

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos

Estudios para el acondicionamiento de la carretera CV-445 entre la intersección con la CV-440 y el municipio de Teresa de Cofrentes, provincia de Valencia.

Trabajo Fin de Grado

Grado en Ingeniería Civil

AUTOR/A: Naranjo Martínez, Jorge

Tutor/a: Camacho Torregrosa, Francisco Javier

CURSO ACADÉMICO: 2022/2023

TRABAJO FINAL DE GRADO

ESTUDIOS PARA EL ACONDICIONAMIENTO DE LA CARRETERA CV-445 ENTRE LA INTERSECCIÓN CON LA CV-440 Y EL MUNICIPIO DE TERESA DE COFRENTES, PROVINCIA DE VALENCIA

Presentado por:

Naranjo Martínez, Jorge

Para la obtención del:

Grado en Ingeniería Civil

Curso:

2022/2023

Fecha:

septiembre 2023

Tutor:

Javier Camacho Torregrosa

ÍNDICE

DOCUMENTO N.º 1: MEMORIA Y ANEJOS

MEMORIA

ANEJO N.º 1: SITUACIÓN ACTUAL

ANEJO N.º 2: GEOLOGÍA Y GEOTECNIA

ANEJO N.º 3: PLANEAMIENTO URBANÍSTICO

ANEJO N.º 4: HIDROLOGÍA Y DRENAJE

ANEJO N.º 5: ESTUDIO DEL TRÁFICO

ANEJO N.º 6: DISEÑO GEOMÉTRICO

ANEJO N.º 7: ESTUDIO DE SOLUCIONES

ANEJO N.º 8: SEGURIDAD VIAL

ANEJO N.º 9: DIMENSIONAMIENTO DEL FIRME

ANEJO N.º 10: RELACIÓN VALORADA

ANEJO N.º 11: PLAN DE OBRA

ANEJO N.º 12: OBJETIVOS DE DESARROLLO SOSTENIBLE (ODS)

DOCUMENTO N.º 2: PLANOS

DOCUMENTO Nº1: MEMORIA Y ANEJOS

<u>Curso</u>: 2022/2023

Fecha:

septiembre 2023

Autor:

Jorge Naranjo Martínez

Tutor:

Javier Camacho Torregrosa

INDICE

1. Introducción	2
2. Localización	2
3. Antecedentes	2
4. Situación actual	3
5. Geología y geotecnia	4
5.1 Análisis Geológico	4
5.2 Análisis Geotécnico	5
6. Planeamiento urbanístico	5
7. Hidrología y drenaje	6
7.1. Climatología y riesgo de inundación	6
7.2. Caudales	6
7.3. Drenaje	7
7.3.1 Drenaje transversal	7
7.3.2 Drenaje longitudinal	8
8. Estudio del trafico	8
8.1 Intensidad media diaria (IMD)	8
8.2 Nivel de servicio	9
9. Estudio de soluciones	9
9.1 Alternativas planteadas	9
9.1.1. Alternativa 1	10
9.1.2. Alternativa 2	10
9.1.3. Alternativa 3	10
	12
9.2 Análisis multicriterio	13

10. Diseño geométrico	14
10.1. Trazado	14
10.2. Visibilidad	14
10.3. Sección transversal	15
10.4. Bombeo y peralte	15
10.5. Movimiento de tierras	15
10.6. Intersecciones y accesos	15
11. Consistencia	15
11.1. Consistencia local	16
11.2. Consistencia global	17
11.3. Evaluación de accidentes	17
12. Dimensionamiento del firme	17
12.1. Categoría del trafico	17
12.2. Explanadas	17
12.3. Firme	18
12.3.1. Zahorra	18
12.3.2. Mezcla bituminosa	18
12.3.3. Sección tipo del trazado	18
13. Relación valorada	19
14. Plan de obra	20
15 Conclusiones	21

1. Introducción

La carretera CV-445 de tipo convencional es la única vía de comunicación por la que se puede acceder al municipio de Zarra, la falta de mantenimiento y seguridad de esta carretera hace que los usuarios diarios estén expuestos a situaciones de riesgo. Por ello, es necesario mejorar las características de dicha carretera, rediseñándola de acuerdo con la normativa vigente y cumpliendo los estándares de seguridad.

2. Localización

La carretera CV-445 que pasa por Zarra es una carretera de la Comunidad Valenciana (**Figura 1**) que forma parte de la red de carreteras básicas y conecta el municipio de Ayora y Teresa de Cofrentes (**Figura 2**), Se halla de Albacete a menos de 80 Kilómetros y de la capital provincial, València, a 120 km (por el norte) y 140 km (por el sur).

Figura 1. Situación geográfica. Fuente: Visor Cartogràfic de la Generalitat Valenciana.

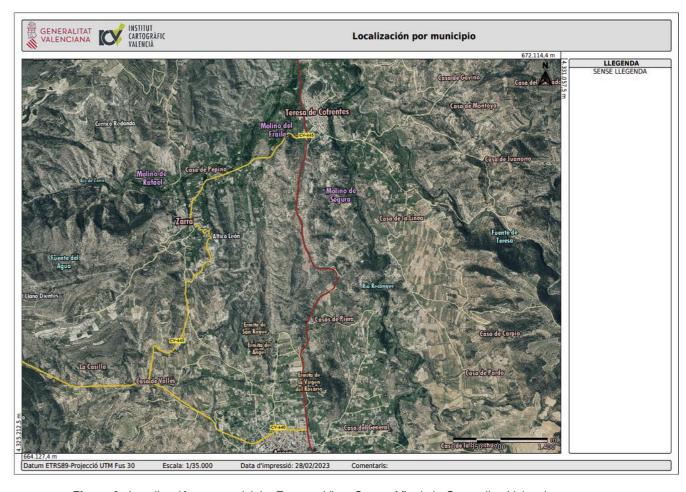


Figura 2. Localización por municipio. Fuente: Visor Cartogràfic de la Generalitat Valenciana.

3. Antecedentes

La carretera CV-445, con una longitud total de 5,570 km, desempeña un papel crucial como la única vía de acceso al municipio de Zarra, que alberga a una población de alrededor de 500 habitantes, donde la mayoría de los residentes en este municipio son jubilados y pensionistas.

Se trata de una carretera de uso diario mayoritariamente para los habitantes de Zarra ya que este municipio no dispone de todos los comercios necesarios para vivir, si bien hay algunos comercios pequeños en el municipio, estos no proporcionan todos los bienes y servicios necesarios para subsistir.

Por otro lado, la población económicamente activa también necesita hacer uso de la carretera para acceder a los puestos de trabajo en los municipios cercanos. Sin embargo, la falta de mantenimiento y los problemas de seguridad vial, tales como las curvas con radios reducidos y la limitada visibilidad en determinados tramos, desencadenan situaciones riesgosas para quienes usan esta vía a diario.

4. Situación actual

Como se puede apreciar en la **Figura 2**, se muestra una vista panorámica de la CV-445, que se extiende desde su intersección con la CV-440 hasta el municipio de Teresa de Cofrentes. Esta carretera consta de tres intersecciones, la primera de ellas está ubicada en el punto kilométrico (PK) 0+000, donde se cruza con la CV-440; la segunda intersección se encuentra en el municipio de Zarra y, en el contexto de este proyecto, marca la división de la CV-445 en dos tramos con el propósito de llevar a cabo un análisis más exhaustivo y preciso para su acondicionamiento (**Figura 3**).

Figura 3. Intersección en "T" PK 3+300. Fuente: Visor Cartográfico GVA.

El segundo tramo se forma desde esta intersección en Zarra, hasta la intersección con el municipio de Teresa de Cofrentes (**Figura 4**). Además de estas intersecciones, es fundamental destacar la existencia de múltiples accesos a lo largo de todo el trayecto, que conectan la carretera con pequeñas viviendas privadas y campos de cultivo.

Figura 4. Intersección en "T" PK 5+720. Fuente: Visor Cartográfico GVA.

Los estudios realizados en el Anejo Nº1: Situación actual han permitido conocer de una forma más profunda en qué estado se encuentra la carretera para posteriormente poder estudiar las posibles soluciones. Los estudios han abordado diversos aspectos y se han sacado las siguientes conclusiones:

 <u>Estado del pavimento:</u> A lo largo del trazado, se han observado numerosas imperfecciones en el estado del pavimento, como grietas longitudinales y transversales en las cuales se han aplicado medidas correctivas (Figura 5).

Figura 5. Grietas en el pavimento. Fuente: Google Maps.

No obstante, es importante destacar que no se ha detectado la presencia de de lo que se conoce como "piel de cocodrilo" en patrones de malla ancha o estrecha; lo que supondría la posibilidad de un problema más profundo en la estructura del pavimento en su conjunto, y no solo en las capas superficiales.

- Diseño geométrico: La evaluación de alineaciones y perfiles ha revelado que, en la mayoría de los casos, no cumplen con los estándares establecidos en la normativa 3-1 I.C de trazado. En planta, destaca la abundancia de curvas sin curvas de transición (clotoides), y en aquellos casos en los que están presentes, no cumplen con los parámetros requeridos. Además, en alzado, se han identificado incumplimientos en cuanto a las longitudes mínimas de acuerdo. Finalmente, al analizar ambos aspectos en conjunto (coordinación planta-alzado), se ha evidenciado un incumplimiento significativo en el segundo y tercer criterio referentes a los cambios de nivel y a las especificaciones de los parámetros de las curvas, ambos definidos en el Anejo Nº1: Situación actual.
- <u>Visibilidad:</u> Haciendo uso de la herramienta del programa Civil 3D "Visibilidad", se ha podido determinar la distancia a lo largo de un carril entre un obstáculo en dicho carril y un vehículo en movimiento hacia ese obstáculo. Esto, junto al cálculo de la distancia de parada ha permitido observar que en numerosas zonas del trazado la distancia de parada es superior a la visibilidad

de parada, por lo que no se cumple con la normativa. En el **Grafico 1** se muestra la evaluación de la visibilidad en el Tramo I; donde se observa claramente que en varias zonas a lo largo del trazado la distancia necesaria para detenerse excede la distancia de visibilidad existente.

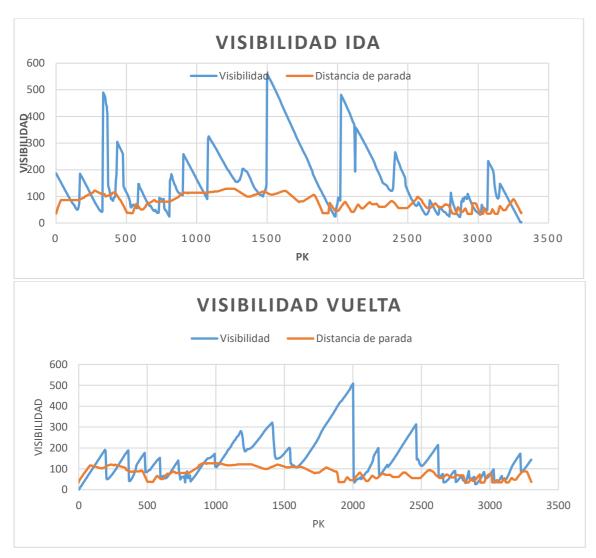


Gráfico 1. Perfiles de Visibilidad en el Tramo I: Elaboración propia.

• Consistencia: Se entiende la consistencia como la correspondencia entre las expectativas de los conductores y el comportamiento de la carretera. Para evaluarla, se han calculado las velocidades promedio de los conductores y la disminución de velocidad necesaria en puntos específicos del trazado. Estos cálculos se han realizado utilizando un software proporcionado por el tutor Francisco Javier Camacho Torregrosa. Estos análisis han demostrado que en gran parte del recorrido, existen inconsistencias catalogadas como "pobres", siendo estas las más perjudiciales para los usuarios. En la Tabla 1 se muestra el número de tipos de inconsistencia de las 81 existentes en la carretera actual.

TIPO DE INCONSISTENCIA					
BUENA	BUENA ACEPTABLE POBRE				
20 29 32					

Tabla 1. Tipos de inconsistencia en el trazado actual. Fuente: Elaboración propia.

La obtención y el desarrollo de estos estudios se detallan con más profundidad en el Anejo Nº1: Situación actual.

5. Geología y geotecnia

5.1 Análisis Geológico

Para conocer las propiedades de los materiales que componen el terreno en la zona de estudio, se han utilizado los datos proporcionados por el Instituto Geológico Minero Español (IGME). Estos datos revelan que a lo largo del recorrido se identifican distintos materiales, incluyendo arcillas rojas, arenas y conglomerados (22), dolomías y carniolas (7), margas y arcillas rojas (4), así como materiales del cuaternario indiferenciados (27). (**Figura 6**).

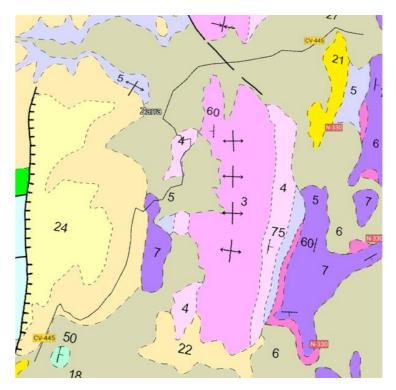


Figura 6. Mapa geológico de España. Hoja 768. Fuente: Adaptado Instituto Geológico y Minero de España (IGME).

Por otro lado, también se han identificado las áreas en las que el trazado de la carretera atraviesa terrenos ondulados y específicamente algunas zonas de terreno montañoso, así como aquellas zonas con un mayor riesgo de erosión. Estos detalles se encuentran detallados de manera más específica en el Anejo Nº3: Geología y geotecnia.

5.2 Análisis Geotécnico

Para llevar a cabo el análisis geotécnico de la zona, se ha hecho uso del visor cartográfico de la Generalitat Valenciana GVA, el cual nos permite disponer de la información necesaria acerca de los detalles de terreno. Dado que no se disponen de ensayos disponibles cerca de la zona de actuación, se ha recurrido a diferentes ensayos realizados en zonas próximas con propiedades geológicas similares.

Dichos ensayos no han revelado la presencia de nivel freático y han permitido clasificar el terreno como suelo marginal, de acuerdo con el Artículo 330 del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes (PG3). Esto lo descarta como adecuado para ser utilizado como explanada.

No obstante, se ha analizado la posibilidad de emplear este suelo para la explanada mediante un proceso de estabilización "in situ". A falta de información más extensa sobre la composición química del terreno, se ha llegado a la conclusión de que podría ser posible utilizar este material para la explanada mediante la aplicación de una estabilización "in situ" con cemento (S-EST2 CEM).

En relación con la definición de los taludes de diseño, se adoptará por una relación de 3H/2V. Esta decisión se respalda tanto en la diversidad de los taludes obtenidos a partir de la caracterización "in situ" como en la información obtenida del visor GVA, que señala que en la mayor parte del trazado no se superan pendientes del 15%. No obstante, existen algunas zonas donde estas pendientes pueden alcanzar hasta el 30% o incluso el 50%.

Dicha información se encuentra más detallada en su anejo correspondiente Anejo Nº2: Geología y geotecnia.

6. Planeamiento urbanístico

A través del visor cartográfico de la Comunidad Valenciana GVA, se ha llevado a cabo la clasificación y zonificación del suelo en la zona. El resultado primordial es una extensa área clasificada mayormente como "Suelo no urbanizable común". No obstante, también se han identificado segmentos en los que la clasificación varía, abarcando categorías como "Suelo no urbanizable protegido" y "Zona urbanizada residencial" (**Figura 7**). En términos de zonificación, el suelo se concentra principalmente en zonas rurales y en un núcleo histórico tradicional urbano.

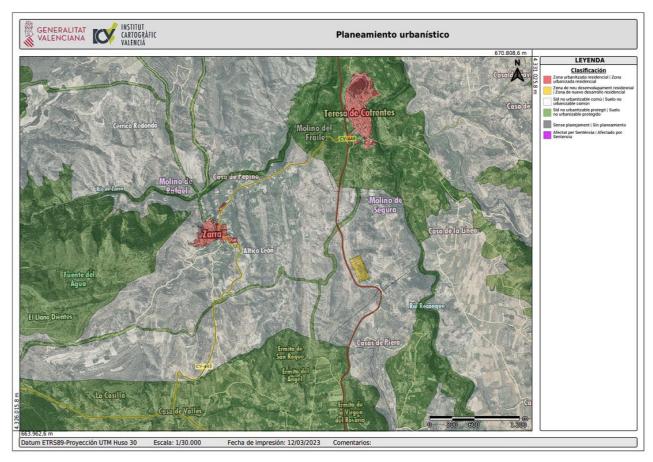


Figura 7. Clasificación del suelo. Fuente: Adaptado de Visor Cartogràfic de la Generalitat Valenciana.

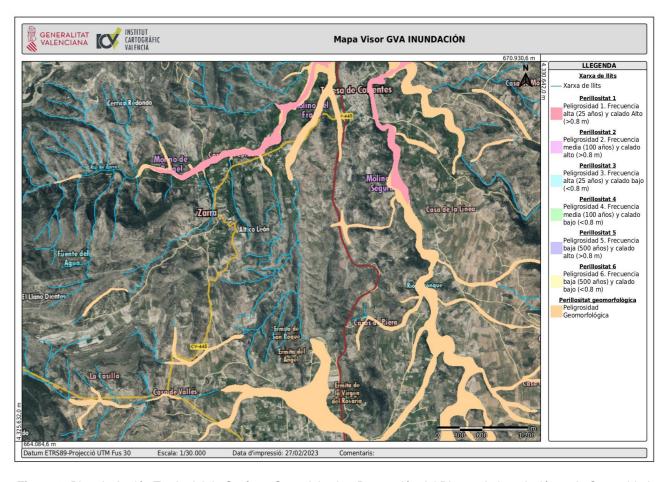
Por otro lado, como el trazado de la carretera transcurre por el término municipal de tres municipios se ha recurrido al al Plan General de Ordenación Urbanística (PGOU) de cada municipio con el objetivo de identificar las actuaciones necesarias.

Desde el inicio del trazado hasta el punto kilométrico 0+450, la carretera se encuentra dentro del término municipal de Ayora, donde el suelo se cataloga como urbanizable protegido. En esta sección, las modificaciones en el trazado serán mínimas, ya que es crucial conservar los valores ambientales, paisajísticos, culturales y económicos. De igual forma, esta misma categoría de clasificación abarca desde el punto kilométrico 2+000 hasta el final del trazado, incluyendo el término municipal de Teresa de Cofrentes.

En contraste, en las partes restantes del trazado, correspondientes a los términos municipales de Zarra y Teresa de Cofrentes, el suelo se considera no urbanizable. Aquí, se pueden ejecutar diversos usos y aprovechamientos, incluyendo obras, infraestructuras e instalaciones asociadas a las redes de suministros, transporte y comunicación, en caso de ser necesario y justificable en el suelo no urbanizable.

En consecuencia, en las áreas donde el suelo está clasificado como "Suelo no urbanizable protegido" y se requiera una modificación que cumpla con la normativa, se buscará mantener el trazado original de la carretera. Alternativamente, se proporcionará una justificación sustentada que explique cómo estas modificaciones contribuyen a la prestación de un servicio público en beneficio de la comunidad.

Esta información se amplía y detalla en el Anejo Nº6: Planeamiento Urbanístico.


7. Hidrología y drenaje

Se han analizado características hidrológicas particulares en la zona tales como la climatología, la propensión a inundaciones, los caudales y el sistema de drenaje. De esta forma se ha podio definir la disposición del drenaje de la solución adoptada

7.1. Climatología y riesgo de inundación

Se ha realizado una investigación utilizando el sitio web de AEMET (Agencia Estatal de Meteorología) para obtener el resumen climatológico anual correspondiente al año 2023. Además, se ha consultado el Plan de Acción Territorial de Carácter Sectorial sobre Prevención del Riesgo de Inundación en la Comunidad Valenciana (PATRICOVA) para analizar la información relacionada con la inundabilidad en la zona.

El análisis climatológico ha revelado que tanto la precipitación media anual (mm) como la precipitación máxima diaria (mm) en la zona de estudio se encuentran por debajo de los valores promedio globales. En términos de inundabilidad, no se han encontrado datos que indiquen una amenaza significativa. No obstante, se han identificado dos áreas en el trazado donde existe una posible peligrosidad geomorfológica debido a la presencia de vaguadas y barrancos de fondo plano (**Figura 8**).

Figura 8. Plan de Acción Territorial de Carácter Sectorial sobre Prevención del Riesgo de Inundación en la Comunidad Valenciana. Fuente: Visor Cartogràfic de la Generalitat Valenciana

7.2. Caudales

Con el objetivo de determinar los caudales que afectan a la solución adoptada, en primer lugar se ha han delimitado las cuencas de captación que influyen en esta. Para llevar a cabo este proceso, se han empleado herramientas de software como Autodesk InfraWorks y Autodesk Civil 3D; además, se ha utilizado información de modelos digitales de superficie proporcionados por el Plan Nacional de Observación del Territorio (**Figura 9**).

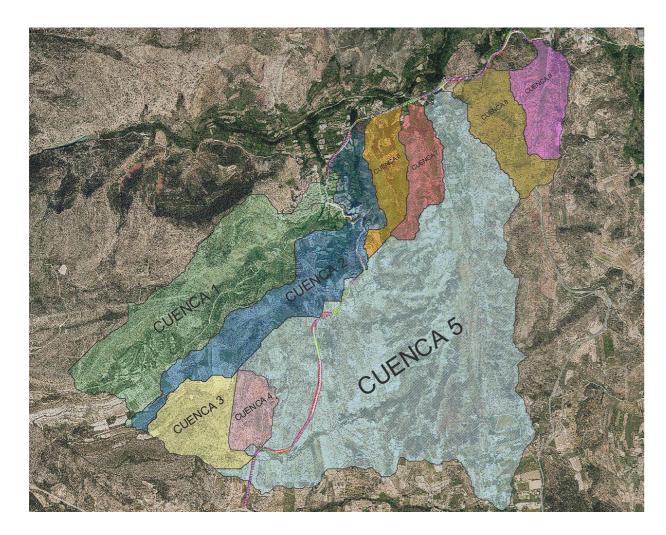


Figura 9. Cuencas de captación. Fuente: Elaboración propia.

Una vez definidas las cuencas de captación, se han definido sus características y, atendiendo a la Normativa 5.2-IC de la instrucción de carreteras se han obtenido sus caudales. Como se ha definido con anterioridad, al no ser una zona con precipitaciones intensas, los caudales no exceden unos parámetros excesivos. Esto ha permitido planificar las obras de drenaje de manera efectiva, tomando en consideración las infraestructuras de drenaje existentes y asegurando que la capacidad de drenaje de la carretera no se vea sobrepasada.

7.3. Drenaje

Tras los datos obtenidos a través de la hidrología se ha analizado el drenaje de la carretera existente y se han definida el drenaje de la solución adoptada en función de los parámetros obtenidos.

7.3.1 Drenaje transversal

La CV-445 no presenta un gran número de Obras de drenaje Transversal (ODT), no obstante, dichas obras permiten evacuar el agua de la calzada y transportarla de tal forma que la carretera no suponga una obstrucción para su transcurso.

La **Figura 10** presenta la obra de drenaje transversal más relevante en el trazado actual. Sin embargo, según la normativa 5.2 IC, la ODT no satisface los requisitos mínimos debido a que su longitud supera los 5 metros y su diámetro es inferior a 1,2 metros. Por lo que, si la solución proyectada así lo establece, se procederá a la reubicación de esta obra transversal, asegurando su conformidad con las dimensiones mínimas prescritas por la normativa.

Figura 10. Obra de drenaje transversal (ODT), Tramo I PK 0+390. Fuente: Elaboración propia.

Además, especialmente en el Tramo II, se pueden identificar otros tipos de obras de drenaje, tal como se muestra en la **Figura 11**. Estas estructuras de drenaje serán reubicadas de acuerdo con las especificaciones de la solución propuesta.

Figura 11. Obra de drenaje, Tramo II PK 0+780 .Fuente: Elaboración propia.

7.3.2 Drenaje longitudinal

La carretera actual cuenta principalmente con cunetas triangulares a pie de desmonte a lo largo del recorrido, como se puede observar en la **Figura 12** dichas cunetas son más propensas a la erosión del terreno y al colapso en caso de una lluvia pronunciada.

Figura 12. Cuneta triangular. Fuente: Elaboración propia.

Por otro lado, en ciertos lugares de la carretera se dispone de cunetas trapezoidales lo que permiten una menor vulnerabilidad a la erosión y una mayor capacidad y control del flujo del agua. Es por ello por lo que se ha adoptado dicha cuneta a lo largo del trazado de la solución adoptada (**Figura 13**).

