (hyperglycemia). Hyperglycemia is associated
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with long-term complications such as retinopathy, nephropathy, neuropathy,

or heart disease [1]. As a result, people suffering from T1D need an ex-

ogenous insulin replacement to maintain glucose levels in a safe range (nor-

moglycemia). However, an insulin over-delivery might cause a low glucose

concentration (hypoglycemia), leading to anxiety, palpitations, cognitive dys-

function, seizures, and, in severe cases, coma or even death [1]. Automated

insulin delivery (AID) is a promising technology to manage tight glucose con-

trol and, consequently, reduce the risks of hyperglycemia and hypoglycemia.

Several clinical trials have reported that AID systems (aka artificial pancreas)

significantly improve blood glucose (BG) control as compared to traditional

intensive insulin therapies [2]. The main improvement occurs in the noc-

turnal period, but diurnal glucose is still challenging: one of the principal

reasons is the considerable impact of meal ingestion.

In postprandial control, continuous glucose monitor (CGM) lags and sub-

cutaneous insulin absorption dynamics limit the AID effectiveness in post-

meal glucose absorption compensation [3]. The main consequence is a sus-

tained hyperglycemia event right after the meal. In addition, an over reaction

of the AID might lead to late hypoglycemia due to the stacked insulin on

board [3]. Therefore, most AID systems have adopted carbohydrate (CHO)

counting to overcome the challenges of postprandial control [4]. In AID sys-

tems requiring CHO counting, i.e., hybrid AID, users must estimate the meal

CHO content for the AID to deliver a pre-meal insulin bolus. This pre-meal

bolus advances the insulin needs to compensate for the glucose rise despite

absorption delays, improving postprandial control. However, CHO counting

might degrade AID performance due to timing delays, announcement omis-
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sions, and inaccurate CHO estimations [5, 6]. In addition, the extra burden

on the users constitutes a reason for disconformity with the technology [7].

Therefore, several approaches have been studied in the literature to re-

move CHO counting: automated meal detection (MD) [8, 9, 10], disturbance–

observer-based control [11], model predictive control [12], reinforcement learn-

ing [13], multi-hormone AID systems [14], etc. MD is the traditional alter-

native to CHO counting since it is simple and usually forms an independent

module from the main AID controller. AID integrates MD to increase the

control aggressiveness against the meal, either by delivering insulin boluses

[15, 16, 17] or changing the controller tuning [18]. MD design usually com-

prises two stages: 1) to calculate signals and features sensitive to the meal,

and 2) to build a decision logic to determine the meal occurrence. Except for

a few works that incorporate other measurements (heart rate [9], abdominal

sound [19], head movement [20], etc.), features are usually related to CGM

readings. Frequent features are CGM values, approximations of the CGM

derivative [9], glucose predictions, innovation terms or residuals [15, 16, 21],

and estimations of the meal rate of glucose appearance [22]. Combinations

of those signals have also been used as features: for instance, authors in

[22] applied the cross-covariance of the estimated glucose and the estimated

rate of glucose appearance. Note that the abovementioned signals are es-

timated by multiple model simulations [9] or observers (such as Kalman

filters [16, 21, 22], sliding mode observers [15], moving-horizon estimators

[8, 23]). About the decision logic, the most extended method is to apply ad-

hoc thresholds to the features. Other techniques rely on interval thresholds

[21], hypothesis tests [16, 17], or binary classifiers [8, 24]. Besides meal detec-
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tion, another relevant feature for meal-announcement-free control is estimat-

ing the meal CHO content, addressed, for example in [25, 16, 23]. An accurate

estimation of the meal CHO content simplifies the control algorithm and al-

lows more aggressiveness since bolusing strategies can be adopted. However,

other algorithms for unannounced meal compensation can also be conceived

without the explicit information of the meal CHO content. For example,

[18] and [15] replace the CHO estimation with inner states or disturbances

estimations, respectively. Therefore, this work will exclusively focus on the

meal detection problem rather than estimating meal CHO content.

