

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/200496

Scaranti, GF.; Carvalho, LF.; Barbon Junior, S.; Lloret, J.; Proença Jr, ML. (2022).
Unsupervised online anomaly detection in Software Defined Network environments. Expert
Systems with Applications. 191:1-13. https://doi.org/10.1016/j.eswa.2021.116225

https://doi.org/10.1016/j.eswa.2021.116225

Elsevier

Unsupervised online anomaly detection in Software
Defined Network environments

Gustavo Frigo Scarantia, Luiz Fernando Carvalhob, Sylvio Barbon Juniora,
Jaime Lloretc, Mario Lemes Proença Jr.a,∗

aComputer Science Department, State University of Londrina, Londrina, Paraná
86057-970, Brazil.

bComputer Engineering Department, Federal University of Technology – Paraná (UTFPR),
Apucarana 86812-460, Brazil

cIntegrated Management Coastal Research Institute, Universitat Politecnica de Valencia,
46022 Valencia, Spain

∗Corresponding author
Email addresses: gustavo.scaranti@uel.br (Gustavo Frigo Scaranti),

luizfcarvalho@utfpr.edu.br (Luiz Fernando Carvalho), barbon@uel.br (Sylvio Barbon
Junior), jlloret@dcom.upv.es (Jaime Lloret), proenca@uel.br (Mario Lemes Proença Jr.)

Preprint submitted to Journal of LATEX Templates May 11, 2021

https://www.editorialmanager.com/eswa/download.aspx?id=1330932&guid=220cd9cb-96ba-42db-837f-a8717001a44c&scheme=1
https://www.editorialmanager.com/eswa/download.aspx?id=1330932&guid=220cd9cb-96ba-42db-837f-a8717001a44c&scheme=1
https://www.editorialmanager.com/eswa/viewRCResults.aspx?pdf=1&docID=80386&rev=1&fileID=1330932&msid=889f0c84-fa32-45c4-8471-fda0303123dd

Abstract

Software Defined Networking (SDN) simplifies network management and

significantly reduces operational costs. SDN removes the control plane from

forwarding devices (e.g., routers and switches) and centralizes this plane in

a controller, enabling the management of the network forwarding decisions by

programming the control plane with a high-level language. However, its central-

ized architecture may be compromised by flooding attacks, such as Distributed

Denial of Service (DDoS) and portscan. Facing this challenge, we propose an

Intrusion Detection System (IDS) based on online clustering to detect attacks

in an evolving SDN network taking advantage of the entropy of source and

destination IP addresses and ports. Our proposal is focused on avoiding the

demand for labeling and previous knowledge to provide a practical and accu-

rate method to address real-life online scenarios. Moreover, our proposal paves

the way for a comprehensive analysis by projecting the cluster’s structure over

the feature space, providing insights on intensity, seasonality, and attack type.

Our experiments were carried out with the DenStream algorithm in several

databases attacked by DDoS and portscan with different intensities, durations,

and overlapping patterns. When comparing DenStream performance to Half-

Space-Trees, an accurate online one-class classification algorithm for anomaly

detection, it was possible to expose the capacity of our unsupervised proposal,

overcoming the one-class solution, and reaching f-measure rates above 99.60%.

keywords: Anomaly Detection, Software Defined networking (SDN), Stream

Mining, DenStream, DDoS, portscan

2

1. Introduction

In the last decade, computer networks have been expanded dramatically

in terms of usage and complexity to support emerging technologies. New ar-

chitectures and devices have become more common, such as cloud computing,

virtualization, and Internet of Things (IoT). Along with the widespread adop-

tion of emerging technologies, new security issues have also emerged, forcing

these technologies to tackle new forms of exploitation to provide reliable and

resilient network environments (Gamage & Samarabandu, 2020; Aldribi et al.,

2020).

Network anomalies can occur from hardware or software issues. A hardware

fault may overwhelm critical devices affecting the network functioning, and a

misconfiguration of network resources opens a gap for vulnerability exploitation

(Proença et al., 2005). Intruders can take advantage by exploiting all these

possibilities, such as manufacturing backdoors for malware or other penetrative

purposes, hardware tampering with invasive operations, and launching zero-day

attacks. In this manner, security threats remain a challenge for network man-

agers, even more with the vast amounts of sensitive information transmitted

through resource-constrained devices and over the Internet without any encryp-

tion, using heterogeneous technologies and communication protocols (Liu et al.,

2019; Aldweesh et al., 2020).

Detecting anomalous behavior in networks with constant changes in their

temporal data has been gaining prominence among the industry and the scien-

tific community (Calikus et al., 2020; Kopp et al., 2020). This kind of detection

is a fundamental requirement for providing prompt alert and suitable problem

mitigation towards supporting available, reliable, and resilient network services

(Thakkar & Lohiya, 2020; Sharma et al., 2020; Yamansavascilar et al., 2020).

In this context, Software Defined Networking (SDN) has been used to cre-

ate a dynamic, flexible, and autonomous environment with secure mechanisms

to protect network assets, switches, routers, servers, and other devices (Sahay

et al., 2019; De Assis et al., 2018).

3

Due to its intrinsic characteristics, SDN has become compelling for managing

Local Area Networks (LANs) infrastructures, as well as converged and hyper-

converged data centers (Yurekten & Demirci, 2021; Barakabitze et al., 2020).

SDN centralizes the network management into a programmable controller, de-

coupling the data and control planes, communicating with the network devices

to instruct them on how to handle the traffic. However, the centralized design

provided by the SDN is a convenient target for Distributed Denial of Service

(DDoS) attacks (Carvalho et al., 2018; Ujjan et al., 2020; Singh & Bhandari,

2020; Correa Chica et al., 2020; Yi et al., 2020).

An Intrusion Detection System (IDS) is a system designed to automate the

intrusion detection process and help identify abnormal behavior, leading to the

discovery and identification of actual attacks (Abdulqadder et al., 2020; Sovilj

et al., 2020; Gamage & Samarabandu, 2020). An IDS can be divided into

host-based (HIDS) or network-based (NIDS). While the former recognizes any

unusual patterns in the hosts, the latter recognizes these patterns in the network,

protecting against possible intrusions (Masdari & Khezri, 2020).

NIDS can be divided into signature-based and profile-based. The signature-

based approaches use the signature of the attacks to detect them in the network

traffic. Several new attacks frequently emerge, requiring a continuous updating

of these signatures, a drawback of this approach. On the other hand, profile-

based is driven by network history data, predicting under the assumption that

a typical behavior deviation from the actual one indicates an attack. One of

the advantages of this approach is detecting unknown attacks just by analyzing

the expected behavior of the network (Gamage & Samarabandu, 2020; Novaes

et al., 2020).

Different IDS approaches have been proposed to detect anomalies, handling

the increasing number of security threats and a massive volume of network data

(Pena et al., 2014; Jin et al., 2020; Sahay et al., 2019; Singh & Behal, 2020).

Nonetheless, many approaches demand labeled samples to create a detector

module or use costly tuning strategies to achieve desirable outcomes. Both

are very prohibitive when dealing with current network speed and complexity

4

(Carvalho et al., 2018).

Practical applications, such as IDS, impose additional constraints on the

problem. Dealing with data streams requires algorithms capable of performing

fast and incremental processing of data objects to address time and memory

limitations (Lopes et al., 2020; Kim & Park, 2020). Stream sensors are numerous

and operate at high speed, allowing few opportunities for human intervention,

let alone for expert (Ahmad et al., 2017). In networks, due to the high diversity

and volume of traffic, manual labeling is not viable. Thus, online clustering

algorithms have been developed to tackle the challenges of detecting attacks

without prior knowledge about the data and suitable predictive performance in

an online fashion.

In this work, we propose a network-based IDS grounded on the usage of an

unsupervised stream algorithm to detect attacks and protect SDN environments.

The SDN architecture allows our IDS to be a standalone solution that uses the

SDN programmability to increase network monitoring and security.

