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Abstract: Cloud computing leads to efficient resource allocation for network users. In order to
achieve efficient allocation, many research activities have been conducted so far. Some researchers
focus on classical optimisation theory techniques (such as multi-objective optimisation, evolutionary
optimisation, game theory, etc.) to satisfy network providers and network users’ service-level
agreement (SLA) requirements. Normally, in a cloud data centre network (CDCN), it is difficult
to jointly satisfy both the cloud provider and cloud customer’ utilities, and this leads to complex
combinatorial problems, which are usually NP-hard. Recently, machine learning and artificial
intelligence techniques have received much attention from the networking community because of
their capability to solve complicated networking problems. In the current work, at first, the holistic
utility satisfaction for the cloud data centre provider and customers is formulated as a reinforcement
learning (RL) problem with a specific reward function, which is a convex summation of users’ utility
functions and cloud provider’s utility. The user utility functions are modelled as a function of cloud
virtualised resources (such as storage, CPU, RAM), connection bandwidth, and also, the network-
based expected packet loss and round-trip time factors associated with the cloud users. The cloud
provider utility function is modelled as a function of resource prices and energy dissipation costs.
Afterwards, a Q-learning implementation of the mentioned RL algorithm is introduced, which is
able to converge to the optimal solution in an online and fast manner. The simulation results exhibit
the enhanced convergence speed and computational complexity properties of the proposed method
in comparison with similar approaches from the joint cloud customer/provider utility satisfaction
perspective. To evaluate the scalability property of the proposed method, the results are also repeated
for different cloud user population scenarios (small, medium, and large).

Keywords: CDCN; QoS; VM; reinforcement learning; resource assignment

1. Introduction

Cloud computing is implemented by a system of distributed computers with virtu-
alised resources in data networks. The virtualised resources of data centres consist of four
essential components, which are the CPU, RAM, storage, and bandwidth. Cloud service
providers deliver their service to customers through a cloud data centre network (CDCN).
The CDCN consists of a number of cloud data centres (CDCs), which are connected through
networking facilities in order to guarantee the specified service-level agreements (SLAs)
for cloud users [1] or perform flexible big data management [2].

Different applications need different quality of service levels in terms of CPU cycles,
storage capacity, RAM level, and access bandwidth. A utility function can be described for
each network user, and this function expresses the SLA satisfaction level, in a numerical
manner [3].
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On the other side, the cloud provider also has its own utility function in terms of energy
dissipation costs and other related parameters [3]. The cloud data centre provider/manager
allocates the cloud resources to cloud users dynamically.

Machine learning (ML) techniques are very important for tackling scientific challenges
in many fields such as agriculture, finance, automation, health, industry, etc. In fact, ML can
be regarded as a sub-field of artificial intelligence (AI) [4]. An ML system, at first, makes
observations of its surrounding environment and, then, improves its performance and
efficiency for future tasks [5]. These observations are supported by data, and the sensors are
the primary sources of the data. After analysing the mentioned input data, an ML algorithm
generates and possibly updates a model from its surrounding/operational environment.
From the communication system perspective, ML techniques analyse the traffic data and
extract useful information/knowledge from them, which may not be available to humans
by themselves [6]. Machine learning algorithms can be divided into four specific sub-
types, which are: supervised learning [5], unsupervised learning [7,8], semi-supervised
learning [9], and reinforcement learning [10,11].

In supervised learning algorithms, a function is learned that maps an input to an
output based on example input–output pairs. After being trained on the training data, a
supervised learning algorithm produces a function model. Then, the new examples can be
mapped by this model [5]. If the data samples are not labelled or classified, unsupervised
learning methods must be adopted for data pattern extraction. In another word, patterns
that exist and are hidden within datasets can be identified by unsupervised learning algo-
rithms [12–14]. In the machine learning literature, there exists an intermediate reasoning
method, which is called reinforcement learning (RL). RL is a machine learning sub-type,
which is model-free. It uses some agents, which interact with an unknown environment.
The objective of this type of algorithm is to optimise the cumulative and long-term re-
ward [9]. In RL methods, given the input data, the algorithm learns to take actions that
maximise a cumulative reward [10,11].

All these types of learning empower the systems with the required intelligence to
enhance their future performance based on current information/data. Communication
networks may use ML for different use cases [15]. The major reasons for using ML are
creating the required robustness or adaptivity in confronting the changing and normally
unpredictable user, traffic, and network conditions [16,17].

Based on [18], virtualisation technology is one of the most-critical elements in cloud
computing, which allows a physical resource to be virtually shared amongst different
network users. Virtualisation can speed up the IT operations, and by optimising the use of
the networking infrastructure, it reduces the operational costs.

In a cloud computing system, the job scheduling is an essential part. The job scheduling
system allocates the required resources (in terms of virtual machines) to dynamically
arriving workflows [19]. Normally, the jobs are performed in a priority-based manner. Jobs
with a higher priority are scheduled to be performed prior to those with a lower priority
level.

Most of the cloud providers consider only the cloud provider benefits and constraints
in satisfying the user SLAs [20]. As the users’ demands are different, cloud providers
normally use some admission control policies to allocate resources to higher-priority users.
This makes the lower-priority users unsatisfied, and this leads to customer churn [21].