This work aims at improving the implementation and validation of the

MD algorithm proposed in [15]. This algorithm determines the meal occur-

rence with thresholds on a glucose derivative estimation and a residual signal

generated by a super–twisting observer. Despite its satisfactory performance,

the algorithm has two main limitations. On one hand, its validation setting

was not challenging enough since it used simulation data of only 10 vir-

tual subjects. On the other hand, the algorithm is prone to false detections

because either the glucose or the super–twisting discretization uses explicit

Euler approximations leading to oscillations [15, 26]. Hence, to reduce the

oscillations in the residuals, the implicit discretization method in [26] is im-

plemented. Also, a Kalman filter is used to obtain a smooth estimation of

the glucose derivative. Finally, a retrospective validation is performed with

a challenging dataset of 30 subjects in free-living conditions [27] 2.

Hereafter, this article is organized as follows. Section 2 includes the new

features of the MD as compared to the work in [15]. Furthermore, this

section explains the tuning procedure and the validation. Then, in section
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3, an exhaustive analysis of the tuning and validation results is performed.

Finally, section 4 closes the article with the conclusions.

2. Materials and Methods

2.1. Super–twisting-based meal detector

The super–twisting-based meal detector (STMD) used in this work ex-

tends the algorithm proposed in [15]. The STMD algorithm is built upon

three elements: 1) a super–twisting observer generates the residuals – a signal

that represents the inconsistency between the glucose and the glucose esti-

mation –, 2) a Kalman filter estimates the glucose derivative, and 3) a set of

decision rules determines the occurrence of the meal based on the residuals

and glucose derivative.

A schematic flowchart representing the sequence of the computations of

the proposed algorithm is depicted in figure 1: every step will be described

in detail in the following sections. Moreover, a list of variables and constants

is provided in table 1.

2.1.1. Residual generation

A super–twisting observer was used to estimate the glucose given its

robustness to noise and unmatched disturbances [28]. In the ideal case –

2The source of the data is the JDRF Artificial Pancreas Consortium coordinating center

(JDRFAPPCC), but the analyses, content and conclusions presented herein are solely the

responsibility of the authors and have not been reviewed or approved by the JDRFAPPCC.

The public CTR3 dataset was financed by JDRF through the grants JDRF 22-2011-649

and JDRF 17-2013-509.
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Figure 1: Flowchart of the proposed algorithm
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continuous-time measurements without noise – the super–twisting equations

read as: 



˙̂
ig(t) = u(t) + k1 |resig(t)|

0.5 sign(resig(t))

u̇(t) = k2sign(resig(t))
(1)

where ig(t) is interstitial glucose (ideal CGM reading), îg(t) is the super–

twisting estimate of ig(t), resig(t) is the ideal residual signal (resig(t) =

ig(t)− îg(t)), u(t) is an auxiliary signal, and the gains k1 and k2 need to be

designed.

As shown in [15], the observer given by (1) ensures that the residual

dynamics follows the super–twisting equations [29]:





˙resig(t) = ξ(t)− k1 |resig(t)|
0.5 sign(resig(t))

ξ̇(t) = F (t)− k2sign(resig(t))
(2)

where F (t) is a lumped disturbance term that depends on the meal rate

of glucose appearance, its derivative, and other perturbing factors such as

unmodeled dynamics (see [15] for more details). If |F (t)| ≤ L, for L > 0,

and gains k1 and k2 are selected as

k1 = 1.1L k2 = 1.5L0.5 (3)

then the residuals resig(t) will converge to 0, after a finite time [28, 29].

However, the only glucose-related available signal is the CGM readings.

Since this time series is a discrete-time noisy signal, the super-twisting ob-

server must be discretized, with a new timestamp k. Here we hence need

to introduce cgm(k) as the CGM readings signal, ĉgmST (k) as the super–

twisting estimation of cgm(k), and res(k) = cgm(k)− ĉgmST (k).
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Note that the feature of convergence after a finite time is interesting for the

meal detection purpose. Indeed, disturbances lower than L will have a null

impact on resig(t) – due to the absence of noise and the infinite sampling

rate –, and a reduced impact on res(k). Nevertheless, when |F (k)| > L (with

F (k) being the discrete version of F (t)), res(k) will still significantly deviate

from 0. Therefore, we can apply a simple threshold-based logic on the res(k)

signal to discriminate the meal occurrence (see section 2.1.3).

Implicit discretization. The discretization of sliding–mode-based algorithms

is a highlighted concern since chattering, an oscillatory behavior in the states

when the sliding mode regime is reached, limits the performance [30]. The

super–twisting algorithm mitigates the chattering effect, as compared to first-

order sliding-mode observers, by hiding the discontinuity in the derivative.