Our approach acts online, updating itself, and profiles the network traffic ac-

cording to the environment shifts. In this manner, the IDS is frequently adapted

and can be ready to detect network anomalies while processing one traffic obser-

vation at a time. We selected DenStream clustering as the unsupervised stream

kernel using various datasets with different attack configurations. DenStream

(Cao et al., 2006) is one of the most promising and successful algorithms applied

in different stream applications (Tajalizadeh & Boostani, 2019; Putina & Rossi,

2020; Li et al., 2020). Furthermore, it (Wankhade et al., 2013) described that

DenStream requires less processing time and space and can also handle concept

drifts. Concept Drift refers to a change in the whole distribution of the prob-

lem at a certain point in time, which poses a challenge for the traditional IDS

solutions (Wang & Jones, 2017; Babüroğlu et al., 2021).

Our IDS was evaluated in terms of detection performance, delay in recogniz-

ing an attack, and insights about each infection behavior. To create a critical

comparison, we consider the proposed IDS performance with the Half-Space-

Trees (HS-Trees) (Tan et al., 2011), a well-known one-class stream classification

5

algorithm. The main contributions of this work are:

• The usage of unsupervised online anomaly detection to match real-life

scenarios;

• Comprehensive support of anomalies based on massive experimentation

based on multiple simultaneous attacks with several intensities, duration,

and overlapping;

• Analysis of response delay to detect portscan and DDoS attacks under

several scenarios.

The remainder of this paper is organized as follows. Section 2 discusses

related work. In Section 3, we present the system design principles. Section 4

details the test scenarios and how the experimentation is carried out. Section 5

describes the results and performance of the system. Finally, Section 6 concludes

the paper.

2. Related Work

Many works already use stream mining techniques to perform anomaly de-

tection. Mulinka & Casas (2018) demonstrated the feasibility of using stream

mining techniques compared to their respective batch versions. The authors

compared kNN, Hoeffding Adaptive Trees (HAT), Adaptive Random Forests

(ARF), and Stochastic Gradient Descent (SGD). It also used Adaptive Window-

ing (ADWIN) to set the size of the windows used. Stream and batch algorithms

achieved comparable performance. In some cases, the stream version overcame

its batch competitors, particularly in Concept Drift scenarios using ARF and

SGD.

Another work comparing batch and stream versions was presented by (Shin

et al., 2018). The compared models were Hoeffding Tree, Naive Bayes (NB),

kNN, Very Fast Decision Rules (VFDR), and SGD using the KDDCup 99

dataset. The authors concluded the batch method obtained the best results

6

when evaluating each algorithm using both versions. However, the time and

memory used by the stream mode were smaller. In resource-limited scenarios,

the batch mode becomes impractical due to the memory required, making the

stream method a viable alternative for detection in resource-poor environments.

A deep discussion about the stream method and its capacity to reduce memory

consumption can be found in (da Costa et al., 2018).

Evaluating proposals based on Clustering Techniques, (Yin et al., 2018) de-

veloped an approach grounded on clustering algorithm as an intrusion detection

mechanism. The proposal uses a clustering algorithm to mine the data stream

and detect patterns. An attenuating sliding window technique was used to

reduce the importance as the data became obsolete. The intrusion detection

system alerts the network administrator when a stream is considered abnormal.

Another approach using clustering was, Viegas et al. (2017), which applied

Micro Cluster Outlier Detection (MCOD) for detection. This approach is fo-

cused on the adversarial setting area, preventing the attacker from avoiding

the intrusion detection mechanism by using advanced attack techniques, e.g.,

causative and exploratory strategies. According to the authors, the proposed

approach dealt with DDoS attacks and provided a constantly updated detection

system.

Chenaghlou et al. (2018) proposed OnCAD, an online clustering algorithm

for anomaly detection. His proposal uses Gaussian Clusters as the primary de-

tection mechanism. The window concept is also used to split the data stream

into time windows. The approach initially generates clusters of standard net-

work behavior; as new samples arrive, the system assesses whether a compatible

cluster exists. Otherwise, it is considered a possible anomaly or an emerging

cluster. In the second stage, all samples from a window are used, and a DBScan

is performed to locate emerging clusters and, consequently, the anomalies. The

proposed algorithm was better than the existing compared algorithms, Online

K-means and Adaptive Resonance Theory (ART-2). However, the time required

to run this approach is longer. Synthetic and public datasets were tested, and

in both, the proposed system obtained a better detection performance. The

7

downside is the execution time, leading to a detection lag that can compromise

the anomaly detection properly and open gaps in the security system.

The work presented by Zolotukhin & Hämäläinen (2018) proposed an ap-

proach that detects DDoS attacks on encrypted traffic. The proposal compared

three algorithms: K-Means, K-Medoids, and Fuzzy C-Means. Each algorithm

was applied in batch and online mode. The detection procedure is based on the

IP and port source, destination addresses, duration, packet numbers, and bytes

sent per second. It also uses summary data, such as the maximum, average,

and minimum values of the packet size. The online mode uses time windows

to cluster the network behaviors. According to the authors, the online version

of K-means and offline mode of k-medoids achieved the best results. These ap-

proaches were able to achieve a high detection performance and keep the number

of false alarms low. However, this approach is specialized in DDoS attacks over

a very restricted simulated environment based on legitimate users’ interactions

with a website and possible attackers. This scenario does not represent the

typical behavior of a real-life network.

Kumari & Kumari (2014) proposed an online boosting algorithm using the

Adaptative Size Hoeffding Tree coupled with ADWIN over the NSL-KDD dataset

for anomaly detection. The Adaptative Size Hoeffding Tree is a Hoeffding Tree

using a threshold to split nodes, and it is used to reduce the size of the trees.

The ADWIN is a change detector applied to evaluate when it is necessary to up-

date the model. The proposal was compared to K-means, Self-Organizing Map,

and the Farthest First algorithm, overcoming all competitors. The limitation of

this proposal was the synthetic datasets employed during the evaluation, which

did not match a real-life scenario and the lack of a mitigation policy.

Another work using HAT was presented by Corrêa et al. (2017). The pro-

posal was an IDS to detect attacks in the Kyoto 2006 dataset. The authors

compared the proposed algorithm with kNN, NB, and a Perceptron Neural Net-

work as the algorithm in the classification tree node. The results revealed the

advantages of HAT and kNN to detect anomalies. The authors reported that

the HAT outperformed the other compared algorithms. However, the generated

8

tree by HAT has many nodes, making it difficult for a network administrator to

analyze the generated model.

Gore & Gupta (2014) developed an IDS composed of VFDT and ID3. The

system adopted ID3 to generate static rules based on the anomaly signature

from KDD Rule Base. According to these rules, the incoming network traffic

is classified and forwarded to the VFDT to perform the incremental decision

model. These incremental models classify new packets on the network and are

continuously updated. The approach was capable of detecting anomalies with

an initial accuracy under 70%. As time passes, the model learns the patterns

and updates the dynamic rules delivering accuracy boosting.

Among the presented works, the works (Mulinka & Casas, 2018), (Yin et al.,

2018), (Shin et al., 2018) and (Kumari & Kumari, 2014), require labeled sam-

ples for the training phase. In addition, there are works that need an initial

training phase (offline) to learn the pattern, like as (Dong & Japkowicz, 2016),

(Yin et al., 2018) and (Viegas et al., 2017) or performs a detection through

signatures such as (Gore & Gupta, 2014). Also has proposals that do not detect

anomalies through the search space, such as (Corrêa et al., 2017), (Zolotukhin &

Hämäläinen, 2018) and (Chenaghlou et al., 2018). Moreover, none of the cited

proposals addressed the attack recognition delay.

Our work presents an unsupervised online approach designed to detect anoma-

lies and get insights from the patterns based on the search space itself. In other

words, the network administrator can comprehend the kind of attack, intensity,

and evolution based on the cluster position on the projection of the feature

space. Further information on multiple simultaneous attacks can also be ad-

dressed. Moreover, our analysis considers the lag between the beginning of the

attack strike and its recognition.

3. Unsupervised Online Learning

When learning from data streams, algorithms need to deal with constraints,

such as the (potentially) infinite size of the stream, and that their probability

9

distribution may change over time (Silva et al., 2013; da Costa et al., 2018). A

clustering problem consists of determining a finite set of features that describe

the data in an unsupervised learning strategy. Several features can be used in

the network’s behavior characterization, such as IP addresses, ports, protocols,

among others. Generally, features that describe traffic volume, such as bytes

and packets transmitted, are commonly used in anomaly detection. However,

these features can cause the wrong classification when few hosts use the network

resources massively, generate significant peaks in these features, and distort the

real behavior of the network (Carvalho et al., 2018).