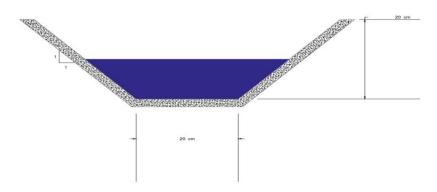


Figura 13. Sección cuneta trapezoidal. Fuente: Elaboración propia

8. Estudio del trafico

8.1 Intensidad media diaria (IMD)

Los datos obtenidos han sido extraídos Los datos del estudio a través de la campaña de Aforos del 2021 y 2022 de la Conselleria de Política Territorial, Obras Públicas y Movilidad mediante el portal de la Comunidad Valenciana.

A través de estos datos se ha podido definir que la CV-445 tuvo una intensidad de tráfico de 475 veh/d, no obstante, se desconoce el porcentaje de pesados ya que no se han realizado conteos oficiales. Al objeto de estudio se ha implantado un porcentaje de pesados del 30%, posicionándose del lado de la seguridad.

Por otro lado, se pronostica una puesta de servicio de 3 años después de la redacción del presente estudio, por lo que para poder calcular la IMD en el año de puesta de servicio y en él año horizonte, en este caso 2026, se han utilizado los datos de crecimiento del tráfico publicados en el BOE de acuerdo con la orden FOM/3317/2010.

Tras realizar los cálculos pertinentes se obtienen las siguientes IMD y pesados para los diferentes cálculos (**Tabla 2**.)

PERIODOS	IMD (veh/día)	IMDP (veh/día)
Aforo (2022)	475	143
Año puesto en servicio (2026)	503	150
Año horizonte (2046)	709	213

Tabla 2. Recopilación de Intensidad Media Diaria (IMD). Fuente: Elaboración propia.

8.2 Nivel de servicio

El Nivel de servicio es empleado para mediar el funcionamiento de la carretera. A pesar que a la CV-445 cuenta con un buen nivel de servicio ya que no existen atascos, se ha realizado un análisis utilizando el Manual de Capacidad de Carreteras (HCM). Esta herramienta ha permitido determinar el nivel de servicio actual de la CV-445 y, de este modo, evaluar la calidad de la experiencia de conducción para los usuarios. En esta evaluación se han considerado factores como la comodidad, la seguridad, la eficiencia económica y la fluidez del tráfico (**Figura 14**).

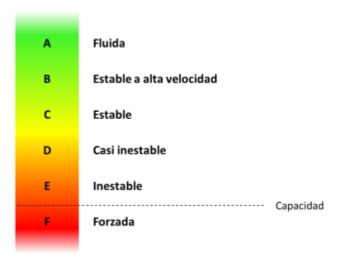


Figura 14. Niveles de servicio. Fuente: UPV

De esta forma se ha analizado el nivel de servicio para los diferentes periodos definidos en la **Tabla 2** tanto en sentido creciente como decreciente. Los resultados han indicado un nivel de servicio "A" en todos los intervalos en sentido ascendente y un nivel de servicio "B" en todos los intervalos en sentido descendente.

La resolución de estos cálculos se encuentra más detallados en el Anejo №5: Estudio del tráfico.

9. Estudio de soluciones

9.1 Alternativas planteadas

En base a los condicionantes descritos, se han desarrollado tres alternativas que mejoran las problemáticas existentes en la CV-445. Todas las alternativas se han diseño adoptándose en la medida de lo posible a las pesquisas necesarias establecida por la la "Norma 3.1 IC Trazado"; por otro lado, también se ha buscado mejorar la seguridad vial de la carretera mediante un diseño de trazado que mejore la consistencia y realizando las medidas necesarias para proporcionar una buena visibilidad, todo ello se realiza con el objetivo de intentar mantener parte del trazado original de la carretera, ocasionando el menor daño al medioambiente y reduciendo el movimiento de tierras.

Atendiendo a las características específicas del trazado, se han definido unas zonas limitadas en el trazado actual de la carretera, la primera ubicada entre el PK 2+630 hasta el PK 0+330 del segundo tramo y la segunda que va desde el PK 0+500 y el PK 0+700 en el tramo II. En estas áreas no se implementarán modificaciones en el trazado debido a la proximidad de viviendas y a la inviabilidad de encontrar una ubicación alternativa que cumpla con los requisitos de conservación del entorno, protección de espacios naturales y garantía de acceso seguro al municipio de Zarra.

Con el objetivo de mejorar las condiciones de seguridad vial de este tramo se realizará la ejecución de la creación de arcenes con el objetivo de mantener una uniformidad en todo el trayecto y cumplir con la normativa. Además en aquellas zonas en las que la visibilidad incumpla normativa existente se han diseñado la realización de despejes como se puede observar en la **Figura 15**.

Figura 15. Despeje en el Tramo I PK 2+830 - PK 2+934 Fuente: Elaboración propia.

Dichas actuaciones quedaran reflejadas en las tres alternativas las cuales presentan desde cambios menores en el trazado a cambios más significativos. Por lo que, se realizaran diseños que conserven más el trazado de la carretera, así como otros diseños que ofrecen una mayor flexibilidad y adaptaciones a las necesidades expuestas.

9.1.1. Alternativa 1

La alternativa 1 busca reducir principalmente la cantidad de curvas consecutivas de radio inferiores a 50 m, las cuales incumplen la normativa para una velocidad de proyecto de 40km/h y que generan inconsistencias y problemas de visibilidad. Para ello se ha permitido una mayor libertad en el diseño del trazado, modificando dichas consecuciones de curvas más significativas por tramos más rectos que han permitido un mejor cumplimiento de la normativa de trazado respecto a la planta y alzado.

En la **Figura 16** se muestra un ejemplo de la mayor corrección realizada en dicha alternativa, que ha permitido mejorar la seguridad vial en la zona de actuación.

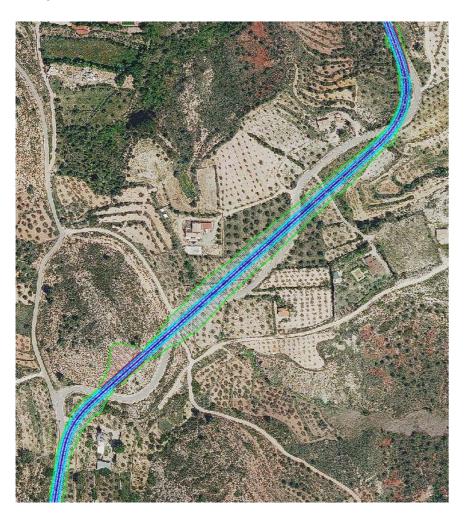


Figura 16. Sustitución de curvas en "S" por un tramo recto (Tramo IPK 1+1715 – PK 2+300). Fuente: Elaboración propia.

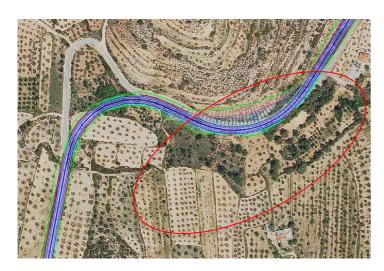
Los cambios realizados a lo largo del trazado han permitido mejorar en gran parte del trazado la insistencia de pobre a aceptable, así como un mayor cumplimiento de la normativa, por otro lado, dicha alternativa no aprovecha lo máximo posible la infraestructura existente por lo que genera un coste y un impacto ambiental mayor.

9.1.2. Alternativa 2

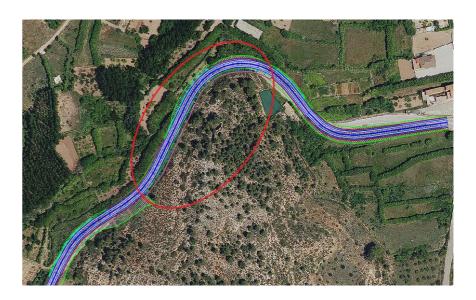
El desarrollo de esta alternativa se centra principalmente en mantener en la medida de lo posible el trazado original de la carretera, disminuyendo de esta forma el impacto ambiental y la necesidad de movimiento de tierras significativos. Para realizar dicha alternativa y que se adapte en la medida de lo posible a la normativa de trazado se han modificado aquellos parámetros, radios y rectas intermedias que no cumplían con la norma, como por ejemplo se observa en la (**Figura 17**).

Figura 17. Cambios en el trazado y mejora de las curvas circulares (Tramo I PK 0+300 – PK 0+816). Fuente: Elaboración propia.

Mejorando dichas condiciones se ha conseguido mejorar aspectos en puntos específicos del trazado mejorando la consistencia y visibilidad, no obstante, no se ha mejorado notoriamente como en el resto de alternativas en las que se dota de más libertad del trazado. Por lo tanto ,esta alternativa presenta un menor cumplimiento de la normativa, pero un coste y un aprovechamiento de las infraestructuras con mejor valoración que el resto.


9.1.3. Alternativa 3

La alternativa 3 se ha diseñado con el objetivo de mejorar la seguridad vial lo máximo posible, sin realizar un movimiento de tierras excesivo e intentando aprovechar en la medida de lo posible la infraestructura existente.


Para ello se ha modificado el trazado en aquellas zonas donde no se estaba cumpliendo las normativas de trazado. Se realizaron modificaciones precisas en los radios de las curvas y en las transiciones entre segmentos rectos y curvos, así como ajustes en las longitudes intermedias de las rectas. Estos ajustes se llevaron a cabo con el objetivo de mejorar significativamente la consistencia en la mayoría de las secciones del trazado modificado.

Sin embargo, durante este proceso de diseño, se han identificado áreas específicas donde la visibilidad es insuficiente. Para abordar esta problemática se han implementado operaciones de despeje en esas zonas particulares que presentaban problemas de visibilidad (**Figura 18**).

Figura 18. Cambio de trazado en curvas en "s" de radio inferior a 50m (Tramo I PK 0+359 - PK 0+945). Fuente: Elaboración propia.

Por otro lado, como se han modificado los radios y parámetros de tal forma que cumplan con la normativa y se amolde en la medida de lo posible al trazado original de la carretera, en determinas zonas se generaba un movimiento de tierras excesivo, produciendo de esta manera un gran impacto ambiental. Para solventar esta problemática, se ha ejecutado la colocación de muros de contención en dichas zonas especias que reducen dichos condicionantes, se puede observar en la **Figura 19** como se muestra en el trazado.

Figura 19. Cambios en el trazado y mejora de las curvas circulares (Tramo II PK 1+800 - PK 2+427): Fuente: Elaboración propia.

Con estas medidas, esta alternativa es la que presenta un mejor cumplimiento de la normativa y mejores cualidades en cuanto a la seguridad vial. No obstante, dichas medidas la sitúan como la alternativa con peor criterio en cuanto a gastos generales.

En el **Comparativo 1**, se presenta una visión global de los trazados correspondientes a cada una de las alternativas, lo que facilita la apreciación de las características generales de cada una de ellas, como se ha descrito anteriormente.

Comparativo 1. Planta solución proyectada de las alternativas 1,2 y 3 Fuente: Elaboración propia.

9.2 Análisis multicriterio

Se ha realizado un análisis multicriterio con el fin de asegurar la elección de la alternativa más adecuada para la ejecución del acondicionamiento. Para ello, se ha realizado el análisis multicriterio de las alternativas descritas anteriormente.

A continuación, se presentan los criterios y sus subcriterios que han sido seleccionados para su evaluación:

- Costes Generales: El valor económico de la obra es un factor de peso al momento de decidir entre las distintas alternativas. Se evalúan dos aspectos clave: el movimiento de tierras y la utilización de la infraestructura existente.
 - Evaluación del movimiento de tierras: Se han empleado modelos digitales del terreno basados en los trazados de las alternativas para determinar la cantidad necesaria de desmonte o terraplén.
 - Aprovechamiento de la infraestructura existente: Se busca maximizar la conservación de las secciones de la vía que mantienen su trazado original, lo que reduce las operaciones y, por ende, los costes.
- **Seguridad Vial:** Se analizan dos aspectos fundamentales en este criterio: la consistencia y la visibilidad.
 - Consistencia: Se evalúa la consistencia en términos locales y globales. Además, se tiene en cuenta el número estimado de accidentes en 10 años.
 - Visibilidad: Se valora la conformidad con la normativa y la existencia de puntos ciegos en curvas o intersecciones.
- Impacto Ambiental e Integración Paisajística: Se consideran aspectos como el uso del suelo
 y el aprovechamiento de la infraestructura existente, minimizando la pérdida de vegetación y la
 alteración de ecosistemas.
- Trazado: Se valora el cumplimiento de la normativa 3.1IC tanto en planta como en alzado.
- **Funcionalidad:** Se evalúa la eficiencia del tráfico y la comodidad del conductor, garantizando un desplazamiento seguro y fluido.

Tras definir los citeriores, se han otorgado valores a cada uno de los criterios en función de su cumplimiento y su importancia relativa en la toma de decisiones. Los valores resultantes de este estudio se pueden contemplar con más detalle en el Anejo Nº7: Estudio de soluciones. A continuación en la **Tabla 3**, se puede observar un resumen de los valores de cada una de las alternativas en función de los criterios descritos anteriormente.

	41 TERMATIMA	COSTES GENERALES		SEGURIDAD VIAL		IMPACTO AMBIENTAL	TRAZADO	FUNCIONALIDAD	
	ALTERNATIVAS	Mov.Tierras	Aprov.Inftra	Consistencia	Visibilidad	Conservación del entorno	Cumplimiento normativa	Efic.Tráfico	Comodidad
Ī	1	7	4.1	7.9	8	6	7.4	8	7
	2	9	8.2	5.5	7.5	8	5	7.8	6
Ī	3	6	4.9	9	9	7.5	8	7.8	8

Tabla 3. Valoración de los criterios: Elaboración propia.

Una vez se han definido los valores de los criterios se ha realizado una ponderación asignando un porcentaje de pesos a cada uno de los criterios en función de su importancia respecto al resultado del proyecto. Analizando cada criterio global e individualmente se obtienen los siguientes valores:

- Costes generales (25%):
 - Movimiento de tierra (60%):
 - Aprovechamiento de infraestructura existente (40%):
- Seguridad Vial (30%):
 - o Consistencia (55%):
- Impacto ambiental (20%):
 - o Conservación del entorno (100%):
- Trazado (15%):
 - o Cumplimiento de la normativa (100%):
- Funcionalidad (10%):
 - o Eficiencia del tráfico (55%):
 - Comodidad del conductor (45%):

Aplicando estos pesos a los valores de las alternativas descritas anteriormente obtenemos el cuadro comparativo donde se presentan las puntuaciones ponderadas de cada criterio y la puntuación total para cada alternativa (Tabla 4).

ALTERNATIVAS	COSTES GENERALES	SEGURIDAD VIAL	IMPACTO AMBIENTAL	TRAZADO	FUNCIONALIDAD	TOTAL
1	5.8	7.9	6	7.4	7.6	6.9
2	8.7	6.4	8	5	7	7.1
3	5.6	9	7.5	8	7.9	7.6

Tabla 4. Cuadro comparativo: Elaboración propia.

Se observa que la Alternativa 3 destaca como la más adecuada desde una perspectiva neutral, aunque todas las alternativas tienen resultados cercanos.

En resumen, el análisis multicriterio ha permitido una evaluación exhaustiva de las alternativas de diseño de la carretera. Basándose en los resultados y ponderaciones, la Alternativa 3 surge como la

opción más favorable, aunque la elección definitiva dependerá de los intereses y preferencias específicas del promotor del proyecto.

Como se ha mencionado anteriormente, el análisis completo se puede obtener en el Anejo Nº7: Estudio de soluciones.

10. Diseño geométrico

Para la realización de la solución seleccionada se han llevado a cabo modificaciones significativas a lo largo de su trazado con el objetivo de corregir aquellas zonas que no cumplían con en el cumplimiento de la normativa, la seguridad vial y la experiencia de conducción. Estas mejoras abarcaran varios aspectos clave, incluyendo el trazado, la visibilidad, la sección transversal, el bombeo y peralte, el movimiento de tierras, las intersecciones y los accesos.

10.1. Trazado

Para mejorar la problemática existente en cuanto al cumplimiento de la normativa de trazado se realizaron un gran número de ajustes significativos en las curvas de radio reducido y rectas insuficientes, las cuales principalmente han sido reemplazadas por curvas en forma de "S" con radios más amplios para ajustarse a lo estipulado en la normativa.

Dichas actuaciones han mejorado notoriamente la consistencia del trazado debido a que estas curvas en "S", combinado con los tramos más rectos del trazado que se deseaban mantener han permitido transición suave entre ambos, beneficiando de esta forma la consistencia de la carretera.

Por otro lado, en aquellas zonas en las que las modificaciones eran limitadas debido a la presencia de viviendas cercanas o restricciones de espacio, se han implementado acciones como despejes y diseño de arcenes para mejorar la visibilidad y mantener la uniformidad de la carretera.

De igual forma que se han realizado cambios en la planta también se han ajustado el estado de rasantes de acuerdo a lo establecido con la normativa tanto en las zonas en las que se modifica notoriamente el trazado como aquellas en las que no, reduciendo las pendientes que exceden los límites, así como los acuerdos y longitudes mínimos y máximos de los acuerdos. Dichas modificaciones se han realizado con el objetivo de lograr en la medida de lo posible una correcta coordinación entre la planta y el alzado.

Estas actuaciones se definen con más profundidad en el Anejo Nº6: Diseño geométrico.

10.2. Visibilidad

Como se ha descrito anteriormente en aquellas zonas limitadas se han realizado operaciones de despejes para mejorar la visibilidad en aquellas zonas en las que no se puede modificar el trazado, no obstante en aquellas zonas en las que si se ha modificado el trazado y se ajusta en la medida de lo

posible al trazado original como por ejemplo el PK 0+000 – PK 0+750 mostrado en la **Figura 16** se analizado realizado un despeje que ha permitido mejorar una visibilidad deficiente en un área notoria por una buena mejorando de esta forma la visibilidad. Por otro lado, como se ha comentado los cambios realizados en el trazado han permitido mejorar la visibilidad respecto al trazado original.

En los siguientes gráficos se puede verificar el cumplimiento de la normativa.

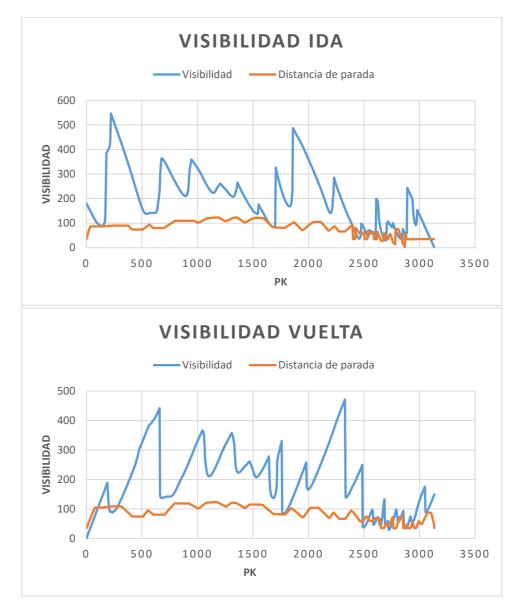
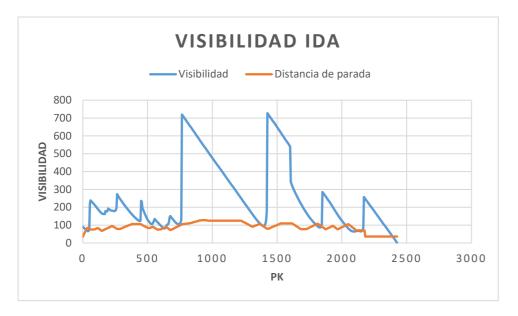



Gráfico 2. Perfiles de Visibilidad en el Tramo I: Elaboración propia

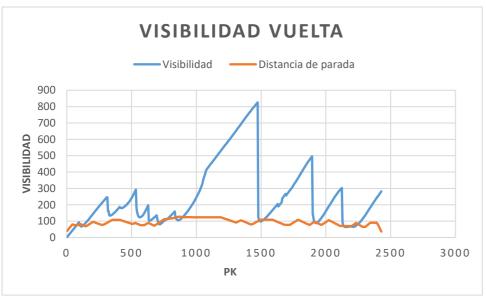


Gráfico 3. Perfiles de Visibilidad en el Tramo II: Elaboración propia

10.3. Sección transversal

La sección transversal de la carretera se ha establecido de acuerdo con las normativas la tabla 7.1 de la Norma 3.1 IC (Ministerio de Fomento, 2016) para una carretera que cuenta con una vía de servicio de sentido único y una velocidad de proyecto de 40 km/h:

Carril: 3 metrosArcén: 0,5 metrosBerma: 0,25 metros

10.4. Bombeo y peralte

Las inclinaciones transversales y los peraltes han sido diseñados según las regulaciones en vigor para las curvas de la carretera. Se ha garantizado la conformidad con las normativas en lo referente a la adecuada evacuación de aguas pluviales y al confort de la conducción, logrando esto mediante la implementación de inclinaciones apropiadas. Además, la transición desde el bombeo hasta el peralte y su progresiva disminución se llevarán a cabo a lo largo de toda la extensión de la clotoide.

- Bombeo: 2% en rectas.
- Berma: En caso de que el peralte del carril sea superior al 4%, las bermas mantendrán el mismo peralte que el carril. Si el peralte del carril es inferior al 4%, las bermas se ajustarán a un peralte del 4%.
- Peralte: Se establece un peralte del 7% debido a que la totalidad de las curvas tienen un radio inferior a 350 m y superior a 50 m.

10.5. Movimiento de tierras

Para la gestión del movimiento de tierras se ha priorizado el equilibrio buscando minimizar la diferencia entre terraplén y desmonte, evitando así alteraciones significativas en el terreno. Por lo que, en aquellas zonas en las que se ha previsto un movimiento de tierras excesivo que afectara tanto al coste de la obra como a un impacto ambiental severo se han realizado el diseño de muros de contención para controlar el desmonte a ejecutar, estas actuaciones se han realizado en el Tramo II entre el PK 0+181 – PK 0+568 y el PK 1+965 – PK 2+427 esta última mostrada en la **Figura 17**.

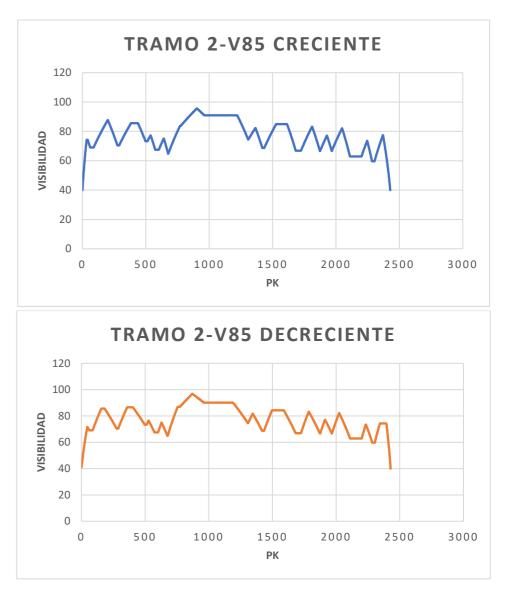
A través de estas actuaciones se ha dimensionado un movimiento de tierras de 133.565,92 m3, siendo este un valor no muy excesivo

10.6. Intersecciones y accesos

No se han realizado modificaciones en las intersecciones existentes debido a que el trazado de la carretera se mantiene en el mismo punto que en la carretera actual. En relación a los accesos a viviendas y caminos existentes, algunos de ellos han sido desplazados o modificados debido al nuevo trazado. No obstantes, dado que estos caminos están compuestos principalmente por tierra, podrán adaptarse al trazado de la carretera con la señalización adecuada para facilitar el acceso de la mejor manera posible.

11. Consistencia

Para corroborar la seguridad de solución seleccionada se ha realizado un estudio tanto de la consistencia local como global. Para analizarla, se ha evaluado la velocidad asociada al percentil 85 (V85), lo que permitirá analizar la consistencia tanto a nivel local como global.



11.1. Consistencia local

Para el análisis de la consistencia local, se ha empleado el Criterio II de Lamm et al. (1998). Este criterio ha permitido identificar las transiciones recta-curva que han generado una disminución significativa en la velocidad de operación. Dicha velocidad de operación se ha definido como la velocidad experimentada por los conductores y se observa en el **Grafico 4** y **Grafico 5**.

Gráfica 4. Velocidad de operación en el primer tramo. Fuente: Elaboración propia.

Gráfica 5. Velocidad de operación en el segundo tramo. Fuente: Elaboración propia.

Una vez obtenida la reducción de la velocidad de operación en cada elemento del trazado, se va a analizar la consistencia correspondiente para cada uno de estos elementos mediante el Criterio II de Lamm. La **Tabla 5** muestra el número de tipos de inconsistencia de las 72 existentes en la solución adoptada, como se observa se han reducido el número de inconsistencias catalogadas como "pobre" en gran parte del trazado, cabe recalcar que aquellas zonas en las que no es viable modificar el trazado forman esas 15 inconsistencias de tipo "pobre".