Nonetheless, explicit discretization methods still cause numerical chattering

[30]. Sala-Mira et al. [15] alleviated the chattering issue with subsampling

and filtering strategies, but at the price of higher computational load and

delays. As an alternative, in this article, implicit discretization methods are

utilized since they reduce and even suppress chattering [26, 31]. The implicit

method resorts from a set-valued interpretation of the sign function. Hence,

the direct discretization of expression (1) is defined as:





ĉgmST (k)− ĉgmST (k − 1) = hu(k) + hk1 |res(k)|
0.5 λ(k)

u(k)− u(k − 1) = hk2λ(k)

λ(k) ∈ msign(res(k))

(4)
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where h denotes the sampling time, k is the discrete iteration, and msign(·)

refers to the set-valued sign function defined as [26]:

msign(res(k)) :=





1 if res(k) > 0

[−1, 1] if res(k) = 0

−1 if res(k) < 0

(5)

Expression (4) might seem to be non-implementable given the presence

of ĉgmST (k) in both sides of the equality. However, by exploiting some

properties of convex sets (such as the relation of (5) to the normal cone

[31, 32]), the following implementable implicit discretization of (1) is obtained

[26]:

g(k) = ĉgmST (k − 1) + hu(k − 1) (6a)

g̃(k) = cgm(k)− g(k) (6b)

ζ(k) =
4

h2k2
1

(
g̃(k)− k2h

2
)

(6c)

ĉgmST (k) =





g(k) + h2k2 +
h2k2

1

2

(√
1 + ζ(k)− 1

)
if g̃(k) > h2k2

cgm(k) if |g̃(k)| ≤ h2k2

g(k)− h2k2 −
h2k2

1

2

(√
1− ζ(k)− 1

)
if g̃(k) < −h2k2

(6d)

λ(k) = proj

(
[−1, 1],

g̃(k)

h2k2

)
(6e)

u(k) = hk2λ(k) + u(k − 1) (6f)
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where proj([−1, 1], a) is the Euclidean projection operator defined as

b = proj([−1, 1], a) =





1 if a > 1

a if |a| < 1

−1 if a < −1

(7)

for scalars a ∈ R and b ∈ R.

Estimation of disturbance F (k). As it will be shown in section 3.1, the knowl-

edge of F (k) will be useful to set the parameter L. Since F (k) is a lumped dis-

turbance that is not available in real-time, an estimation of F (k), i.e., F̂ (k), is

needed. To this end, the concept of the equivalent control in the sliding mode

is applied [33]. According to [34], to maintain the sliding regime, the average

value of k2sign(res(k)), i.e, the equivalent injection term k2sign(res(k))|eq,

in (2) must be equal to F (k). Although the equivalent term is a theoretical

concept, an approximation can be obtained by filtering the discontinuous

term. Consequently, an estimation of the disturbance F (k) is achieved by

[33]

F̂ (k) =
h

τ

(
k2sign(res(k − 1))− F̂ (k − 1)

)
+ F̂ (k − 1) (8)

where τ is a positive constant which is set to 5 min in this work.

2.1.2. Kalman filter

Sala-Mira et al. [15] estimated the glucose derivative by a numerical

approximation. This approximation is not robust to sensor noise. In this

work, a smooth estimation of the derivative provided by a Kalman filter is

used instead.

At discrete time, the Kalman filter is implemented by difference equa-

tions that recursively estimate the unknown state vector x(k) of a dynamic
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system exploiting vectors of noisy measurements y(k) causally related to it.

In particular, we can define a discrete state-space model as [35]:




x(k + 1) = Ax(k) + Cw(k)

y(k) = Gx(k) + v(k)
(9)

where x(k) is the n × 1 state vector; y(k) is the output vector; v(k) is the

measurement noise (white zero-mean noise with variance σ2
v , and covariance

matrix R); w(k) is the scalar innovation process (white zero-mean noise with

variance σ2
w, and covariance matrix Q); A is the n × n state matrix, C the

n × 1 noise-state vector, and G is the 1 × n output vector. Note that the

subsequent formulas hold only if w(k) is uncorrelated from v(ℓ) for all k and

ℓ.