Online clustering algorithms need to continuously create and update their

clusters while also handling memory and time restrictions. The most common

approaches are based on the distance between samples as similarity criteria,

which can be organized as Gama (2010), such as Partitioning, Micro-clustering,

Grid-based, Model-based, and Density-based algorithms. Partitioning algo-

rithms follow the assumptions of traditional k-Means grounded on minimizing

an objective function. Micro-clustering algorithms have deleveraged wide-used

clustering methods on stream data, for example, BIRCH (Zhang et al., 1997)

and CluStream (Aggarwal et al., 2003). These algorithms perform in two steps:

the former summarize the online data to group the data into micro-clusters,

and the latter is an offline step that delivers a general model of micro-clusters.

Grid-based and Model-based algorithms use a multilevel granularity structure

and model fitting, respectively. Both types are driven by solid apriori knowl-

edge, which poses some challenges when dealing with anomalies. Density-based

algorithms take advantage of the connectivity between regions and their den-

sity, e.g., DenStream (Cao et al., 2006), to provide arbitrary numbers and forms

of clusters. We consider this type of algorithm suitable for anomaly detection

since the clustering procedure does not require hyperparameters related to an

expected number of clusters (or behaviors) demanding little previous knowl-

edge or modeling. Moreover, density metrics and cluster structure can help

the administrator comprehend the attack intensity and further pattern analy-

sis due to the compactness of representation, capacity to track cluster changes,

10

and clear identification of outliers. Thus, we applied DenStream in our proposed

IDS architecture because it matches the stream mining constraints and provides

complete attack analysis.

The DenStream algorithm is an adaptation of DBSCAN for data streams

grounded on some concepts of micro-clusters. It uses the concept of micro-

clusters (MC) to create, delete, and update clusters dynamically using a small

amount of memory. A MC is defined as mci = {CF 1
i, CF 2

i, wi}, where CF 1
i

is the weighted linear sum of the feature values of all instances (network flows)

in mci , CF 2
i is the weighted squared sum and wi is the weight of mci, i.e., the

sum of its instances’ weights (usually each instance has a weight of 1).

The center of mci is defined as cmci = CF 1
i

wi
and its radius is rmci =√

|CF 2
i|

wi
− (CF

1
i

wi
)2. MCs are used in three different ways in the DenStream

algorithm. A “dense” MC is called a core MC (C-MC), where dense is defined

if wi ≥ µ, µ is a hyperparameter to control the minimum density of an MC

to be considered a C-MC. A MC with w ≥ β µ, where β is a hyperparameter,

is called the potential MC (P-MC). Lastly, outlier MCs (O-MC) have w < β µ

and instances belonging to them are considered outliers. Note that only P and

O-MC are updated online with the arrival of new instances.

For every v (hyperparameter) instances, the P-MCs and O-MCs, which were

not updated by any of the v instances, have an exponential decay applied to

them, defined as 2−λ (λ is a hyperparameter). By performing this operation,

P-MCs and O-MCs fade and eventually are deleted if not representing a new

behavior.

The algorithm is divided into three main parts. First, there is an initial-

ization step, where the DBSCAN algorithm is applied to the first p (hyper-

parameter) instances. After creating the initial clusters, those with w > β µ

are initialized as P-MCs. After that, new instances are presented in an online

fashion.

The DenStream tries to incorporate each new instance i to its nearest P-MC

pmcn. If, after incorporating i, rpmcn < ε would hold true, then the instance

is added to that P-MC, where ε is a hyperparameter that limits the maximum

11

value of a MC’s radius. Otherwise, the algorithm tries to add i to its nearest

O-MC omcn, employing the same test. If it cannot incorporate i (i.e., because

it is too far away), then a new O-MC containing only i is created. Then, a

procedure is employed to check if any O-MC has enough weight to be promoted

to a P-MCs.

The last part consists of creating the final clusters (i.e., C-MCs) by ap-

plying the DBSCAN algorithm to the existing P-MCs. First, starting a clus-

ter with an arbitrary P-MC pmca, it incorporates all the other P-MCs where

distance(pmca, pmc) ≤ rpmca + rpmc, where pmc is a P-MC excluding pmca.

Then, for each new P-MC in that cluster, the same scanning process is per-

formed. This is performed until no new P-MC is added to that cluster. After

that, if the total summed weight of P-MCs in that cluster is greater than µ, it

becomes a final cluster. This process repeats until all P-MCs are part of a final

cluster or cannot be incorporated into any other. However, if a P-MC is in a

potential area (PA), this P-MC will be excluded from the C-MC creation. This

exclusion was necessary to prevent the C-MC from being affected by anomalous

behaviors present in these P-MC. The potential area concentrates P-MCs that

behave differently from C-MCs’ expected behavior.

As the paper’s goal is to detect DDoS and portscan attacks, one of PA’s

best features is destination port entropy. PA is defined by the entropy of the

destination port of C-MC and the hyperparameter κ. If the absolute distance

between the entropy values of the destination port of the C-MC and the P-MC

is greater than κ, this P-MC is inside the PA. In this manner, it is possible

to detect a portscan attack when the P-MC destination port entropy value is

higher than a C-MC. On the other hand, when this value is lower than a C-MC,

it is considered a DDoS attack. Additionally, P-MCs within a PA have an extra

exponential decay applied to them every new instance, defined as 1.1−λ. Using

extra decay, it is possible to detect the end of the attack more accurately.

Table 1 summarizes the DenStream hyperparameters and presents their de-

scription.

In our proposal, each MC is related to a network pattern. O-MCs are the first

12

Hyperparameter Description

λ Decay factor that limits the influence of past samples

β Outlier tolerance factor

µ Core weight threshold

ε Maximum radius of a micro-cluster

v Number of instances

κ Threshold to define whether P-MC is inside the PA

Table 1: DenStream hyperparameters

MC created in the learning process and cannot provide any clear information

about possible attacks in the network. When a new P-MC appears, it can

be considered an anomaly when its position is inside the PA. Furthermore, its

position in the clustering space reveals the nature of a given threat. The common

behavior is represented by one or more C-MCs.

4. Test Scenario and Evaluation

We propose to use the DenStream algorithm as an IDS kernel in an SDN

controller, which uses entropy features from source and destination IP addresses

and ports. When a P-MC is created, some premises are checked to call the alarm

when a portscan or DDoS attack is detected. Figure 1 presents an overview of

our proposal.

The datasets were build using the Mininet1 emulator and Open vSwitch2 to

control the network switches. Some factors influenced the decision to choose the

Mininet as the environment used to carry out the experiments: i) Mininet is a

resolute project that has an active community; ii) since its inception, Mininet

has received significant effort to support the SDN technologies, such as the

OpenFlow protocol and several controllers; iii) applications developed in Mininet

1http://mininet.org/overview
2https://www.openvswitch.org/

13

Entropy features
extraction

DenStream Clustering

C-MC O-MCH(srcIP)

H(srcPort)

H(dstIP)

H(dstPort)

Classified Traffic Stream

DDoS

Portscan

Identify Attack Type

P-MC

IDS

Network Traffic Stream

SDN Controller

Figure 1: Overview of proposed IDS architecture

can be deployed in a real environment with few or no changes. To do so, the

emulator allows to configure and monitor various aspects of the network in

real-time; iv) Mininet is already considered a de facto standard for teaching,

research, and SDN solutions prototyping. Moreover, Mininet is the most widely

known and used tool for SDN simulation (Singh & Bhandari, 2020; Yurekten &

Demirci, 2021; Khorsandroo et al., 2021) because it provides an accurate SDN

environment for testing and validation.

To ensure a realistic scenario of an SDN environment with high traffic rates,

we employed a tool called Scapy3 to inject traffic into the emulated network.

We collected the one-day stream generating a total of 86400 samples (net-

work flows) per dataset. Four attributes were collected from the network flows:

source IP address, destination IP address, source port, and destination port from

the stream. Then, we computed the Shannon entropy to extracts information

from the concentration and dispersion of these attributes.

