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Abstract 

In this paper, a parametric study of the Stress Concentration Factor (SCF ) has been carried out 

in cylindrical pressure vessels with circular holes. A three-dimensional finite element analysis 

has been carried out performing a variation of dimensionless parameters (thickness ratio, size 

ratio and aspect ratio) exploring a wider range than other investigations, using dimensionless 

parameters (thickness ratio, size ratio and aspect ratio) with a wider study range compared to 

other investigations. It is observed that the maximum value of the SCF  increases as the hole size 

ratio and the aspect ratio increase, although the location of the maximum SCF  is located from 

the internal area of the vessel to the external part depending on the geometric configuration, 

defining thus three differentiated zones. Additionally, in the final part of the document, a fit 

model is defined to determine the value of the maximum SCF  for different continuous values of 

the defined dimensionless parameters. This model allows to quickly calculate or locate from a 

contour map the maximum value of SCF  for a specific geometry of pressure vessel. 

Keywords: stress concentration factor, thick pressure vessels, crossholes, high-pressure 

vessels, finite element method. 

1. Introduction

Pressurized vessels (tanks and pressurized fluid pipelines) have various applications both in

industrial processes and research, and holes are commonly found in their walls to connect with 

other elements or accessories related to the process to be developed, to measure some variable or 

simply as sight window [13,16,18,22]. The presence of these holes in the pressure vessels, acts 

as a concentrator of stresses, increasing significantly the local stress than those present at normal 

section of the vessel, without any concentrator. The stress concentration depends mainly on the 

geometric characteristics of the vessel, the hole, its position, alignment and inclination [19].  
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An important indicator is the Stress Concentration Factor (SCF ), which relates the maximum 

stress near of hole in the vessel, with the maximum stress of the same container without hole. 

This indicator is often used in the design of pressurized cylindrical vessels to preliminarily 

estimate the stresses to which the vessel is subjected and thus determine different additional 

variables such as size, thickness, geometry and indirectly make a budget of the project. 

The aim of this paper is to study the behavior of SCF  in cylindrical pressure vessels with 

circular holes through its wall, with the thickness ratio, the aspect ratio or slenderness and the 

size ratio of the hole with respect to the internal diameter of the cylinder as variables. To get a 

global understanding of SCF  behavior, the parametric variation range of the considered variables 

is wider than what explored in other studies [2,14,15,17,23], and the location of maximum stress 

and SCF  maximum values due the hole have been determined using a Finite Element Analysis 

(FEA) software. 

This document is structured in six sections. Section 2 shows the state of the art related to 

behavior of SCF  pressure vessels with holes. In section 3, the parameters and operating 

conditions established for the simulations are disclosed, as well as the identification of the points 

of interest where the maximum SCF  is presented. Subsequently, section 4 presents the results 

and its discussion, including SCF  value and location analysis respect to variations of geometric 

parameters and the contrast with the data found by other authors. 

In section 5, a correlation from the continuous analysis of the three geometric relationships 

previously established in the study (thickness ratio, aspect ratio and hole size ratio) is proposed, 

in order to mathematically predict the value of the SCF  for any geometry that can be used in a 

cylindrical pressure vessel. Finally, section 6 presents the main conclusions of the study and 

possible future work. 

2. Theoretical background

Geometric variables related to this type of concentrators are mainly derived from the

geometry of the vessel and the holes they have. According to Figure 1, the following geometric 

variables are defined in a closed end cylindrical vessel with a crosshole: main cylinder length (L

), outer radius of the cylinder (
eR ), inner radius of the cylinder (

iR ) and hole radius (
aR ). 

The relationships between these geometric variables define dimensionless parameters that 

enable to compare to related investigations [4,11,20]. These dimensionless relationships are 

defined as: thickness ratio ( /e iR R ) obtained from relating the external and internal radius of the 

cylinder, aspect ratio or slenderness calculated from the ratio between cylinder length and the 

outer diameter ( / 2 eL R ), and the size ratio of the hole derived from the ratio between the radius 

of the hole and the inner radius ( /a iR R ). 

Other authors have used similar parameters, with some variations in their definitions and 

values [11,19]. Specifically, aspect ratio or slenderness values are defined based on specific 

investigation objectives, and their definition is different and in some cases are not clearly 

indicated. Makulsawatudom et al. [14] and Camilleri et al. [2] used a ratio of / 2 1eL R ; Dixon 



et al. [4] used the Decay cylinder length concept, Masu [15] used / 2 2eL R ; Kharat [9] used a 

ratio / 2 3eL R ; Iwadate et al. [8] used a / 2 eL R ratio between 2.7 and 3.2; Raju [23] used a 

ratio / 2 1.2eL R ; and finally Kihiu et al. [12], Adenya [1] and Nihous [19] used a L  value of 

nine times the wall thickness. The ranges of the parameters considered by the cited authors are 

summarized in Figure 2. 