Cloud providers must try to guarantee quality of service (QoS) parameters (such as
transfer delay, response time, etc.) for satisfying their cloud users [22,23].

Cloud-based resource assignment in cloud computing has been addressed in many
previous works such as [24–30]. In contrast to the work presented [30–32], in this paper,
we focus on the problem of simultaneous SLA satisfaction for the whole CDCN ecosystem
(including customers and provider). As different players may use different cloud-based
applications (with different QoS requirements) and finding a solution strategy for joint
SLA satisfaction for all of these users is very difficult due to the non-linear and time-
dependent nature of the resulting utility functions, we used an intelligent reinforcement
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learning approach [33] for tackling the resulting complex and non-linear resource alloca-
tion/assignment problem.

The most-important contributions of the current work are as follows:

• Utility modelling was adopted for the overall CDCN system, in terms of virtualising
the networking resources, which are: CPU, RAM, storage, and access/connection
bandwidth.

• The energy consumption model of the cloud data centres is described and used in the
utility modelling of the cloud manager.

• After modelling the utility/satisfaction functions associated with the cloud users/provider,
a reinforcement learning sub-type (which is Q-learning) was adopted for optimised
resource assignment to different cloud users, which also simultaneously satisfies
the requirements of the CDCN manager/provider in terms of energy efficiency in a
holistic manner.

• Finally, the online and model-free property of the Q-learning algorithm results in
converging to optimal utility levels for both the cloud users and cloud provider in
different cloud user population scenarios in a fast and low-complexity manner.

In this paper, an RL-based optimisation approach based on the Q-learning algo-
rithm [34] was developed. The cloud provider of the CDNC system must deploy this
algorithm and, based on that, assign optimal VM resources (CPU, storage, and RAM) and,
also, the connection bandwidth to active cloud customers [33,35] in order to simultaneously
optimise cloud user/provider utilities.

The rest of the paper is organised as follows. In Section 2, we review the related state-
of-the-art. In Section 3, we present two utility models for describing the SLA satisfaction of
CDCN users and the CDCN provider/manager. In Section 4, the Q-learning-based resource
allocation methodology is developed and customised for optimal assignment of the cloud’s
resources to its customers, subject to multiple constraints. Section 5 gives the experimental
analysis results. At the end, in Section 6, we introduce some open research areas and some
important concluding remarks.

2. Related Work

In the sequel, we describe some viewpoints regarding resource allocation in the cloud
environments.

In [3], the cloud data centre network was first modelled under the energy dissipation
constraints. Then, the authors used the cooperative co-evolution evolutionary algorithms
(CCEAs) for solving the resulting complex problem..

The authors in [36] addressed the challenge of virtual machine scheduling in cloud
environments by presenting a new model that can analyse the distribution of the server
CPU and airflow temperatures. They proposed GRANITE—a holistic scheduling method
for optimising the total power dissipation of the data centre (DC).

The researchers in [37] addressed the problem of virtual machine scheduling in cloud
environments by introducing a discrete-time Markov chain model to predict future resource
usage.

In [38], Zhang et al. introduced a resource allocation methodology for reducing
the joint SLA violations and power usage in cloud-based data centres. Their proposed
algorithm comprises three sub-algorithms, which are improved for consolidating virtual
machines in a dynamic manner.

A machine-learning-based fast and accurate thermal prediction model was proposed
in [39] to aid the resource management system’s online decision. The author also proposed
an energy-efficient VM scheduling algorithm to minimise peak temperature in the data
centre.

In [40], Gill et al. investigated a bio-inspired resource allocation algorithm (cuckoo
search), which is aware of the reliability of energy consumption for controlling cloud
resources including networks, storage, cooling infrastructures, and servers.
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A. Heimerson et al. in [41] developed a simple model to represent the heat rejection
system and energy usage in a small DC setup. The cooling system parameters (setpoints), IT
workload, and load balancing features of the model are managed by an agent, which uses
RL-based machine learning techniques. Their main contribution was a holistic approach
for data centre management. The inputs of their proposed method were the logs associated
with cloud services and metrics related to both the IT hardware and facility.

In [42], the authors addressed the load balancing problem under the constraint of
achieving the minimum latency in fog networks. To solve the mentioned problem, the
authors proposed a decision-making methodology, which is based on RL techniques. The
mentioned methodology can obtain the optimum offloading strategy under the constraints
in which both the activation/transition and reward functions are unknown.

The authors in [43] tried to improve multi-data centre systems using machine learning.
They considered energy efficiency and tried to minimise the usage pattern of the cloud
while maintaining the required user QoS levels. Rebai et al. used cloud federation for profit
maximisation for the joint satisfaction of user requirements and networking demands [22].

In [32], the authors proposed a resource assignment strategy according to the coop-
erative game and principle of uncertainty for better cloud resource utilisation and end
user satisfaction. In the paper [44], the authors proposed the DCloud concept for time
sliding and bandwidth scaling to increase the cloud manager benefits and reduce the
costs associated with different tenants. The work in [45] is a survey paper about resource
assignment in the cloud environment and its associated challenges.

The authors in [46] proposed a tier-centric optimal cloud resource assignment method-
ology for addressing the problem of early and fast provisioning of information-technology-
related resources in enterprise-level systems. The authors in [47] used bio-inspired methods
for virtual machine allocation to demanding cloud users.