We generated DDoS attacks using hping34 tool by flooding a single host

with several requests from different sources. The intensity of DDoS attacks was

3http://www.secdev.org/projects/scapy
4https://github.com/antirez/hping

14

set according to the number of malicious hosts. The attackers’ requests were

directed to a specific port of the target to overwhelm it and make the service

associated with the port unavailable. Each attacker sent 500 UDP datagrams

per second on average. Regarding portscan attacks, a host running Scapy crafted

and sequentially sent packets with the SYN flag enabled to different ports of the

destination host to probe active ports. We also varied the intensity of portscan

attacks, changing the time interval between two consecutive malicious packets.

The first analysis is about the behavior of the proposed IDS. We generated 48

datasets, in which each of them has a DDoS and a portscan. These datasets are

divided into three attack strategies: separated, partially overlapping, and totally

overlapping. In each strategy, 16 datasets were generated, varying the intensity

between high and low and the duration in short or long for both attacks.

We used the following terminology to describe each dataset. All datasets

start with the acronym Stream , followed by the configuration of the DDoS at-

tack intensity, H for high or L for low intensity, and the attack duration, L for

long attack or S for a short attack. The underline separates each attack’s con-

figuration, and the portscan configuration follows the same pattern. Lastly, the

last letter represents the attack strategy used, S for separated, P for partially

overlapping, and O for fully overlapping. For example, in the Stream HS LL S

dataset, whereas the DDoS attack has high intensity and short duration, the

portscan attack has low intensity and long duration, and both attacks are sep-

arated.

As described in Section 3, some hyperparameters of the DenStream algo-

rithm (λ, β, µ, ε, v and κ) need to be tuned to obtain suitable results. We used

a grid search to set the hyperparameters, and their values are depicted in Table

2. The execution of the hyperparameter tuning was carried on random subsets

of scenarios composed of 10 percent of the total available ones. We selected

values focusing on providing comprehensive and accurate results by balancing

the trade-off between True Positives and False Positives.

15

Hyperparameters Suggested values Best value

λ 0.03, 0.06, 0.09, 0.12 0.06

β 0.1, 0.2, 0.3, 0.4, 0.5 0.1

µ 250, 500, 1000, 1500, 2000 1000

ε 0.01, 0.02, 0.05, 0.10, 0.15 0.05

v 250, 500, 750, 1000, 1500, 2000 1000

κ 0.1, 0.25, 0.5 0.5

Table 2: Hyperparameters tuning values

Our IDS and DenStream algorithm5, were implemented in Python 3.7.

We divided the evaluation of our proposal into three analyses. To evaluate

our IDS in the first analysis, we consider two aspects: a) Detection: the capacity

for recognizing a given attack; b) Latency: the delay to trigger the detection

alert according to the number of samples elapsed between the attack start and

P-MC creation. The second analysis explores the capacity of our IDS to identify

specific attacks by observing the cluster (P-MC) spatial position following the

premises of concentration and dispersion of entropy. The third analysis uses six

datasets to compare the overall result of our approach’s detection to another

algorithm. The metrics used in the third evaluation are accuracy, precision,

recall, false-positive rate, and f-measure.

Accuracy (Acc) assesses the proportion of correctly classified intervals among

all samples. Precision (Prec) emphasizes the detection of abnormal intervals and

penalizes the misclassified normal intervals. Acc and Prec complement each

other, showing suitable results when the classes are unbalanced. Recall (Rec)

indicates the proportion of correctly classified among all anomalous samples.

F-measure (Fm) consists of a global score given to the classifier, and the score

is the harmonic mean between precision and recall. All these metrics range from

5https://github.com/vturrisi/anomaly detection sdn

16

0 to 1, in which the former is the worst-case scenario, and the latter represents

the optimal value. Finally, the false-positive rate (FP) indicates the balance of

misclassified among all normal samples, and better results are achieved when

the value tends to zero.

5. Results and Discussion

In the first analysis, we used our approach to evaluate the 48 datasets’ results

regarding the detection of attacks and the delay in detecting them. Addition-

ally, the attack recognition’s capability and another analysis of the proposed

algorithm were discussed.

5.1. Attack’s detection and delay in detection

Based on DenStream’s foundation, we interpret C-MCs as a common behav-

ior, a P-MC in a PA as a cluster of attack samples, and O-MC as addressing

minor adjustments during the learning procedure and noise samples. In this

way, Table 3 presents the results of the 48 datasets, divided into three groups:

separated, partially overlapping, and fully overlapping. The table also shows

whether attacks were detected and the delay in catching them.

The proposed approach was able to detect DDoS attacks in all datasets.

It also expressed a detection delay average of 169.93 instances that may be

considered a low deferral in recognizing DDoS attacks. The detection of portscan

attacks was more challenging than the DDoS ones. Our approach detected

the attack in 28 datasets, and the average delay was higher, achieving 743.42

instances.

The most difficult attacks to be detected are those with low intensity (LL)

and short duration (LS), as they do not affect the indicators to identify the

attack as much. Still, DDoS attacks with this behavior were detected. How-

ever, the portscan attack detection was no longer able to obtain good results;

only one of the 12 portscan attacks with this behavior was detected. Another

scenario that deserves to be highlighted is the portscan attacks that are totally

17

Dataset
Separated Partially Overlapping Fully Overlapping

DDoS PortScan DDoS PortScan DDoS PortScan

Stream HS HS 139 277 156 427 170 7

Stream HS HL 155 259 103 679 99 403

Stream HS LS 190 7 165 7 150 7

Stream HS LL 151 2277 148 699 137 2222

Stream HL HS 157 159 160 261 184 7

Stream HL HL 160 246 393 341 147 7

Stream HL LS 166 7 162 7 151 7

Stream HL LL 166 1772 158 458 147 7

Stream LS HS 184 258 104 332 208 7

Stream LS HL 186 231 101 334 100 291

Stream LS LS 170 7 230 7 227 7

Stream LS LL 173 1154 178 844 195 2518

Stream LL HS 120 339 224 261 221 7

Stream LL HL 182 160 102 346 243 7

Stream LL LS 203 7 163 7 167 7

Stream LL LL 141 2662 188 606 233 7

Table 3: Attack detection and delay of the first analysis in terms of number of instances

18

Figure 2: Entropies values of the six datasets used on the more in-depth analysis

overlapped are scarcely detected: Only 5 of these 16 attacks were correctly

detected.

In-depth analysis revealed that when different attacks have the same over-

lapped duration, the portscan attack is not detected. Whereas a DDoS attack

tends to decrease the destination port’s entropy, a portscan increases this value.

Thus, the DDoS attack negatively influences the detection of the portscan at-

tack. Even a low-intensity DDoS attack is still being detected.

Six datasets were selected for a deeper analysis of our approach. Figure 2

depicts the entropy value calculated for each dataset during the 24 hours of

traffic collection. Each row represents a dataset, and the columns are, respec-

tively: source IP (SrcIP) entropy, destination IP (DstIP) entropy, source port

(SrcPort) entropy, and destination port (DstPort) entropy. Each graph’s green

area represents the entropy values at one-second intervals when attacks were

not generated. The red area represents the values calculated at the time the

19

attacks were taking place. As can be observed, the entropy values are fairly

stable. In contrast, they are sensitive to changes in network usage behavior, for

example, in portscan attacks, where the destination port entropy tends to in-

crease, as can be observed in Stream HL LH S and Stream LL HL P datasets.

In the DDoS attacks, the entropy tends to fall, as observed in Stream LL HL P

and Stream LS LL S datasets.

Figure 3 shows the number of MCs of each type of cluster (C-MC, P-MC,

and O-MC) detected in each dataset. The pink vertical marks represent the

DDoS attacks, and the yellow vertical mark represents the portscan attacks.

Figure 3 (a) represents the Stream HL HL S and at stream began, a P-MC

was created, but the cluster position was outside the PA, so it was not considered

an attack. Soon after, the P-MC became C-MC, proving that it was not an

attack, but a stage in the approach’s learning process. The C-MC remained

equal (one C-MC was detected) throughout the analysis period, showing that it

represented the core behavior of the network. Both attacks were also correctly

detected, being created and deleted in the P-MC near the beginning and end

of the attacks, respectively. This dataset is the best possible scenario, as it has

two high intensity, prolonged, and separated attacks, being possible to detect

without significant difficulty.

A more complex scenario is shown in Figure 3 (b). At the beginning of the

stream, we observed the approach’s learning process in its initial stage. The

P-MC portscan attack (marked as a yellow region) had a significant delay in

detection (P-MC creation), and this probably occurred because the attack had

low intensity. Even with low intensity and short duration, the P-MC DDoS

attack (thin pink region) was detected correctly.