Figure 1: Reference geometry and nomenclature in cylindrical vessels. 

In any case, the SCF  calculated by several authors retains the concept of relating the 

maximum stress of the vessel with hole and the maximum stress of the same vessel without hole. 

The maximum tangential stress on a cylinder without a hole is calculated with equation (1) 

proposed by Lamé [24], where 
eR and 

iR , are respectively the external and internal radii of the 

vessel and p is the internal pressure of the vessel. Lamé equations assume a homogeneous and 

isotropic material with linear elastic deformations. 
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In closed ends cylindrical vessels without crosshole, the tangential stress ( ) or Hoop Stress 

( Hoop ), are equal to the maximum main stress (
1max

). However, to perform the calculation of the 

SCF in pressure vessels with crosshole, different relations are used according to the specific aim

of the study and there is not consensus among the authors. The maximum stresses and their 

respective SCF  are indicated as: the maximum tangential or hoop stress (
max

) and 
maxSCF

(equation 2), the maximum main stress (
1max

) and 
1maxSCF  (equation 3), the maximum shear 

stress (
max

) and 
maxSCF (equation 4), and the maximum equivalent or maximum von Mises 

stress (
emax

) and 
emaxSCF  (equation 5), where 

ec
, is the value of the equivalent stress of plain 

cylinder calculated from the Lamé solution [3]. 



Figure 2: Ranges of values for the parameters analyzed by different authors. 
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Table 1 presents a summary of types of SCF  estimated by each author using equations 2-5 

and the methodology employed. The SCF  values found by each author vary depending on the 

relationships established, and the way in which the study was conducted, either analytically, by 

finite element models or experimental test. 

Autor max 1max max emax FEM 

Faupel [6] a X 

Morrison [17] a X X X 

Gerdeen [7] b X 

Iwadate [8] a X 

Masu [15] X X 

Kihiu [12] X X 

Comlekci [3] X X X 

Dixon [5] X X X 

Camilleri [2] X X 

Nihous [19] X X 

Adenya [1] X X 

Kharat [9] a X 

Raju [23] X X X 

Nziu [20] X X 

Table 1: Types of calculated stress and related methodology. 
a Experimental method, b Analytic method 

The following sections present a global study, using wider ranges of geometric relations, 

allows comparison with other results found in the literature. This approach, also enable to learn 

more about the trend in location and value of the maximum SCF  in cylindrical vessels with 

holes. 

3. Simulation setup and validation

In this study, it is considered a thick-walled cylinder with closed ends and a crosshole whose

geometric variables, 
aR , 

eR , 
iR and L , as shown in Figure 1, related to each other to obtain 

dimensionless parameters that can be subsequently compared to the results obtained by other 

authors. For the cylinder with crosshole centered on both, length and diameter, 1008 models 

were considered taking different values of geometric relations, /e iR R , / 2 eL R and /a iR R as

shown in Table 2. A fixed value of 
iR was defined for all models, 100mm, similar to the study 

conducted by Comlekci et al. [3]. Values lower than / 1.125e iR R  were not considered since 

usually considered to correspond to the thin sheet theory which is beyond the scopes of this 

study. According to the range given in Table 2, the L  values were between 84mm and 1600mm; 

eR between 112mm and 400mm and 
aR between 1.25mm and 98.75mm; considering that in the 

range of /a iR R between 0.9 and 0.9875 for values of / 2 eL R equal to 0.625, 0.75 and 0.875 are 

geometrically incompatible. 



Parameter Values 

/e iR R 1.125, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 3, 4 

/a iR R
0.0125, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.975, 0.9875 

/ 2 eL R 0.625, 0.75, 0.875, 1, 1.5, 2, 3, 4 

Table 2: Established values for the simulations. 

To study the effect of geometry on generated stresses for a cylindrical pressure vessel, the 

simulation was conducted using ANSYS Workbench, applying parametric functionality to vary 

the dimensional values of the cylinder and holes to get the parameters values predefined and 

specific results (maximum principal stress and its 3D position). For all simulations, the modeling 

of 1/8 of a symmetrical cylinder was performed, with respect to three planes of symmetry 

(Figure 3). First plane (face E) is perpendicular to the base F that passes through the center of the 

cylinder and the hole, the second plane (face D) perpendicular to face E and base F and passes 

through the center of the cylinder and the third plane (face C) parallel to base F and passes 

through the center of the hole. Figure 3 (left side), shown an example of the geometry used for 

simulations. 

An unstructured mesh using three dimensional tetrahedral solid elements, 10−node 

isoparametric (Solid187 elements) was used in order to adapt mesh to huge number of models. 