The linear minimum variance estimate of the state vector obtainable from

the measurement collected until time k –indicated by x̂(k|k)– can be updated

up to time k + 1 by using the following linear recursive equations [36]:





x̂(k + 1|k + 1) = Ax̂(k|k) +K(k + 1)[y(k + 1)−GAx̂(k|k)]

K(k + 1) = P (k + 1|k)GT [GP (k + 1|k)GT +R]−1

P (k + 1|k + 1) = [In −K(k + 1)G]P (k + 1|k)

P (k + 1|k) = AP (k|k)AT + CQCT

(10)

where P (k|k) (size n × n) is the covariance matrix of the estimation error

affecting x̂(k|k), K(k) (size n× 1) is the Kalman gain matrix, In (size n×n)

is the identity matrix, and P (0|0) and x̂(0|0) are the initial conditions.

Now, an a priori description of the unknown signal is necessary. In this

work, we assumed that process noise drives the second derivative of glucose
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with time. Thus, we used the following third-order (three-state) model [37]:

A =




1 1 0

0 1 1

0 0 1


 , C =




0

0

1


 , G = [1 0 0]

x(k) =




ĉgm(k)

d̂er(k)

f̂(k)


 , y(k) = cgm(k)

(11)

where ĉgm, d̂er, and f̂ represent glucose, rate of change of glucose, and the

second derivative of glucose with respect to time, respectively. The advantage

of the three-state model is that it captures dynamics near the maximum

(peak) and minimum (valley) values of glucose. Note that considering a

third-order model is an assumption commonly adopted on the regularity of

the process when information that we have / we want to use is minimal

[37, 38].

Finally, the Q and R matrices, i.e., the process and the measurement

noise covariance matrices (respectively), are key parameters in determining

the performance of the Kalman filter. They are defined as

Q = σ2
w, R = σ2

v
(12)

where σ2
w and σ2

v are usually unknown: in this work, we selected σ2
w = 0.01

and σ2
v = 4, as done in [37].

2.1.3. Decision rules

Two decision rules are then applied to the residuals and the glucose

derivative to determine the meal occurrence. In particular, a new detection

13



is considered if the residuals exceed a certain threshold (res(k) > ThRes)

and glucose increases at a certain rate (d̂er(k) > ThDer) [15]. Moreover,

two consecutive meal detections will be separated at least by TWshut = 90

min, in order to avoid multiple detections triggered by the same meal.

Alarm silencing strategy. Glucose data was collected (see section 2.2) using

a CGM sensor that needed calibration twice a day. These calibrations could

lead to big leaps in the CGM trace: unfortunately, the super–twisting ob-

server is not able to interpret this anomalous behaviour, leading to spikes in

the res(k) time series. For this reason, to avoid spurious false detections, we

decided to shut off the detection after a calibration for 30 min.

2.2. Real dataset

2.2.1. Data collection

Data was collected in a multicenter clinical trial [27] (www.clinicaltrials.

gov: NCT02137512), whose main phase was aimed to assess the feasibility

of a long-term AID system. In particular, in an initial phase of the study, 30

subjects spent 2 weeks at home using sensor-augmented pump (SAP) ther-

apy, which was considered for baseline comparison. In this work, we used

the data provided by this 14-day long phase to assess the performance of our

STMD algorithm. The study and all experimental procedures were approved

by local IRB/ethical committee.

Insulin was infused with a Roche Accu-Check Spirit Combo® insulin pump

(Roche Diabetes Care, Inc., Indianapolis, IN, USA), whereas glucose data

were recorded using a DexCom G4® sensor (DexCom, Inc., San Diego, CA,

USA) with a sample time of 5 min. Moreover, individuals were instructed

14
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to manually deliver a proper amount of insulin for all meals, by inserting in

the system all CHO intake. For further details on the experiment, we refer

to [27].

Finally, it should be noticed that the algorithm was tested on a dataset

collected in free-living conditions. Datasets of this type are substantially

more challenging than data collected in inpatient clinical trials (i.e., on hos-

pitalized trials) or data collected in outpatient trials with strictly regimented

protocol, because of the much larger incidence of unknown disturbances and

confounding factors.

2.2.2. Preprocessing

Dealing with experimental data of different nature (e.g., CGM and CHO

intake) poses some technical issues related to device synchronization, com-

pleteness of stored data, and reliability of the patient’s provided information.