By considering the fairness among cloud users and the cloud system’s resource utilisa-
tion, the authors in [48] developed a fair and efficient cloud resource assignment strategy
based on game theory.

In [28], a dynamic bin-packing (DBP) methodology was adopted by Li et al. for cloud
resource assignment. In [3], the authors used the cooperative co-evolution evolutionary
algorithm, which is a multi-objective optimisation methodology, for solving the joint user–
provider utility satisfaction problem in cloud data centre networks.

Multi-objective optimisation methods have been used by researchers such as [49]
and [50] for addressing some cloud challenges such as high power consumption, virtual
machine consolidation, and under-utilisation of resources.

In [51], Shaw et al. used reinforcement learning techniques for automating energy-
efficient virtual machine consolidation in cloud data centres. In [52], Lin et al. proposed a
time-driven data placement strategy for a scientific workflow combining edge computing
and cloud computing. In [53], Lopez et al. developed a shallow neural network with kernel
approximation for prediction problems in data communication networks.

Policy gradient methods, proximal policy optimisations, and imitation learning have
also been used for cloud resource management [54–56]. In [54], the authors used rein-
forcement learning heuristics for efficiently scheduling data processing jobs on distributed
compute clusters, which require complex algorithms. In [55], the authors proposed a
framework for optimising the trade-off between QoS and energy consumption using re-
inforcement learning approaches. Guo et al. in [56] used a convolutional neural network
to capture the cloud resource management model and utilise imitation learning in the
reinforcement process to reduce the training time of the optimal policy. In contrast with all
of the mentioned work, in the current paper, we have a holistic view of the cloud resource
allocation optimisation problem by taking into account the benefits of cloud users (in terms
of required cloud resources, expected network packet loss, and expected round-trip time)
and the cloud provider (in terms of allocated resource prices and energy consumption
costs) simultaneously. On the other hand, the Q-learning methodology was selected in the
current work because it is an online and low-complexity algorithm, which can be tailored
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in a proper manner to tackle the time-varying aspects of the resource allocation in cloud
data centre network systems.

In comparison with [3], in the current work, a more accurate user utility model was
developed. This model incorporates the stochastic nature of packet loss and round-trip
time (RTT) in calculating cloud user utility functions. Moreover, in all of the above papers
(except [3]), cloud resource management was deployed by different strategies in order
to satisfy multiple objectives, which target the cloud user side utility and cloud provider
side utility in a non-holistic manner. In the current work, a joint resource scheduling
strategy was developed that can enhance the resource usage in order to simultaneously
satisfy the CDCN ecosystem and, in parallel, can consider energy saving constraints. In
doing so, we selected online ML techniques in the form of RL-based optimisation. An
agent (cloud provider) interacts with the environment (cloud resources and users) in an
action–reward form in order to converge to an optimal resource assignment strategy in
each time slot. According to our best knowledge, this is the first time that RL techniques
have been employed in the resource allocation of cloud data centre networks for joint cloud
provider/cloud user satisfaction considering energy constraints.

In Table 1, we classify the mentioned cloud resource allocation strategies into different
categories.

Table 1. Classification of different cloud data centre resource allocation strategies.

Strategy References

Multi-disciplinary [2,19–22,24,28–30]
[36,38,40,44,46,52,57]

ML-based [39,41–43,51,53–56]

Game-theory-based [26,32,48]

Evolutionary/multi-objective-based [3,37,47,49,50]

3. Modelling of the CDCN

By definition, a CDC is composed of three essential elements, which are the cloud
manager, virtualised data centres, and cloud users, as depicted in Figure 1. As shown in
Figure 1, a cloud data centre network is composed of multiple physical data centres, which
are under the control of a cloud manager/provider. Each CDC consists of a resource pool,
which is comprised of VMs associated with the CPU cores, storage capacity, and RAM.

Cloud DC-1

VM

CPU

RAM

Storage

VM

CPU

RAM

Storage

VM

CPU

RAM

Storage

VM

CPU

RAM

Storage

Physical Servers

Physical Servers

Cloud DC-N

Cloud Manager/Provider
User-1

User-M

Virtual machine pool

Virtual machine pool

Figure 1. VM resource pools (CPU, RAM, etc.) in a typical cloud data centre network managed by a
cloud provider.
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For a clearer demonstration of the parameters that are used in this section, we include
the system parameters in Table 2.

Table 2. System parameters.

Sets and Indices Description

S(t) and Z `(t)
State and action spaces for
time slot t and iteration `

i, j Indices of cloud users and cloud
data centres

`, L Iteration number and number of
training episodes in Q-learning

System Parameters Meaning

t and τ
time slot/frame parameter and time frame

period

Γ, γ, δ, ζ, k, α Some positive constants

Variables Description

N(t), M(t) Number of CDCs and cloud
users for time t

C(i)(t),D(i)(t), G(i)(t),B(i)(t) Total assigned CDCN resources
to user i at t

c(i)j (t),d(i)j (t), g(i)j (t),b(i)j (t)
assigned CDC j resources

assigned to user i at t

w1(t),w2(t), w3(t),w4(t) Relative resource prices at time t

w3(t),w4(t)
Unit time per unit resource price of each

storage and bandwidth unit at time t

ξ j(t)
Energy dissipation price for

CDC j at time t

β1(t),β2(t),β3(t)
Positive cloud energy

consumption parameters at time slot t

U (i)(t) Cloud user/customer utility function

U (CP)(t) Utility of cloud provider at slot t

CCP(t),DCP(t), GCP(t),BCP(t) Existing CP resource pool at time t

We assumed that time is slotted/framed and can be described by t = 0, 1, 2, · · · . The
time slot duration/period is considered to be τ. We also assumed that, in the cloud data
centre environment, the number of active CDCN users is denoted by M(t), and the CDCN
is comprised of N(t) physical and distinct CDCs at time frame t.