TIPO DE INCONSISTENCIA						
BUENA	BUENA ACEPTABLE POBRE					
18	39	15				

Tabla 5. Tipos de inconsistencia en el trazado actual. Fuente: Elaboración propia.

11.2. Consistencia global

Para medir la consistencia global del trazado se utilizará el modelo de Camacho-Torregrosa (2015), este modelo tiene en cuenta la velocidad de operación promedio y la tasa de deceleración promedio de los conductores en un tramo de carretera.

Los resultados muestran una consistencia global de 1.97 en el tramo I y 2.4 en el tramo II, este resultado nos indica que pese a que se ha mejorado el resultado respecto al de la carretera actual aún no se han conseguido unos valores que superen el umbral "pobre".

11.3. Evaluación de accidentes

A través del modelo Camacho-Torregrosa (2015) es posible calcular el número de accidentes con víctimas durante un período de 10 años. Este análisis ha dado como resultado que en los próximos 10 años se esperan 1,15 accidentes.

Este análisis revela que las modificaciones implementadas en la carretera han llevado a una disminución de los accidentes, pasando de 1,9 a 1,5 accidentes. Aunque esta reducción no es muy significativa, es importante considerar que la densidad del tráfico en la carretera es baja, lo que dificulta la obtención de cambios drásticos en este aspecto mediante este tipo de mejoras.

12. Dimensionamiento del firme

El dimensionamiento del firme se diseñará de acuerdo con la Norma 6.1 IC. Secciones de firme, de la Instrucción de Carreteras (2003). Además, como fuente primaria de información se utilizarán los datos recogidos en los anexos, coincidiendo con el estudio geológico y geotécnico, así como con el estudio de tráfico.

12.1. Categoría del trafico

La sección estructural del firme dependerá de la intensidad media diaria de vehículos pesados (IMDp), que se prevea en el carril de proyecto del año de puesta en servicio. En el Anejo Nº5: Estudio del tráfico se ha definido que la que la Intensidad Media Diaria (IMD) de vehículos pesados es de 150 veh/d. Por otro lado, en el sentido más demandado es de 90 veh/d.

Una vez definida dicha intensidad y con las tablas proporcionados por la norma 6.1 IC **(Figura 20)**, podemos definir la categoría de tráfico pesado de la carretera como una T32

TABLA 1.B. CATEGORÍAS DE TRÁFICO PESADO T3 Y T4

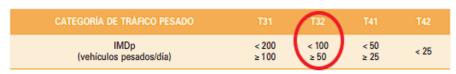


Figura 20. Categoría de tráfico pesado. Fuente: Norma 6.1 IC. Secciones de firme.

12.2. Explanadas

Siguiendo lo establecido en la Norma 6.1IC, la explanada será definida en función de la tipología del suelo y la categoría de la explanada. Como se ha definido en el Nº 2: Geología y geotecnia, se ha concluido que el terreno por el que discurre la traza de la carretera se clasifica como un suelo marginal; por otro lado, para definir la categoría de la explanada es necesario conocer el módulo de compresibilidad en el segundo ciclo de carga del terreno, ante de la ausencia de dicha información, se ha definido una categoría de explanada E2, teniendo en cuenta el número de pesados, así como la posibilidad de utilizar un suelo estabilizado S-EST2.Esta elección presenta la ventaja de aprovechar los terrenos resultantes durante el desmonte para su implementación y se decanta del lado de seguridad pese a no tener un gran número de vehículos pesados.

Las opciones disponibles se muestran en la Figura 21.

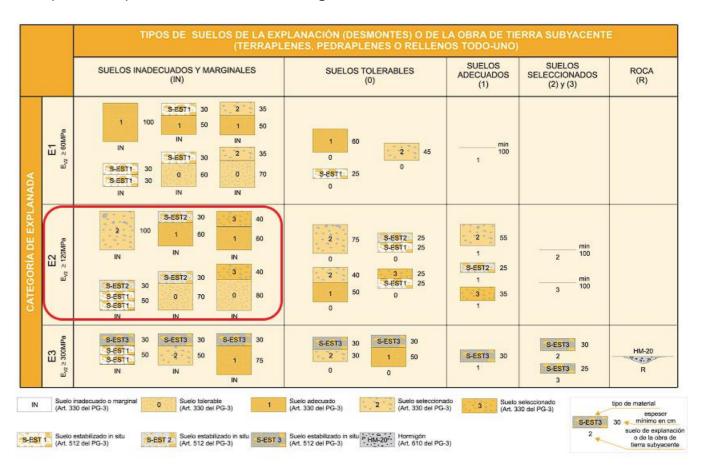


Figura 21. Formación de la explanada. Fuente: Norma 6.1 IC. Secciones de firme.

Con el objetivo de seleccionar la explanada más conveniente para la sección de la carretera, se ha realizado una valoración económica en la cual se ha obtenido como resultado la explanada compuesta por una capa de 30 cm de suelo estabilizado in situ S-EST2 y una capa de 70 cm de suelo tolerable, la cual resulta ser más económica que las otras alternativas consideradas.

12.3. Firme

De igual forma que en la explanada en función de la tipología del suelo y la categoría de la explanada se observan tres posibles soluciones para la definición del firme de la explanada. La diferencia entre estas opciones recae en los materiales que la forman ya que tenemos una sección de zahorra y mezcla bituminosa, suelo cemento y mezcla bituminosa y hormigón y zahorra.

Para definir cual opción es más idónea para la carretera se ha decidido eliminar la opción del uso del hormigón debido a que genera un mayor problema de mantenimiento. Por otro lado, se ha decidido escoger la zahorra antes que el suelo cemento, debido principalmente a que a que los materiales necesarios para su fabricación son menos costosos y el proceso de construcción es más sencillo. Por lo que la opción seleccionada es la que se muestra en la **Figura 22**.

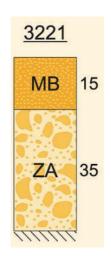


Figura 22. Sección de firme escogida. Fuente: Norma 6.1 IC. Secciones de firme.

12.3.1. Zahorra

Se emplearán zahorras artificiales procedentes de préstamo con el fin de cumplir con el Artículo 510 del PG-3. Dicha zahorra se obtendrá de una cantera específica con el fin de asegurar su calidad y cumplir con los requisitos de resistencia y compactación necesarios para una correcta construcción de la explanada

12.3.2. Mezcla bituminosa

La mezcla bituminosa está constituida por tres capas una capa base, una intermedia y una de rodadura, su elección se realiza atendiendo a lo definido en la Norma 6.1 IC y en relación a la categoría de tráfico y el articulo 543 y 542 del PG3.

Para un tráfico pesado T32 y siguiendo las pesquisas de las normativas se ha seleccionado la siguiente mezcla bituminosa (**Tabla 6**).

CAPA	MATERIAL	ESPESOR (cm)
Rodadura	BBTM 11B 50/70	3
Intermedia	AC 22 Bin S 50/70	5
Base	AC32 Base G 50/70	7

Tabla 6. Capas seleccionadas para la mezcla bituminosa. Fuente: Elaboración propia.

12.3.3. Sección tipo del trazado

Como se ha descrito anteriormente a lo largo del trazado de la solución proyectada existen zonas limitadas en las que no se van a realizar modificaciones en el trazado, por ende, en estas zonas descritas anteriormente no se dispondrá de la sección completa de firme, sino que se llevará a cabo una operación de fresado y reasfaltado utilizando únicamente una capa de 3 cm de mezcla tipo BBTM 11B con un ligante hidrocarbonado 50/70.

Es importante mencionar que estas zonas carecen de arcén, por lo que, para mantener la homogeneidad con el resto del trazado, se implementará una sección de arcén de 1 metro de la sección completa utilizada en el resto del trazado. Esto facilitará los métodos constructivos y permitirá reubicar las marcas viales de la carretera, dicho arcén este compuesto por una capa de rodadura compuesta por una mezcla bituminosa y zahorra artificial como en el resto de la sección manteniendo la uniformidad de la sección en todo el trazado.

En cuanto al resto del trazado se ejecutará la explanada descrita (**Figura 23**), y se aplicaran los riegos específicos para cada capa definidos en el Anejo Nº9 : Dimensionamiento del firme.

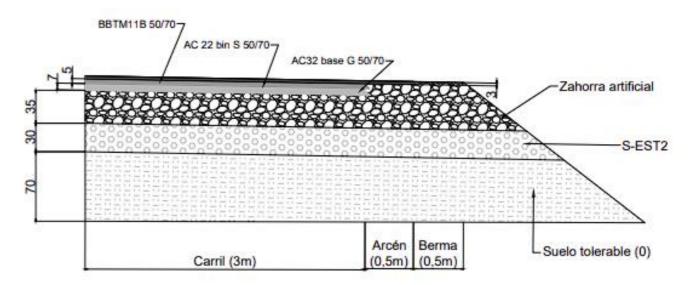


Figura 23. Sección transversal completa. Fuente: Elaboración propia

13. Relación valorada

A continuación, se muestra un desglose de las unidades de obra más significativas para la obra, su precio en función de a base de precios de referencia de la Dirección General de Carreteras (Dirección General de Carreteras, 2022), su medición e importe final con el fin de finalmente de definir un precio estimado para la realización del acondicionamiento.

En la **Tabla 7** se muestra el total de ejecución material de la obra.

Código	Ud	Resumen	CanPres	Pres	ImpPres
1 ACTUACIONES PREVIAS					145.367,81
1.1		DEMOLICIÓN DE FIRME O PAVIMENTO EXISTENTE	33.368,57	3,90	130.137,44
301.0040	m2	Fresado de pavimento bituminoso o de hormigón existente i/ carga, barrido, retirada y transporte de residuos a lugar de acopio en obra.	33.368,57	3,90	130.137,44
1,2		DESPEJE Y DESBROCE DEL TERRENO POR MEDIOS MECÁNICOS	26.719,94	0,57	15.230,37
300.0010	m2	Despeje y desbroce del terreno por medios mecánicos i/ destoconado, arranque, carga y transporte a vertedero o gestor autorizado de aquellos restos que sea necesario, hasta una distancia de 60 km o al lugar de utilización dentro de la obra sea cual sea la distancia.	26.719,94	0,57	15.230,37
2 EXCAVACIONES					149.235,37
2.1		EXCAVACIÓN EN DESMONTE EN TIERRA CON MEDIOS MECÁNICOS SIN EXPLOSIVOS	61.936,89	2,37	146.790,43
320.0020	m3	Excavación en desmonte en tierra con medios mecánicos (tipo excavadora o similar) sin explosivos i/ agotamiento y drenaje durante la ejecución, santo de desprendimientos, formación, y perfilado de cunetas, refino de taludes, carga y transporte a vertedero hasta una distancia de 5 km o al lugar de utilización dentro de la obra sea cual sea la distancia.	61.936,89	2,37	146.790,43
2.2		EXCAVACIÓN MECÁNICA DE ZANJAS, POZOS O CIMIENTOS EN TIERRA O TRÁNSITO	51,00	47,94	2.444,94
321.0010	m3	Excavación mecánica de zanjas, pozos o cimientos en tierra o tránsito, considerándose zanjas y cimientos aquellos que tengan una anchura < 3 m y una profundidad< 6 m, y pozos los que tengan una profundidad < 2 veces el diámetro o ancho i/ entibación, agotamiento y drenaje durante la ejecución, saneo de desprendimientos, carga y transporte a lugar de empleo o a vertedero hasta una distancia de 5 km o al lugar de utilización dentro de la obra sea cual sea la distancia.	51,00	47,94	2.444,94
3 RELLENOS					685.990,64
3.1		TERRAPLÉN O RELLENO TODO-UNO CON MATERIAL PROCEDENTE DE CANTERA	71.629,03	7,99	572.315,95
330.0035	m3	Terraplén o relleno todo-uno con material procedente de cantera, extendido, humectado, nivelado y compactado, incluso p.P. De sobreanchos s/pg-3, completamente terminado i/ material, canon de préstamo y transporte hasta una distancia de 5 km, terminación y refino de la superficie de coronación y refino de taludes.	71.629,03	7,99	572.315,95
3.2		SUELO TOLERABLE PROCEDENTE DE YACIMIENTO GRANULAR O CANTERA PARA FORMACIÓN DE EXPLANADA	24.604,91	4,62	113.674,69

330.0045	m3	Suelo tolerable procedente de yacimiento granular o cantera para formación de explanada en coronación de terraplén y en fondo de desmonte i/ canon de préstamo, excavación del material, carga y transporte al lugar de empleo hasta una distancia de 5 km, extendido, humectación, compactación, terminación y refino de la superficie de la coronación y refino de taludes.	24.604,91	4,62	113.674,69
4 SUELOS ESTABILIZADOS					51.670,31
4.1		SUELO ESTABILIZADO "IN SITU" CON CEMENTO O CAL, TIPO S-EST1 O S-EST2 O CON TIERRAS DE LA PROPIA OBRA	10.544,96	4,90	51.670,31
5.120.100	m3	Suelo estabilizado "in situ" con cemento o cal, tipo s-est1 o s-est2 con tierras de la propia obra, formación de la explanada, extendido y compactado, humectación o secado y preparación de la superficie de asiento, totalmente Terminado, sin incluir conglomerante.	10.544,96	4,90	51.670,31
5 FIRMES					1.040.272.36
5.1		ZAHORRA	12.302,46	26,78	329.459,75
5.100.010	m3	Zahorra i/ transporte, extensión y compactación, medida sobre perfil teórico.	12.302,46	26,78	329.459,75
5.2		EMULSIÓN C60BF4 IMP EN RIEGO DE IMPRIMACIÓN	49,06	526,42	25.824,29
5.300.030	t	Emulsión c60bf4 imp en riego de imprimación, barrido y preparación de la superficie, totalmente terminado.	49,06	526,42	25.824,29
5.3		EMULSIÓN C60BP3 ADH, MODIFICADA CON POLÍMEROS, EN RIEGO DE ADHERENCIA	19,62	657,46	12.901,06
5.310.040	t	Emulsión c60bp3 adh, modificada con polímeros, en riego de adherencia i/ barrido y preparación de la superficie, totalmente terminado.	19,62	657,46	12.901,06
5.4		MBC TIPO BBTM 11B EN CAPA DE RODADURA, EXCEPTO BETÚN Y POLVO MINERAL	38.930,00	2,68	104.332,41
5.430.020	m2	Mezcla bituminosa en caliente tipo bbtm 11b en capa de rodadura, extendida y compactada, excepto betún y polvo mineral de aportación, con un espesor de 3 cm	38.930,00	2,68	104.332,41
5.5		MBC TIPO AC32 BIN S, EXCEPTO BETÚN Y POLVO MINERAL	3.403,02	29,36	99.912,55
5.420.080	t	Mezcla bituminosa en caliente tipo ac32 bin s, extendida y compactada, excepto betún y polvo mineral de aportación.	3.403,02	29,36	99.912,55
5.6		MBC TIPO AC32 BASE G, EXCEPTO BETÚN Y POLVO MINERAL	4.971,36	29,38	146.058,63
5.420.100	t	Mezcla bituminosa en caliente tipo ac32 base g, extendida y compactada, excepto betún y polvo mineral de aportación.	4.971,36	29,38	146.058,63
5.7		BETÚN ASFÁLTICO CONVENCIONAL TIPO 50/70	467,03	689,00	321.783,67
2.110.020	t	Betún asfáltico convencional en mezclas bituminosas tipo 50/70.	467,03	689,00	321.783,67
6 MURO					131.400,00
6.1		MURO DE CONTENCIÓN	730,00	180,00	131.400,00
6.000.000	m3	Muro de contención compuesto de hormigón armado, ejecutado mediante encofrado, vertido y compactado. El precio incluye la cimentación del muro y la elaboración y el montaje de la ferralla en el lugar definitivo de su colocación en obra, pero no incluye el encofrado.	730,00	180,00	131.400,00
7 GESTIÓN DE RESIDUOS					44.078,73
6.1		GESTIÓN DE RESÍDUOS	1,00	44.078,73	44.078,73
9.500.010		Incluye todas las actividades relacionadas con la recolección, clasificación, transporte, tratamiento y disposición final de los residuos generados durante la ejecución de la obra.	1	44.078,73	44.078,73

Estudios para el acondicionamiento de la carretera CV-445 entre la intersección con la CV-440 y el municipio de Teresa de Cofrentes, provincia de Valencia.

8 SEGURIDAD Y SALUD				88.157,46
7.1	SEGURIDAD Y SALIUD	1,00	88.157,46	88.157,46
1.211,000	Comprende todas las acciones y medidas implementadas para asegurar la seguridad y protección de los trabajadores, así como prevenir accidentes y riesgos durante la ejecución de la obra en todo su periodo.	1	88.157,46	88.157,46

Tabla 7. Total de ejecución material. Fuente: Elaboración propia.

Finalmente se muestra un resumen de la relación valorada (Tabla 8).

Total de ejecución material	PEM	2.338.617,62€
Beneficio industrial (13%)	B.I	304.020,29€
Gastos generales (6%)	G.G	140.317,06€
Impuesto sobre el valor agregado (21%)	IVA	491.109,70€
Presupuesto	TOTAL	3.274.064,67€

Tabla 8. Total de ejecución material. Fuente: Elaboración propia.

14. Plan de obra

Se ha estimado una duración de la obra de 28 meses y 3 días laborables, en la **Tabla 9** se muestra los trabajos necesarios para la realización de la obra así como su medición y tiempo estimado de manera individual para cada uno.

Unidad	Actividades	Med	lición	Rendi	miento	Но	ras	Días	
Unidad	Actividades	Tramo I	Tramo II	Tramo I	Tramo II	Tramo I	Tramo II	Tramo I	Tramo II
u	Implantación de la obra	1,00	1,00	4,000	4,000	4,0	0,0	0,5	0,0
u	Corte y desvio del trafico	1,00	1,00	2,000	1,500	2,0	1,5	0,3	0,2
m2	Replanteo general de la obra	1,00	1,00	4,000	3,500	4,0	3,5	0,5	0,4
m2	Desbroce del terreno	16929,94	9790,00	0,005	0,005	84,6	49,0	10,6	6,1
m2	Demolición del firme existente	18801,24	14567,37	0,017	0,017	319,6	247,6	40,0	31,0
m3	Desmonte	16704,96	45231,93	0,004	0,004	66,8	180,9	8,4	22,6
m3	Terraplén	61577,59	10051,44	0,004	0,004	246,3	40,2	30,8	5,0
m3	Extendido del suelo tolerable para la explanada	14060,05	10544,86	0,005	0,005	70,3	52,7	8,8	6,6
m2	Compactación del suelo tolerable	25068,27	19423,16	0,007	0,007	175,5	136,0	21,9	17,0
m3	Extendido de suelo estabilizado tipo S-EST2 para la explanada	6025,73	4519,23	0,005	0,005	30,1	22,6	3,8	2,8
m2	Compactación del suelo estabilizado tipo S-EST2	25068,27	19423,16	0,007	0,007	175,5	136,0	21,9	17,0
ml	Drenaje longitudinal	2712,00	2012,00	0,200	0,200	542,4	402,4	67,8	50,3
ml	Drenaje transversal	160,00	80,00	0,200	0,200	32,0	16,0	4,0	2,0
m3	Elaboración del muro de contención	0,00	730,00	0,000	0,520	0,0	379,6	0,0	47,5
m3	Extendido de la Zahorra para la explanada	7030,02	5272,43	0,005	0,005	35,2	26,4	4,4	3,3
m2	Extendido de un riego de imprimación	25068,27	19423,16	0,004	0,004	100,3	77,7	12,5	9,7
m2	Extendido de la capa base	17664,03	11927,41	0,005	0,005	88,3	59,6	11,0	7,5
m2	Compactación de la capa base	17664,03	11927,41	0,007	0,007	123,6	83,5	15,5	10,4
m2	Extendido de un riego de adherencia	17664,03	11927,41	0,004	0,004	70,7	47,7	8,8	6,0
m2	Extendido de la capa intermedia	17664,03	11927,41	0,005	0,005	88,3	59,6	11,0	7,5
m2	Extendido de un riego de adherencia	17664,03	11927,41	0,004	0,004	70,7	47,7	8,8	6,0
m2	Extendido de la capa de rodadura	21934,74	16995,27	0,010	0,010	219,3	170,0	27,4	21,2
m2	Compactación de la capa de rodadura	21934,74	16995,27	0,007	0,007	153,5	119,0	19,2	14,9
u	Señalización y balizamiento	1,00	1,00	24,000	24,000	24,0	24,0	3,0	3,0
u	Limpieza y acabados	1,00	1,00	16,000	16,000	16,0	16,0	2,0	2,0

Tabla 9. Duración total de las activades. Fuente: Elaboración propia

La obra se va a ejecutar dividendo la construcción en dos etapas donde en la primera etapa, se realizarán todos los trabajos necesarios para la ejecución del primer tramo. Una vez que este tramo

esté completamente finalizado, se le dará servicio y se comenzarán las obras en el segundo tramo (**Figura 24**).

La decisión de dividir la ejecución en dos tramos se fundamenta en la necesidad de mantener un acceso continuo para el municipio de Zarra y sus pueblos vecinos, así como los servicios esenciales a los que se accede a través de la carretera. De haber ejecutado ambos tramos simultáneamente, se habría bloqueado el único acceso disponible, lo que habría generado inconvenientes significativos para los residentes y la operatividad local.

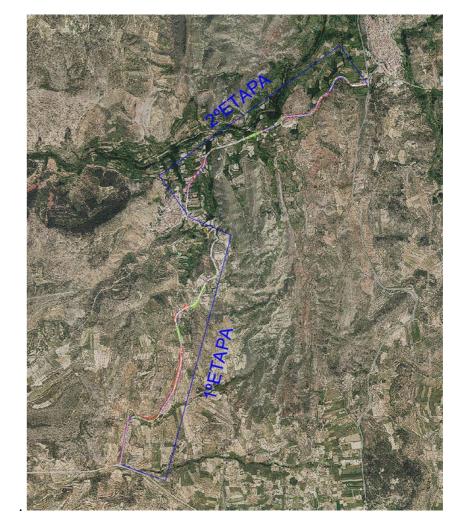


Figura 24. Etapas de construcción. Fuente: Elaboración propia

Por otro lado, se debe tener en cuenta la accesibilidad de a las casas colindantes al trazado durante la ejecución de los trabajos en cada tramo. Para facilitar el acceso a las viviendas en las áreas donde se modificará el trazado, se crearán accesos temporales mediante el movimiento de tierra. No obstante, en las zonas donde solo se realizarán operaciones de reasfaltado, se procurará realizar todas las tareas en un solo día para minimizar el tiempo de interrupción del tráfico y evitar inconvenientes para los usuarios.

15. Conclusiones

Se han realizado diversos análisis de la carretera actual con el propósito de identificar las principales deficiencias que no se ajustaban a las normativas pertinentes y que suponían un riesgo para la seguridad de los usuarios.

En el proceso de diseño, no solo se han tenido en cuenta aspectos estrictamente normativos, sino que también se ha buscado minimizar el impacto ambiental al máximo, aprovechando al mismo tiempo la infraestructura existente y realizando las operaciones necesarias para que la carretera cumpla con las normativas y garantice una adecuada seguridad vial.

A pesar de ciertas limitaciones identificadas en determinadas zonas, como la presencia de viviendas cercanas a la carretera o incidencias relacionadas con el movimiento de tierras, se han llevado a cabo acciones específicas que han contribuido a mejorar la seguridad vial en estas áreas y reducir el impacto ambiental.

Además, se ha diseñado un plan de obras que permite a los usuarios y a los residentes acceder a sus viviendas y a los servicios esenciales sin que se vean afectados por las obras, asegurando así que el único acceso al municipio de Zarra permanezca operativo.

En resumen, este proyecto de acondicionamiento ha sido desarrollado para cumplir con las normativas vigentes, mejorar la seguridad y la comodidad de los usuarios.

Valencia, a 25 de Julio de 2023

Jorge Naranjo Martínez

ANEJO Nº 1: SITUACIÓN ACTUAL

Curso:

2022/2023

Fecha:

septiembre 2023

Autor:

Jorge Naranjo Martínez

Tutor:

Javier Camacho Torregrosa

INDICE

1. Introducción	2
2. Estructura viaria	2
3. Estado del pavimento	4
4. Diseño geométrico	5
4.1 Trazado en planta	5
4.2 Trazado en alzado	8
5. Coordinación planta-alzado	8
6. Consistencia	9
6.1 Consistencia local	9
6.2 Consistencia global	10
7. Visibilidad	
7.1 Distancia de parada	11
7.2 Visibilidad de parada	

1. Introducción

Pese a que la carretera CV-445 no experimenta un alto volumen de tráfico, se observan notables deficiencias en su estado general. Estas problemáticas abarcan tanto el diseño del trazado como el estado del pavimento y la seguridad vial. El objeto del presente anejo tratará de poner en manifiesto la situación actual de la carretera de forma que se expongan los diferentes problemas que presenta la carretera en toda su extensión.