Firstly, to fix synchronization problems, all signals were aligned to the same

time grid equally sampled at TS = 5 min. Secondly, we selected only portions

of data that have certain meal information. Even if subjects were instructed

to insert CHO intake in the system, some missed meal announcements still

occurred. Lastly, for what concerns glucose missing information, we defined

“long gap” as more than 30 minutes of missing CGM data, while “short gap”

is any gap lasting less than 30 min. Short gaps were then filled using a zero-

order hold; conversely, when a long gap occurred, the algorithm was reset,

switching it on again when the CGM time series was recovered.

To conclude, note that other, more advanced, interpolation options are

available. However, investigating them now seems less relevant since their

impact on the overall performance is expected to be limited as missed values
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are only 1.1% of all considered CGM samples.

2.3. Meal detection assessment

Here we introduce the following definitions:

– true positive (TP): when a meal is rightly detected within a detection

window DW , starting from the meal at time km and up to TWmax min,

i.e., DW = [km, km + TWmax];

– false positive (FP): when a detection at kd is triggered and no meal

occurred in the window [kd − TWmax, kd];

– false negative (FN ): when a meal occurs and no detection is issued in

the DW interval;

– late detection (LD): detections raised in the interval DWld = [km +

TWmax, km+TWmax+TWLD]. Clearly, these episodes are not counted

as TP, as they were not timely triggered, and they increase the count

of FN. Nonetheless, they can not be considered as erroneous, so they

do not increase the FP count.

Note that the calculation of true negative (TN ) is of limited interest [39],

since we are dealing with an unbalanced dataset (only 3/4 meal occurrences

per day of monitoring).

In this work, we set TWmax = 180 min, and TWLD = 120 min. A detection

window of 180 minutes is needed since the dataset included cases where

the glucose levels remain constant or even decrease within the first 1-2 h

after the subject registered the meal. Given such slow absorption periods,
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a TWmax = 180 has been considered convenient for a fair evaluation of the

algorithm. A similar time window length was considered in [40].

Once TP, FP, and FN have been found, the following metrics were used

to evaluate the proposed super–twisting-based meal detector:

precision = 100 ·
TP

TP + FP
(13)

recall = 100 ·
TP

TP + FN
(14)

F1 score = 2 ·
precision · recall

precision+ recall
(15)

Additionally, since the dataset is unbalanced, we evaluated the daily number

of FP generated by the algorithm (FP-per-day). Moreover, we calculated the

detection time (DT ) as the time between the meal occurrence and when the

alarm has raised. Please note that we did not know the exact real meal time,

but we had to rely on the time reported by the user. Finally, we reported

the carbohydrate content related to FN s (CHOFN).

2.3.1. Refinements on performance evaluation

Here we will describe some refinements used in the evaluation of the

STMD.

Firstly, note that in a meal announcement-free AID environment, hypo-

glycemia treatments (fast-acting carbohydrates consumption to avoid severe

hypoglycemia) do not need insulin injection. However, although the pro-

posed meal detector is part of a fully-automated AID system, in this work

–focusing only on the meal detection algorithm– we treated hypoglycemia

treatments as normal CHO consumption.
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Lastly, it could happen in real-data that multiple meals occur very close to

each other. For example, a subject can eat the main dish, and shortly after

insert in the system a dessert consumption; moreover, to avoid hypoglycemia,

a patient could need multiple consecutive hypoglycemia treatments. To this

end, if the data contained meals closer than 30 min, we considered only the

second one, not counting the first one neither as a TP nor as a FP.

3. Results and Discussions

3.1. Tuning of parameters

This section investigates the tuning of the STMD parameters, i.e., L,

ThRes, and ThDer.

Regarding the upper bound of the disturbance F (k), i.e., L, we performed

a preliminary analysis to find the best way to tune this crucial parameter.

In particular, using our real data, we found that the estimated disturbance

F̂ (k) calculated over night is quite different from the disturbance estimated

just after a meal occurrence. In fact, figure 2 shows the estimated distur-

bance F̂ (k) of all patients, represented as errorbar, i.e., mean and standard

deviation over the population. On one hand, on the left panel, we can see

the distribution between all meals: 0 indicates mealtime, and the blue bars

represent the estimation of F̂ (k) after a meal occurrence. On the other hand,

the right panel shows the distribution of F̂ (k) during all night periods. It

can be easily seen that the estimated disturbance during the night is smaller

than the one calculated after a meal occurrence.