3.1. The Utility Function Model for Cloud Users

Let us assume that a specific cloud customer i is running a specific application at time
frame t, and the successful and quality-guaranteed execution of its application requires
in total C(i)(t) CPU core, D(i)(t) RAM blocks, G(i)(t) storage capacity, and connection
bandwidth B(i)(t) from the CP’s resource scheduler. The CPU, storage capacity, RAM level,
and connection bandwidth dedicated by DCj to cloud customer i at time t are denoted by

c(i)j (t) ≥ 0, g(i)j (t) ≥ 0, d(i)j (t) ≥ 0, and b(i)j (t) ≥ 0, respectively. Therefore, according to
Equation (1), we have ∀i, t:
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C(i)(t) =
N(t)

∑
j=1

c(i)j (t), D(i)(t) =
N(t)

∑
j=1

d(i)j (t),

G(i)(t) =
N(t)

∑
j=1

g(i)j (t), B(i)(t) =
N(t)

∑
j=1

b(i)j (t) (1)

Any application type of cloud user i (such as FTP, video streaming, gaming, etc.) must
be quality-guaranteed with an SLA, which is provided by the cloud manager/provider. It
is assumed that cloud resource assignment is elastic. The experienced utility/satisfaction
level of user i is a function of its assigned CDCN VMs including RAM, storage capacity,
CPU, and also, connection bandwidth, total expected packet loss, and worst-case expected
round-trip time. (In some scenarios, such as cloud gaming, the rendered video in the cloud
must be delivered to the user by guaranteeing some packet loss ratio and delay thresholds.
If these thresholds are not satisfied, the user’s perceived quality of experience (QoE) can
be substantially deteriorated.) For high-quality delivery of each network application,
a minimum level of cloud data centre resources must be guaranteed. One of the best
functional forms that can meet the mentioned requirements is the product logistic function.
The product logistic form for modelling energy-efficient data centres has been used in
previous work such as [58]. Furthermore, the proposed product logistic model is in
fact a non-linear extension of the utility model previously proposed in [59]). Therefore,
we selected this function for modelling the user utility/satisfaction for each cloud user
i = 1, 2, · · · , M(t) in Equation (2):

U (i)(t) = 1 + Umax

{(
1 + k(i)1 exp

(
−α

(i)
1 C

(i)(t)
))
×
(

1 + k(i)2 exp
(
−α

(i)
2 D

(i)(t)
))
×

(
1 + k(i)3 exp

(
−α

(i)
3 G

(i)(t)
))
×
(

1 + k(i)4 exp
(
−α

(i)
4 B

(i)(t)
))}−1

×exp
(
−α

(i)
5 E[L(i)(t)]− α

(i)
6 E[H(i)(t)]

)
(2)

where Umax is the maximal level of SLA satisfaction (based on [60], Umax was selected to
be four). k(i) > 0 and α(i) > 0 are the parameters associated with the logistic function.
These parameters represent the steepness and horizontal drift associated with the logistic
function. Therefore, these parameters must be selected based on the application types and
characteristics for each user i.

E[L(i)(t)] and E[H(i)(t)] are the expected total packet loss ratio and round-trip time
(RTT) associated with user i at time slot t and can be described as Equation (3) [23]:

L(i)(t) = 1− ∏
j∈N\N−i(t)

(1−L(i)j (t)) (3)

where L(i)j (t) is the packet loss ratio associated with the communication path between

user i and data centre j at time slot t. N and N−i(t) are the set of all data centres and the
subset of those data centres that do not assign any resource to user i at each time frame t,
respectively.

If we assume a Poisson distribution of known mean rate parameter λ
(i)
j for the packet

loss process of each communication link between user i and data centre j [61] and if we
assume that the loss processes in each path are statistically independent, we can write the
expected total packet loss for user i as Equation (4):
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E[L(i)(t)] = 1− ∏
j∈N\N−i(t)

(1−E[L(i)j (t)]) = 1− ∏
j∈N\N−i(t)

(1− λ
(i)
j ) (4)

We assumed that the round-trip times associated with multiple communication paths
between user i and the data centres is dominated by the largest one. Therefore, we can
write, according to Equation (5):

H(i)(t) = sup
j∈N\N−i(t)

{H(i)
j (t)} (5)

where H(i)
j (t) is the measured round-trip time associated with the communication path

between user i and data centre j at each time frame t.
If we also assume that the round-trip time processes for each communication path are

statistically independent and have truncated normal distributions with parameter vector
(µ, σ, x, y), we can write, according to Equation (6) [62]:

E[H(i)(t)] = µ
(i)
sup + σ

(i)
sup

√
2
π
×

exp{− 1
2 (x(i)sup)

2} − exp{− 1
2 (y

(i)
sup)

2}

erf(
y(i)sup√

2
)− erf(

y(i)sup√
2
)

(6)

where erf(·) is the error function and µ
(i)
sup and σ

(i)
sup are the mean and standard deviation of

the normal distribution associated with the largest round-trip time path and x(i)sup and y(i)sup

are their corresponding positive truncation parameters, and we have x(i)sup < y(i)sup.
For a clearer illustration of user utility modelling, in Figure 2, the user utility function

calculation is summarised. As can be verified in Figure 2, for calculating each user utility
function, we need the cloud data centres’ resource pool info (CPU, RAM, storage, BW) and
expected packet loss and round-trip times associated with each user session.