2. Estructura viaria

En el transcurso de la CV-445 existen tres intersecciones que influyen en la circulación de los vehículos a lo largo del trazado. La primera de estas intersecciones adopta una configuración en T, presentando una rama secundaria muy inclinada. Se localiza en el PK 1+900 la cual permite el acceso por el sur del municipio de Zarra (**Figura 1**).

Figura 1. Intersección en "T" PK 1+901. Fuente: Visor Cartográfico GVA.

En el PK 3+300 nos encontramos una intersección en T la cual marca la división entre el Tramo I que finaliza accediendo al núcleo urbano de Zarra y el Tramo II que conecta el municipio de Zarra con el de Teresa de Cofrentes (**Figura 2**).

Figura 2. Intersección en "T" PK 3+300. Fuente: Visor Cartográfico GVA.

Finalmente, en la **Figura 3**, podemos observar cómo al final del trazado, concretamente en el PK 5+720, se encuentra una intersección en T que conecta la CV-445, con la N-330 y con el acceso a Teresa de Cofrentes.

Figura 3. Intersección en "T" PK 5+717. Fuente: Visor Cartográfico GVA.

No obstante, en el transcurso de la CV-445 existen múltiples accesos que comunican con pequeñas viviendas privadas y con los municipios colindantes.

Así pues, estos accesos generan una amenaza para los conductores debido a la falta de visibilidad adecuada, así como una incorrecta ubicación. Tal como se muestra en la **Figura 4**, la intersección está situada en una curva cerrada, lo que compromete tanto la entrada como la salida de los usuarios. Esta disposición limita la visibilidad y dificulta las maniobras necesarias para reintegrarse al trazado principal.

Figura 4. Acceso a camino y viviendas privadas (PK 0+540). Fuente: Elaboración propia.

Del mismo modo podemos observar en la **Figura 5** y **Figura 6** los accesos más perjudiciales y cómo estas pueden ser puntos generadores de accidentes de tráfico.

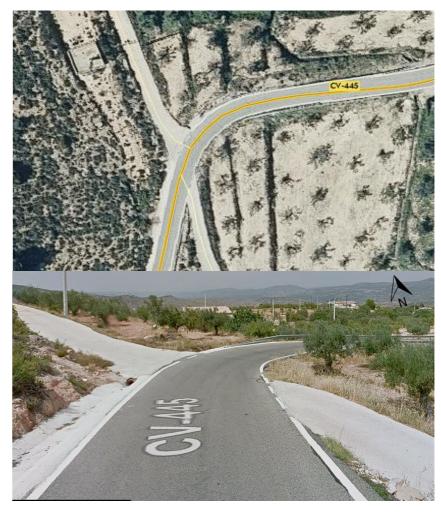


Figura 5. Acceso a camino menor (PK 2+100). Fuente: Elaboración propia.

Figura 6. Acceso a camino y viviendas privadas (PK 1+190). Fuente: Elaboración propia.

3. Estado del pavimento

La CV-445 presenta a lo largo de su trazado numerosas imperfecciones en el estado del pavimento. Desde el punto kilométrico PK 2+510 hasta el PK 2+590, se pueden identificar zonas donde se han producido grietas tanto en dirección longitudinal como transversal (**Figura 7**). Cabe destacar que no se ha registrado la presencia de lo que se conoce como "piel de cocodrilo" en patrones de malla ancha o estrecha; lo que supondría la posibilidad de un problema más profundo en la estructura del pavimento en su conjunto, y no solo en las capas superficiales.

Si bien se han llevado a cabo acciones correctivas como el sellado de las grietas, estas medidas con el paso del tiempo han resultado en una disminución de la comodidad y seguridad para los usuarios de la vía.

Figura 7. Grietas en el pavimento. Fuente: Google Maps.

En este primer tramo también hay que tener en cuenta el estado de las bermas. En la **Figura 8** se puede observar que además de no existir un arcén pavimentado, las bermas se encuentran en mal estado. Este problema persiste a lo largo de los PK mencionados anteriormente y supone un peligro al no existir una zona de seguridad para poder realizar cualquier tipo de parada.

Figura 8. Arcén en mal estado no utilizable. Fuente: Google Maps.

Entre el PK 3+000 y el PK 3+100, también podemos contemplar como las bermas se encuentran con vegetación y una falta de mantenimiento considerable, aunque la velocidad aconsejada en los PK definidos no sea elevada, la existencia de los árboles tan cercanos a la calzada potencia los daños de un posible accidente.

Figura 9 Arcén sucio, con vegetación. Fuente: Google Maps.

Analizando estos mismos condicionantes en el Tramo II definido anteriormente, se puede apreciar una mejora notable en el estado del pavimento, como se puede observar en la **Figura 10**. En comparación con los tramos mencionados anteriormente, en el Tramo II se evidencia una ligera presencia de arcén en el lado derecho, aunque prácticamente es inexistente, por otro lado, en el lado izquierdo no se encuentra presente.

Figura 10. Estado del pavimento. Fuente: Google Maps.

No obstante, cabe destacar que también existen zonas donde aparecen fisuras en las capas del pavimento (**Figura 11**), pero en este tramo no se han realizado actuaciones correctivas como el sellado de grietas visto anteriormente.

Figura 11. Fisuras en el pavimento Fuente: Google Maps.

4. Diseño geométrico

El objetivo del análisis del diseño geométrico de la carretera es verificar si se cumple con la legislación actual correspondiente a la Norma 3.1-IC de la Instrucción de Carreteras. Para ello, se utilizará Civil 3D para restituir la geometría, y Microsoft Excel para el análisis y comprensión de los datos obtenidos.

4.1 Trazado en planta

En cuanto al diseño en planta cabe destacar que existe una apreciable diferenciación entre los radios que constituyen el Tramo I (Ayora-Zarra), donde existen múltiples radios que no superan los 50 metros y, el de menor tamaño es de 11m. Por otro lado, el Tramo II (Zarra-Teresa de Cofrentes) cuenta con radios más elevados, el mayor es de 1182 m y el menor de 40 m. Cabe destacar, que en ambos tramos existe un gran número de curvas formadas únicamente por curvas circulares que no están diseñadas de acuerdo con la normativa vigente, la cual indica que cada curva debe estar constituida por clotoide-círculo-clotoide. Otro apartado de las curvas circulares que en la mayoría del trazado no cumple con la normativa, es el relacionado al criterio de la coordinación de radios consecutivos, como se puede observar en la **Tabla 1** y **Tabla 2**, en la mayoría de los casos se encuentra fuera del rango comprendido entre el radio mínimo y el máximo.

Respecto a los parámetros, podemos observar en las tablas citadas anteriormente que la mayoría no están comprendidos entre el parámetro máximo y mínimo.

Por otro lado, la gran mayoría de las rectas tampoco cumplen con los requisitos mínimos establecidos en la normativa, ya que en la mayor parte de los casos las longitudes son menores de lo exigido.

En conclusión, podemos afirmar que en lo que al trazado en planta se refiere la carretera CV-445 presenta un cumplimiento muy bajo de la norma.

A continuación, en la **Tabla 1** (referente al primer tramo) y la **Tabla 2** (referente al segundo tramo) se muestra el estado de alineaciones completo de la CV-445, así como las comprobaciones pertinentes de acuerdo con la normativa vigente. A continuación, se describe la nomenclatura de la tabla en la cual se ha analizado siguiendo la normativa descrita.

<u>-Parámetro de acuerdo máximo o mínimo (A):</u> El uso de este tipo de curvas se emplearán cuando se dispongan de curvas circulares con un radio menor a dos mil quinientos metros (<2500). La obtención de los parámetros se basará en las ecuaciones detalladas en la sección 4.4.3 Parámetro y longitud mínima de la Norma 3.1 Trazado, de la Instrucción de Carreteras.

-Longitud mínima o máxima (L): La regulación establece límites para las longitudes mínimas y máximas de las rectas con el objetivo de garantizar la comodidad de los usuarios, considerando una velocidad de diseño de 40 km/h. Estas longitudes son: Lmin,s = 55.6 m, Lmin,c = 111.2 m y Lmax = 668 m.

- Radio mínimo o máximo (R): Cada velocidad de diseño está asociada con un radio mínimo correspondiente. Para una velocidad de 40 km/h, este radio mínimo es de 50 metros, siendo el valor más bajo definido por la normativa para carreteras del grupo 3. Por lo tanto, para cumplir con las directrices normativas, los radios deben ser iguales o superiores a esta magnitud.
- Coordinación de radios consecutivos (CRC): En términos de radios consecutivos, se aplican cuando dos segmentos curvos se conectan, y si existe una recta intermedia de longitud inferior a 400 metros, la relación de radios entre las curvas no debe exceder los valores calculados según la expresión descrita en la sección 4.5 Coordinación entre alineaciones curvas consecutivas de la Norma 3.1 I.C Trazado, de la Instrucción de Carreteras.

Número de elemento 1 2	Tipo de elemento	P.K. inicial	P.K. final	Longitud	Radio	A			mplimiento de la normativ		
				_			A	L	R	CRC	
2	Recta	0	163.086	163.863				Cumple			
	Curva circular	163.086	175.055	11.685	250			0 1	Cumple	Cumple	
3	Recta	175.055	322.002	146.473		20		Cumple			
4	Clotoide	322.002	325.022	3.2	245	28	No cumple		C	C	
5	Curva circular	325.022	352.094	27.717	245	02	No sussele		Cumple	Cumple	
6	Clotoide	352.094	388.024	35.302		93	No cumple	Cumala			
7	Recta	388.024	480.05	92.261		24	No sussele	Cumple			
8	Clotoide	480.05	504.05	24	24	24	No cumple		No sumals	No accessor	
10	Curva circular Clotoide	504.05 544.052	544.052	40.023 20.167	24	22	No sumple		No cumple	No cumple	
10			564.069			22	No cumple	No sumple			
12	Recta Clotoide	564.069 583.02	583.02 600.053	18.509 17.333		26	No sumple	No cumple			
13	Curva circular	600.053	618.051	17.333	39	20	No cumple		No sumple	No cumple	
14	Clotoide	618.051	627.077	9.256	33	19	No cumplo		No cumple	No cumple	
15						19	No cumple	No sumple			
16	Recta Clotoide	627.077 642.062	642.062 653.06	14.853 10.976		30	No cumplo	No cumple			
17					ດາ	30	No cumple		Cumple	No sumple	
	Curva circular	653.06	667.086	14.266	82	22	No cumple		Cumple	No cumple	
18 19	Clotoide	667.086	674.032	6.451 14.525		23	No cumple	No cumple			
20	Recta Clotoide	674.032 688.084	688.084 706.028	17.443		43	No cumple	No cumple			
21	Curva circular	706.028	806.069	100.408	106	45	No cumple		Cumple	Cumple	
22	Clotoide	806.069	920.084	114.151	100	110	No cumplo		Cumple	Cumple	
23		920.084				110	No cumple	Cumple			
24	Recta Clotoide	1079.037	1079.037	158.524 4.222		40	No sumple	Cumple			
25	Curva circular		1083.059 1148.095	65.357	379	40	No cumple		No sumple	No sumple	
26		1083.059			3/9	120	No sumple		No cumple	No cumple	
27	Clotoide	1148.095	1199.019	50.248		138	No cumple	Cumple			
28	Recta Clotoide	1199.019 1351.031	1351.031 1357.019	152.114 5.885		32	No sumple	Cumple			
29	Curva circular			23.814	174	32	No cumple		No sumple	No sumple	
30	Clotoide	1357.019	1381.001 1414.02	33.195	1/4	76	No sumple		No cumple	No cumple	
31		1381.001				70	No cumple	No sumple			
32	Recta Clotoide	1414.02	1493.092	79.713 29.016		OF.	No sumple	No cumple			
33		1493.092	1522.093	19.41	249	85	No cumple		Cumple	Cumple	
	Curva circular	1522.093	1542.034		249	96	No sumple		Cumple	Cumple	
34	Clotoide	1542.034	1579.035	37.012		96	No cumple	Commis			
35	Recta	1579.035	1725.009	145.733	01			Cumple	Commis	No amanda	
36 37	Curva circular Recta	1725.009	1756.093	31.846	91			No sumple	Cumple	No cumple	
38	Curva circular	1756.093	1765.048 1793.028	8.548 27.802	300			No cumple	Cumple	No cumple	
		1765.048			300			Cumple	Cumple	No cumple	
39 40	Recta Curva circular	1793.028	1858.078 1875.091	65.499 17.124	149			Cumple	Cumple	No sumple	
		1858.078			149			No sussels	Cumple	No cumple	
41 42	Recta	1875.091	1901.028	25.373	17			No cumple	No cumple	No comple	
	Curva circular	1901.028	1934.067	33.394	1/			No cumple	No cumple	No cumple	
43	Recta	1934.067	1961.07	27.021		26	No cumple	No cumple			
44	Clotoide	1961.07	1982.018	20.485	22	26	No cumple		No cum als	No ourse	
45 46	Curva circular Clotoide	1982.018	2006.079	24.611	33	36	Cumple		No cumple	No cumple	
		2006.079 2046.006	2046.006 2080.027	39.273		30	Cumple	No cumple			
47 48	Recta Clotoide			34.204		22	No cumple	No cumple			
48		2080.027	2098.051	18.241	20	23	No cumple		No cumple	No commel	
50	Curva circular	2098.051	2116.049	17.984	29	22	No cumple		No cumple	No cumple	
	Clotoide	2116.049	2133.018	16.69		22	No cumple	No superals			
51	Recta	2133.018	2146.049	13.311		22	No sure	No cumple			
52	Clotoide	2146.049	2169.025	22.756	45	32	No cumple		No sum I	Court	
53	Curva circular	2169.025	2183.045	14.2	45	20	No a mil		No cumple	Cumple	
54	Clotoide	2183.045	2198.047	15.022		26	No cumple	No every			
55	Recta	2198.047	2222.068	24.202		27	No a well	No cumple			
56	Clotoide	2222.068	2242.052	19.841	C 2	37	No cumple			No.	
57	Curva circular	2242.052	2268.06	26.081	69		No. of		Cumple	No cumple	
58	Clotoide	2268.06	2294.016	25.565		42	No cumple	No every			
59 60	Recta Curva circular	2294.016 2294.057	2294.057 2338.096	0.408 44.391	50			No cumple	Cumple	No cumple	

		2222 225	2274 226	25 202						
61	Recta	2338.096	2374.026	35.302				No cumple		
62	Curva circular	2374.026	2410.085	36.59	100				Cumple	No cumple
63	Recta	2410.085	2427.022	16.366				No cumple		
64	Clotoide	2427.022	2432.091	5.689		16	No cumple			
65	Curva circular	2432.091	2496.061	63.701	45				No cumple	No cumple
66	Clotoide	2496.061	2510.05	13.889		25	No cumple			
67	Recta	2510.05	2588.093	78.435				No cumple		
68	Clotoide	2588.093	2610.043	21.5		43	No cumple			
69	Curva circular	2610.043	2616.04	5.97	86				Cumple	No cumple
70	Clotoide	2616.04	2623.067	7.267		25	No cumple			
71	Recta	2623.067	2630.051	6.838				No cumple		
72	Clotoide	2630.051	2634.068	4.17		14	No cumple			
73	Curva circular	2634.068	2661	26.321	47				No cumple	No cumple
74	Clotoide	2661	2680.015	19.149		30	No cumple			
75	Recta	2680.015	2687.001	6.86				No cumple		
76	Clotoide	2687.001	2693.019	6.178		27	No cumple			
77	Curva circular	2693.019	2712.066	19.474	118				Cumple	No cumple
78	Clotoide	2712.066	2719.079	7.127		29	No cumple			
79	Recta	2719.079	2720.018	0.392				No cumple		
80	Curva circular	2720.018	2743	22.815	50				Cumple	No cumple
81	Recta	2743	2773.015	30.158				No cumple		
82	Curva circular	2773.015	2815.077	42.615	70				Cumple	No cumple
83	Recta	2815.077	2816.015	0.384				No cumple		
84	Clotoide	2816.015	2821.071	5.556		10	No cumple			
85	Curva circular	2821.071	2843.06	21.896	18				No cumple	No cumple
86	Clotoide	2843.06	2856.01	12.5		15	No cumple			
87	Recta	2856.01	2865.051	9.405				No cumple		
88	Clotoide	2865.051	2876.031	10.8		18	No cumple			
89	Curva circular	2876.031	2891.073	15.416	30				No cumple	No cumple
90	Clotoide	2891.073	2898.026	6.533		14	No cumple			
91	Recta	2898.026	2921.008	22.818				No cumple		
92	Clotoide	2921.008	2934.008	13		13	No cumple			
93	Curva circular	2934.008	2952.009	18.013	13				No cumple	No cumple
94	Clotoide	2952.009	2967.017	15.077		14	No cumple			
95	Recta	2967.017	3003.087	36.699				No cumple		
96	Clotoide	3003.087	3021.068	17.818		14	No cumple			
97	Curva circular	3021.068	3034.099	13.309	11				No cumple	No cumple
98	Clotoide	3034.099	3042.036	7.364		9	No cumple			
99	Recta	3042.036	3055.003	12.676				No cumple		
100	Clotoide	3055.003	3062.038	7.348		13	No cumple			
101	Curva circular	3062.038	3088.079	26.407	23				No cumple	No cumple
102	Clotoide	3088.079	3104.048	15.696		19	No cumple			
103	Recta	3104.048	3107.053	3.045				No cumple		
104	Clotoide	3107.053	3120.033	12.8		16	No cumple			
105	Curva circular	3120.033	3137.06	17.275	20				No cumple	No cumple
106	Clotoide	3137.06	3148.085	11.25		15	No cumple			
107	Recta	3148.085	3162.019	13.334				No cumple		
108	Clotoide	3162.019	3175.063	13.444		22	No cumple			
109	Curva circular	3175.063	3192.07	17.072	36				No cumple	No cumple
110	Clotoide	3192.07	3217.07	25		30	No cumple			
111	Recta	3217.07	3306.041	88.704				Cumple		

Tabla 1. Estado de alineaciones en planta del primer tramo Fuente: Elaboración propia.

Número de	Tipo de elemento	P.K. inicial	P.K. final	Longitud	Radio	Α	Cı	ımplimiento	de la normati	iva
elemento	mpo de elemento		-	_	naaro	,	Α	L	R	CRC
1	Recta	0	62.001	62.011				Cumple		
2	Curva circular	62.001	87.078	25.768	76				Cumple	Cumple
3	Recta	87.078	91.085	4.072	622			No cumple	Committee	No sussels
5	Curva circular Recta	91.085 204.062	204.062	112.773 0.435	632			No sumple	Cumple	No cumple
6	Clotoide	205.006	267.074	62.678		86	Cumple	No cumple		
7	Curva circular	267.074	316.068	48.946	118	00	Cumple		Cumple	No cumple
8	Clotoide	316.068	324.031	7.627	110	30	No cumple		Cumple	No cumple
9	Recta	324.031	363.063	39.316		30	No cumple	No cumple		
10	Curva circular	363.063	446.098	83.353	1182			140 campic	Cumple	No cumple
11	Recta	446.098	468.097	21.99	1102			No cumple	Cumpic	ivo cumpic
12	Clotoide	468.097	492.037	23.403		56	No cumple	campic		
13	Curva circular	492.037	514.026	21.883	134	30	ito campic		Cumple	No cumple
14	Clotoide	514.026	550.082	36.567	20.	70	No cumple		Campic	ito campic
15	Recta	550.082	565.076	14.942			ito campic	No cumple		
16	Clotoide	565.076	580.04	14.633		34	No cumple	campic		
17	Curva circular	580.04	597.077	17.37	79	,	- I I I I I I I I I I I I I I I I I I I		No cumple	No cumple
18	Clotoide	597.077	616.005	18.278		38	No cumple			
19	Recta	616.005	644.091	28.862				No cumple		
20	Clotoide	644.091	687	42.087		44	Cumple			
21	Curva circular	687	689.067	2.676	46				No cumple	No cumple
22	Clotoide	689.067	698.037	8.696		20	No cumple			
23	Recta	698.037	796.019	97.826				Cumple		
24	Clotoide	796.019	879.044	83.25		222	No cumple			
25	Curva circular	879.044	886.091	7.471	592				Cumple	No cumple
26	Clotoide	886.091	938.064	51.731		175	No cumple			
27	Recta	938.064	1313.037	374.723				Cumple		
28	Curva circular	1313.037	1352.008	38.714	117				Cumple	No cumple
29	Recta	1352.008	1435.004	82.955				Cumple		
30	Clotoide	1435.004	1438.091	3.879		16	No cumple			
31	Curva circular	1438.091	1462.048	23.564	66				Cumple	No cumple
32	Clotoide	1462.048	1493.016	30.682		45	No cumple			
33	Recta	1493.016	1552.003	58.874				No cumple		
34	Curva circular	1552.003	1568.052	16.482	306				Cumple	No cumple
35	Recta	1568.052	1633.071	65.199				Cumple		
36	Clotoide	1633.071	1675.025	41.531		58	No cumple			
37	Curva circular	1675.025	1721.079	46.54	81				Cumple	No cumple
38	Clotoide	1721.079	1756.046	34.679		53	No cumple			
39	Recta	1756.046	1816.017	59.707				Cumple		
40	Clotoide	1816.017	1842.044	26.273		51	No cumple			
41	Curva circular	1842.044	1860.068	18.239	99				Cumple	Cumple
42	Clotoide	1860.068	1877.066	16.98		41	No cumple			
43	Recta	1877.066	1927.026	49.595				Cumple		
44	Clotoide	1927.026	1952.034	25.08		53	No cumple			
45	Curva circular	1952.034	1969.056	17.228	112				Cumple	Cumple
46	Clotoide	1969.056	1996.057	27.009		55	No cumple			
47	Recta	1996.057	2084.096	88.391				Cumple		
48	Clotoide	2084.096	2108.056	23.592		34	No cumple			
49	Curva circular	2108.056	2173.089	65.337	49				No cumple	No cumple
50	Clotoide	2173.089	2200.034	26.449		36	No cumple			
51	Recta	2200.034	2241.057	41.229				No cumple		
52	Clotoide	2241.057	2267.026	25.689	45	34	No cumple		No. of the	C
53	Curva circular	2267.026	2284.038	17.118	45	2.0	N-		No cumple	Cumple
54	Clotoide	2284.038	2310.007	25.689		34	No cumple			
55	Recta	2310.007	2315.061	5.539		FO	N-	No cumple		
56	Clotoide	2315.061	2330.038	14.776	465	52	No cumple			
57	Curva circular	2330.038	2362.013	31.75	183				Cumple	No cumple
58	Clotoide	2362.013	2383.014	21.005		62	No cumple			
59	Recta	2383.014	2411.077	28.63				Cumple		

 Tabla 2. Estado de alineaciones en planta del segundo tramo Fuente: Elaboración propia.

4.2 Trazado en alzado

En la **Tabla 3** (referente al primer tramo) y la **Tabla 4** (referente al segundo tramo) se muestra el estado de rasantes completo de la CV-445, así como las comprobaciones pertinentes de acuerdo con la normativa vigente. Lo que hay que destacar de estas comprobaciones es que tanto los parámetros de acuerdo vertical (Kv) como las pendientes máximas y mínimas (Pen.min, Pen.max), se ajustan en la mayoría de los casos a la normativa; por otro lado, una gran parte de la longitud de los acuerdos (L) en el primer tramo es reducida, por lo que sí presenta un incumplimiento de la normativa. En cuanto a la longitud mínima entre vértices consecutivos (Estética) existen zonas en las que se realiza un buen cumplimiento de la norma y zonas más conflictivas.