Figure 3 (c) represents the Stream LL HL P. At the beginning of the portscan

attack, a P-MC was created without significant delay. During the portscan at-

tack, the DDoS attack started, and a new P-MC cluster was created, represent-

ing the new attack behavior. At the end of the portscan attack, a new P-MC

cluster was created, representing only the DDoS attack and excluding the clus-

ter that represented the portscan attack. Thereby, the approach was able to

20

0

20
00

0

40
00

0

60
00

0

80
00

0

Number of instances

0

2

4

6

8

10
N

u
m

b
e
r

o
f

M
C

s

O-MC

P-MC

C-MC

PortScan

DDoS

0

20
00

0

40
00

0

60
00

0

80
00

0

Number of instances

0

2

4

6

8

10

N
u
m

b
e
r

o
f

M
C

s C-MC

P-MC

O-MC

DDoS

PortScan

(a) Stream HL HL S (b) Stream LS LL S

0

20
00

0

40
00

0

60
00

0

80
00

0

Number of instances

0

2

4

6

8

10

N
u
m

b
e
r

o
f

M
C

s C-MC

P-MC

O-MC

PortScan

DDoS + PortScan

DDoS

0

20
00

0

40
00

0

60
00

0

80
00

0

Number of instances

0

2

4

6

8

10

N
u
m

b
e
r

o
f

M
C

s C-MC

P-MC

O-MC

PortScan

DDoS + PortScan

DDoS

(c) Stream LL HL P (d) Stream HL HL P

0

20
00

0

40
00

0

60
00

0

80
00

0

Number of instances

0

2

4

6

8

10

N
u
m

b
e
r

o
f

M
C

s C-MC

P-MC

O-MC

PortScan

DDoS + PortScan

PortScan

0

20
00

0

40
00

0

60
00

0

80
00

0

Number of instances

0

2

4

6

8

10

N
u
m

b
e
r

o
f

M
C

s C-MC

P-MC

O-MC

DDoS + PortScan

(e) Stream HS LL O (f) Stream LL HL O

Figure 3: Different Stream

detect attacks individually even when occurring in an overlapping scenario.

However, in some cases, it was not possible to detect overlapped attacks.

Figure 3 (d) represents the Stream HL HL P. The dataset represents a very

similar scenario to the previous one but changes in DDoS intensity. Portscan

attack was correctly detected, however, at the beginning of the DDoS attack, a

21

new P-MC was created and excluded the portscan’s P-MC. When the portscan

ended, no new clusters were created, and it remained active until the end of

DDoS, demonstrating that in some cases with low intensity, the detection is

tricky. In this scenario, a P-MC representing both attacks was not created; this

was because DDoS causes a high distortion of entropy compared to portscan.

Thus, even with both attacks, only the DDoS was detected.

Considering a totally overlapping scenario, as in Figure 3 (e) is represented

(Stream HS LL O), at the streams began, the P-MC was created and soon

transformed into C-MC, representing the approach’s learning process. A long

portscan attack with low intensity has started and was not detected. A DDoS

was started too, and this attack was correctly recognized, and only at the end

of the DDoS attack, the previous portscan was detected. Finally, Figure 3 (f)

represents the Stream LL HL O. In this dataset, the anomalous moment was

detected correctly; however, it was detected as a DDoS attack and not as a

joint attack.

All scenarios exposed a regular pattern for C-MC, P-MC, and O-MC during

their processing. C-MC represents the core behavior arising from the beginning

of the stream ingestion throughout stream processing. P-MCs outside the PA

are not considered alarms, but rather the learning process. They can be related

to a concept drift, in which a novel common behavior has been injected syn-

thetically, changing the current pattern. P-MCs inside the PA are considered

attacks, and their location in the PA may indicate this attack’s nature to be

properly mitigated. Therefore, our IDS is susceptible to creating a new P-MC

outside the PA when the actual behavior deviates from the previous common

behavior. The created P-MC was often transformed into a new C-MC.

5.2. Identification of attacks type

The proposed IDS uses features based on entropy from IP addresses and

ports to cluster the network flows and detect the common and anomalous be-

havior. The identification of attack types are grounded on some premises:

22

• DDoS: P-MC with lower entropy of destination port than C-MC (common

behavior).

• Portscan: P-MC with higher entropy of destination port and lower entropy

of source IP than C-MC (common behavior).

0.0 0.2 0.4 0.6 0.8 1.0
Entropy Src IP

0.0

0.2

0.4

0.6

0.8

1.0

E
n
tr

o
p

y
 D

e
st

 P
o
rt C-MC

DDoS

PS

0.0 0.2 0.4 0.6 0.8 1.0
Entropy Src IP

0.0

0.2

0.4

0.6

0.8

1.0

E
n
tr

o
p

y
 D

e
st

 P
o
rt

C-MC

DDoS

PS

0.0 0.2 0.4 0.6 0.8 1.0
Entropy Src IP

0.0

0.2

0.4

0.6

0.8

1.0

E
n
tr

o
p

y
 D

e
st

 P
o
rt

C-MC

PS

Both

DDoS

(a) Stream HL HL S (b) Stream LS LL S (c) Stream LL HL P

0.0 0.2 0.4 0.6 0.8 1.0
Entropy Src IP

0.0

0.2

0.4

0.6

0.8

1.0

E
n
tr

o
p

y
 D

e
st

 P
o
rt

C-MC

PS

DDoS

0.0 0.2 0.4 0.6 0.8 1.0
Entropy Src IP

0.0

0.2

0.4

0.6

0.8

1.0

E
n
tr

o
p

y
 D

e
st

 P
o
rt

C-MC

DDoS

PS

0.0 0.2 0.4 0.6 0.8 1.0
Entropy Src IP

0.0

0.2

0.4

0.6

0.8

1.0

E
n
tr

o
p

y
 D

e
st

 P
o
rt

C-MC

DDoS

(d) Stream HL HL P (e) Stream HS LL O (f) Stream LL HL O

Figure 4: Clustering space of infections after the creation of a P-MC containing the new

infection behavior.

We can get some insights when representing the clustering space projected

on the entropy of the destination port and the entropy of the source IP, as in

Figure 4. The scenarios from the previous analysis were used. At the moment

that a P-MC was created, it was plotted and it has included the identification

of which attack was taking place.

Figure 4 (a) shows the cluster space in Stream HL HL S dataset. The P-

MC with PS label represents the cluster created during the portscan attack. Its

position reinforces the premises mentioned, as the entropy of destination port is

higher and the entropy of the source IP address is lower than the C-MC cluster.

23

The P-MC with the DDoS label, representing the DDoS attack, has a lower

destination port entropy than the C-MC, confirming the premises.

Figure 4 (b) shows the cluster space in Stream LS LL S dataset. Again,

the P-MC reinforces the approach premises. However, both P-MC were closer

to C-MC compared to the previous scenario. It occurred because, in this sce-

nario, the attacks have low intensity. Figure 4 (c) shows the cluster space in

Stream LL HL P scenario. In this dataset, in addition to the 2 P-MC of each

attack, an extra P-MC refers to both attacks overlapped. This cluster has a

position closer to the DDoS attack, therefore taking into account the premises

presented, this behavior represents a DDoS, despite containing two types of at-

tacks simultaneously. Figure 4 (d) shows the cluster space in Stream HL HL P

dataset. The P-MC positions were similar to the Stream HL HL S dataset.

Thus, it was found that even if the attacks are partially overlapping, the clus-

ters’ position was slightly changed.

Figure 4 (e) shows the cluster space in Stream HS LL O dataset. The P-

MC labeled DDoS refers to two different attacks running together. The P-MC

labeled PS is not so far from the C-MC, as it is a low-intensity portscan attack.

Finally, Figure 4 (f) shows the cluster space in Stream LL HL O dataset. Only

one P-MC was created (DDoS attack) with a very similar position to the P-

MC regarding the joint attacks of the Stream LL HL P dataset. Due to the

intensity and duration of the attack, even having both overlapped attacks, just

DDoS was detected in this scenario.

In general, the P-MC’s positioning on the projected feature space has at-

tended the premises specified in the attack definition. However, in some cases,

when multiple attacks overlap, P-MC’s cluster can reveal just the most striking

anomalous behavior.