Because the variation in stress values occurs mainly around the edges and corners near the hole, 

and according to the FEA results of Comlekci [3] and Nihous [19], a local refinement was 

included for the mesh. Figure 3 (right side) shown the refinement detail. This refinement, similar 

to Nihous [19], leads sizing of the elements close to the selected edges achieving a balance 

between the processing time and the reliability of the data obtained in the area of interest, getting 

a precise identification of the position of the maximum principal stress in zones nearest or along 

the edges of the hole. Due to the dimensional difference of the models presented in Table 2, 

especially the length, reference mesh sizes were used, carrying out the respective mesh 

convergence for each model; thus obtaining, in general, seed elements from 5mm and adapted 

according with total volume for each model. 

Figure 3: Mesh of 1/8 cylinder. Left-General view, Right-Refinement in areas of interest. 

Regarding the boundary conditions, a vessel with closed ends was assumed, then, base F was 

studied as completely rigid, while the faces D and E were considered deformable in the radial 

and longitudinal directions. In addition, a distributed load was applied to face C according to the 

load applied by the rigid closed ends, taking into account 1/4 of this load and the geometry for  



each simulation. The internal pressure of the cylinder for all simulated models was imposed at 

17.5Mpa and this value was applied both to the internal surface of the cylinder (B) and to the 

surface of the hole (A). To analyze each model, a carbon steel material with a modulus of 

elasticity of 200Gpa, a Poisson’s ratio of 0.3, a yield strength (
yS ) of 250Mpa and an ultimate 

strength (
uS ) of 400Mpa was used, applying a linear stress analysis. Table 3 summarizes main 

issues related to simulation. 

Information Description 

Software ANSYS Workbench 

Element 3Dsolid 10−node isoparametric, Solid187 

Mesh Unstructured Mesh. Refined in specific Edges 

Symmetry 3 planes 

Internal Pressure 17.5MPa 

Material Carbon Steel Linear elastic 

Analysis Type Parametric Linear elastic 

Geometric variables /e iR R , /a iR R and / 2 eL R

Output Max Principal Stress and its 3D Location 

Simulated models 1008 

Table 3: Simulation conditions. 

In order to validate the parametrization of the mesh, simulations of vessels without hole (

/ 0a iR R ) are initially performed for all ranges of /e iR R and / 2 eL R shown in Table 2 and 

these results are compared with equation 1 proposed by Lamé. In Figure 4, it is observed that the 

principal stress values for different thickness and aspect ratios are properly adjusted to the Lamé 

equation, finding a maximum average deviation of 8.5% for the thickness ratios /e iR R smaller 

and tending to decrease to one third at higher values of /e iR R , showing that the mesh 

parameterization used in the simulations is consistent with the Lamé equation. In general, it is 

observed that for aspect ratios / 2 eL R  less than unity and for values of /e iR R close to 1, the 

deviations of the simulation with respect to the calculation with equation 1 increase. A final post 

process was performed to estimate the 
1maxSCF  (equation 3), from 

1max
 obtained from 

simulations and Hoop  calculated from Lamé equation. 

4. Results and discussion

In this section, the results obtained from the simulations are shown taking into account the

different possible combinations of Table 2, where an elastic linear analysis was carried out, 

finding that in most of the cases analyzed (approximately 60%) the maximum SCF  is located in 

the G corner of the hole (see Figure 3 left side), which in agreement with various studies that 

define corner G as the most critical [14,20]. However, Nziu [20] highlights that for certain 

configurations of /a iR R  and /e iR R , the maximum stress was not found in the corner G of the 

hole but on the edge adjacent to the cylinder (edge G-J in the Figure 3 left side). 



Figure 4: Validation of mesh parameterization with Lamé’s equation for cylinders without holes. 

From the results obtained from the present study, it is observed that in thick-walled cylinders 

with very small holes, the location of the point of maximum stress moves from the corner G to 

the exterior of the cylinder (edge G-H in Figure 3 left side), such as it is observed in Figure 5 for 

a 75mm thick wall thickness with a maximum stress located 1mm from the corner G on the edge 

G-H. Figure 6 shows a cylinder with the same values of /a iR R and / 2 eL R of the previous case 

but with a thicker wall, 200mm, showing that the behavior is similar to that shown previously, 

moving along the edge G-H outwards. 

Figure 5: Point of maximum stress for / 0.0125a iR R ; / 1.75e iR R  and / 2 3eL R . Left-General 

View and Right-Detail of the position of the maximum main stress point. 