المحادة علم مام معاددا	Tine de elements	D.K. inini-i	D V fine!	Lamaitu1	V	Dondiont-		Cumplin	niento de la n	ormativa	
lúmero de elemento	Tipo de elemento	P.K. inicial	P.K. final	Longitud	Kv	Pendiente	Kv.min	L	Estética	Pen.min	Pen.r
1	Rasante	0	160.089	160.895		5.41%				Cumple	Cum
2	Convexo	160.089	202.065	41.756	472		Cumple	Cumple	No cumple		
3	Rasante	202.065	246.024	43.592		-3.43%				Cumple	Cum
4	Cóncavo	246.024	269.018	22.941	760		Cumple	No cumple	No cumple		
5	Rasante	269.018	336.083	67.648		-0.41%				No cumple	Cum
6	Convexo	336.083	354.04	17.567	250		Cumple	No cumple	No cumple		
7	Rasante	354.04	380.092	26.518		-7.44%				Cumple	Cum
8	Cóncavo	380.092	403.021	22.289	189		No cumple	No cumple	No cumple		
9	Rasante	403.021	446.058	43.368		4.32%				Cumple	Cun
10	Convexo	446.058	459.014	12.567	250		Cumple	No cumple	No cumple		
11	Rasante	459.014	513.018	54.036		-0.71%		·		Cumple	Cun
12	Cóncavo	513.018	526.01	12.922	244		No cumple	No cumple	No cumple		
13	Rasante	526.01	536.063	10.534		4.57%	The campie		and daming to	Cumple	Cun
14	Convexo	536.063	568.031	31.679	276		Cumple	No cumple	No cumple		-
15	Rasante	568.031	636.041	68.101	270	-6.87%	campic	campie	campic	Cumple	Cun
16	Cóncavo	636.041	637.068	1.265	29	0.0770	No cumple	No cumple	No cumple	campic	
17	Rasante	637.068	700	62.322	23	-2.57%	ivo campic	140 cumpic	140 cumpic	Cumple	Cun
18	Convexo	700	711.009	11.086	286	2.3770	Cumple	No cumple	Cumple	cumpic	Cui
19	Rasante	711.009	839.075	128.658	200	-6.44%	cumpic	No cumpic	Cumpic	Cumple	Cur
20	Cóncavo	839.075	876.031	36.565	760	-0.4476	Cumple	No cumple	No cumple	Cumple	Cui
21	Rasante	876.031	931.063	55.325	700	-1.63%	Cumple	No cumple	No cumple	Cumple	Cur
22			935.099	4.351	250	-1.05%	Cumple	No sumala	Cumple	Cumple	Cui
23	Convexo	931.063			250	2 270/	Cumple	No cumple	Cumple	Cumple	C
	Rasante	935.099	1120.095	184.964	2224	-3.37%	Committee	Committee	Committee	Cumple	Cur
24	Cóncavo	1120.095	1184.052	63.568	2331	0.640/	Cumple	Cumple	Cumple	Committee	C
25	Rasante	1184.052	1392.076	208.246	760	-0.64%	6 1			Cumple	Cur
26	Cóncavo	1392.076	1411.092	19.156	760		Cumple	No cumple	No cumple		-
27	Rasante	1411.092	1462.073	50.806	4000	1.88%	6 1	6 1	6 1	Cumple	Cur
28	Convexo	1462.073	1551.082	89.094	1888		Cumple	Cumple	Cumple		+-
29	Rasante	1551.082	1642.055	90.735		-2.84%				Cumple	Cui
30	Cóncavo	1642.055	1726.044	83.881	3189		Cumple	Cumple	Cumple		
31	Rasante	1726.044	1891.092	165.487		-0.21%				No cumple	Cur
32	Convexo	1891.092	1940.038	48.455	714		Cumple	Cumple	Cumple		
33	Rasante	1940.038	2195.024	254.862		-6.99%				Cumple	Cur
34	Cóncavo	2195.024	2255.079	60.545	1337		Cumple	Cumple	Cumple		
35	Rasante	2255.079	2337.049	81.699		-2.46%				Cumple	Cui
36	Convexo	2337.049	2390.094	53.453	1878		Cumple	Cumple	Cumple		
37	Rasante	2390.094	2520.089	129.954		-5.31%				Cumple	Cui
38	Cóncavo	2520.089	2556.029	35.401	760		Cumple	No cumple	No cumple		
39	Rasante	2556.029	2589.036	33.068		-0.65%				Cumple	Cur
40	Convexo	2589.036	2604.03	14.941	250		Cumple	No cumple	Cumple		
41	Rasante	2604.03	2801.05	197.194		-6.62%				Cumple	Cur
42	Convexo	2801.05	2850.055	49.054	2539		Cumple	Cumple	Cumple		
43	Rasante	2850.055	2948.036	97.81		-8.56%				Cumple	No cu
44	Cóncavo	2948.036	2994.077	46.411	4845		Cumple	Cumple	Cumple		
45	Rasante	2994.077	3151.039	156.617		-7.60%				Cumple	Cur
46	Convexo	3151.039	3205.033	53.939	1460		Cumple	Cumple	No cumple		
47	Rasante	3205.033	3306.04	101.074		-3.90%				Cumple	Cun

Tabla 3. Estado de rasantes del primer tramo Fuente: Elaboración propia.

								Cumplin	niento de la n	ormativa	
Número de elemento	Tipo de elemento	P.K. inicial	P.K. final	Longitud	K	Pendiente	Kv.min	L	Estética	Pen.min	Pen.max
1	Rasante	0	299.012	299.125		-6.98%			Cumple	Cumple	
2	Cóncavo	299.012	341.099	42.869	1084		Cumple	Cumple	No cumple		
3	Rasante	341.099	399.032	57.33		-3.02%				Cumple	Cumple
4	Convexo	399.032	421.089	22.564	547		No cumple	No cumple	Cumple		
5	Rasante	421.089	612.004	190.149		-7.15%				Cumple	No cumple
6	Cóncavo	612.004	672.096	60.919	1169		Cumple	Cumple	Cumple		
7	Rasante	672.096	778.021	105.252		-1.94%				Cumple	Cumple
8	Convexo	778.021	821.057	43.362	967		Cumple Cumple C		Cumple		
9	Rasante	821.057	970.099	149.424		-6.42%				Cumple	Cumple
10	Cóncavo	970.099	1160.086	189.871	1758		Cumple	Cumple	Cumple		
11	Rasante	1160.086	1198.092	38.051		4.37%				Cumple	Cumple
12	Convexo	1198.092	1221.028	22.367	689		No cumple	No cumple	Cumple		
13	Rasante	1221.028	1456.05	235.222		1.13%				Cumple	Cumple
14	Convexo	1456.05	1527.038	70.877	1809		Cumple	Cumple	Cumple		
15	Rasante	1527.038	1618.092	91.539		-2.79%				Cumple	Cumple
16	Cóncavo	1618.092	1691.056	72.637	1786		Cumple	Cumple	Cumple		
17	Rasante	1691.056	1862.031	170.752		1.28%				Cumple	Cumple
18	Convexo	1862.031	1906.025	43.943	1978		Cumple	Cumple	Cumple		
19	Rasante	1906.025	2098.046	192.211		-0.94%				Cumple	Cumple
20	Convexo	2098.046	2172.04	73.937	6837		Cumple	Cumple	Cumple		
21	Rasante	2172.04	2227.029	54.892		-2.02%				Cumple	Cumple
22	Cóncavo	2227.029	2300.074	73.448	2635		Cumple	Cumple	No cumple		
23	Rasante	2300.074	2411.077	111.026		0.76%				Cumple	Cumple

Tabla 4. Estado de rasantes del segundo tramo Fuente: Elaboración propia.

5. Coordinación planta-alzado

Una vez realizado el análisis individual de la planta y el alzado, se debe verificar si estos se corresponden entre sí y cumplen con los criterios establecidos en la Norma 3.1 IC de trazado. Se evaluarán los siguientes criterios:

- Criterio 1: Los cambios de nivel vertical deben estar ubicados dentro del rango establecido para el cambio de nivel vertical.
- Criterio 2: Para velocidades de proyecto (Vp) iguales o inferiores a sesenta kilómetros por hora (60 km/h), se debe cumplir que el parámetro de la curva de acuerdo vertical Kv= (100*R) /P, donde R es el radio de la curva circular en planta y P es el peralte de la curva expresado en tanto por ciento (%).
- Criterio 3: Si no es posible aplicar el criterio 2, se debe cumplir que Kv/R sea mayor o igual a 6, siendo Kv el parámetro de la curva de acuerdo vertical y R el radio de la curva circular en planta.

En la **Tabla 5** y **Tabla 6** se presentan los datos recopilados para llevar a cabo la comprobación de los criterios mencionados anteriormente. Al analizar estos datos, se puede concluir que la carretera actual no cumple en su mayoría con la coordinación entre la planta y el alzado.

Número de elemento	PK	Radio	Peralte	Kv	Fármula 28 Critaria	Fórmula 3º Criterio	Cumpli	imiento de la norm	ativa
Numero de elemento	PK	Kaulo	Peraite	l KV	Formula 2º Criterio	Formula 3º Criterio	1º Criterio	2ª Criterio	3ª Criterio
1	181.773	250	7	472	1.9	3571	Cumple	No cumple	No cumple
2	257.714	0	7	760	0.0	0	No cumple	No cumple	No cumple
3	345.617	245	7	250	1.0	3500	Cumple	No cumple	No cumple
4	392.063	0	7	189	0.0	0	No cumple	No cumple	No cumple
5	452.859	0	7	250	0.0	0	No cumple	No cumple	No cumple
6	519.639	24	7	244.96	10.2	343	Cumple	Cumple	No cumple
7	552.473	0	7	276.89	0.0	0	No cumple	No cumple	No cumple
8	637.0456	82	7	29.447	0.4	1171	Cumple	No cumple	No cumple
9	705.544	106	7	286.931	2.7	1514	Cumple	No cumple	No cumple
10	858.0.27	106	7	760	7.2	1514	Cumple	Cumple	No cumple
11	933.81	0	7	250	0.0	0	No cumple	No cumple	No cumple
12	1152.734	0	7	379	0.0	0	No cumple	No cumple	No cumple
13	1402.341	174	7	760	4.4	2486	Cumple	No cumple	No cumple
14	1507.273	249	7	188.242	0.8	3557	Cumple	No cumple	No cumple
15	1684.495	91.25	7	3189.223	35.0	1304	Cumple	Cumple	No cumple
16	1916.151	17.56	7	714.968	40.7	251	Cumple	Cumple	No cumple
17	2225.514	45	7	1337.812	29.7	643	Cumple	Cumple	No cumple
18	2364.212	100	7	2364.212	23.6	1429	Cumple	Cumple	No cumple
19	2538.593	0	7	760	0.0	0	No cumple	No cumple	No cumple
20	2596.832	86	7	250	2.9	1229	Cumple	No cumple	No cumple
21	2826.024	18	7	505.842	28.1	257	Cumple	Cumple	No cumple
22	2958.214	13	7	399.469	30.7	186	Cumple	Cumple	No cumple
23	3011.946	11	7	777.926	70.7	157	Cumple	Cumple	No cumple
24	3178.358	36	7	1087.21	30.2	514	Cumple	Cumple	No cumple

Tabla 5. Coordinación planta-alzado del primer tramo Fuente: Elaboración propia.

Número de	PK	Dodio.	Peralte	Kv	Férmanda 28 Cuita ui a	Fórmula 3º Criterio	Cumplimiento de la normativa			
elemento	PK	Radio	Peraite	KV	Formula 2º Criterio	Formula 3º Criterio	1º Criterio	2ª Criterio	3ª Criterio	
1	320.56	118	7	1084.08	1686	9.2	Cumple	Cumple	No cumple	
2	410.606	1182	7	547.196	16886	0.5	Cumple	No cumple	No cumple	
3	642.496	79	7	1169.986	1129	14.8	Cumple	Cumple	No cumple	
4	799.889	592	7	967.732	8457	1.6	Cumple	No cumple	No cumple	
5	1065.929	0	7	1758.686	0	0	No cumple	No cumple	No cumple	
6	1210.099	0	7	689.099	0	0	No cumple	No cumple	No cumple	
7	1491.943	66	7	1809.833	943	27.4	Cumple	Cumple	No cumple	
8	1665.24	81	7	1786.746	1157	22.1	Cumple	Cumple	No cumple	
9	1884.281	99	7	1978.496	1414	20.0	Cumple	Cumple	No cumple	
10	2135.432	49	7	6837.672	700	139.5	Cumple	Cumple	No cumple	
11	2264.017	45	7	2635.216	643	58.6	Cumple	Cumple	No cumple	

Tabla 6. Coordinación planta-alzado del segundo tramo Fuente: Elaboración propia.

6. Consistencia

La adecuación entre las expectativas de los conductores y el comportamiento de la carretera, conocida como consistencia, presenta deficiencias significativas en el diseño actual del trazado vial.

Se consideran dos enfoques diferentes para evaluar dicha consistencia. Ambos modelos clasifican la consistencia en tres categorías: bueno, regular y malo. Sin embargo, es importante tener en cuenta que los umbrales de detección para cada clasificación difieren según el modelo utilizado. A continuación, se detallan los modelos utilizados.

6.1 Consistencia local

El primero de estos enfoques, conocido como consistencia local, emplea un modelo propuesto por Lamm II et al. (1988). Este modelo se centra en analizar las variaciones en la velocidad de operación en tramos consecutivos de la carretera. La velocidad de operación se refiere a la velocidad que los usuarios de la vía experimentan y está influida por diversos factores, como el confort del conductor, el nivel de riesgo, el propósito del viaje y las condiciones del entorno. Para obtener esta velocidad, se extrajo el diseño de las alineaciones de la carretera de Autodesk Civil 3D. Esto permitió definir el percentil 85 de la velocidad a la que los conductores circulan en condiciones de flujo normal. Luego, utilizando un software facilitado por el tutor Francisco Javier Camacho Torregrosa, se determinaron las velocidades de operación en ambos sentidos, tanto en el aumento como en el descenso.

A continuación, el **Gráfico 1** presenta las velocidades de operación V (85) establecidas para el primer y segundo tramo, tanto en dirección ascendente como descendente.

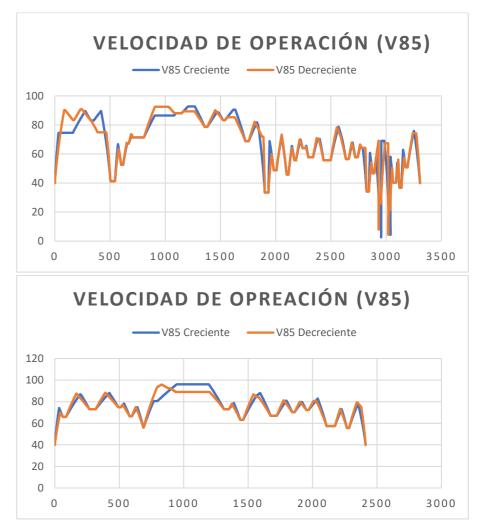


Gráfico 1. Velocidad de operación en el Tramo I y Tramo II. Fuente: Elaboración propia.

Los umbrales determinados para los que la consistencia local de un elemento viario se considere buena, aceptable o pobre quedan definidos en la **Figura 14**.

Buena	Aceptable	Pobre
V _{85 i+1} - V _{85 i} ≤ 10 km/h	10 km /h < $V_{85 i+1}$ - $V_{85 i} \le 20$ km/h	V_{85i+1} - V_{85i} > 20 km/h

Figura 14. Umbrales en consistencia local según modelo de Lamm et al. (1988). Fuente: Camacho Torregrosa.

6.2 Consistencia global

El segundo método, llamado consistencia global, estima la relación entre la velocidad promedio de conducción de los conductores en un segmento de carretera y su velocidad promedio de desaceleración. En este caso se ha empleado el modelo desarrollado por Camacho-Torregrosa en 2015.Los umbrales correspondientes a esta metodología se encuentran ilustrados en la **Figura 15**.

Buena	Aceptable	Pobre
$C \ge 3,25 \text{ s}^{1/3}$	$2,55 \text{ s}^{1/3} \le C < 3,25 \text{ s}^{1/3}$	$C < 2,55 \text{ s}^{1/3}$

Figura 15. Umbrales en consistencia global según modelo de Camacho-Torregrosa (2018).

A continuación, en la **Tabla 7** y **Tabla 8**, podemos observar cómo una vez realizados los análisis pertinentes utilizando un software informático proporcionado por el tutor Francisco Javier Camacho Torregrosa, se ha determinado que la consistencia local de los tramos, tanto en sentido ascendente como descendente, se clasifica mayoritariamente como pobre. Por otro lado, se ha obtenido la consistencia global con un valor de 1,93 s1/3, el cual también es clasificado como pobre según el modelo propuesto por Camacho-Torregrosa (2018). Finalmente, se utilizó el mismo modelo para estimar el número potencial de accidentes con víctimas en los próximos 10 años, según el análisis, durante este período se habrían producido 1,9 accidentes de tráfico si no se hubiera producido la intervención.

CONSISTENCIA SEGÚN LAMM II	
Sentido creciente	

PK inicial	PK final	Velocidad inicial (km/h)	Velocidad final (km/h)	Decremento de velocidad (km/h)	Tipo de inconsistencia
275	325	89.58	83.1	6.48	Buena
419	504	89.6	41.36	48.25	Pobre
572	601	66.77	52.56	14.21	Aceptable
698	706	73.09	71.37	1.72	Buena
1267	1357	92.76	78.69	14.06	Aceptable
1481	1523	88.71	83.3	5.41	Buena
1634	1725	90.54	68.91	21.63	Pobre
1830	1901	81.86	33.54	48.32	Pobre
1945	1982	68.86	48.85	20	Pobre
2053	2099	72.08	45.87	26.21	Pobre
2146	2169	65.6	55.61	9.99	Buena
2225	2243	69.88	64	5.88	Buena
2276	2295	65.69	57.78	7.91	Buena
2398	2433	70.43	55.61	14.82	Aceptable
2569	2635	78.83	56.51	22.31	Pobre
2695	2720	67.96	57.78	10.18	Aceptable
2768	2773	65.93	64.26	1.67	Buena
2787	2822	64.26	34.17	30.09	Pobre
2853	2876	60.86	46.66	14.19	Aceptable
2908	2934	57.38	25.73	31.64	Pobre
2952	2955	25.73	2.6	23.13	Pobre
2983	3022	69.04	21.34	47.71	Pobre
3035	3038	21.34	4.33	17.01	Aceptable
3039	3062	58.15	40.32	17.83	Aceptable
3101	3120	53.98	36.84	17.14	Aceptable
3153	3176	62.87	50.8	12.07	Aceptable
3251	3306	75.93	40	35.93	Pobre

Sentido decreciente	

PK inicial	PK final	Velocidad inicial (km/h)	Velocidad final (km/h)	Decremento de velocidad (km/h)	Tipo de inconsistencia
2554	2497	78.36	55.61	22.74	Pobre
2371	2338	70.96	57.78	13.18	Aceptable
2272	2269	65.02	64	1.02	Buena
2217	2183	70.06	55.61	14.45	Aceptable
2146	2116	63.99	45.87	18.12	Aceptable
2054	2007	73.33	48.85	24.48	Pobre
1962	1934	59.78	33.54	26.24	Pobre
1809	1756	82.21	68.91	13.29	Aceptable
1558	1542	85.32	83.3	2.02	Buena
1453	1381	90.13	78.69	11.43	Aceptable
1162	1149	89.35	88.07	1.28	Buena
908	807	92.54	71.37	21.18	Pobre
692	668	73.72	67.08	6.63	Buena
651	619	67.71	52.56	15.15	Aceptable
576	545	63.39	41.36	22.04	Pobre
235	175	90.87	83.35	7.52	Buena
87	0	90.28	40	50.28	Pobre
3242	3193	74.28	50.8	23.47	Pobre
3162	3138	57.65	36.84	20.81	Pobre
3109	3089	56.15	40.32	15.83	Aceptable
3054	3035	50.41	21.34	29.07	Pobre
3022	3019	21.34	4.33	17.01	Aceptable
2991	2952	67.45	25.73	41.72	Pobre
2934	2932	25.73	7.92	17.81	Aceptable
2931	2892	69.15	46.66	22.49	Pobre
2865	2844	54.26	34.17	20.08	Pobre
2763	2742	66.49	57.78	8.71	Buena
2688	2661	67.9	56.51	11.38	Aceptable

Tabla 7. Estudio de consistencia según LAMM II en el tramo I: Elaboración propia.

CONSISTENCIA SEGÚN	LAMM II
--------------------	---------

Sentido creciente

PK inicial	PK final	Velocidad inicial (km/h)	Velocidad final (km/h)	Decremento de velocidad (km/h)	Tipo de inconsistencia
33	62	74.15	65.82	8.34	Buena
197	268	86.93	73.06	13.87	Aceptable
423	492	88.12	74.98	13.14	Aceptable
538	580	78.28	66.43	11.85	Aceptable
640	687	74.96	56.07	18.89	Aceptable
1195	1313	96.1	72.95	23.15	Pobre
1389	1439	78.75	63.18	15.57	Aceptable
1593	1675	88	66.87	21.13	Pobre
1797	1842	81.07	70.26	10.81	Aceptable
1918	1952	79.85	72.24	7.6	Buena
2040	2109	82.93	57.37	25.56	Pobre
2225	2267	73.16	55.61	17.55	Aceptable
2353	2412	78.11	40	38.11	Pobre

Sentido decreciente

PK inicial	PK final	Velocidad inicial (km/h)	Velocidad final (km/h)	Decremento de velocidad (km/h)	Tipo de inconsistencia
2344	2284	79.38	55.61	23.76	Pobre
2214	2174	73.31	57.37	15.94	Aceptable
2009	1970	80.69	72.24	8.45	Buena
1902	1861	80.02	70.26	9.75	Buena
1775	1722	81.29	66.87	14.42	Aceptable
1541	1462	86.74	63.18	23.57	Pobre
1374	1351	78.01	72.95	5.06	Buena
830	690	95.86	56.07	39.79	Pobre
628	598	75.09	66.43	8.65	Buena
525	514	77.23	74.98	2.24	Buena
392	317	88.29	73.06	15.23	Aceptable
167	87	87.5	65.82	21.68	Pobre
43	0	69.92	40	29.92	Pobre

Tabla 8. Estudio de consistencia según LAMM II en el tramo II: Elaboración propia.

7. Visibilidad

El estudio de visibilidad de la CV-445 se realiza con el propósito de garantizar que los conductores tengan una visibilidad óptima en la totalidad del trazado. Este análisis tiene como objetivo identificar las zonas donde no se cumplen los requisitos establecidos de visibilidad en la Norma 3.1-IC Trazado, Apartado 3.2.1.

7.1 Distancia de parada

La distancia de parada (Dp) es la distancia total que un vehículo recorre al detenerse lo más rápido posible, medida desde donde se encuentra en el momento en que se detecta el objeto que requiere la detención. Esta distancia incluye la distancia recorrida durante los tiempos de percepción, reacción y frenado. Para calcularla, se utiliza la siguiente fórmula, tal como se describe en la Norma 3.1-IC Trazado, Apartado 3.2.1.

$$Dp = \frac{V * tp}{3.6} + \frac{V^2}{254 * (f+i)}$$

Siendo:

Dp = distancia de parada (m).

V = velocidad al inicio de la maniobra de frenado(km/h).

tp = tiempo de percepción y reacción (2 s).

fl = coeficiente de rozamiento longitudinal rueda-pavimento. Se obtiene de la tabla 3.1 de la Norma de Trazado

i = inclinación de la rasante (en tanto por uno).

La determinación de la velocidad al inicio de la maniobra de frenado se basa en la velocidad de operación, aunque se debe tener presente que la instrucción técnica establece la preferencia por la velocidad de proyecto. Esta elección se ha realizado debido a que la velocidad de proyecto queda del lado de la inseguridad, ya que esta suele ser menor que la de operación. Por lo que, con el propósito de aumentar los criterios de seguridad, se opta por emplear la velocidad de operación como punto de partida. Sin embargo, en aquellas situaciones donde la velocidad de proyecto sea superior a la de operación, se dará prioridad a la velocidad de proyecto para asegurar el total cumplimiento de la normativa.

7.2 Visibilidad de parada

La visibilidad de parada se refiere a la distancia medida a lo largo de un carril entre un obstáculo en dicho carril y un vehículo que se desplaza hacia ese obstáculo. Esta medición se realiza en ausencia de objetos intermedios y se toma en el momento en que el conductor del vehículo puede visualizar el obstáculo y mantenerlo a la vista hasta llegar a él.

Para el cálculo de la visibilidad de parada se fijará la altura del obstáculo sobre la rasante de la calzada en cincuenta centímetros (50 cm), pudiendo situarse en cualquier punto de la sección transversal del carril. Esto se ha tenido en cuenta estudiando la visibilidad considerando el obstáculo situado en borde derecho y borde izquierdo de calzada.

En aquellos tramos de carretera donde se puedan presentar obstáculos con una altura inferior a 50 centímetros (<50 cm), se analizará la posibilidad de establecer una altura mínima adicional del obstáculo de al menos 20 centímetros (≥20 cm).

Para realizar el cálculo, se considera que el punto de vista del conductor se encuentra a una altura de 1 metro y 10 centímetros sobre la calzada y a una distancia de 1 metro y 50 centímetros del borde izquierdo de cada carril, en el interior de este y en la dirección del tráfico.