Network Infrastructure

Figure 2. Flow diagram of calculating user utility functions.

3.2. The Utility Modelling for Cloud Data Centre Provider

The utility function of the cloud data centre manager/provider has a close relationship
with the resource usage and energy consumption costs. If we represent the cloud-assigned
resource price for user i for each time frame t with I (i)(t) and energy consumption cost of
CDC j at each time frame t by ξ j(t), the utility function associated with cloud provider can
be modelled as described in Equation (7):
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U (CP)(t) = U (CP)
max

(
1 + k7exp

(
− α7

( M(t)

∑
i=1
I (i)(t)−

N(t)

∑
j=1

ξ j(t)
)))−1

(7)

U (CP)
max is the maximal cloud-side utility. I (i)(t) is in fact a resource pricing metric

for user i. It is a weighted summation of allocated resources (RAM, CPU, connection
bandwidth, and storage capacity) of the CDCN to a specific cloud customer i for time frame
t, as described in Equation (8):

I (i)(t) = τ
N(t)

∑
j=1

(
w1(t)c

(i)
j (t) + w2(t)d

(i)
j (t) + w3(t)g(i)j (t) + w4(t)b

(i)
j (t)

)
(8)

For the description of the parameters wi, please refer to Table 2.
Similar to [57], the energy dissipation cost for CDC j for time frame period τ can be

represented as ∀j = 1, 2, · · · , N(t), according to Equation (9):

ξ j(t) = τ

(
β1j(t)

M(t)

∑
i=1

c(i)j (t) + β2j(t)
M(t)

∑
i=1

d(i)j (t) + β3j(t)
M(t)

∑
i=1

g(i)j (t)

)
(9)

where β1j(t), β2j(t), and β3j(t) represent the amount of the relative per-unit price of the
CPU, RAM, and storage, which is allocated from CDC j to all active cloud users at time slot
t, respectively.

The schematic diagram associated with the cloud provider utility calculation process
is depicted in Figure 3. As can be seen, for calculating the cloud provider’s utility function,
the information regarding the cloud data centres’ energy dissipation and resource prices
associated with cloud users is needed.

Figure 3. Schematic diagram of calculating cloud provider utility function.
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4. Reinforcement-Learning-Based Cloud Resource Allocation

In the current section, we describe two different components of the proposed RL-based
algorithm. In the first part, the ML-based Q-learning model is introduced and related to the
components of the cloud data centre system. In the second part, the proposed Q-learning-
based resource allocation in the cloud data centre network algorithm (named QLRA) is
developed and each of its components matched to the elements of the proposed holistic
cloud provider/customer satisfaction problem in Section 3.

4.1. Q-Learning Model

In principle, in Q-learning, as a typical reinforcement learning method, the main objec-
tive is that a learning agent finds an optimum strategy for maximising a weighted and cu-
mulative reward function by some repeated actions imposed on an unknown system [63,64].
In Q-learning, four essential elements exist, which are the agent, state, action, and reward,
respectively. In Figure 4, the interactions between the agent (CDCN manager or CP in
this case) and the environment (cloud CDCN system) are depicted. In each period/epoch,
the Q-learning algorithm executes itself in the following manner. First, the learning agent
observes the state S`

t of the environment at iteration ` of time t. Then, the learning agent
chooses a corresponding action Z`

t among all possible actions. The environment gives a
corresponding reward R`

t for the action Z`
t . The learning agent works in two distinct phases,

which are exploration and exploitation.

Figure 4. Mapping the elements of the proposed Q-learning algorithm to the CDCN.

In the exploitation phase, the learning agent selects an action with the largest reward
value based on the past experiences. In the exploration phase, a random action in action set
Z is normally selected. The ultimate goal is to identify the optimal action–state pair that
can maximise the long-term reward. Hereafter, four elements of the proposed Q-learning
methodology in the cloud DCN environment are described in more detail.

State and environment: In the cloud data centre network system, the environment
is composed of different virtualised data centres with the associated resource pools and
cloud users. The state is a vector that consists of the current available and free virtualised
resources (CPU core, RAM, storage capacity, and connection bandwidth) of each data
centre. The state can be represented as follows:

S`
t is a 1× (6M(t)) vector and is defined as S`

t = [C(1)` (t),D(1)
` (t),G(1)` (t),B(1)` (t),

E[L(1)` (t)], E[H(1)
` (t)], · · · , C(M(t))

` (t),D(M(t))
` (t),G(M(t))

` (t),B(M(t))
` (t), E[L(M(t))

` (t)],

E[H(M(t))
` (t)]], in iteration ` in time slot t.
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Based on Equation (10), we also have the following four capacity constraints:

M(t)

∑
k=1
C(k)` (t) ≤ CCP(t), (C1);

M(t)

∑
k=1
D(k)

` (t) ≤ DCP(t), (C2)

M(t)

∑
k=1
G(k)` (t) ≤ GCP(t), (C3);

M(t)

∑
k=1
B(k)` (t) ≤ BCP(t), (C4) (10)

where CCP(t), DCP(t), GCP(t), and BCP(t) are the existing total CPU amount, storage
capacity, RAM, and connection bandwidth for the cloud provider for each time frame t.