On the other hand, when reviewing values of / 1.125e iR R  and / 2 1.5eL R  for different 

values of /a iR R ; the displacement of the maximum point SCF is notable. In Figure 7a, it is 

observed that for values of /a iR R close to 0.5 the point of maximum principal stress is located

slightly away from the corner G on the edge G-J and as the ratio /a iR R increases, the maximum

SCF moves on the same edge (G-J) moving further away from the corner G (Figure 7b), even

reaching values close to / 2aR  (Figure 7c). In other more critical cases, as /a iR R approaches 1, 

the point of maximum stress after moving away from G on edge G-J, also moves outwards, thus 

finding the maximum SCF  covering part of face A as seen in Figure 7d and Figure 7e. The 

above is an extreme case, close to the theory of a thin sheet for vessels (cylinder wall thickness 

is less than 10% of the cylinder radius [24]), which makes it difficult to propose an analytical 

theory, due to the change in position point of maximum stress. Finally, for values of / 2 eL R  less 



than unity, the behavior is similar to that shown in Figure 7d and Figure 7e; i.e , the maximum 

SCF  is presented on face A. 

Figure 6: Point of maximum stress for / 0.0125a iR R ; / 3e iR R  and / 2 3eL R . Left-General View 

and Right-Detail of the position of the maximum main stress point. 

Figure 7: Point of maximum stress for / 1.125e iR R  and / 2 1.5eL R . 

Figure 8 represents the location of the maximum SCF  presenting the percentage of the radius 

of the hole 
aR on the abscissa (X axis), showing how far the maximum SCF is from corner G 

along edge G-J, and on the ordinate (Y axis) the percentage of wall thickness, showing how far 

the maximum SCF  is from the corner G by the normalized edge G-H with respect to the 

thickness of the cylinder. Figure 8 shows that most of the cases are in the area near the corner G, 

especially on the edge G-J, edge G-H and on the surface A. The other points are seen on the 

surface A and in some of the simulated cases, the point of maximum SCF  extends to outer 

cylinder wall (100% wall thickness).  

In order to deepen and link the location of the points in Figure 8 with the thickness ratio (

/e iR R ) and the hole size ratio ( /a iR R ) for all aspect ratio ranges ( / 2 eL R ) studied, in Figure 9 

different zones are shown depending on these relationships. 



Figure 8: Location of the maximum SCF  for all the values studied. 

It is possible to see that for all the cases of / 0.3a iR R , independent of the other variables, 

the point of maximum SCF  is located in the corner G, which coincides with the studies of Nziu 

[21]. Thus, the Figure 9 is divided into three zones, depending on the possible combinations with 

the other geometric relationships throughout its range. A first zone named Z1 for combinations 

with values of / 0.3a iR R ; a second zone called Z2 for combinations with / 0.3a iR R , and a 

third zone called Z3 for combinations with / 0.3a iR R .  

Zone Z1, is delimited by the blue dotted line, corresponding to values of / 0.3a iR R  and 

where the points of maximum SCF  move moving away from point G on edge G-J as /a iR R

increases until it reaches a value close to 0.5, where the distance is approximately 70% of the 

hole radius, and then moving away towards the center of surface A for values of / 0.5a iR R

reaching in some cases up to the outer wall of the cylinder. The Z3 zone delimited by the solid 

red line corresponds to values of / 0.3a iR R , where the maximum point SCF  is not located 

beyond 40% of the hole radius and all the values of this zone come off the surface internal up to 

a maximum of 50% of the wall thickness. As the values of /a iR R approach zero, the values have

more dispersion in the delimited zone; which may be an effect of the size of the hole in the 

model and it is consistent with most of the Nziu data [21]. 

The zones previously described show the limit zones of the values of /a iR R . It is also 

possible to see that for the same value of /a iR R , the limits for the values of /e iR R close to 1.25 

tend to be further away from the internal surface of the cylinder, while those values closer to 3.0 

are closer to both the inner surface and the corner G. Figure 10 clearly shows this last variation 

for /e iR R  in the area near the corner G. The variations of / 2 eL R distribute the data in the areas 

delimited by the other two variables, making the locations move towards or away from the G 

corner. 

The detail of the position in zones close to the corner G (Figure 10), can be very useful for 

designers of this type of vessels, since it allows easy positioning the maximum SCF  or at least 

know the tendency that these may present in failure analysis investigations with similar 



geometric relationships. 

Figure 9: Maximum SCF  location zones. 

Figure 10: Detail of the location zones of the maximum SCF . 

Figure 11 shows the location of these maximum points as a function of the combinations of 

/a iR R , /e iR R  and / 2 eL R  and the zones described above, which are delimited by envelopes with 

iso-values of / 2 eL R . In Figure 11 the values of / 2 2eL R  are shown, since it is a value widely 

used in this type of study and the directions to where these enveloping limits move are indicated 

with arrows. 