El objetivo de determinar la visibilidad de parada es que esta sea mayor que la distancia de parada; esto permite garantizar que los conductores dispongan del suficiente tiempo para reaccionar y detenerse de manera segura ante un obstáculo. Si la visibilidad de parada es menor que la distancia de parada, se incrementa el riesgo de colisiones o frenados bruscos e inseguros.

Los cálculos de visibilidad se han realizado con la opción "Visibilidad" del programa Civil 3D y cuyo resultado a comparación con la distancia de parada queda reflejado en el **Grafico 2** y **Grafico 3**. Esta opción permite el cálculo de la visibilidad de parada teniendo en cuenta todas las premisas comentadas anteriormente.

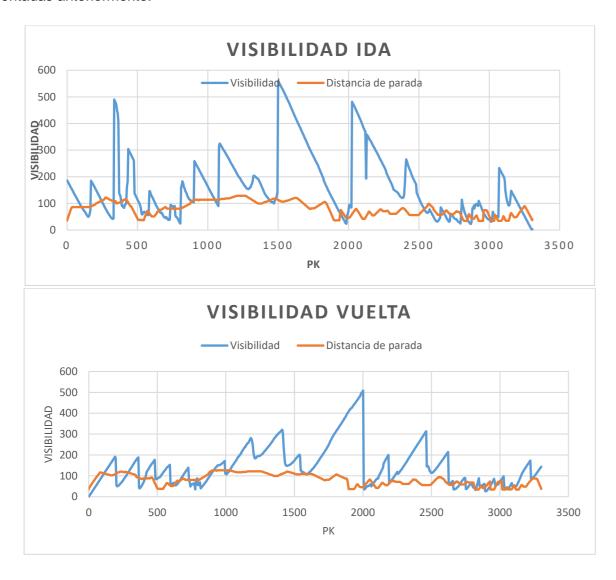
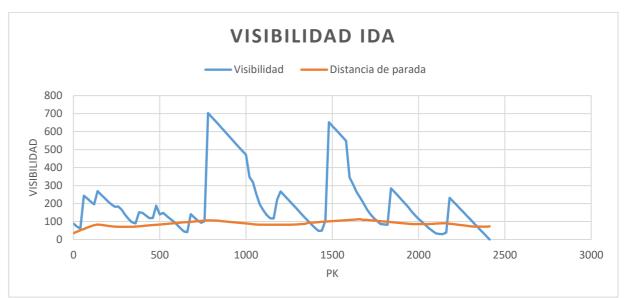



Gráfico 2. Perfiles de Visibilidad en el Tramo I: Elaboración propia

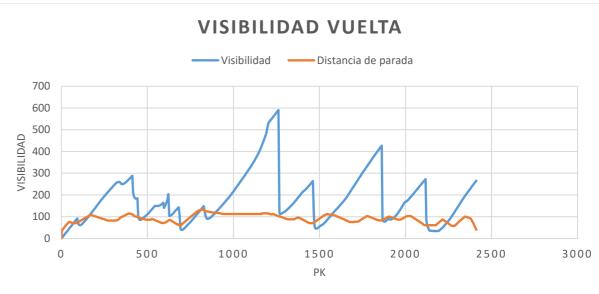


Gráfico 3. Perfiles de Visibilidad en el Tramo II: Elaboración propia

Finalmente podemos afirmar que se cumple con la normativa en una parte del trazado, aunque en determinadas zonas la visibilidad es deficiente.

ANEJO № 2: GEOLOGÍA Y GEOTECNIA

Curso:

2022/2023

Fecha:

septiembre 2023

Autor:

Jorge Naranjo Martínez

Tutor:

Javier Camacho Torregrosa

INDICE

1.Introducción	3
2.Análisis Geológico	3
2.1 Geología	3
2.2 Litología	4
2.3 Fisiografía	4
2.4 Riesgo de erosión	4
3. Análisis Geotécnico	5
3.1 Información general de los sondeos	6
3.2 Caracterización de los sondeos	6
3.2.1 Sondeo 1 (S-1): Ensayo geotécnico de Ayora	6
3.2.2 Sondeo 1 (S-1): Ensayo geotécnico de Jalance	7
3.3 Nivel freático	7
3.4 Clasificación del suelo	7
3.5 Estabilización del suelo	8
4. Caracterización de taludes en la zona	9
4.1 Caracterización "in situ" de los taludes	9
4.2 Caracterización de los taludes según GVA	10
4.3 Taludes de diseño admisibles	10
5. Conclusiones	10

1.Introducción

En este documento se analizan las características geológicas y geotécnicas del terreno donde se van a desarrollar los estudios para el acondicionamiento de la CV-445 la cual conecta Zarra con los municipios cercanos. De esta manera, se obtendrán los conocimientos necesarios para conocer los materiales del suelo sobre el que se va a trabajar, así como los parámetros geotécnicos que definirán la estabilidad de los taludes y capacidad portante del terreno.

2. Análisis Geológico

2.1 Geología

Para conocer los materiales que forman el terreno de la zona de estudio, se van a utilizar los datos proporcionados por el Instituto Geológico Minero Español (IGME) en el Mapa Geológico de España E=1/50.000 (2ª serie) en concreto la hoja 768 (27-30): Ayora; con el objetivo de extraer la información acerca de la geología de la zona de estudio. Según los datos proporcionados por el IGME (Instituto Geológico Minero Español, 2023), el trazado existente podemos observar los siguientes materiales:

En la **Figura 1** se puede observar concretamente donde se sitúan los materiales en relación al trazado existente.

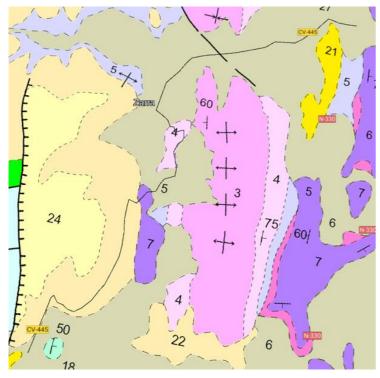


Figura 1. Mapa geológico de España. Hoja 768. Fuente: Adaptado Instituto Geológico y Minero de España (IGME).

En primer lugar, entre el comienzo del Tramo I y el PK 2+000 se encuentra sobre materiales del terciario superior, concretamente de arcillas rojas, arenas y conglomerados(22), en segundo lugar,

entre el PK 2+000 y el PK 2+150 aparece una zona de dolomías y carniolas(7), en tercer lugar que va desde el PK 2+530 hasta el PK 3+195 está constituido por margas y arcillas rojas(4), por último, el Tramo II está principalmente compuesto por materiales del cuaternario indiferenciados(27), según la memoria asociada al mapa de la hoja 768 proporcionada por el IGME (Instituto Geológico Minero Español, 2023): "Litológicamente están constituidos por arcillas de colores oscuros (a veces auténticos limos rojos y pardos) y cantos de distintos tamaños, formas y composición, que en algunas zonas aparecen encostrados y fuertemente cementados por caliche."

LEYENDA

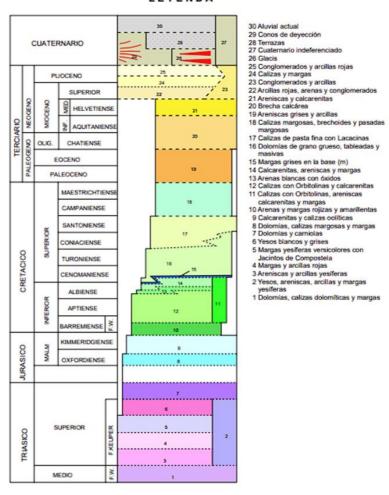


Figura 2. Leyenda Mapa Geológico De España Fuente: IGME.

2.2 Litología

En la **Figura 3**, podemos observar como la carretera discurre en su mayor totalidad por zonas cantos gravas y arcillas; no obstante, existen unas zonas donde predominan las dolomías y otra donde lo hacen las arcillas, margas y yesos.

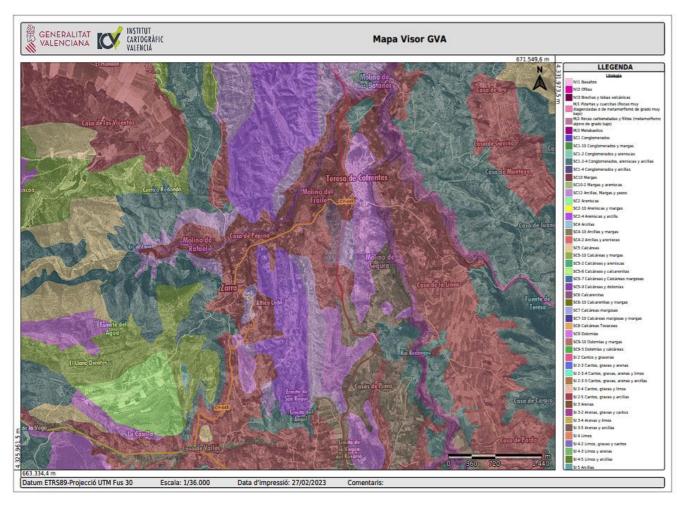


Figura 3. Litología de la zona a acondicionar. Fuente: Visor cartográfico GVA.

2.3 Fisiografía

La carretera presenta a lo largo de todo su trayecto un terreno fuertemente ondulado. No obstante, en el segundo tramo, en el PK 0+200, nos encontramos con un terreno montañoso, tal y como se ilustra en la **Figura 4.**

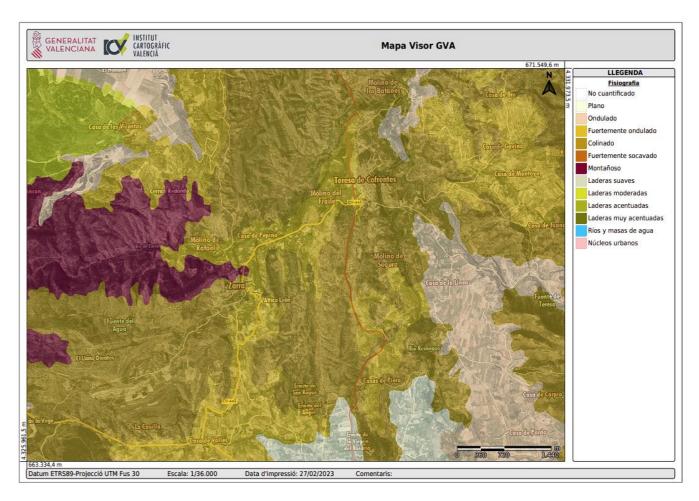


Figura 4. Fisiografía de la zona a acondicionar. Fuente: Visor cartográfico GVA.

2.4 Riesgo de erosión

La erosión presente en el trazado de la carretera mostrada en la Figura 5 permite identificar un nivel moderado de erosión, especialmente en el primer tramo de la carretera; por otro lado, a medida que avanzamos hacia el final de este tramo y se inicia el segundo, el riesgo de erosión disminuye significativamente, llegando a ser bajo.

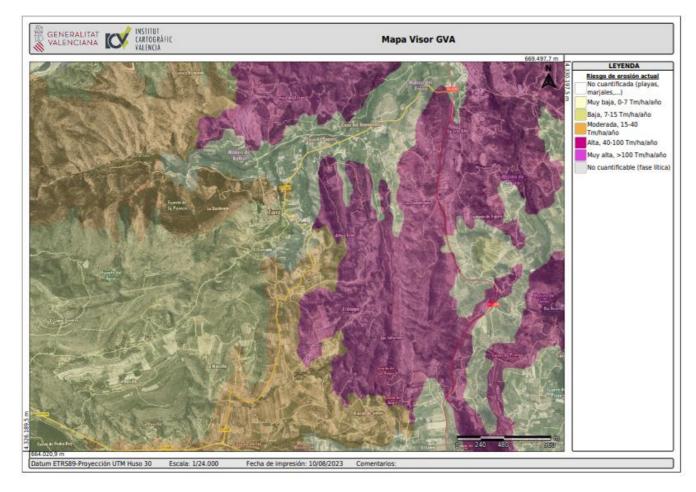


Figura 5. Erosión actual de la zona. Fuente: Visor cartográfico GVA.

3. Análisis Geotécnico

A través del análisis geotécnico se pretende describir los materiales que componen las formaciones geológicas presentes en el trazado

Dada la información inicial disponible para este estudio, no se dispone de los detalles del terreno a lo largo de la CV-445. Por tanto, para evaluar la calidad del terreno, se han empleado ensayos geotécnicos cercanos a las formaciones geológicas presentes en la zona de intervención. Estos ensayos se han obtenido a través del Visor Cartográfico de la Generalitat Valenciana GVA.

En la **Figura 5** se puede observar la ubicación y el terreno en el cual se ha recogido los datos de uno del primer ensayo geotécnico recopilado, al no estar en una zona excesivamente alejada y contar con la misma clasificación del suelo (cantos gravas y arcillas) que, en la mayoría del trazada a estudiar, los datos obtenidos en dicho ensayo pueden ser utilizados para el estudio geotécnico de los estudios para el acondicionamiento de la carretera CV-445 entre la intersección con la CV-440 y el municipio de Teresa de Cofrentes, provincia de Valencia.

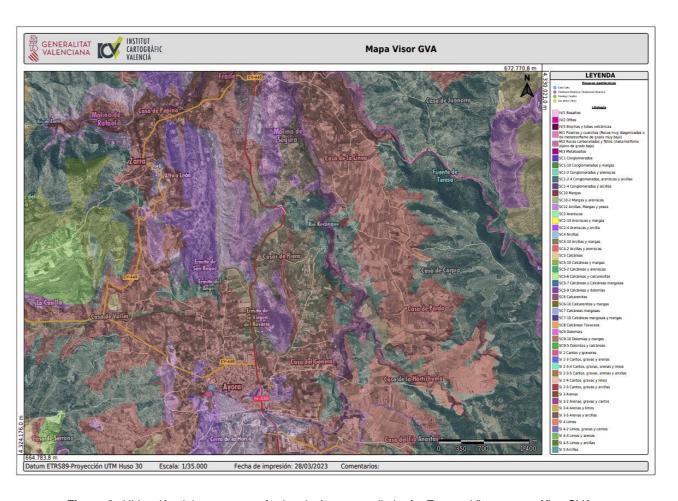


Figura 6. Ubicación del ensayo geotécnico de Ayora y su litología. Fuente: Visor cartográfico GVA.

Del mismo modo, analizando la **Figura 7** vemos como existe una mayor distancia entre el trazado a estudiar y la ubicación del ensayo geotécnico, pero comparten la misma clasificación del suelo (arcillas, margas y yesos) por lo que se pueden extrapolar los datos para completar el estudio geotécnico.

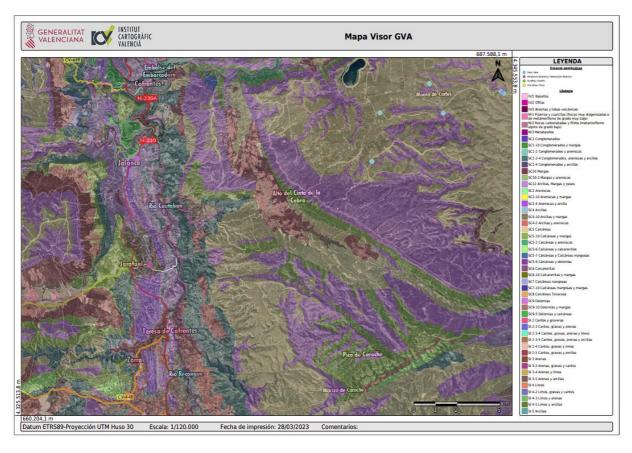


Figura 7. Ubicación del ensayo geotécnico de Jalance y su litología. Fuente: Visor cartográfico GVA.

3.1 Información general de los sondeos

A continuación, se muestran las profundidades alcanzadas en el sondeo, así como las características de la perforación y la entubación extraídas del ensayo geotécnico de Ayora (**Tabla 1**) y de Jalance (**Tabla 2**).

SONDEO	TIPO DE MUESTRA	COTA (m)
S-1	MI	2,40-3
S-1	SPB	3,20-3,80
S-1	SPB	4,80-5,24

Tabla 1. Características del sondeo de Ayora. Fuente: Elaboración propia a partir del Visor cartográfico GVA

SONDEO	TIPO DE MUESTRA	COTA (m)
S-1	MI	6-6,45
S-1	SPT	6,45-7,05
S-1	MI	9-9,60
S-1	SPT	9,60-10,20

Tabla 2. Características del sondeo de Jalance. Fuente: Elaboración propia a partir del Visor cartográfico GVA

Por otro lado, en la **Tabla 3** se muestran las profundidades de las calicatas que se realizaron en la zona de Ayora y en las cuales se extrajeron muestras alteradas en seco.

CATA	COTA (m)
C-1	0-0,65
C-2	0-1,20
C-3	0-1,40

Tabla 3. Profundidad de las catas de Ayora. Fuente: Elaboración propia a partir del Visor cartográfico GVA

3.2 Caracterización de los sondeos

3.2.1 Sondeo 1 (S-1): Ensayo geotécnico de Ayora.

La descripción del terreno obtenida a través del ensayo geotécnico de Ayora que se sitúa sobre un terreno de cantos gravas y arcillas distingue los siguientes niveles del terreno (**Tabla 4**):

PROFUNDIDAD (m)	DESCRIPCIÓN DEL TERRENO		
0,00-0.60	Relleno		
0,60-1,30	Suelo vegetal con raíces		
1,30-2,40	Gravas		
2,40-6,00	Margas ocres		

Tabla 4. Profundidad de las catas de Ayora. Fuente: Elaboración propia a partir del Visor cartográfico GVA

A través de la estratigrafía y la granulometría por tamizado se muestra la siguiente identificación del suelo donde podemos ver que la muestra recogida se clasifica como unos limos de baja plasticidad con arena (ML), según la clasificación ASTM (**Tabla 5**).

Sondeo	Prof	Clasificación	% #0.08	% #2	Ц	LP	IP	W (%)	D.aparente (KN/m3)	D.seca (KN/m3)
S-1	2.4	ML	80	97	38	27.5	10.5			

Tabla 5. Identificación del suelo de Ayora. Fuente: Elaboración propia a partir del Visor cartográfico GVA

3.2.2 Sondeo 1 (S-1): Ensayo geotécnico de Jalance.

Del mismo modo que en el sondeo de Ayora, en la **Tabla 6** se distinguen los niveles de terreno de la zona constituida por arcillas, margas y yesos.

PROFUNDIDAD (m)	DESCRIPCIÓN DEL TERRENO		
0,00-2,40	Rellenos antrópicos, compuestos por arcilla limo- arenosa		
2,40-5,40	Gravas y bolos		
5,40-10,20	Marga arcillosa, cohesiva, de plasticidad media, consistencia muy firme		

Tabla 6. Profundidad de las catas de Jalance. Fuente: Elaboración propia a partir del Visor cartográfico GVA

A continuación, en la Tabla 7 se muestra la identificación del suelo y los químicos de nivel 1.

Sondeo	Prof	Clasificación	% #0.08	% #2	LL	LP	IP	W (%)	D.aparente (KN/m3)	D.seca (KN/m3)
S-1	6	ML	89.96	99	36.9	27.1	9.8		16.1	20.3

Tabla 5. Identificación del suelo y químicos de Jalance. Fuente: Elaboración propia a partir del Visor cartográfico GVA

De una forma similar se clasifica el terreno como un limo de baja plasticidad de tipo ML, según la clasificación ASTM

En la **Tabla 7** a la misma profundidad que el S-1, se ha determinado la consistencia con cuatro ensayos de penetración normalizada (SPT) en los cuales podemos concluir que el terreno existente es compacto.

SONDEO	СОТА	N30
MI	6	50R
SPT	6,45	42
MI	9	37,5
SPT	6,60	77

Tabla 7. Ensayo SPT. Fuente: Elaboración propia a partir del Visor cartográfico GVA

3.3 Nivel freático

Según los datos obtenidos en el sondeo S-1 de Ayora y S-1 de Jalance, no se ha detectado la aparición de nivel freático hasta en una profundidad de 10,20m. Como la distancia entre los sondeos y el trazado de la CV-445 no es excesiva, se van a extrapolar dichos datos y se identifica que el terreno que el nivel freático no va a afectar a la ejecución de los estudios para el acondicionamiento de la carretera CV-445 entre la intersección con la CV-440 y el municipio de Teresa de Cofrentes, provincia de Valencia.

3.4 Clasificación del suelo

Una vez analizados todos los datos obtenidos, se ha procedido a clasificar el suelo según el Artículo 330 del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes (PG3).

Aunque los sondeos S-1 de Ayora y S-1 de Jalance, no proporcionan toda la información necesaria para el correcto seguimiento de la norma, tanto el suelo compuesto por cantos gravas y arcillas como el compuesto por arcillas, margas y yesos se ha clasificado como suelo marginal teniendo en cuenta los siguientes criterios:

- Los terrenos no se clasifican como suelos seleccionados al no cumplir con las siguientes condiciones:
 - Cernido por el tamiz 2 UNE, menor del ochenta por ciento (# 2 < 80%).
 - Cernido por el tamiz 0,40 UNE, menor del setenta y cinco por ciento (# 0,40 < 75%).
 - Cernido por el tamiz 0,080 UNE inferior al veinticinco por ciento (# 0,080 < 25%).
 - Límite líquido menor de treinta (LL < 30), según UNE 103103.
 - Índice de plasticidad menor de diez (IP < 10), según UNE 103103 y UNE 103104.
- Los terrenos no se clasifican como suelos adecuados al no cumplir con los siguientes criterios:
 - Cernido por el tamiz 2 UNE, menor del ochenta por ciento (# 2 < 80%).
 - Cernido por el tamiz 0,080 UNE inferior al treinta y cinco por ciento (# 0,080 < 35%).

- En cuanto a la clasificación del suelo tolerable, los sondeos no proporcionan la información necesaria de las siguientes condiciones:
 - o Contenido en materia orgánica inferior al dos por ciento (MO < 2%), según UNE 103204.
 - Contenido en yeso inferior al cinco por ciento (yeso < 5%), según NLT 115.

No obstante, como se puede observar en la **Figura 8** la mayoría del trazado de la CV-445 transcurre por una unidad litoestratigráfica caracterizada por "arcillas abigarradas, yesos y areniscas "Facies Keuper" entendiendo de esta forma que no cumple con el contenido en yeso estipulado, por lo que se descarta la clasificación como suelo tolerable.

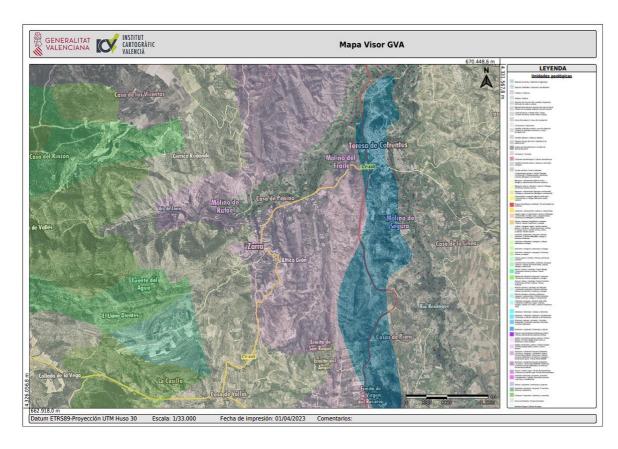


Figura 8. Unidades geológicas Fuente: Visor cartográfico GVA

- En cuanto a la clasificación del suelo marginal, los sondeos tampoco proporcionan la información respecto de las siguientes condiciones:
 - Contenido en materia orgánica inferior al cinco por ciento (MO < 5%), según UNE 103204.
 - Hinchamiento libre según UNE 103601 inferior al cinco por ciento (5%), para muestra remodelada según el ensayo Proctor normal UNE 103500.

En lo que concierne al alcance de este proyecto se ha definido el terreno como suelo marginal. Sin embargo, se deberán hacer los ensayos pertinentes para el proyecto de construcción.

3.5 Estabilización del suelo

Al tener un suelo marginal no es aconsejable su utilización para el firme de la carretera, por el contrario, dicho suelo puede emplearse como explanada sí cumple lo estipulado en el Artículo 512: Suelos estabilizados in situ (PG3).

Aplicando dicha normativa se concluye que no es posible emplear una estabilización de tipo S-EST1 debido a que los parámetros relacionados con el índice de plasticidad del terreno no cumplen con lo establecido. Por otro lado, en la **Tabla 6** podemos observar si el terreno existente cumple con las condiciones del artículo mencionado anteriormente, lo que permitiría considerar una estabilización de categoría S-EST2.