The state space S(t) is a convex polytope, as described in Equation (11):

S(t) =
6×M(t)

∏
k=1

[0, Uk(t)]
4⋂

j=1

Cj (11)

where the upper limit for each state variable k is denoted by Uk(t) for each time frame t
and C1, · · · , C4 are the corresponding constraint sets in Equation (10), respectively.

It must be mentioned that the state expression in Equation (11) has the potential for
increasing the number of states exponentially. In addition, in a real data centre setting, we
have four variables, which are the VM-based variables (CPU, RAM, storage) and connection
bandwidth. Furthermore, two other independent variables are associated with each data
centre user (expected RTT and expected packet loss), which results in six variable for each
user. If we assume that 1000 simultaneous users want to use the CDCN resources, the state
space has a large dimension of 6000, which makes the resource allocation problem have a
large computational complexity. In such situations, the ordinary Q-learning algorithm may
not be a good candidate, and a deep RL mechanism (such as DQN) should be adopted.

Agent: The agent in this paper is considered to be the cloud manager/provider (CP).
At first, the CP receives the state information including the requested users’ demand
quadruples (CPU, RAM, storage, bandwidth) and available resources from cloud data
centres in each time slot t (see Figure 4), then the CP assigns some resources to each cloud
user based on the proposed reinforcement-learning-based algorithm.

Action: The action is the vector of virtualised resources that are allocated to each
distinct cloud user in state ` for each time slot t and represented by Z`

t . The action space
Z `(t) depends on the current state S`

t and is in fact a reverse-shifted version of state space
S(t) (see Figure 5 for a simple two-dimensional example).

In Figure 5, a sample state space for a two-dimensional space with sample state
variables x1 and x2 (0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b) and the constraint (x1 + x2 ≤ c) is depicted.
As can be verified in this figure, the action space is a function of the current state S`

t .
Reward: The reward is the weighted sum of all cloud user utility functions and the

cloud provider/manager utility function as: R`
t

∆
= Γ ∑

M(t)
i=1 U

i(t) + (1− Γ)UCP(t), where Γ
is a positive constant, 0 < Γ < 1.
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Figure 5. Two-dimensional representation of the state space and a sample action in iteration ` of time
slot t.

4.2. The Proposed QLRA algorithm

In this subsection, we introduce the proposed Q-learning-based resource allocation
(QLRA) algorithm based on the Q-learning methodology. As we described earlier, in the
Q-learning algorithm, two distinct exploration and exploitation phases exist. To avoid
local optima, the Q-learning method enters the exploration phase by a pre-defined strategy.
Different strategies exist, which allows the Q-learning algorithm to switch between these
two phases. Among these strategies, the ε-greedy policy is the one that is most frequently
used [65].

In this policy, a parameter ε(0 ≤ ε ≤ 1) is used to trim the exploration part. In other
words, in the current training epoch, the agent explores a randomly chosen action with
probability ε and, then, exploits this selected action with probability (1 − ε) [63]. To balance
exploration and exploitation, we used a function introduced by the authors in [64]. This
function enforces a high probability of exploration for the beginning of training and a
high probability of exploitation in the last stages of the training periods, as described in
Equation (12):

ε =
0.5

1 + exp
( 10×(`−0.4×L)

L
) (12)

in which L is the total number of training episodes and ` represents the current and
remaining number of training episodes.

The Q-value/-score is normally initialised to 0 at the very beginning of the learning
procedure. Then, the Q-value is updated according to the Q-learning update rule given by
Equation (13). The Q-value is used for evaluating the performance of the specific actions
and states.

Q(S`
t , Z`

t )← Q(S`
t , Z`

t ) + γ(`)

(
R`

t + ζ max
Z `

Q(S`+1
t , Z`

t )−Q(S`
t , Z`

t )

)
(13)

where S`
t demonstrates the environment state in time slot t in training period/episode `. Z`

t
denotes the action of the agent in time slot t of training episode `. Z ` means the action space.
ζ (0 ≤ ζ ≤ 1) is the so-called discount proportion. γ is the learning rate (0 ≤ γ(`) < 1),
and R`

t is the reward value in time slot t of training episode `. maxZ ` Q(S`+1
t , Z`

t ) is the
maximum reward that can be obtained from state S`+1

t . Algorithm 1 represents the detailed
QLRA algorithm.
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Algorithm 1 Proposed QLRA algorithm.
1 Initialise Q-score and time slot, Q = 0, t = 0
2 t = t + 1
3 Generate state set S(t)
4 for ` = 1 : L do:
5 Generate action set Z `(t) and ε according to [64]:
6 ε = 0.5

1+exp(
10×(`−0.4×L)

L )