5.3. Proposed approach comparison

The previous subsections demonstrated the performance of our approach in

detecting DDoS and portscan attacks. However, for additional validation, we

compared our approach with HS-Trees (Tan et al., 2011), a one-class anomaly

24

detector for stream data. We selected this algorithm due to its high predictive

capacity and successful application in anomaly detection on computer networks

(Tan et al., 2011; Pevnỳ, 2016; Bhaya & Alasadi, 2016).

The HS-Trees application for online anomaly detection uses an ensemble of

HS-Trees. Each HS-Tree is a binary tree, and its nodes have conditions related

to the most important features for a specific decision. All leaves have a mass

of elements with the same condition as nodes. The method uses the uniform

mass distribution to calculate a score and make anomaly detection. When a

new element arrives, each HS-Tree calculates a score for this new element, and

the final score is the sum of HS-Trees from the ensemble.

HS-Trees algorithm has three hyperparameters. The first one is psi, which

is the size of the window used to create the trees, t is the number of trees,

and h is the maximum depth of each tree generated. As HSTrees is one-class,

the first psi samples need to be free of anomalies for the algorithm’s initial

training and correct functioning. A grid search was used to define the values

of each hyperparameter. F-measure, a harmonic mean between precision and

recall, was used for comparing the overall performance. In the tests, the best

f-measure value was achieved when psi = 4500, t = 3 and h = 4.

Figure 5 shows the comparison between DenStream and HS-Trees in the sce-

narios evaluated for identifying the type of attack. As can be seen, DenStream

achieved accuracy (Acc) and precision (Pre) rates higher than HS-Trees in all

scenarios. The results indicate that DenStream recognized more attack intervals

and was less susceptible to false-positives (FP).

In contrast, HS-Trees yielded a higher recall rate (Rec) in the four evaluated

datasets and DenStream achieved a higher rate of false-negatives due to the de-

lay in recognizing the beginning of attacks. Whereas DenStream acts completely

online, adjusting to constant changes as traffic measurements arrive, HS-Trees

require prior training with non-anomalous samples to operate correctly. Al-

though the training samples can decrease the detection time, they can skew

the identification of the attack, requiring constant training of the algorithm as

the normal network traffic pattern changes. Besides, ensuring that the training

25

Acc

Prec

Rec

Fm

FP

0.2
0.4

0.6
0.8

1.0

(a)

HS_LL_O

Acc

Prec

Rec

Fm

FP

0.2
0.4

0.6
0.8

1.0

(b)

HL_HL_P

Acc

Prec

Rec

Fm

FP

0.2
0.4

0.6
0.8

1.0

(c)

LS_LL_S

Acc

Prec

Rec

Fm

FP

0.2
0.4

0.6
0.8

1.0

(d)

LL_HL_P

Acc

Prec

Rec

Fm

FP

0.2
0.4

0.6
0.8

1.0

(e)

LL_HL_O

Acc

Prec

Rec

Fm

FP

0.2
0.4

0.6
0.8

1.0

(f)

HL_HL_S

HS-Tree Denstream

Figure 5: Comparative radar chart between DenStream and HS-Trees

samples are attack-free is time-consuming and requires expert evaluation, which

is not always feasible.

As depicted in Figure 5(a) and Figure 5(e), HS-Trees slightly outperformed

DenStream regarding the overlapped attacks. HS-Trees achieved a satisfactory

combination of precision and recall, resulting in a higher f-measure (Fm) in these

scenarios. In general, both methods recognized DDoS attacks but were less pre-

cise to detect portscan, especially the low-intensity one in the HS LL O dataset.

DenStream exceeded the HS-Trees’ results in all other scenarios. The difference

is more prominent in scenarios that attacks are separated as in LS LL S and

HL HL S datasets.

For further analysis, Figure 6, which corresponds to the second row of Figure

2, shows the entropy values for source and destination IP and ports, calculated

during the 24 hours of Stream HL HL S collection. The green area represents

26

Figure 6: Comparative detection between DenStream and HS-Trees on Stream HL HL S

the values calculated at intervals when the attacks have not been generated. The

red area corresponds to the entropy values calculated when an attack occurred.

The figure also highlights in blue the intervals that DenStream and HS-Trees

classified as having attacks. Both compared algorithms were able to classify

most of the analyzed one-second intervals correctly. However, DenStream cap-

tured more efficiently the disturbances generated by anomalies in IP and port

entropies. Besides, fewer false-positives were raised during its execution. This

27

analysis corroborates the results expressed in Figure 5(f). Furthermore, it is

important to mention the visual analysis supported by DenStream when com-

paring the HS-Trees. Using the clustering projection, it is possible to have

insights and a more comprehensive analysis about the attack, its amplitude,

and likely multiple attacks.

Thus, when comparing our proposal of unsupervised online anomaly de-

tection with a semi-supervised high accurate algorithm, our proposal achieved

superior results in detecting and identifying attacks in human-friendly moni-

toring. This comprehensive monitoring is able to support insights about the

intensity, duration, and overlapping of attacks.

6. Conclusion

In this work, we proposed an IDS for online detection of DDoS and portscan

in the SDN context. We explored the DenStream algorithm to handle the trade-

off between predictive performance, low-latency detection, insightful analysis,

and complexity of detector generation.

Different attack scenarios were evaluated by simulating 48 datasets. In these

scenarios, the attack settings such as intensity, duration, and overlap have been

modified. In addition, the tests were divided into three stages. The first one

evaluates the detection capacity and delay of our proposal. The second stage

explores the identification of the attack type based on premises that use the

distortion pattern suffered by entropy during an attack. The last step of the

evaluation compared DenStream with another anomaly detection algorithm. In

this manner, the experiments carried out made it possible to assess the detection

capacity of our IDS in each scenario.

Our IDS detected all DDoS attacks in the most varied scenarios with a short

time response. The portscan attacks were more tricky to be detected because

this attack does not distort entropy as much as DDoS. Thus, it took longer

to create the P-MC, especially when the intensity of the attack is low and its

duration is short. When comparing DenStream and HS-Trees, both approaches

28

showed close results; however, our approach achieved better results, mainly

concerning low false-positive rate and suitable portscan detection.

A DenStream’s limitation occurs in attacks that do not alter the used fea-

tures. They may not be detected correctly by the IDS. Furthermore, if the

network presents more than one common behavior (C-MC), the algorithm can

assume this behavior as an attack. Both issues and the integration of mitigation

solutions will be considered in future work.

Acknowledgment

This work was supported by the National Council for Scientific and Techno-

logical Development (CNPq) of Brazil under Grant of Projects 420562/2018-4,

310668/2019-0, and 309863/2020-1, and Fundação Araucária (Paraná, Brazil);

by the “Ministerio de Economı́a y Competitividad” in the “Programa Estatal de

Fomento de la Investigación Cient́ıfica y Técnica de Excelencia, Sub-programa

Estatal de Generación de Conocimiento” within the project under Grant TIN2017-

84802-C2-1-P.

References

Abdulqadder, I. H., Zhou, S., Zou, D., Aziz, I. T., & Akber, S. M. A. (2020).

Multi-layered intrusion detection and prevention in the sdn/nfv enabled cloud

of 5g networks using ai-based defense mechanisms. Computer Networks, 179 ,

107364. doi:https://doi.org/10.1016/j.comnet.2020.107364.

Aggarwal, C. C., Philip, S. Y., Han, J., & Wang, J. (2003). A framework

for clustering evolving data streams. In Proceedings 2003 VLDB conference

(pp. 81–92). Elsevier. doi:https://doi.org/10.1016/B978-012722442-8/

50016-1.

Ahmad, S., Lavin, A., Purdy, S., & Agha, Z. (2017). Unsupervised real-time

anomaly detection for streaming data. Neurocomputing , 262 , 134 – 147.

doi:https://doi.org/10.1016/j.neucom.2017.04.070.

29

http://dx.doi.org/https://doi.org/10.1016/j.comnet.2020.107364
http://dx.doi.org/https://doi.org/10.1016/B978-012722442-8/50016-1
http://dx.doi.org/https://doi.org/10.1016/B978-012722442-8/50016-1
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2017.04.070

Aldribi, A., Traoré, I., Moa, B., & Nwamuo, O. (2020). Hypervisor-based cloud

intrusion detection through online multivariate statistical change tracking.