CARACTERÍS		l .			CUMPLIMIENTO	
TICAS	CONDICIONES	CAL	CEM	TERRENO	S-EST2 CAL	S-EST2 CEM
	Cernido Tamiz 80	100	100	100	CUMPLE	CUMPLE
Granulometría	Cernido Tamiz 2	-	>20	97	-	CUMPLE
	Cernido Tamiz 0.063	≥15	<50	0	NO CUMPLE	CUMPLE
Composición	%Materia orgánica	<1	<1	-	-	-
química	% Sulfatos solubles	<0.7	<0.7	0.17	CUMPLE	CUMPLE
Plasticidad	Índice de plasticidad	12≤IP≤40	≤15	10.5	NO CUMPLE	CUMPLE
	Limite liquido	-	≤40	38	-	CUMPLE

Tabla 6. Comprobación de la estabilización de suelos. Fuente: Elaboración propia.

Aunque los datos obtenidos no nos permiten afirmar, por falta de conocimiento del % de materia orgánica, que se cumple completamente la estabilización "in situ" con cemento; a medida de este estudio y como se ha comentado anteriormente se deberán realizarse los ensayos pertinentes para el proyecto de construcción. Por lo que, en lo que el alcance de este estudio se refiere se podrá emplear el suelo procedente de excavaciones si es sometido a una estabilización "in situ" con cemento (S-EST2 CEM).

4. Caracterización de taludes en la zona

A través de este apartado se pretende definir los taludes de diseño, tanto del terraplén como de desmonte, a partir de los taludes naturales presentes en la zona de actuación y los presentes en la carretera.

4.1 Caracterización "in situ" de los taludes

A través de una inspección visual "in situ" se ha procedido a la caracterización de los taludes. Para ello se han analizado los taludes teniendo en cuenta el talud y el terreno existente en diferentes zonas que se muestran a continuación.

A lo largo del Tramo I se presentan diferentes tipos de taludes, en la **Figura 9** situado en el PK 0+480 podemos observar unos taludes cercanos a los 40º localizados sobre una zona de cantos gravas y arcillas, por otro lado, en el PK 2+2620 (**Figura 10**) contemplamos un talud alrededor de los 35º en un terreno caracterizado por arcillas, margas y yesos.

Figura 9. Talud con formaciones herbáceas Fuente: Elaboración propia.

Figura 10. Talud con formaciones herbáceas Fuente: Elaboración propia

Por otra parte, en el Tramo II se han examinado taludes cercanos a los 47º procedentes de un terreno de arcillas margas y yesos (**Figura 11**).

Figura 11. Talud con formaciones herbáceas Fuente: Elaboración propia.

4.2 Caracterización de los taludes según GVA

Por medio del Visor cartográfico GVA, en la **Figura 12** se muestra las inclinaciones del terreno alrededor del trazado actual, siendo esta menor que 15° en la mayoría del trazado, no obstante, en la **Figura 13** podemos observar cómo en algunos puntos en concreto dichas pendientes se encuentran incluso entre el 30% y el 50%.



Figura 12. Pendientes actuales mayores y menores de 15º Fuente: Visor cartográfico GVA.

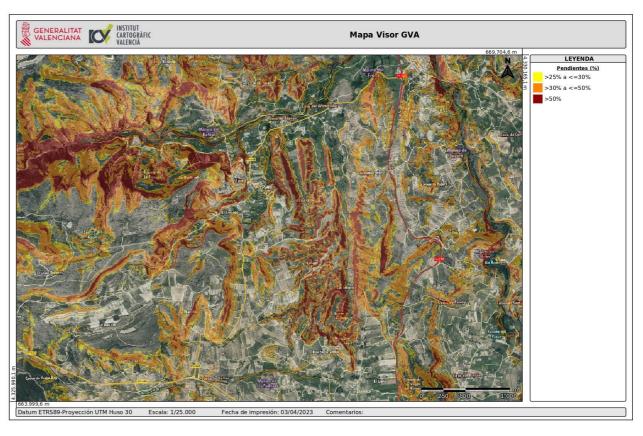


Figura 13. Pendientes naturales Fuente: Visor cartográfico GVA

4.3 Taludes de diseño admisibles

Una vez recopilados los datos tanto de forma visual como a través del visor cartográfico GVA, se ha decidido aplicar un talud de 3H:2V, dado que esta opción está del lado de la seguridad. Aunque se han determinado taludes más verticales a lo largo del trazado, la clasificación del terreno según el PG-3 como "marginal" y la falta de información más detallada de este hace que se mantenga el talud 3:2 por motivos de seguridad. Por otro lado, se recomienda realizar un estudio geotécnico detallado antes de la construcción del proyecto para obtener una mejor información acerca del terreno y definir más concretamente el diseño del talud.

5. Conclusiones

A través de la información recopilada en este anejo y aunque no se disponga de los estudios específicos para caracterizar mejor el terreno podemos concluir que:

- El terreno predominante es el compuesto por margas y arcillas con presencia de arenas y limos de baja plasticidad.
- El suelo se clasifica como "marginal" y se utilizará como explanada si se realizada su estabilización con cemento "in situ"

- No se detecta la aparición del nivel freático
- Se establece un talud 3H:2V a lo largo del trazado con el objetivo de posicionarse del lado de la seguridad.

ANEJO Nº 3: PLANEAMIENTO URBANÍSTICO

<u>Curso</u>:

2022/2023

Fecha:

septiembre 2023

Autor:

Jorge Naranjo Martínez

Tutor:

Javier Camacho Torregrosa

INDICE

1. Introducción	2
2. Clasificación del suelo	2
3. Zonificación del suelo	2
4. Términos municipales	2
4.1 Término de Ayora	3
4.2 Término de Zarra	3
4.3 Término de Teresa de Cofrentes	3
5. Conclusión	1

1. Introducción

En el presente Anejo se describen las características relativas al planeamiento urbano de los territorios por los que discurre la traza de la carretera CV-445. Estos territorios están clasificados según las necesidades de la zona y del patrimonio de cada municipio.

2. Clasificación del suelo

Para analizar la clasificación del suelo de la zona a acondicionar se ha utilizado el visor cartográfico de la Generalitat Valenciana. De esta forma podemos obtener datos de cómo se divide el territorio en función de si el suelo es urbanizable o no.

La mayor parte del territorio por el que transcurre la CV-445 se clasifica como "Suelo no urbanizable común", aunque a lo largo del recorrido también se aprecian zonas donde su trazado se clasifica como "Suelo no urbanizable protegido" y "Zona urbanizada residencial" (**Figura 1**).

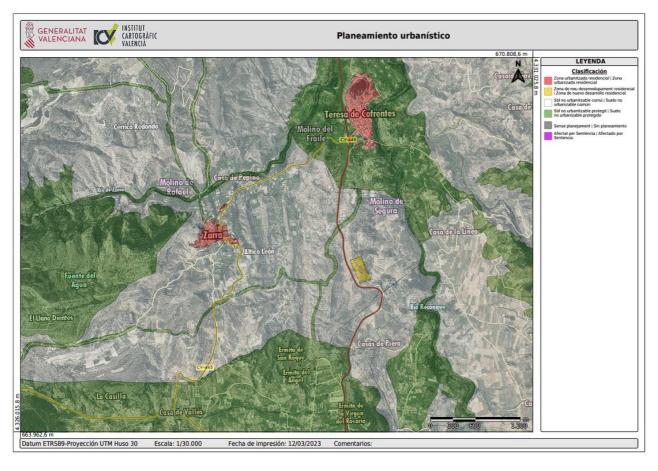


Figura 1. Clasificación del suelo. Fuente: Adaptado de Visor Cartogràfic de la Generalitat Valenciana.

3. Zonificación del suelo

Analizando a través del visor cartográfico de la Generalitat Valenciana se ha obtenido la zonificación del suelo, siendo un complemento este del apartado anterior que nos permite conocer las zonas rurales que están protegidas.

En la Figura 2 podemos observar como la carretera discurre en su mayor totalidad por una "Zona rural común forestal" aunque también existen tramos donde atraviesa una "Zona rural protegida otras (tendidos eléctricos, gaseoductos, etc.)", "Zona rural protegida municipal (forestal, paisajística, medioambiental) "y "Zona urbanizada núcleo histórico tradicional"

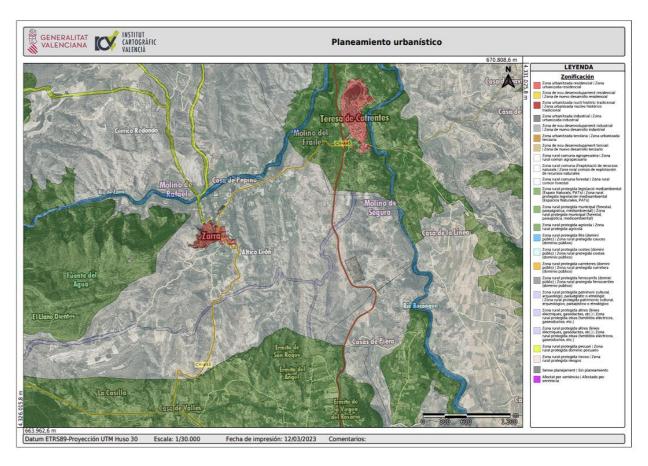


Figura 2. Zonificación del suelo. Fuente: Adaptado de Visor Cartogràfic de la Generalitat Valenciana.

4. Términos municipales

Para obtener más información acerca de las actuaciones que se permiten realizar y cuales no se debe recurrir al Plan General de Ordenación Urbanística (PGOU) de cada municipio.

Los planeamientos de los tres municipios afectados por el presente Plan Especial, (PGOU de Ayora, NN. SS de Zarra y PGOU de Teresa de Cofrentes) clasifican la totalidad del ámbito del estudio como suelo no urbanizable (con distintas zonificaciones) y sin ningún tipo de aprovechamiento urbanístico.

4.1 Término de Ayora

En Ayora existe un Plan General aprobado por la C.T.U. de Valencia con fecha 8 de junio de 1982 (BOP de 25 de agosto de 1982).

En la **Figura 3** podemos observar el tramo de la CV-445 que se encuentra en el término municipal de Ayora y queda definido por una Zona rural protegida natural (ZRP-NA), esta zona contiene unos terrenos con valores ambientales, paisajísticos, culturales o económicos que se deban conservar, recuperar o mejorar, porque así lo recoge el plan general estructural o derivados de declaraciones formales o administrativas de rango superior; por lo que en las zonas no urbanizables protegidas solo se permite la agricultura de secano, explotación forestal y caza.

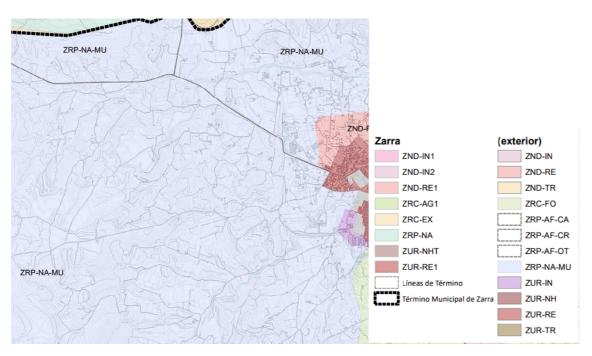


Figura 3. Zonas de ordenación de Ayora. Fuente: NN. SS de Zarra.

4.2 Término de Zarra

En Zarra existen Normas Subsidiarias de Planeamiento aprobadas por la C.T.U. de Valencia con fecha 10 de diciembre de 1991 (BOP de 20 de enero de 1993). En las NN. SS, de Zarra clasifican los terrenos en las siguientes zonas y superficies (**Figura 3**).

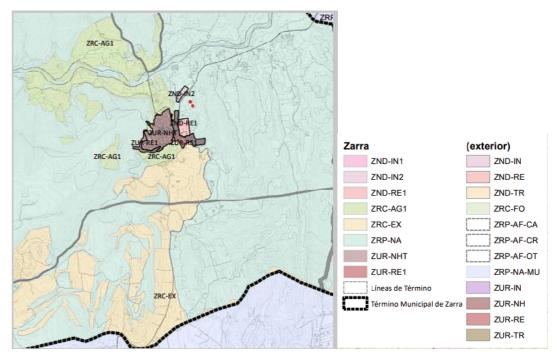


Figura 4. Zonas de ordenación de Zarra. Fuente: NN. SS de Zarra.

El recorrido de la CV-445 por el término de Zarra transcurre en su totalidad por la Zona rural común de explotación de recursos naturales (ZRC-EX) y por la Zona rural protegida natural (ZRP-NA); aunque al adentrarse por el término urbano del municipio la CV-445 atraviesa una Zona urbanizada residencial (ZUR-RE) así como una Zona de nuevo desarrollo residencial (ZND-RE).

Por lo que, en su paso por el término de Zarra la CV-445 atraviesa principalmente la zona de suelo rural, que según las normas urbanísticas se clasifican como suelo no urbanizable. De acuerdo a la Ley 5/2014, de 25 de julio, de Ordenación del Territorio, Urbanismo y Paisaje, de la Comunitat Valenciana, en las zonas del suelo no urbanizable se pueden realizar diferentes usos y aprovechamientos en los que se incluyen las obras, infraestructuras e instalaciones propias de las redes de suministros, transportes y comunicaciones, de necesario emplazamiento en el suelo no urbanizable.

4.3 Término de Teresa de Cofrentes

Acudiendo al portal web de Teresa de Cofrentes con el objetivo de, lograr obtener más información acerca del planeamiento urbanístico de este término municipal, se consigue mayor detalle acerca de la zonificación del territorio. En Teresa de Cofrentes existe un Plan General aprobado por la C.T.U. de Valencia con fecha de diciembre de 1986.

En la **Figura 5** podemos observar que de igual forma que en el término de Ayora comentando anteriormente el tramo de la CV-445 existente en el municipio de Teresa de Cofrentes queda definido por una Zona rural protegida natural (ZRP-NA) en la que se deben conservar, recuperar o mejorar los terrenos existentes. Por otro lado, siguiendo las mismas normas urbanísticas aplicadas por la Ley

5/2014, de 25 de julio, de Ordenación del Territorio, Urbanismo y Paisaje, de la Comunitat Valenciana en las diferentes zonas de suelo no urbanizable, se pueden realizar diferentes usos y aprovechamientos en los que se incluyen las obras, infraestructuras e instalaciones propias de las redes de suministros, transportes y comunicaciones, de necesario emplazamiento en el suelo no urbanizable.

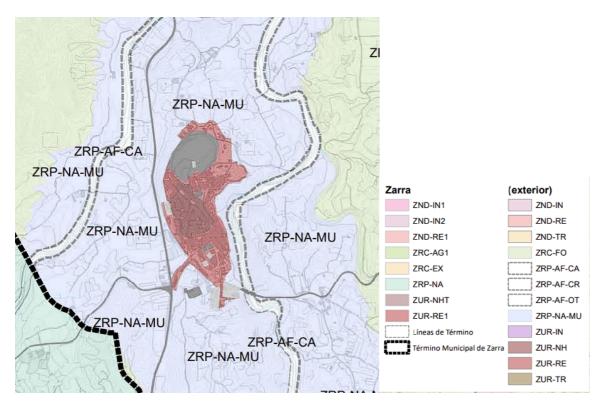


Figura 5. Zonas de ordenación de Teresa de Cofrentes. Fuente: NN. SS de Zarra.

5. Conclusión

La zona por la que transita la CV-445 se divide principalmente en dos zonas. Por un lado, encontramos la región designada como "Suelo no urbanizable protegido", abarcando desde el inicio del primer tramo hasta el PK 0+450, perteneciente al municipio de Ayora. En el segundo tramo, esta categoría se extiende desde el PK 2+000 hasta el final del tramo, correspondiente al municipio de Teresa de Cofrentes. Por otro lado, se delimita una zona de "Suelo no urbanizable común", aplicable al resto del trayecto de la carretera.

Atendiendo a la normativa urbanística de los municipios , en las zonas de "Suelo no urbanizable protegido", se modificara el trazado en aquellos puntos donde actualmente no se cumpla con las condiciones establecidas por la norma relativa a carreteras y, a su vez se tratara de mantener el trazado existente, restringiendo los lugares afectados por el nuevo trazado; no obstante, cada una de las modificaciones realizadas en dicha zona se justificará adecuadamente explicando cómo contribuyen a la prestación de un servicio público de bien común.

Por otro lado, la zona clasificada como "Suelo no urbanizable común" se puede modificar para proporcionar una mayor comodidad y seguridad a los usuarios.

6. Fuentes de información consultadas

Visor cartogràfic de la Generalitat. Recuperado el 15 de marzo de 2023, de: https://visor.gva.es/visor/?extension=363478,4038883,1071100,4681320&nivelZoom=7&capasids=lmagen;&tcapas=1.0&idioma=es

Generalitat Valenciana. (1989). Planeamiento Urbanístico Vigente. Recuperado el 15 de marzo de 2023, de:

https://politicaterritorial.gva.es/es/web/urbanismo/registro-autonomico-de-instrumentos-de-planeamiento-urbanistico

Ayuntamiento de Zarra. Plan General estructural y de ordenación pormenorizada de Zarra. Recuperado el 15 de marzo de 2023, de:

https://www.zarra.es/pagina/plan-general-estructural-ordenacion-pormenorizada-zarra

Ayuntamiento de Teresa de Cofrentes. Plan General estructural. Recuperado el 15 de marzo de 2023, de:

https://www.teresadecofrentes.es/content/plan-general-estructural-documentacion-sin-eficacia-normativa

Ayuntamiento de Ayora. Planeamiento urbanístico. Recuperado el 15 de marzo de 2023, de: https://ayora.sedelectronica.es/transparency/e73dc69f-1b97-454a-b35a-efa01a5658ef/

España. Ley 5/2014, de 25 de julio, de Ordenación del Territorio, Urbanismo y Paisaje, de la Comunitat Valenciana. Recuperado el 15 de marzo de 2023, de: https://www.boe.es/eli/es-vc/l/2014/07/25/5/con

ANEJO Nº 4: HIDROLOGÍA Y DRENAJE

<u>Curso</u>: 2022/2023

Fecha:

septiembre 2023

Autor:

Jorge Naranjo Martínez

Tutor:

Javier Camacho Torregrosa

INDICE

1. Introducción	2
2. Climatología	2
3. Inundabilidad	3
4. Cálculo de caudales	3
4.1. Cuencas de captación	3
4.2. Periodo de retorno	4
4.3. Método racional	4
4.3.1. Intensidad de precipitación	4
4.3.2. Coeficiente de escorrentía	8
4.3.2. Coeficiente de uniformidad en la distribución temporal de la precipitación	10
5. Drenaje	10
5.1. Drenaje transversal	10
5.2. Drenaje longitudinal	11
6. Conclusión	12
7. Bibliografía	12

1. Introducción

En el presente anejo, se pretende estudiar las características hidrológicas particulares de la zona afectada por el acondicionamiento de la CV-445, con el objetivo de poder caracterizar el drenaje de la solución adoptada.

2. Climatología

Para poder caracterizar la climatología de la zona se ha recurrido al sitio web de AEMet (Agencia estatal de Meteorología) para consultar el resumen anual climatológico del año 2023.

En primer lugar, se va a realizar la clasificación climática de Köppen en el año (1981-2010), esta clasificación nos permite conocer el comportamiento de las temperaturas y precipitaciones que caracterizan cada clima. Como se puede observar en la **Figura 1** la zona de estudio está clasificada como Csa; esta clasificación nos indica que forma parte de los climas templados, específicamente a un clima mediterráneo típico donde predominan los inviernos templados y veranos secos y cálidos y, donde la mayor parte de las lluvias caen en invierno o en las estaciones intermedias

Figura 1. Clasificación climática de Köppen-Geiger. Fuente: AEMet

Por otro lado, la precipitación media anual (mm) se ha realizado a partir de los datos medios anuales correspondiente al periodo mencionado anteriormente, como se puede observar en la **Figura 2**, el término municipal de Zarra y Teresa de Cofrentes presenta una media de 400 y 500 mm al año.

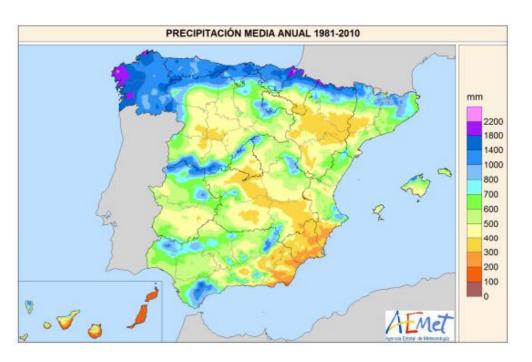
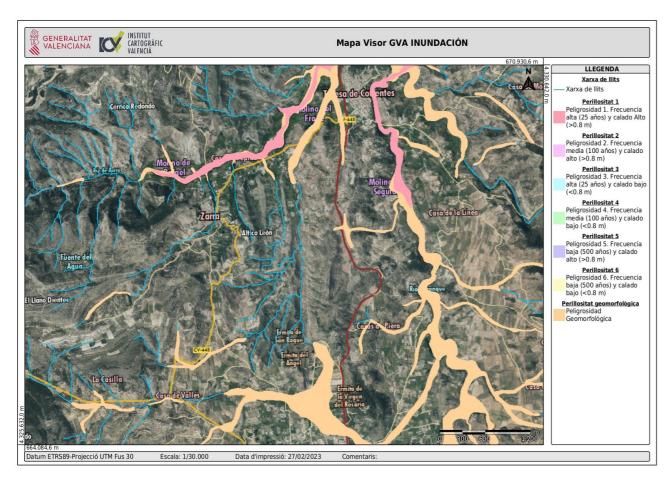


Figura 2. Precipitación media anual. Fuente: AEMet

Finalmente, también se ha obtenido la precipitación máxima diaria (mm) medida en el mismo periodo, los valores obtenidos van entre 50-60 mm en el día con mayores lluvias como se puede observar en la **Figura 3.**

Figura 3. Precipitación máxima diaria anual media . Fuente: AEMet



Tanto en el caso de la precipitación media anual (mm) como en la precipitación máxima diaria (mm) se han obtenido unos valores en la zona de estudio que no superan la media global.

3. Inundabilidad

El Plan de Acción Territorial de Carácter Sectorial sobre Prevención del Riesgo de Inundación en la Comunidad Valenciana (PATRICOVA) proporciona la información necesaria para poder estudiar las zonas con riesgo de inundación.

Como se puede observar en la **Figura 4**, a lo largo de toda la zona de estudio podemos observar que existen dos zonas que presentan una peligrosidad geomorfológica asociada a la existencia de vaguadas y barrancos de fondo plano .Este nivel de peligrosidad presenta un potencial riesgo por inundación y se asocia a diferentes procesos morfológicos del territorio, que, por sus características, actúan como un indicador de la presencia de inundaciones pasadas, no necesariamente catalogadas, cuyos procesos pueden ser reactivados en el futuro con distintas frecuencias y/o magnitudes.

Figura 4. Plan de Acción Territorial de Carácter Sectorial sobre Prevención del Riesgo de Inundación en la Comunidad Valenciana. Fuente: Visor Cartogràfic de la Generalitat Valenciana.

4. Cálculo de caudales

A continuación, se establecerán las cuencas de captación y se aplicarán los procedimientos necesarios, como está definido en la Normativa 5.2-IC de la instrucción de carreteras. De esta manera, se realizará el cálculo de los caudales correspondientes a las cuencas de captación que afectan el trazado de la alternativa elegida. El propósito de este cálculo es adecuar las obras de drenaje de manera precisa a lo largo de todo el recorrido.

4.1. Cuencas de captación

Se han definido las cuencas de captación que afecta al trazado de la alternativa seleccionada, para ello se ha hecho uso de herramientas informáticas tales como Autodesk Infra Works y Autodesk Civil 3d, así como los modelos digitales de superficies facilidades por el plan nacional de observación del territorio.

En la **Tabla 1** se muestran las características de las cuencas de captación, por otro lado, en la **Figura 5** se muestran cada una de las cuencas y su disposición comparada con el trazado de la carretera.

CUENCAS	AREA (KM2)	LONGITUD DEL CAUCE (KM)	PENDIENTE
Cuenca 1	1,272350002	2,7218	0,08328
Cuenca 2	0,82645	2,8125	0,08320
Cuenca 3	0,354102691	0,977315	0,12470
Cuenca 4	0,174953586	0,617314	0,12130
Cuenca 5	3,726155815	4,114659	0,08710
Cuenca 6	0,252350001	0,7604	0,04210
Cuenca 7	0,235349998	0,8708	0,03548
Cuenca 8	0,34775	0,8401	0,04938
Cuenca 9	0,277149999	0,6314	0,04997

Tabla 1. Características de las cuencas. Fuente: Elaboración propia.



Figura 5. Cuencas de captación. Fuente: Elaboración propia

4.2. Periodo de retorno

De acuerdo con la normativa 5.2 de la instrucción de carreteras, se establece que, para obtener el caudal de proyecto necesario para el dimensionamiento hidráulico de las obras, se debe considerar un periodo de retorno T=25 años para el diseño del drenaje de la plataforma y márgenes. Por otro lado, para el drenaje transversal, se adopta un valor T≥100 años.