Analyzing Figure 11, when using combinations of values of / 0.3a iR R  and / 1.75e iR R  the 

position will always be in the corner G (zone Z2). For combinations of values of / 0.3a iR R  and 

/ 1.75e iR R  and depending on the envelopes / 2 eL R , the maximum point SCF will be located in 

zone Z2 or in the zone Z1. For combinations of values of / 0.3a iR R  and / 1.5e iR R , it depends 

on the value of / 2 eL R ; thus, for values of / 2 eL R close to the lower limit of the study, 0.75, the 

point of maximum SCF  is in the corner G; as the values of the envelopes / 2 eL R increase, the 



probability that the maximum point SCF  is in zone Z2 increases, too. 

Figure 11: Location of maximum point of SCF  and comparison with data from Nziu and Masu [18] 

(circles). 

The results shown in zone Z3 of the present study coincide with the results of Masu [15], 

Makulsawatudom [14], Kihiu [10] and Adenya [1]. Also, the results of the present study are 

consistent with the data of Nziu y Masu [21] (shown as circles in Figure 11), which provide 

more information on the positions of the maximum SCF . 

Figure 12 shows a comparison between some values of /e iR R for / 2 2eL R  with the data of 

various authors who evaluated cylinders with through holes such as Masu [15], Dixon [4], 

Nihous [19] and Nziu [20], finding average percentage deviations lower than 6% and with a 

standard deviation of 0.084. 

Finally, in Figure 13, the maximum SCF  data for all ranges of the dimensionless parameters 

studied in this document are exposed, showing that for each value of / 2 eL R the SCF increases

as parameter /e iR R  gets smaller for values of /a iR R between 0.2 and 0.4; for values of /a iR R

less than 0.1 the SCF  increases as the parameter /e iR R is larger and lastly, values of /a iR R

greater than 0.4 do not follow the same trend for small values of /e iR R  (1.125, 1.25 and 1.5). 9.1 

was the highest SCF  value found (for / 1.25e iR R ; / 2 4eL R ; / 0.9875a iR R ) and the lowest 

value was 2.4 (for / 1.25e iR R ; / 2 0.0625eL R ; / 0.6a iR R ). For all values of /e iR R with values 

of / 2 0.75eL R , and /a iR R nearest to 0.1, the SCF values are between 2.8 an d 3.2 showing a 

commune zone of inflection, that are also shown by other authors and suggest a relative low 

sensibility to the /e iR R , and / 2 eL R parameters for / 0.1a iR R  values. 



Figure 12: Comparison of SCF  from simulations (lines) with other authors for / 2 2eL R  and 

different values of /e iR R . 

5. Fit model using dimensionless parameters

Once all the results of the simulation have been obtained, Figure 13 shows the effect of the

geometric relationships on the SCF . It is of great interest for the design of pressure vessels with 

large holes, to have an equation that allows to easily finding the value of SCF  for a specific 

geometric configuration, based on the geometric relationships discussed in the previous sections. 

In this way, in order to obtain an adequate fit model, the authors initially analyze the sensitivity 

of SCF  to /a iR R  while keeping /e iR R  and / 2 eL R  fixed. Subsequently, only parameter / 2 eL R

is kept fixed and it is observed how SCF  varies as a function of /e iR R . According to these 

variations, the authors propose equation 6, which does not have a physical or theoretical 

meaning of the SCF , but of the effect of the geometric relationships ( /a iR R  and /e iR R ) in SCF

obtained from the simulations. The variables included in the model are limited to /a iR R and 

/e iR R for different values of / 2 eL R , to limit the complexity and length of the model.

/
/a iR R

a iSCF e cos R R (6) 

where; 

/e iA B sin C R R D

* /e iE cos G R R H I

/e iJ K R R

/
´ /e iM R R

e iL e cos N R R O P

´RQ e cos S T U

/ 0.65e iR R



Figure 13: Evolution of SCF  for different values of /e iR R , /a iR R , and / 2 eL R . 

To this aim, the authors use the Statgraphics software, which allows statistical determination 

of the values of each of the constants (A  to U ) of equation 6, taking into account the evolution 

shown in Figure 13. In this way, the global fit model presented in equation 6, predicts the stress 

concentrator factor (SCF ) as a function of the size ratio ( /a iR R ), the thickness ratio ( /e iR R ) and 

applies to different aspect ratio ( / 2 eL R ) by varying the constants from A  to U (Table 4, Table 5 



and Table 6). 

As an example, for / 2 2eL R , Table 4 shows the estimated values for each constant (A to 

U) through the statistical study using the Marquardt estimation method (Statgraphics software),

with a correlation coefficient 2R  of 99.08%, showing a good fit of the proposed model to the

simulation data obtained. Table 4 shows the asymptotic error and the intervals (lower and upper)

for a 95% confidence interval.