Computers & Security , 88 , 101646. doi:https://doi.org/10.1016/j.cose.

2019.101646.

Aldweesh, A., Derhab, A., & Emam, A. Z. (2020). Deep learning approaches for

anomaly-based intrusion detection systems: A survey, taxonomy, and open

issues. Knowledge-Based Systems, 189 , 105124.

Babüroğlu, E. S., Durmuşoğlu, A., & Dereli, T. (2021). Novel hybrid pair

recommendations based on a large-scale comparative study of concept drift

detection. Expert Systems with Applications, 163 , 113786. doi:https://doi.

org/10.1016/j.eswa.2020.113786.

Barakabitze, A. A., Ahmad, A., Mijumbi, R., & Hines, A. (2020). 5g network

slicing using sdn and nfv: A survey of taxonomy, architectures and future chal-

lenges. Computer Networks, 167 , 106984. doi:https://doi.org/10.1016/j.

comnet.2019.106984.

Bhaya, W. S., & Alasadi, S. A. (2016). Anomaly detection in network traffic

using stream data mining. Research Journal of Applied Sciences, 11 , 1076–

1082.

Calikus, E., Nowaczyk, S., Sant’Anna, A., & Dikmen, O. (2020). No free lunch

but a cheaper supper: A general framework for streaming anomaly detec-

tion. Expert Systems with Applications, (p. 113453). doi:https://doi.org/

10.1016/j.eswa.2020.113453.

Cao, F., Estert, M., Qian, W., & Zhou, A. (2006). Density-based clustering

over an evolving data stream with noise. In Proceedings of the 2006 SIAM

international conference on data mining (pp. 328–339). SIAM.

Carvalho, L. F., Abrão, T., de Souza Mendes, L., & Proença Jr, M. L. (2018).

An ecosystem for anomaly detection and mitigation in software-defined net-

30

http://dx.doi.org/https://doi.org/10.1016/j.cose.2019.101646
http://dx.doi.org/https://doi.org/10.1016/j.cose.2019.101646
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2020.113786
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2020.113786
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2019.106984
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2019.106984
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2020.113453
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2020.113453

working. Expert Systems with Applications, 104 , 121–133. doi:https://doi.

org/10.1016/j.eswa.2018.03.027.

Chenaghlou, M., Moshtaghi, M., Leckie, C., & Salehi, M. (2018). Online clus-

tering for evolving data streams with online anomaly detection. In Pacific-

Asia Conference on Knowledge Discovery and Data Mining (pp. 508–521).

Springer.

Corrêa, D. G., Enembreck, F., & Silla, C. N. (2017). An investigation of the

hoeffding adaptive tree for the problem of network intrusion detection. In

2017 International Joint Conference on Neural Networks (IJCNN) (pp. 4065–

4072). IEEE.

Correa Chica, J. C., Imbachi, J. C., & Botero Vega, J. F. (2020). Security in sdn:

A comprehensive survey. Journal of Network and Computer Applications,

159 , 102595. doi:https://doi.org/10.1016/j.jnca.2020.102595.

da Costa, V. G. T., de Leon Ferreira, A. C. P., Junior, S. B. et al. (2018). Strict

very fast decision tree: a memory conservative algorithm for data stream

mining. Pattern Recognition Letters, 116 , 22–28.

De Assis, M. V., Novaes, M. P., Zerbini, C. B., Carvalho, L. F., Abrãao, T.,

& Proença, M. L. (2018). Fast defense system against attacks in software

defined networks. IEEE Access, 6 , 69620–69639. doi:10.1109/ACCESS.2018.

2878576.

Dong, Y., & Japkowicz, N. (2016). Threaded ensembles of supervised and

unsupervised neural networks for stream learning. In Canadian conference

on artificial intelligence (pp. 304–315). Springer.

Gama, J. (2010). Knowledge discovery from data streams. CRC Press.

Gamage, S., & Samarabandu, J. (2020). Deep learning methods in network in-

trusion detection: A survey and an objective comparison. Journal of Network

and Computer Applications, (p. 102767). doi:https://doi.org/10.1016/j.

jnca.2020.102767.

31

http://dx.doi.org/https://doi.org/10.1016/j.eswa.2018.03.027
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2018.03.027
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2020.102595
http://dx.doi.org/10.1109/ACCESS.2018.2878576
http://dx.doi.org/10.1109/ACCESS.2018.2878576
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2020.102767
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2020.102767

Gore, S., & Gupta, P. (2014). Online network intrusion detection system using

vfdt. International Journal of Emerging Technology and Advanced Engineer-

ing , 4 , 536–542.

Jin, D., Lu, Y., Qin, J., Cheng, Z., & Mao, Z. (2020). Swiftids: Real-time

intrusion detection system based on lightgbm and parallel intrusion detection

mechanism. Computers & Security , (p. 101984). doi:https://doi.org/10.

1016/j.cose.2020.101984.

Khorsandroo, S., Sánchez, A. G., Tosun, A. S., Arco, J., & Doriguzzi-Corin,

R. (2021). Hybrid sdn evolution: A comprehensive survey of the state-of-

the-art. Computer Networks, 192 , 107981. doi:https://doi.org/10.1016/

j.comnet.2021.107981.

Kim, T., & Park, C. H. (2020). Anomaly pattern detection for streaming data.

Expert Systems with Applications, 149 , 113252. doi:https://doi.org/10.

1016/j.eswa.2020.113252.

Kopp, M., Pevnỳ, T., & Holeňa, M. (2020). Anomaly explanation with random

forests. Expert Systems with Applications, 149 , 113187. doi:https://doi.

org/10.1016/j.eswa.2020.113187.

Kumari, S. R., & Kumari, P. (2014). Adaptive anomaly intrusion detection

system using optimized hoeffding tree. ARPN Journal of Engineering and

Applied Sciences, 9 , 1903–1910.

Li, M., Croitoru, A., & Yue, S. (2020). Geodenstream: An improved denstream

clustering method for managing entity data within geographical data streams.

Computers & Geosciences, 144 , 104563. doi:https://doi.org/10.1016/j.

cageo.2020.104563.

Liu, G., Quan, W., Cheng, N., Zhang, H., & Yu, S. (2019). Efficient ddos attacks

mitigation for stateful forwarding in internet of things. Journal of Network

and Computer Applications, . doi:https://doi.org/10.1016/j.jnca.2019.

01.006.

32

http://dx.doi.org/https://doi.org/10.1016/j.cose.2020.101984
http://dx.doi.org/https://doi.org/10.1016/j.cose.2020.101984
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2021.107981
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2021.107981
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2020.113252
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2020.113252
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2020.113187
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2020.113187
http://dx.doi.org/https://doi.org/10.1016/j.cageo.2020.104563
http://dx.doi.org/https://doi.org/10.1016/j.cageo.2020.104563
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2019.01.006
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2019.01.006

Lopes, J. F., Santana, E. J., da Costa, V. G. T., Zarpelão, B. B., & Barbon,

S. (2020). Evaluating the four-way performance trade-off for data stream

classification in edge computing. IEEE Transactions on Network and Service

Management , (pp. 1013–1025). doi:10.1109/TNSM.2020.2983921.

Masdari, M., & Khezri, H. (2020). A survey and taxonomy of the fuzzy

signature-based intrusion detection systems. Applied Soft Computing , (p.

106301). doi:https://doi.org/10.1016/j.asoc.2020.106301.

Mulinka, P., & Casas, P. (2018). Stream-based machine learning for network

security and anomaly detection. In Proceedings of the 2018 Workshop on Big

Data Analytics and Machine Learning for Data Communication Networks

(pp. 1–7). ACM.

Novaes, M. P., Carvalho, L. F., Lloret, J., & Proença, M. L. (2020). Long

short-term memory and fuzzy logic for anomaly detection and mitigation in

software-defined network environment. IEEE Access, 8 , 83765–83781. doi:10.

1109/ACCESS.2020.2992044.

Pena, E. H. M., Barbon, S., Rodrigues, J. J. P. C., & Proença, M. L. (2014).

Anomaly detection using digital signature of network segment with adap-

tive arima model and paraconsistent logic. In 2014 IEEE Symposium on

Computers and Communications (ISCC) (pp. 1–6). doi:10.1109/ISCC.2014.