For this reason, we defined and used a personalized L (and, consequently,

the gains k1 and k2) as the maximum estimated disturbance F̂ (k) calculated
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Figure 2: Distribution over the population of the estimated disturbance F̂ (k), after a meal

(left panel), or during the night period (right panel)

over the first night for each patient.

For what it concerns ThRes and ThDer, instead, for each parameters com-

bination, the performance of our algorithm on the population was considered

as a point in the [precision, recall ] space. For instance, figure 3 depicts the

performance obtained in this space, where ideal performance is achieved at

the top right corner (i.e., precision=100%, recall=100%). Each curve was

obtained for different values of ThDer and colored depending on it, while

different points of the same curve were obtained using different values of

ThRes.

In figure 3, it can be noticed that, as expected, smaller values of both

ThDer and ThRes are associated with more aggressive configurations, show-

ing higher recall in exchange for a lower precision. To find a suitable trade-off

between precision and recall, we selected the combination of [ThRes, ThDer ]
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Figure 3: Precision vs. Recall analysis: each curve is obtained using different values of

ThDer, while each point of a curve is obtained for different values of ThRes

that maximizes the population F1 score. A similar approach could be ap-

plied to obtain a personalized ThRes, ThDer, by maximizing the individual

F1 score rather than population one. However, a population-based approach

was used instead because some individuals contain only a few registered meals

(e.g., 11 out of 30 subjects have less than 20 registered meals for 14 days).

3.2. Performance of STMD on real data

Table 2 reports the performances of the STMD algorithm: all metrics

are expressed as median [interquartile range (iqr)]. Table 3 shows instead

how the STMD compares to other meal detectors evaluated with free-living

condition data in the literature. It should be remarked that due to the

use of different datasets, preprocessing techniques, and evaluation metrics,

the comparison only serves as an illustration and must be interpreted with

caution. The proposed algorithm showed a recall of 70 [13] %, very similar to
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most literature strategies [8, 9, 10], that showed recall values between 70 and

79 %. However, some literature works showed outperforming results with a

recall of about 99 % [10] or 92.5 % [8]. Conversely, the proposed method

achieves similar FP-per-day to “LDA CGM” or “Threshold Ra” in [8] while

outperforming the other algorithms.

For what concerns the detection time, as anticipated, we calculated DT as

the difference between the meal time reported by the user and its detection.

The proposed STMD algorithm achieved on average a DT = 45 min, in line

with most literature works [41, 42]. Nevertheless, a number of papers showed

better performance in terms of DT, e.g., [8]. Please note, however, that

authors in [8] estimated the meal time retrospectively: the detection time

was calculated based on a shifted time instant where glucose rate of change

was greater than 1 mg/dL/min. Finally, comparing the DT obtained in this

work with the one obtained in the original work [15] (i.e., on average DT =

30 min), we may say that real data are much more challenging than simulated

data. In fact, illness or physical activity, for example, can moderately change

the dynamics of postprandial periods in real data with respect to simulated

one, which cannot such features yet. As indicated in Section 2.3, the dataset

utilized in this work features slow postprandial absorption periods; thus, the

STMD algorithm may need time to detect the corresponding meals.

3.3. False detections analysis

In this section, we will investigate the clinical impact of FPs and FN s.

Before showing the results, we introduce two metrics widely used to quan-

titatively evaluate the quality of glycemic control: low BG index (LBGI) and

high BG index (HBGI), [43]. In particular, let cgm(k1), cgm(k2), ..., cgm(kN)
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be N CGM readings of a subject, and let us introduce the hypoglycemic risk

rl(cgm) and the hyperglycemic rh(cgm) associated to each reading as

rl(cgm(ki)) =




r(cgm(ki)) if cgm(ki) < 112.5mg/dL

0 otherwise

rh(cgm(ki)) =




r(cgm(ki)) if cgm(ki) >= 112.5mg/dL

0 otherwise

(16)

where r(cgm(ki)) = 10·cgmmod(ki)
2, and cgmmod(ki) = 1.509·(log(cgm(ki))

1.084−

5.381). Finally, the indexes are defined as:




LBGI =
1

N

N∑

i=1

rl(cgm(ki))

HBGI =
1

N

N∑

i=1

rh(cgm(ki))

(17)

(a) (b)