Estimate Error Lower Upper 

A 5.87243 0.0980817 5.67842 6.06645 

B 2.35371 0.0561608 2.24262 2.4648 

C -107.97 1.23176 -110.407 -105.534

D 320.078 2.60091 314.933 325.222

E -5.67637 0.139752 -5.95282 -5.39993

G -116.331 0.660023 -117.636 -115.025

H 67.718 2.50167 62.7695 72.6666

I 5.3465 0.209388 4.93231 5.76069

J 3.61627 0.114802 3.38917 3.84336

K -0.85885 0.0452558 -0.948371 -0.76933

Ĺ 1976.53 278.557 1425.51 2527.55

M -0.968788 0.0625958 -1.09261 -0.844967

N -42.6847 2.27992 -47.1946 -38.1748

O -388.765 3.5646 -395.816 -381.713

P 209.342 9.00266 191.534 227.15
Q 328.936 77.8571 174.926 482.945

Ŕ -2.13934 0.283113 -2.69937 -1.57931

S 34.0433 7.14803 19.9037 48.1828

T -659.491 6.50134 -672.352 -646.631

U -58.1806 1.58785 -61.3216 -55.0397

Table 4: Statistically estimated constants for / 2 2eL R . 

Figure 14 shows the evolution of SCF  obtained from the model (equation 6) for an 

/ 2 2eL R for different values of /a iR R and /e iR R . When comparing Figure 14 (model) with 

Figure 13 (for the same value of / 2 2eL R ), the good fit obtained statistically is evidenced,

showing negligible differences when /a iR R approaches zero.

Similarly, the fit model (equation 6) is applied for different values of / 2 eL R and for each of 

these the constants and the correlation coefficient ( 2R ) are obtained again as shown in Table 5 

and Table 6. The variable / 2 eL R  has not been introduced in the correlation (equation 6) in 

order not to be excessively complex. 



Figure 14: SCF  obtained from the model for / 2 2eL R . 

/ 2 eL R

0.625 0.750 0.875 1.000 

A 5.17719 4.58489 4.82469 4.99127 

B 2.35575 1.51165 1.39513 1.22057 

C -119.922 -114.529 -98.0588 -102.245

D 433.053 441.797 423.765 423.419

E -3.59702 -2.35017 -2.01924 -2.01616

G -123.512 -119.201 -104.127 -111.739

H 164.343 174.543 160.867 164.606

I 3.58965 2.44007 2.52638 3.04155

J 2.04636 3.18506 2.41475 3.35661

K -0.44879 -0.794853 -0.519778 -0.774697

Ĺ 4914.59 3773.13 2848.51 3204.92

M -0.57629 -0.398451 -0.308604 -0.324903

N -20.1416 -18.9695 -17.92 -16.1582

O -426.597 -431.345 -434.216 -436.537

P 583.565 756.521 763.487 764.764
Q 3686.35 307.061 242.66 270.22 

Ŕ -3.73822 -1.22322 -1.06648 -0.910646

S 36.1436 38.3746 33.9955 30.1892

T -656.486 -657.797 -648.241 -643.339

U -52.1502 -37.4654 -35.5196 -28.9093
2R 86.6% 89.1% 92.9% 96.8% 

Table 5: Statistically estimated constants for / 2 1eL R . 

The tabulated values in Table 5 and Table 6, are useful in future studies to obtain an exact 

value of the SCF  as a function of the dimensionless parameters /e iR R , /a iR R and / 2 eL R . 

Figure 15 shows a contour map that allows to quickly locate and know the value of SCF  for any 

value of /e iR R , /a iR R and / 2 eL R within the ranges established in this study (Table 2). In this 

way, values of / 2e iR R  the SCF  increases as / 2 eL R and /a iR R increase and for values of 

/ 2e iR R  the SCF  is no longer dependent on the aspect ratio / 2 eL R . In Figure 15, the small 



dark areas (for /e iR R equals 1.125, 1.25 and 1.5), represent geometrically incompatible zones

and therefore these combinations were not taken into account during the study. 

Finally, comparing the simulation data (Figure 13) with the fit model data (Figure 15), a 

clear correspondence of the SCF  values is observed, although the contour map allows us to 

observe the continuous behavior of the SCF  when varying the dimensionless parameters /a iR R

and / 2 eL R  for each value of /e iR R . Thus, it is concluded that the SCF increases gradually as 

the cylinder aspect ratio increases and the hole size increases, for all values of /e iR R . 