7 Choose an action according to:
8

Z`
t =

{
Z`

t ∈ maxZ ` Q(S`
t , Z`

t ) with probability(1− ε)
a uniformly random action in Z ` with probability(ε)

9 S`+1
t = S`

t + Z`
t

10 R`
t = Γ ∑

M(t)
i=1 U

i(t) + (1− Γ)UCP(t)
11 Update Q according to:
12 Q(S`

t , Z`
t )← Q(S`

t , Z`
t ) + γ(`)

(
R`

t + ζ maxZ ` Q(S`+1
t , Z`

t )−Q(S`
t , Z`

t )
)

13 S`
t ← S`+1

t
14 If
15 |Q(S`+1

t , Z`
t )−Q(S`

t , Z`
t )| < δ (δ is a small positive constant)

16 Go to 3
17 Obtain the final Q-score.

To give a clearer insight to the readers about the mentioned algorithm, the flowchart
of the proposed QLRA algorithm is depicted in Figure 6.

Figure 6. Flowchart of the proposed QLRA algorithm.
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4.3. Remark

It was shown in [66] that, under the following two conditions (Equation (14)), the
proposed QLRA algorithm will converge to the optimal resource allocation values with a
probability of one (based on the above fact, we selected the simple form γ(`) = 0.5

` (where
` is the iteration number of the QLRA method) in Section 5.3 of the simulation results
Section):

∞

∑
`=1

γ(`) = ∞ ,
∞

∑
`=1

γ2(`) < ∞ (14)

5. Simulation Results

To investigate the performance of the proposed reinforcement learning algorithm, the
numerical analysis is presented in this section. The numerical analysis is composed of three
parts, which are the experimental analysis parameter descriptions, simulating the proposed
QLRA algorithm, and the performance comparison with the related work.

5.1. Numerical Analysis Parameter Description

For the simulation, a PC with a 2.93 GHz Inter(R) i7 CPU and 8 GB of memory running
Linux Ubuntu 18.04 LTS was selected. We used python3, and its matplotlib library was
used.

During the simulation, we selected three different user population scenarios, which
were a large number of cloud users, a medium number of cloud users, and a small number
of cloud users. To describe it more clearly, assume that data centre network is capable of
serving Y users on average for the current time slot. If the number of requesting users is
around Y, we call it a small number of users. On the other hand, if the number of active
requesting cloud users is around 2Y and 5Y on average, we call these medium and large
user populations, respectively.

In the numerical analysis, we selected the number of large, medium, and small cloud
users to be 50, 20, and 5, respectively. Table 3, represents other simulation variables that
were adopted for the proposed QLRA algorithm, in greater detail.

Table 3. Simulation parameters.

Parameter Value

Number of users (M) 5 (small), 20 (medium), 50 (large)

Number of data centres (N) 6

Minimum user bandwidth (Bmin) 100 Mbps

Minimum user CPU cores (Cmin) 1 Core

Minimum user RAM (Dmin) 1 Gigabyte

Minimum user storage (Gmin) 100 Megabytes

Minimum data centre racks 10

Total cloud provider racks 500

Maximum cloud provider utility 20

Maximum achievable user utility 5

Γ 0.8

γ 0.1, 0.2, 0.5

ζ 0.1, 0.2, 0.5

ωi, i = 1, . . . ,4 5

(α1, α2, α3, α4, α5, α6, α7) (0.01, 0.1, 0.0001, 0.001, 0.1, 0.1, 0.1)
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Table 3. Cont.

Parameter Value

ki, i = 1, . . . ,7 5

β1 0.05

β2 0.5

β3 0.0005

τ 0.5

δ 0.001

L 10,000

5.2. QLRA Algorithm Results and Comparative Analysis

To simulate the QLRA algorithm, we used some simulation parameters, which are
depicted in Table 3. In three different scenarios, the convergence property of the average
user utility (which is described in Equation (2)) was investigated for multiple learning
parameters (in terms of γ and ζ) when different user population scenarios (small (blue),
medium (red), large (green)) were taken into account. As can be verified, the QLRA is
able to find the optimal resource allocation based on model-free user-data centre network
interactions as described in the previous sections in each time slot of the system.

Figure 7a–c show the convergence behaviour of the average cloud user utility (refer
to Equation (7)) for multiple learning parameters (in terms of γ and ζ) and, also, for
different user populations (small (blue), medium (red), and large (green)). As can be
seen, in Figure 7a–c, the mean user utility functions converged to optimal values after
approximately 175 iterations.

(a) γ = 0.5, ζ = 0.1 (b) γ = 0.1, ζ = 0.5 (c) γ = 0.2, ζ = 0.2

Figure 7. Convergence behaviour of average user utility (2) for multiple user populations (small
(blue), medium (red), large (green)).

Figure 8a–c show the convergence behaviour of the average cloud manager satis-
faction/utility function for multiple learning parameters (in terms of γ and ζ) and, also,
for different user populations (small (blue), medium (red), and large (green)). As can
be verified in Figure 8a–c, the user cloud provider utility functions can be converged to
optimal values after approximately 175 iterations.

In Figure 9a–c, the convergence property of the mean reward function of the proposed
Q-learning algorithm for different learning parameters (in terms of γ and ζ) and also for
different user populations (small (blue), medium (red) and large (green)). As can be seen in
Figure 9a–c, the mean reward function can converge to optimal values after approximately
175 iterations.