Figure 4: Boxplots of LBGI and HBGI for FP and FN occurrences

3.3.1. FPs’ nature and riskiness

Figure 4a reports the boxplot of the LBGI calculated 1, 2, and 3 hours af-

ter each FP occurrence (i.e., withN= 12, 24, and 36, respectively). Note that

FPs could be dangerous since they can lead to hypoglycemia. In fact, when
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(a) (b)

(c) (d)

Figure 5: Boxplots of CGM and DER values for FP and FN occurrences

used within a meal announcement-free AID system, if the STMD wrongly

detects a meal, the subsequent bolusing strategy will automatically inject

unwanted insulin. Now, figure 4a shows that after FP occurrences, the risk

of hypoglycemia is, on average, very low. In this case, an insulin injection

would not worsen an already risky situation.

Figures 5a and 5c show the distribution of cgm and der values related

to FPs, right when they occurred and 1, 2, and 3 hours afterwards. We can

see that, on average, a FP occurs with a cgm value quite high, nearly 160

mg/dL, and with a positive derivative: the glucose trace is then not in a

dangerous zone, and it is, moreover, increasing. Figure 6 shows an example

of one of these events. In the top panel, cgm values are depicted in blue,

its estimation in dashed red, and the detection in yellow triangle; in the
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Figure 6: Example of a FP

middle panel is represented the res signal, while in the bottom panel the der

signal. We can easily see that the cgm trace is rising, even if there is no meal

intake. Although not caused by a meal, these curves are still occurrences

where the cgm is rising like after a real CHO consumption. We calculated

the percentage of FPs that were similar to missed meal announcements, as

the ratio between the number of events where ∆cgm >50 within 3 hours

with starting cgm >70, and the total number of FPs: this percentage was

approximately 19 %.

To conclude, nearly 20 % of FPs had a meal-like shape, while on average

all FPs occurred with high BG values and positive derivatives.

Insulin dosing in these cases would not be so risky, as these episodes would

likely need insulin anyway.
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3.3.2. FNs’ nature and riskiness

Figure 4b reports the boxplot of the HBGI calculated for the FN occur-

rences. Note that FNs could be dangerous for hyperglycemia; if the STMD

is not able to detect a meal, a possible dangerous increase in the BG levels

will likely lead to hyperglycemia. Fortunately, figure 4b shows that after FN

occurrences, the risk of hyperglycemia is on average moderate. Even in this

case, using the STMD within a meal announcement-free AID environment

would not worsen an already dangerous situation.

To assess the behaviour of FN s using our STMD algorithm, we calculated

the percentage of FN that were hypoglycemia treatments (FNhypo). More-

over, to deal with real data issues, the STMD was shut-off in two different

cases: after a calibration and after a long period of missing data. In both

events, a number of meals could happen right during these times, but the

STMD will not be able to detect them. To quantify the number of such

events, we calculated the percentage of FN that happened after a calibra-

tion (FNcal), and the percentage of FN that happened after a reset of the

algorithm due to missing samples (FNres).

In particular, FNhypo = 14.3 %: nearly 15 % of FN s are not dangerous

since they will not need an insulin injection in a meal announcement-free

AID environment. Then, FNcal = 9.7 % and FNres = 19.9 %: therefore, a

large number of FN s are related to calibration and missed data management.

Fortunately, if the current generation of CGM systems (e.g., DexCom G6®,

[44]) had been used, the number of FN would have decreased: indeed, these

systems are calibration-free, and they embed smart algorithms to decrease

the number of missing samples.
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Finally, figures 5b and 5d report the distribution of cgm and der values

related to FN s, right when they occurred and 1, 2, and 3 hours afterwards.

The derivative is, on average, close to 0, and cgm values are not increasing

with time. Based on this analysis, several FN s happened when meals had

small and slow postprandial peaks, possibly due to an over reaction of the

feed-forward action of the SAP therapy. Moreover, a number of other FN s are

related to meals with small carbohydrate content (i.e., on average CHOFN =

32 g), and the feedback action of the AID controller will likely deal with

them.

4. Conclusions and future works

Nowadays, hybrid AID systems permit a very effective and safe T1D

management. Nonetheless, their effectiveness can be further improved: meal

announcing is a significant burden for T1D subjects that may forget or in-

accurately estimate carbohydrate, leading to a performance deterioration. A

promising solution is the use of an automated meal detection algorithm, the

first step towards a fully-automated AID.