/ 2 eL R

1.5 2.0 3.0 4.0 

A 5.07909 5.87243 5.89189 5.88183 

B 1.53149 2.35371 2.20899 2.16963 

C -86.778 -107.97 -94.9887 -74.6168

D 300.428 320.078 268.044 210.921

E -2.98539 -5.67637 -4.4904 -4.00222

G -109.54 -116.331 -108.754 -96.8276

H 73.0618 67.718 42.4599 12.6292

I 4.00825 5.3465 5.26064 5.09826

J 4.29287 3.61627 2.1793 1.86163

K -1.09777 -0.85885 -0.21861 -0.0734957

Ĺ 2191.99 1976.53 618.216 68.1164 

M -0.506532 -0.968788 -1.10092 -0.200859

N -17.6558 -42.6847 -94.2791 -110.085

O -432.097 -388.765 -293.17 -256.044

P 374.406 209.342 136.559 135.763
Q 208.425 328.936 278.119 1026.96

Ŕ -1.85469 -2.13934 -3.19082 -4.15783

S 67.3123 34.0433 -0.405139 18.8221

T -686.665 -659.491 -667.505 -664.201

U -54.4126 -58.1806 -62.6983 -61.5961
2R 98.6% 99.1% 99.0% 99.2% 

Table 6: Statistically estimated constants for / 2 1eL R . 



Figure 15: Global evolution of the SCF  obtained from the model. 

6. Conclusions

In this document, a three-dimensional finite element study was carried out to identify the

maximum SCF  and its location in pressure vessels with circular crossholes. This study was 

carried out using a wider range of geometric relationships used by other authors; this aspect 

enabled not only to compare the results of the present study with the particular results obtained 

by other authors but also to identify the behavior of the maximum SCF  and its location in a 

wider range of geometric configurations ( /e iR R  between 1.125 and 4, /a iR R between 0.0125 

and 0.9875, and / 2 eL R between 0.625 and 4).  

From state of the art review, there is a lack of consistency in the methodology for the 

estimation of the SCF  for a given geometry in pressurized vessel with orifices, no clear 

consensus among authors, finding at least four different ways to calculate it: 
maxSCF , 

1maxSCF , 

maxSCF , 
emaxSCF . In this study, initially a parametric validation of the mesh was carried out using 

the Lamé equation for cylinders without crosshole, finding a maximum average deviation of 

8.5% for the smallest /e iR R thickness ratios. Subsequently, for the 1008 models of pressure

vessel with crosshole, the maximum SCF 1max has been used and its respective location, 

establishing in this way three specific zones. 



From the established zones, it was possible to identify that in most of the cases analyzed 

(approximately 60%) the maximum SCF  is found in the corner G of the hole that corresponds to 

zone Z2 with values of / 0.3a iR R . The other cases analyzed are distributed in zones Z1 and Z3. 

The Z1 zone corresponds to values of / 0.3a iR R  and where the points of maximum SCF  move 

away from point G up to 70% of the radius of the hole (edge G-J) as /a iR R  increases. From that 

70% it tends to move on the surface A for values of / 0.5a iR R , reaching even in some cases up 

to the external wall of the cylinder. Regarding the Z3 zone for values of / 0.3a iR R , the points 

of maximum SCF  are located in an almost triangular area defined by the corner G, 40% of the 

radius of the hole (edge G-J) and 50% of the wall thickness (edge G-H). 

In general, the influence of the aspect ratio, / 2 eL R , both on the position and on the value of 

the maximum SCF  was determined, finding that values below 2 have a high impact on the value 

of the maximum SCF , while values above 3 have no influence on said value. Regarding the 

location, although it depends on the other variables, small values of aspect ratio place the 

maximum stress point in zone Z2 (corner G) and high values of aspect ratio place the maximum 

SCF  in zones Z1 or Z3, depending on the values of the other parameters. 

Once the maximum SCF  and its location have been determined, the information given here is 

useful for the design of cylindrical vessels with holes with different geometric configurations. In 

fact, from the present study it has been possible to show that always taking the location of the 

point of maximum stress in the corner G as a unique design criterion is not suitable, since the 

maximum value of SCF  can move away from the corner G depending on the geometric 

configuration, according to the zones established in this study. 

Finally, a fit model has been proposed, which is statistically representative of the data 

obtained from finite elements and allows determining the SCF  as a function of /a iR R  and /e iR R

valid for different values of / 2 eL R . Thus, the model defined in equation 6 is useful in the 

design of pressure vessels with hole, since it allows to obtain in a simple and fast way an 

accurate value of the maximum SCF  by varying the dimensionless parameters. In addition, a 

contour map has been included, which allows to observe the behavior of the SCF  continuously 

by varying /a iR R , / 2 eL R and /e iR R . Thus, globally for all the values of /e iR R , it is observed 

that the SCF  gradually increases as the relationship between slenderness and hole size increases. 

Acknowledgements 

The researchers appreciate the support of the Colombian School of Engineering Julio 

Garavito in the development of the project. 

References 

[1] C.A. Adenya, J.M. Kihiu, Stress concentration factors in thick walled cylinders with

elliptical cross-bores, in: 2010: pp. 181–200.