Finally, in Figure 10a–c, the convergence property of the mean queue function (Q) of
the proposed Q-learning algorithm for different learning parameters (in terms of γ and ζ)
and, also, for different user populations (small (blue), medium (red), and large (green)) can
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be seen. As can be verified in Figure 10a–c, the mean queue function can also converge to
optimal values after approximately 150 iterations.

(a) γ = 0.5, ζ = 0.1 (b) γ = 0.1, ζ = 0.5 (c) γ = 0.2, ζ = 0.2

Figure 8. Convergence behaviour of average CP utility (7) for multiple user populations (small (blue),
medium (red), large (green)).

(a) γ = 0.5, ζ = 0.1 (b) γ = 0.1, ζ = 0.5 (c) γ = 0.2, ζ = 0.2

Figure 9. Convergence behaviour of average reward function for multiple user populations (small
(blue), medium (red), large (green)).

(a) γ = 0.5, ζ = 0.1 (b) γ = 0.1, ζ = 0.5 (c) γ = 0.2, ζ = 0.2

Figure 10. Convergence behaviour of average queue function for multiple user populations (small
(blue), medium (red), large (green)).

5.3. Performance Comparison with Similar Approaches

In this part, the performance of the proposed reinforcement-learning-based rate allo-
cation algorithm is compared with the dynamic bin-packing resource allocation method
in [28] (Xu et al.), the CCEA method in [3], and the game-theory-based resource allocation
method (Li et al.) [48] from the simultaneous cloud user/cloud provider utility satisfaction
perspective. A joint and exponentially weighted average—which incorporates all cloud



Future Internet 2022, 14, 368 17 of 21

users’ and cloud provider utilities into account—utility function was designed for different
slots t, as described by Equation (15):

U (t) ∆
= α(t)

M(t)

∑
i=1
U (i)(t) + (1− α(t))U (CP)(t) (15)

We previously described the cloud user and cloud provider utility functions in Equa-
tions (2) and (7) of Section 3, respectively. The positive 0 < α(t) < 1 is in fact an exponen-
tially weighted parameter to leverage the total cloud user utilities and cloud provider utility
at each time frame t. We selected five different cloud data centres (N(t) = 5) that serve 120
demanding cloud users (M(t) = 120) in each time frame t. We repeated each run of the
methods 200 different times and, then, took the average result to cover the probabilistic
properties of multiple algorithms. The results are presented in Figure 11. It can be verified
that the proposed RL-based method improved the mean convergence performance to the
optimal solution from the perspective of simultaneous cloud provider/user satisfaction.
The most important reason that similar work in [48] and [28] had worse mean satisfaction
performance is the fact that these methods do not consider the joint SLA satisfaction for
both cloud users and cloud providers and their main point of interest was optimising the
resources from only the cloud provider or cloud user point of view. In comparison with
our previous work [3], the proposed QLRA algorithm has better convergence behaviour
and is able to converge to an optimal resource assignment strategy in the early stages of the
simulation.

Iterations
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Figure 11. Average joint users’/provider utility comparison.

In Table 4, we compare the computational complexities of the different algorithms in
terms of the mean execution time. As can be verified, the online feature of the proposed
algorithm results in a reduced computational time in comparison with similar approaches.
On the other hand, we compared the mean holistic utility according to Equation (15)
between different methods during 1 time slot and 10 time slots, respectively. It can be
verified that, although in the short term, the proposed QLRA method has a bit lower
mean value in comparison with the CCEA method, in the long term, it has a comparable
performance with it and a superior performance in comparison with the other methods.
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Table 4. Computational complexity and mean holistic utility over time slot comparison.

Algorithm Mean Execution Time (Seconds) Mean Time Slot Holistic Utility Mean 10 Time Slots’ Holistic Utility

CCEA 2.93 28.03 35.993

QLRA 1.54 27.7 35.931

Xu et al. 3.44 26.12 29.241

Li et al. 7.45 27.23 33.031

6. Conclusions

In this paper, after mathematical modelling of the cloud users’ and cloud provider
utility functions, a Q-learning-based optimisation algorithm (called QLRA) was developed
for joint cloud customer/provider utility satisfaction. The cloud system parameters are
mapped into the agent, state, action, and reward elements of a Q-learning algorithm. The
experimental findings demonstrate the effectiveness of the developed QLRA from the
perspective of the average holistic utility satisfaction of cloud data centre users and cloud
data centre providers in comparison with similar approaches. Another important feature
of the proposed method is the online and model-free property of the RL algorithm, which
results in converging to the optimal utility levels for both cloud users and cloud providers
in different cloud user population scenarios under energy efficiency constraints. We also
compared the mean computational complexity and mean holistic utility over multiple
time slots between different methods. It was shown that the proposed QLRA method,
while having comparable long-term mean holistic utility performance, has a better mean
computational complexity in comparison with similar approaches.

One of the future open research issues is the modification of the developed QLRA for
massive cloud users using deep Q-learning or deep RL techniques. We also suggest using
emerging game-based techniques such as mean field game (MFG) theory and, also, using
novel evolutionary game strategies for simultaneous utility satisfaction for the overall
cloud data centre network system under energy efficiency constraints.
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