In this work, we extended a super–twisting-based meal detector (STMD)

proposed in [15], implementing an implicit discretization and approximating

the glucose derivative with a Kalman filter. We assessed the performance

of the proposed STMD in a challenging real-life dataset corresponding to a

2-week length trial with 30 subjects using sensor-augmented pump control.

The algorithm achieved promising results: a recall of 70 [13]% (median

[interquartile range]), a precision of 73 [26]%, and 1.4 [1.4] false positives-per-

day. Moreover, an analysis of incorrect detections –performed to determine
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the nature and riskiness of false detections– showed that false positives were

related to rising glucose conditions, whereas false negatives occurred after

calibrations, missing samples, or hypoglycemia treatments. False detections

were thus related to situations with a low risk of hypoglycemia and hyper-

glycemia.

4.1. Work limitations and future developments

As described in section 2.3.1, in this work, we treated hypoglycemia treat-

ments as normal CHO consumptions and considered them to calculate the

performance metrics. However, we need to highlight that, when used within a

meal announcement-free AID system, the presented STMD algorithm should

not treat hypoglycemia treatments as meals since they will not need an in-

sulin injection.

Moreover, as introduced both in sections 3.3.1 and 3.3.2, an extensive analysis

of the impact of incorrect detections should be performed only after the

insertion of the STMD algorithm in a fully-automated AID system. In fact,

the real riskiness of both FPs and FN s should be assessed using the AID

system without meal announcement in its entirety. For example, FN s could

be easily handled by the feedback action of the closed-loop algorithm, while

meal-like occurrences not related to CHO consumption (that were considered

FPs in this work) could still benefit by the injection of a proper amount of

insulin dose by a smart bolusing strategy.

Therefore, future works will focus on the integration of the improved

version of the STMD with the other modules presented in [15] and on the

performance assessment of the achieved meal announcement-free AID system

in dedicated clinical trials.
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Table 1: List of symbols

Symbol Description

ig(t) Continuous glucose reading

cgm(k) Discrete noisy glucose monitor reading

Super-twisting-based residual generator

k1, k2 Gains

F̂ (k) Estimation of the lumped disturbance

L Upper bound of the lumped disturbance

cgmST (k) Estimation of the cgm(k) signal

res(k) Residual signal

Kalman filter

σw Standard deviation of process noise

σv Standard deviation of output noise

K(k) Kalman filter Gain

ĉgm(k) Estimation of cgm(k) signal

d̂er(k) Estimation of the first derivative of cgm(k)

f̂(k) Estimation of the second derivative of cgm(k)

Decision logic

ThRes Threshold on res(k)

ThDer Threshold on the derivative of cgm(k)

Performance metrics

DW Detection window

TWmax Maximum elapsed time between mealtime and detection

TWLD Time window for late detections
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TP [-] FN [-] FP [-]

16 [10] 6 [4] 7 [3]

Recall [%] Precision [%] F1 score [%]

70 [13] 73 [26] 68 [16]

FP-per-day [-] CHOFN [g] DT [min]

1.4 [1.4] 32 [32] 45 [45]

Table 2: Event detection metrics (median [iqr] among patients)

Algorithm Recall [%] FP-per-day [-] DT [min]

LDA Ra (in Kölle et al. [8]) 92.5 [2.0] 1.5 [0.4] 18.59 [1.84]

LDA CGM (in Kölle et al. [8]) 89.5 [4.0] 1.41 [0.42] 11.35 [2.05]

Threshold Ra (in Kölle et al. [8]) 74.5 [3.5] 1.47 [0.53] 30.94 [5.59]

GRID (in Kölle et al. [8]) 21.5 [7] 2.78 [0.41] 43.93 [4.7]

PAIN (in Weimer et al. [10]) 99 [11.26] 1.88 [0.72] -

Dassau et al. (in Weimer et al. [10]) 73.9[20.5] 1.62 [1.27] -

Lee et al. (in Weimer et al. [10]) 70.26 [20.07] 1.69 [1.21] -

Harvey et al. (in Weimer et al. [10]) 79.90 [15.10] 1.64 [1.34] -

STMD 70 [13] 1.4 [1.4] 45 [45]

Table 3: Performances’ comparison between proposed STMD algorithm and other litera-

ture works on real data (as median [iqr])
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