6912503.

Pevnỳ, T. (2016). Loda: Lightweight on-line detector of anoma-

lies. Machine Learning , 102 , 275–304. doi:https://doi.org/10.1007/

s10994-015-5521-0.

Proença, M. L., Zarpelão, B. B., & Mendes, L. S. (2005). Anomaly detec-

tion for network servers using digital signature of network segment. In Ad-

vanced Industrial Conference on Telecommunications/Service Assurance with

Partial and Intermittent Resources Conference/E-Learning on Telecommuni-

cations Workshop (AICT/SAPIR/ELETE’05) (pp. 290–295). doi:10.1109/

AICT.2005.26.

33

http://dx.doi.org/10.1109/TNSM.2020.2983921
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2020.106301
http://dx.doi.org/10.1109/ACCESS.2020.2992044
http://dx.doi.org/10.1109/ACCESS.2020.2992044
http://dx.doi.org/10.1109/ISCC.2014.6912503
http://dx.doi.org/10.1109/ISCC.2014.6912503
http://dx.doi.org/https://doi.org/10.1007/s10994-015-5521-0
http://dx.doi.org/https://doi.org/10.1007/s10994-015-5521-0
http://dx.doi.org/10.1109/AICT.2005.26
http://dx.doi.org/10.1109/AICT.2005.26

Putina, A., & Rossi, D. (2020). Online anomaly detection leveraging stream-

based clustering and real-time telemetry. IEEE Transactions on Network and

Service Management , (pp. 1–1). doi:10.1109/TNSM.2020.3037019.

Sahay, R., Meng, W., & Jensen, C. D. (2019). The application of software

defined networking on securing computer networks: A survey. Journal of

Network and Computer Applications, 131 , 89 – 108. doi:https://doi.org/

10.1016/j.jnca.2019.01.019.

Sharma, A., Pilli, E. S., Mazumdar, A. P., & Gera, P. (2020). Towards

trustworthy internet of things: A survey on trust management applica-

tions and schemes. Computer Communications, 160 , 475 – 493. doi:https:

//doi.org/10.1016/j.comcom.2020.06.030.

Shin, G., Yooun, H., Shin, D., & Shin, D. (2018). Incremental learning method

for cyber intelligence, surveillance, and reconnaissance in closed military

network using converged it techniques. Soft Computing , 22 , 6835–6844.

doi:10.1007/s00500-018-3433-1.

Silva, J. A., Faria, E. R., Barros, R. C., Hruschka, E. R., Carvalho, A. C. P.

L. F. d., & Gama, J. a. (2013). Data stream clustering: A survey. ACM

Computing Surveys, 46 . doi:10.1145/2522968.2522981.

Singh, J., & Behal, S. (2020). Detection and mitigation of ddos attacks in

sdn: A comprehensive review, research challenges and future directions.

Computer Science Review , 37 , 100279. doi:https://doi.org/10.1016/j.

cosrev.2020.100279.

Singh, M. P., & Bhandari, A. (2020). New-flow based ddos attacks in sdn:

Taxonomy, rationales, and research challenges. Computer Communications,

154 , 509 – 527. doi:https://doi.org/10.1016/j.comcom.2020.02.085.

Sovilj, D., Budnarain, P., Sanner, S., Salmon, G., & Rao, M. (2020). A com-

parative evaluation of unsupervised deep architectures for intrusion detection

34

http://dx.doi.org/10.1109/TNSM.2020.3037019
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2019.01.019
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2019.01.019
http://dx.doi.org/https://doi.org/10.1016/j.comcom.2020.06.030
http://dx.doi.org/https://doi.org/10.1016/j.comcom.2020.06.030
http://dx.doi.org/10.1007/s00500-018-3433-1
http://dx.doi.org/10.1145/2522968.2522981
http://dx.doi.org/https://doi.org/10.1016/j.cosrev.2020.100279
http://dx.doi.org/https://doi.org/10.1016/j.cosrev.2020.100279
http://dx.doi.org/https://doi.org/10.1016/j.comcom.2020.02.085

in sequential data streams. Expert Systems with Applications, 159 , 113577.

doi:https://doi.org/10.1016/j.eswa.2020.113577.

Tajalizadeh, H., & Boostani, R. (2019). A novel stream clustering framework

for spam detection in twitter. IEEE Transactions on Computational Social

Systems, 6 , 525–534. doi:10.1109/TCSS.2019.2910818.

Tan, S. C., Ting, K. M., & Liu, F. T. (2011). Fast anomaly detection for

streaming data. In IJCAI .

Thakkar, A., & Lohiya, R. (2020). Role of swarm and evolutionary algorithms

for intrusion detection system: A survey. Swarm and Evolutionary Compu-

tation, 53 , 100631. doi:https://doi.org/10.1016/j.swevo.2019.100631.

Ujjan, R. M. A., Pervez, Z., Dahal, K., Bashir, A. K., Mumtaz, R., & González,

J. (2020). Towards sflow and adaptive polling sampling for deep learning

based ddos detection in sdn. Future Generation Computer Systems, 111 , 763

– 779. doi:https://doi.org/10.1016/j.future.2019.10.015.

Viegas, E., Santin, A., Abreu, V., & Oliveira, L. S. (2017). Stream learning

and anomaly-based intrusion detection in the adversarial settings. In 2017

IEEE Symposium on Computers and Communications (ISCC) (pp. 773–778).

IEEE.

Wang, L., & Jones, R. (2017). Big data analytics for network intrusion detection:

A survey. International Journal of Networks and Communications, 7 , 24–31.

Wankhade, K., Hasan, T., & Thool, R. (2013). A survey: Approaches for han-

dling evolving data streams. In Communication Systems and Network Tech-

nologies (CSNT), 2013 International Conference on (pp. 621–625). IEEE.

Yamansavascilar, B., Baktir, A. C., Ozgovde, A., & Ersoy, C. (2020). Fault

tolerance in sdn data plane considering network and application based met-

rics. Journal of Network and Computer Applications, 170 , 102780. doi:https:

//doi.org/10.1016/j.jnca.2020.102780.

35

http://dx.doi.org/https://doi.org/10.1016/j.eswa.2020.113577
http://dx.doi.org/10.1109/TCSS.2019.2910818
http://dx.doi.org/https://doi.org/10.1016/j.swevo.2019.100631
http://dx.doi.org/https://doi.org/10.1016/j.future.2019.10.015
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2020.102780
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2020.102780

Yi, B., Wang, X., Huang, M., & Zhao, Y. (2020). Novel resource alloca-

tion mechanism for sdn-based data center networks. Journal of Network

and Computer Applications, 155 , 102554. doi:https://doi.org/10.1016/

j.jnca.2020.102554.

Yin, C., Xia, L., Zhang, S., Sun, R., & Wang, J. (2018). Improved clustering

algorithm based on high-speed network data stream. Soft Computing , 22 ,

4185–4195. doi:10.1007/s00500-017-2708-2.

Yurekten, O., & Demirci, M. (2021). Sdn-based cyber defense: A survey. Future

Generation Computer Systems, 115 , 126 – 149. doi:https://doi.org/10.

1016/j.future.2020.09.006.

Zhang, T., Ramakrishnan, R., & Livny, M. (1997). Birch: A new data clustering

algorithm and its applications. Data Mining and Knowledge Discovery , 1 ,

141–182. doi:10.1023/A:1009783824328.

Zolotukhin, M., & Hämäläinen, T. (2018). Data stream clustering for

application-layer ddos detection in encrypted traffic. In M. Lehto, &

P. Neittaanmäki (Eds.), Cyber Security: Power and Technology (pp.

111–131). Cham: Springer International Publishing. doi:10.1007/

978-3-319-75307-2_8.

36

http://dx.doi.org/https://doi.org/10.1016/j.jnca.2020.102554
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2020.102554
http://dx.doi.org/10.1007/s00500-017-2708-2
http://dx.doi.org/https://doi.org/10.1016/j.future.2020.09.006
http://dx.doi.org/https://doi.org/10.1016/j.future.2020.09.006
http://dx.doi.org/10.1023/A:1009783824328
http://dx.doi.org/10.1007/978-3-319-75307-2_8
http://dx.doi.org/10.1007/978-3-319-75307-2_8