[2] D. Camilleri, D. Mackenzie, R. Hamilton, Shakedown of a thick cylinder with a radial

crosshole, Journal of Pressure Vessel Technology. 131 (2008).



[3] T. Comlekci, D. Mackenzie, R. Hamilton, J. Wood, Elastic stress concentration at radial

crossholes in pressurized thick cylinders, Journal of Strain Analysis for Engineering Design.

42 (2007) 461–468.

[4] R.D. Dixon, D.T. Peters, J.G.M. Keltjens, Stress concentration factors of cross-bores in

thick walled cylinders and blocks, Journal of Pressure Vessel Technology. 126 (2004) 184–

187.

[5] R. Dixon, D. Peters, J. Keltjens, Stress concentration factors of cross-bores in thick walled

cylinders and square blocks, American Society of Mechanical Engineers, Pressure Vessels

and Piping Division (Publication) PVP. 436 (2002).

[6] J.H. Faupel, D.B. Harris, Stress concentration in heavy-walled cylindrical pressure vessels -

Effect of elliptic and circular side holes, Industrial & Engineering Chemistry. 49 (1957)

1979–1986.

[7] J.C. Gerdeen, Analysis of stress concentrations in thick cylinders with sideholes and

crossholes, Journal of Engineering for Industry. (1972) 815–824.

[8] T. Iwadate, H. Takeda, K. Chiba, J. Watanabe, Safety analysis at a cross-bore corner of high

pressure reactors, Journal of High Pressure Institute of Japan. 23 (1985) 245–253.

[9] A.R. Kharat, V. Kulkarni, Analysis of stress concentration at opening in pressure vessel

using ANOVA, International Journal of Research in Engineering and Technology. 03

(2014) 261.

[10] J.M. Kihiu, G.O. Rading, S.M. Mutuli, Overstraining of flush plain cross-bored cylinders,

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical

Engineering Science. 218 (2004) 143–153.

[11] J.M. Kihiu, G.O. Rading, S.M. Mutuli, Universal SCFs and optimal chamfering in cross-

bored cylinders, International Journal of Pressure Vessels and Piping. 84 (2007) 396–404.

[12] J. Kihiu, G. Rading, S. Mutuli, Geometric constants in plain cross-bored cylinders, Journal

of Pressure Vessel Technology - Transactions of The Asme. 125 (2003).

[13] S.K. Koh, Fatigue analysis of autofrettaged pressure vessels with radial holes, International

Journal of Fatigue. 22 (2000) 717–726.

[14] P. Makulsawatudom, D. Mackenzie, R. Hamilton, Stress concentration at crossholes in thick

cylindrical vessels, The Journal of Strain Analysis for Engineering Design. 39 (2004) 471–

481.

[15] L.M. Masu, Cross bore configuration and size effects on the stress distribution in thick-

walled cylinders, International Journal of Pressure Vessels and Piping. 72 (1997) 171–176.

[16] L. Mizzi, A. Spaggiari, Stress concentrations in skew pressurized holes: A numerical

analysis, International Journal of Pressure Vessels and Piping. 194 (2021) 104510.

[17] J.L.M. Morrison, B. Crossland, J.S.C. Parry, Fatigue strength of cylinders with cross-bores,

Journal of Mechanical Engineering Science. 1 (1959) 207–210.

[18] K.B. Mulchandani, D.P. Shukla, Photoelastic investigation of stress intensifications in the

interacting nozzle attachment region of pressure vessels, The Journal of Strain Analysis for

Engineering Design. 30 (1995) 167–174.

[19] G.C. Nihous, C.K. Kinoshita, S.M. Masutani, Stress concentration factors for oblique holes

in pressurized thick-walled cylinders, Journal of Pressure Vessel Technology. 130 (2008).

[20] P.K. Nziu, L.M. Masu, Cross bore size and wall thickness effects on elastic pressurised

thick cylinders, International Journal of Mechanical and Materials Engineering. 14 (2019) 4.

[21] P.K. Nziu, L.M. Masu, Cross bore geometry configuration effects on stress concentration in

high-pressure vessels: a review, International Journal of Mechanical and Materials

Engineering. 14 (2019) 6.



[22] R. Payri, F.J. Salvador, J. Gimeno, O. Venegas, Study of cavitation phenomenon using

different fuels in a transparent nozzle by hydraulic characterization and visualization,

Experimental Thermal and Fluid Science. 44 (2013) 235–244.

[23] G. Raju, K.H. Babu, N.S. Nagaraju, K.K. Chand, Design and analysis of stress on thick

walled cylinder with and with out holes, Int. Journal of Engineering Research and

Applications. 5 (2015) 75–83.

[24] S.P. Timoshenko, J.N. Goodier, Theory of elasticity, 2nd ed., McGraw-Hill Book Company,

1951.