4.3. Método racional

Siguiendo la normativa, se ha decidido utilizar el método racional para calcular el caudal máximo anual Qt, el cual corresponde a los periodos de retorno definidos anteriormente. El cálculo se realizará mediante la siguiente fórmula:

$$Qt = \frac{I(T,tc) * C * A * Kt}{3.6}$$

Donde:

- QT (m³/s): caudal máximo anual correspondiente al periodo de retorno T, en el punto de desagüe de la cuenca
- I (T, tc) (mm/h): intensidad de precipitación correspondiente al periodo de retorno T, para una duración del aguacero igual al tiempo de concentración tc, de la cuenca.
- C (adimensional): coeficiente medio de escorrentía de la cuenca o superficie considerada.
- A (km²): Área de la cuenca o superficie considerada.
- Kt: coeficiente de uniformidad en la distribución temporal de la precipitación.

A continuación, se procederá a realizar los cálculos de cada uno de los factores que componen la fórmula, a excepción del área de la cuenca que se ha definido anteriormente.

4.3.1. Intensidad de precipitación

La intensidad de precipitación correspondiente a los periodos de retorno T y a una duración del aguacero t, se obtiene a través de la siguiente fórmula.

$$I(T,t) = I_d * F_{int}$$

Donde:

- I (T, t) (mm/h): Intensidad de precipitación correspondiente a un periodo T y a una duración de aguacero t.
- Id (mm/h): Intensidad media diaria de precipitación corregida correspondiente al periodo de retorno T.
- *F_{int}* (Adimensional): Factor de intensidad.

4.3.1.1. Intensidad media diaria de precipitación corregida

La intensidad media diaria de precipitación corregida correspondiente al periodo de retorno T, se obtiene mediante la formula:

$$I_d = \frac{P_d * K_a}{24}$$

Donde:

- Id (mm/h): Intensidad media diaria de precipitación corregida correspondiente al periodo de retorno T.
- Pd (mm): Precipitación diaria correspondiente al período retorno T.
- KA (adimensional): Factor reductor de la precipitación por área de la cuenca.

A continuación, se muestran la obtención de dichos valores:

• **Precipitación diaria correspondiente al período de retorno T**: Dicho valor se obtiene de la formula:

$$P_d = P_m * K_t$$

A través de la Hoja a 4-4 de las "máximas lluvias diarias en la España peninsular" se procederá la recopilación de datos para la obtención de ambos valores. En la Figura 6 se muestra la hoja descrita donde podemos que para el trazado de la CV-445 se obtiene un valor de coeficiente de variación Cv= 0.51 y un valor de precipitación de estudio Pm=62.

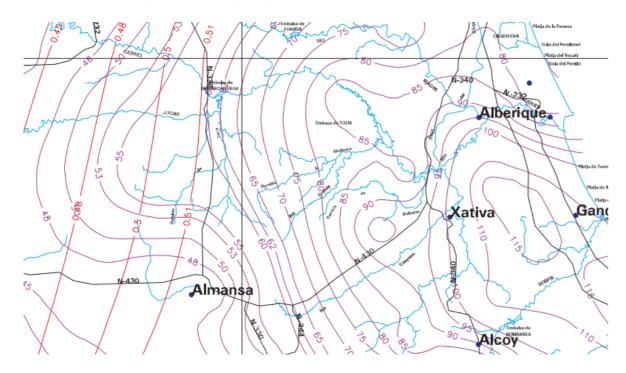


Figura 6. Mapa de lluvia para la obtención de Cv y Pm. Fuente: Máximas lluvias diarias en la España Peninsular.

Por otro lado, para obtener el valor de Kt utilizaremos la **Figura 7**, la cual muestra cómo el valor de Kt varía en función de los coeficientes Cv y el periodo de retorno T. De esta forma, podremos definir un Kt para 25 años de periodo de retorno de Kt₂₅= 2.068 y Kt₁₀₀= 2.815.

		PERIODO DE RETORNO EN AÑOS (T)							
(Cv	2	5	10	25	50	100	200	500
0.	.30	0.935	1.194	1.377	1.625	1.823	2.022	2.251	2.541
0.	.31	0.932	1.198	1.385	1.640	1.854	2.068	2.296	2.602
0	.32	0.929	1.202	1.400	1.671	1.884	2.098	2.342	2.663
0	.33	0.927	1.209	1.415	1.686	1.915	2.144	2.388	2.724
0	.34	0.924	1.213	1.423	1.717	1.930	2.174	2.434	2.785
0	.35	0.921	1.217	1.438	1.732	1.961	2.220	2.480	2.831
0.	.36	0.919	1.225	1.446	1.747	1.991	2.251	2.525	2.892
0	.37	0.917	1.232	1.461	1.778	2.022	2.281	2.571	2.953
0	.38	0.914	1.240	1.469	1.793	2.052	2.327	2.617	3.014
0	.39	0.912	1.243	1.484	1.808	2.083	2.357	2.663	3.067
0	.40	0.909	1.247	1.492	1.839	2.113	2.403	2.708	3.128
0.	.41	0.906	1.255	1.507	1.854	2.144	2.434	2.754	3.189
0.	.42	0.904	1.259	1.514	1.884	2.174	2.480	2.800	3.250
0	.43	0.901	1.263	1.534	1.900	2.205	2.510	2.846	3.311
0	.44	0.898	1.270	1.541	1.915	2.220	2.556	2.892	3.372
0	.45	0.896	1.274	1.549	1.945	2.251	2.586	2.937	3.433
0.	.46	0.894	1.278	1.564	1.961	2.281	2.632	2.983	3.494
0	.47	0.892	1.286	1.579	1.991	2.312	2.663	3.044	3.555
0	.48	0.890	1.289	1.595	2.007	2.342	2.708	3.098	3.616
0	.49	0.887	1.293	1.603	2.022	2.373	2.739	3.128	3.677
0.	.50	0.885	1.297	1.610	2.052	2.403	2.785	3.189	3.738
0.	.51	0.883	1.301	1.625	2.068	2.434	2.815	3.220	3.799
0	.52	0.881	1.308	1.640	2.098	2.464	2.861	3.281	3.860

Figura 7. Tabla para la obtención del Kt. Fuente: Máximas Iluvias diarias en la España Peninsular.

Finalmente, una vez definidos ambos parámetros obtenemos que:

$$Pd_{25} = 62 * 2.068 = 128.216$$

$$Pd_{100} = 62 * 2.815 = 174.53$$

• Factor reductor de la precipitación por área de la cuenca: Para la obtención de dicho valor se tiene en cuenta la no simultaneidad de la lluvia en toda su superficie. Se obtiene a partir de la siguiente formula:

$$Si A < 1 km^2$$

$$X_A = 1$$

Si A
$$\geq$$
 1 km²

$$K_A = 1 - \frac{\log_{10} A}{15}$$

Donde:

- K_A (adimensional): Factor reductor de la precipitación por área de la cuenca.
- A (Km²): Área de la cuenca.

Aplicando la fórmula se obtienen los siguientes resultados (Tabla 2):

CUENCAS	AREA KM 2	K_A
Cuenca 1	1,272350002	0,993026227
Cuenca 2	0,82645	1
Cuenca 3	0,354102691	1
Cuenca 4	0,174953586	1
Cuenca 5	3,726155815	0,961915933
Cuenca 6	0,252350001	1
Cuenca 7	0,235349998	1
Cuenca 8	0,34775	1
Cuenca 9	0,277149999	1

Tabla 2. Factor reductor de la precipitación por área de la cuenca. Fuente: Elaboración propia.

Una vez obtenidos todos los valores necesarios para la obtención de la intensidad media diaria de precipitación corregida se obtiene que:

Para T=25 años y A<1 km₂:

$$Id_{25} = \frac{128.216*1}{24} = 5.34$$

Para T=100 años y A<1 km₂:

$$Id_{100} = \frac{174.53*1}{24} = 7.27$$

Para T=25 años y A>1 km₂ (Cuenca 1):

$$Id_{25} = \frac{128.216*0.993}{24} = 5.13$$

Para T=100 años y A>1 km₂ (Cuenca 1):
$$Id_{100} = \frac{174.53*0.993}{24} = 7.22$$

Para T=25 años y A>1 km₂ (Cuenca 5):
$$Id_{25} = \frac{128.216*0.961}{24} = 5.13$$

Para T=100 años y A>1 km₂ (Cuenca 5):
$$Id_{100} = \frac{174.53*0.961}{24} = 6.99$$

4.3.1.2. Factor de intensidad Fint

El factor de intensidad introduce la torrencialidad de la lluvia en el área de estudio y depende de la duración del aguacero (tc) y las curvas de intensidad-duración-frecuencia (IDF). Este queda definido por la siguiente expresión:

$$F_{int} = \max(F_a, F_b)$$

Donde:

- Fint (adimensional): Factor de intensidad.
- Fa (adimensional): Factor obtenido a partir del índice de torrencialidad (II/Id).
- F_b (adimensional): Factor obtenido a partir de las curvas IDF de un pluviógrafo próximo.

A continuación, se procede a calcular dichos valores

• F_a: Se obtiene a través de la expresión:

$$F_a = \left(\frac{I_I}{I_d}\right)^{3.5287 - 2.5287 * t^{0.1}}$$

Donde:

- Fa (adimensional): Factor obtenido a partir del índice de torrencialidad (II/Id).
- (II/Id) (adimensional): Índice de torrencialidad que expresa la relación entre la intensidad de precipitación horaria y la media diaria corregida.
- t (horas): Duración del aguacero (Igual a tiempo de concentración tc).

Para la obtención del índice de torrencialidad se ha utilizado la **Figura 8** obtenida de la normativa 5.2 descrita anteriormente, la cual indica dicho índice en función de la zona geográfica en la que se encuentra el trazado de la carretera. Observamos que el valor adoptado para la CV-445 es el siguiente:

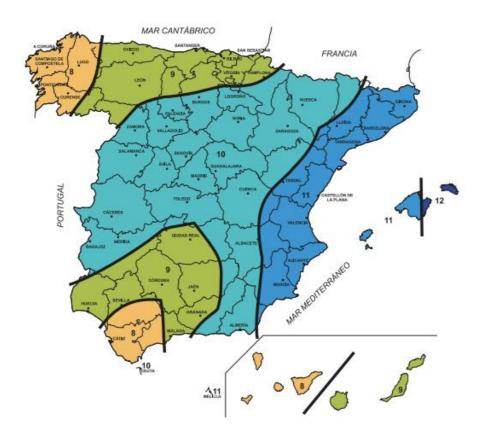


Figura 8. Mapas para la obtención del índice de torrencialidad. Fuente: Norma 5.2 I.C Instrucción de Carreteras.

$$\frac{I_I}{I_D} = 11$$

Por otro lado, para la obtención de la duración del aguacero se va a realizar el cálculo del tiempo de concentración, siendo este el tiempo mínimo necesario desde el comienzo del aguacero para que toda la superficie de la cuenca esté aportando escorrentía en el punto de desagüe. Se obtiene calculando el tiempo de recorrido más largo desde cualquier punto de la cuenca hasta el punto de desagüe, mediante la siguiente formulación:

$$t_c = 0.3 * Lc^{0.76} * Jc^{-0.19}$$

Donde:

- Tc (horas): Tiempo de concentración.

- Lc (km): Longitud del cauce.

- Jc (adimensional) Pendiente media del cauce.

En la **Tabla 3** se muestran los resultados del tiempo de concentración tras la aplicación de la formulación descrita:

CUENCAS	LONGITUD DEL CAUCE	PENDIENTE DEL CAUCE	TIEMPO DE CONCENTRACIÓN
Cuenca 1	2721,8	0,08328	1,029696503
Cuenca 2	2812,5	0,0832	1,055864398
Cuenca 3	977,315	0,1247	0,437857605
Cuenca 4	617,314	0,1213	0,3104362
Cuenca 5	4114,659	0,0871	1,397692165
Cuenca 6	760,4	0,0421	0,44473331
Cuenca 7	870,8	0,03548	0,509286739
Cuenca 8	840,1	0,04938	0,465412557
Cuenca 9	631,4	0,04997	0,37376442

Tabla 3. Cálculo del tiempo de concentración. Fuente: Elaboración propia.

A continuación, se presentan los resultados obtenidos al calcular los valores que componen la fórmula del Fa, los cuales se detallan en la Tabla 4.

CUENCAS	li/ld	Fa
Cuenca 1	11	10,80625169
Cuenca 2	11	10,64238022
Cuenca 3	11	17,7882957
Cuenca 4	11	21,48342004
Cuenca 5	11	8,948059577
Cuenca 6	11	17,63411108
Cuenca 7	11	16,33863355
Cuenca 8	11	17,19061732
Cuenca 9	11	19,41808425

Tabla 4. Cálculo de Fa. Fuente: Elaboración propia

• **F**_b: Debido a la falta de datos precisos obtenidos a través de los pluviógrafos, se ha decidido no tener en cuenta dicho valor en el cálculo del F_{int}.

Por lo tanto, podemos concluir que el F_{int} adopta el mismo valor que el F_a mostrado en la **Tabla 4** siguiendo la expresión descrita anteriormente

Finalmente, una vez definida la intensidad media de precipitación corregida y el factor de intensidad F_{lint}, se procede al cálculo de la intensidad de precipitación I (T, t) para cada periodo de retorno T y duración t, como se muestra en la **Tabla 5**.

CUENCAS		Id	FINE	I (T, t)				
CUENCAS	T=25	T=100	FINT	T=25	T=100			
Cuenca 1	5,14	7,22	10,81	55,53	78,04			
Cuenca 2	5,34	7,27	10,64	56,86	77,39			
Cuenca 3	5,34 7,27		17,79	95,03	129,36			
Cuenca 4	5,34	7,27	21,48	114,77	156,23			
Cuenca 5	5,14	7,27	8,95	45,98	65,07			
Cuenca 6	5,34	7,00	17,63 94,21		123,35			
Cuenca 7	5,34 7,27		16,34	87,29	118,82			
Cuenca 8	8 5,34 7,27		17,19	91,84	125,01			
Cuenca 9	5,34	7,27	19,42	103,74	141,21			

Tabla 5. Cálculo de intensidad de precipitación. Fuente: Elaboración propia

4.3.2. Coeficiente de escorrentía

El coeficiente de escorrentía C define la parte de la precipitación de intensidad I (T, tc) que genera el caudal de avenida en el punto de desagüe de la cuenca. Se define mediante la siguiente expresión:

$$C = \frac{\left(\frac{P_d \cdot K_A}{P_0} - 1\right) \left(\frac{P_d \cdot K_A}{P_0} + 23\right)}{\left(\frac{P_d \cdot K_A}{P_0} + 11\right)^2}$$

$$\text{Si } P_d \cdot K_A \leq P_0$$

$$C = 0$$

Donde:

- C (adimensional): Coeficiente de escorrentía.
- Pd (mm) Precipitación diaria correspondiente al periodo retorno T.

- KA (adimensional) Factor reductor de la precipitación por área de la cuenca.
- P0 (mm) Umbral de escorrentía.

4.3.2.1. Umbral de escorrentía

El umbral de escorrentía P0 representa la precipitación mínima que debe caer sobre la cuenca para que inicie la generación de escorrentía. Se determinará mediante la siguiente fórmula:

$$P_0 = P_0^i * B$$

Donde:

- P₀ (mm) Umbral de escorrentía.
- Poi (mm): Valor inicial del umbral de escorrentía
- B: Coeficiente corrector del umbral de escorrentía.

A continuación, se definen los valores que forman parte de la formula previamente descrita:

- Valor inicial del umbral de escorrentía: Este valor se determina mediante la tabla 2.3 de la norma 5.2 IC de la instrucción de carreteras la cual en función del uso del suelo por el que transcurre el trazado de la carretera y el grupo de suelo hidrológico se determina su valor. Para la obtención de usos del suelo se ha hecho uso del visor cartográfico GVA el cual nos indica un uso de suelo de "Olivares" y "Mosaico de cultivos", por otro lado, se ha determinado un grupo hidrológico C. Una vez definidos ambos datos la tabla 2.3 nos indica que se define un valor inicial del umbral de escorrentía de 15.
- Coeficiente corrector del umbral de escorrentía: Para el drenaje transversal de vías de servicio, ramales, caminos, accesos a instalaciones, edificaciones auxiliares de la carretera y drenaje de la plataforma y márgenes. Se debe aplicar la siguiente expresión:

$$B^{PM} = B_m * F_T$$

Donde:

- B_M: Valor medio en la región del coeficiente corrector del umbral de escorrentía.
- F_T: Factor función del periodo de retorno T

Para obtener los valores necesarios, se hace uso de la **Figura 10**, la cual muestra la tabla de coeficientes correctores en función del periodo de retorno T. No obstante, primero es necesario consultar la **Figura 9** para determinar la zona en la que se ubica la carretera; en este caso, la carretera se encuentra en la región 822.

Figura 9. Regiones consideradas para la caracterización del coeficiente corrector del umbral de escorrentía. Fuente: Norma 5.2 I.C Instrucción de Carreteras.

Con esta información, procedemos a definir los valores siguiendo la **Figura 10**. Sin embargo, es importante mencionar que el valor del periodo de retorno no queda definido, por lo que se ha adoptado un valor de 1 para fines del cálculo.

- B_M=2.40
- -F_T 25 años= 1.16
- -F_T 100 años=1.00

Por lo que el coeficiente corrector del umbral de escorrentía queda definido como:

$$B_{25}^{PM} = 2.40 * 1.16 = 2.784$$

$$B_{100}^{PM} = 2.40 * 1 = 2.4$$

Región	Valor medio,	al valo	lación res or medio p o de confi	para el	Período de retorno T (años), $F_{_T}$						
	β_n	50% Δ ₅₀	67 % Δ ₆₇	90% Δ ₉₀	2	5	25	100	500		
11	0,90	0,20	0,30	0,50	0,80	0,90	1,13	1,34	1,59		
12	0,95	0,20	0,25	0,45	0,75	0,90	1,14	1,33	1,56		
13	0,60	0,15	0,25	0,40	0,74	0,90	1,15	1,34	1,55		
21	1,20	0,20	0,35	0,55	0,74	0,88	1,18	1,47	1,90		
22	1,50	0,15	0,20	0,35	0,74	0,90	1,12	1,27	1,37		
23	0,70	0,20	0,35	0,55	0,77	0,89	1,15	1,44	1,82		
24	1,10	0,15	0,20	0,35	0,76	0,90	1,14	1,36	1,63		
25	0,60	0,15	0,20	0,35	0,82	0,92	1,12	1,29	1,48		
31	0,90	0,20	0,30	0,50	0,87	0,93	1,10	1,26	1,45		
32	1,00	0,20	0,30	0,50	0,82	0,91	1,12	1,31	1,54		
33	2,15	0,25	5 0,40	0,65	0,70	0,88	1,15	1,38	1,62		
41	1,20	1,20 0,20 0,		0,45	0,91	0,96	1,00	1,00	1,00		
42	2,25	0,20	0,35	0,55	0,67	0,86	1,18	1,46	1,78		
511	2,15	0,10	0,15	0,20	0,81	0,91	1,12	1,30	1,50		
512	0,70	0,20	0,30	0,50	1,00	1,00	1,00	1,00	1,00		
52	0,95	0,20	0,25	0,45	0,89	0,94	1,09	1,22	1,36		
53	2,10	0,25	0,35	0,60	0,68	0,87	1,16	1,38	1,56		
61	2,00	0,25	0,35	0,60	0,77	0,91	1,10	1,18	1,17		
71	1,20	0,15	0,20	0,35	0,82	0,94	1,00	1,00	1,00		
72	2,10	0,30	0,45	0,70	0,67	0,86	1,00				
81	1,30	0,25	0,35	0,60	0,76	0,90	1,14	1,34	1,58		
821	1,30	0,35	0,50	0,85	0,82	0,91	1,07				
822	2,40	0,25	0,35	0,60	0,70	0,86	1,16				
83	2,30	0,15	0,25	0,40	0,63	0,85	1,21	1,51	1,85		
91	0,85	0,15	0,25	0,40	0,72	0,88	1,19	1,52	1,95		
92	1,45	0,30	0,40	0,70	0,82	0,94	1,00	1,00	1,00		
93	1,70	0,20	0,25	0,45	0,77	0,92	1,00	1,00	1,00		

Figura 10. Tabla de coeficientes correctores en función al periodo retorno. Fuente: Norma 5.2 I.C Instrucción de Carreteras

Definidos todos los valores previos se procede a realizar el cálculo del umbral de escorrentía P₀:

$$P_{0.25} = 15 * 2.784 = 41.76$$

$$P_{0100} = 15 * 2.40 = 36$$

Finalmente, ya se puede definir el coeficiente de escorrentía (Tabla 6):

CUENCAS	PD		КА	PD'	*KA	Р	0	С	
CUENCAS	T=25	T=100	NA	T=25	T=100	T=25	T=100	T=25	T=100
Cuenca 1	128,216	174,530	0,993	127,322	173,313	41,760	36,000	0,270	0,424
Cuenca 2	128,216	174,530	1,000	128,216	174,530	41,760	36,000	0,273	0,427
Cuenca 3	128,216	174,530	1,000	128,216	174,530	41,760	36,000	0,273	0,427
Cuenca 4	128,216	174,530	1,000	128,216	174,530	41,760	36,000	0,273	0,427
Cuenca 5	128,216	174,530	0,962	123,333	167,883	41,760	36,000	0,260	0,413
Cuenca 6	128,216	174,530	1,000	128,216	174,530	41,760	36,000	0,273	0,427
Cuenca 7	128,216	174,530	1,000	128,216	174,530	41,760	36,000	0,273	0,427
Cuenca 8	128,216	174,530	1,000	128,216	174,530	41,760	36,000	0,273	0,427
Cuenca 9	128,216	174,530	1,000	128,216	174,530	41,760	36,000	0,273	0,427

Tabla 6. Cálculo del coeficiente de escorrentía. Fuente: Elaboración propia

4.3.2. Coeficiente de uniformidad en la distribución temporal de la precipitación.

El coeficiente KT tiene en cuenta la falta de uniformidad en la distribución temporal de la precipitación. Se obtiene a partir de la siguiente expresión:

$$K_T = 1 + \frac{t_c^{1.25}}{t_c^{1.25} + 14}$$

Donde:

- K_T (adimensional): Coeficiente de uniformidad en la distribución temporal de precipitación.
- t_c (horas): Tiempo de concentración de la cuenca.

El cálculo del K_T se muestra en la **Tabla 7**, teniendo en cuenta que el tiempo de concentración ha sido definido previamente.

CUENCAS	TC	KT
Cuenca 1	1,0296965	1,069
Cuenca 2	1,0558644	1,071
Cuenca 3	0,43785761	1,025
Cuenca 4	0,3104362	1,016
Cuenca 5	1,39769216	1,098
Cuenca 6	0,44473331	1,025
Cuenca 7	0,50928674	1,030
Cuenca 8	0,46541256	1,027
Cuenca 9	0,37376442	1,020

Tabla 7. Cálculo del coeficiente de uniformidad. Fuente: Elaboración propia.

Una vez definidos todos los valores necesarios para el caudal, se procede a realizar el cálculo, tal como se muestra en la **Tabla 8**.

CUENCAS	I (T , t)		(3	Área (km2)	Qt (m3/s)		
COENCAS	T=25	T=100	T=25	T=100	Alea (Kiliz)	T=25	T=100	
Cuenca 1	55,53	78,04	0,270	0,424	1,272350002	5,67	12,51	
Cuenca 2	56,86	77,39	0,273	0,427	0,82645	3,81	8,12	
Cuenca 3	95,03	129,36	0,273	0,427	0,354102691	2,61	5,56	
Cuenca 4	114,77	156,23	0,273	0,427	0,174953586	1,55	3,29	
Cuenca 5	45,98	65,07	0,260	0,413	3,726155815	13,61	30,54	
Cuenca 6	94,21	123,35	0,273	0,427	0,252350001	1,85	3,78	
Cuenca 7	87,29	118,82	0,273	0,427	0,235349998	1,60	3,41	
Cuenca 8	91,84	125,01	0,273	0,427	0,34775	2,48	5,29	
Cuenca 9	103,74	141,21	0,273	0,427	0,277149999	2,22	4,73	

Tabla 8. Cálculo de caudales en función del periodo de retorno. Fuente: Elaboración propia.

5. Drenaje

5.1. Drenaje transversal

En la CV-445, se ha observado que no hay una gran cantidad de obras de drenaje transversal (ODT). Por lo tanto, se ha decidido mantener, en la medida de lo posible, su ubicación inicial en las alternativas propuestas. Sin embargo, en caso de que sea necesario modificar el trazado en estos puntos, se considerará la opción de reubicar dichas obras.

En la **Figura 11** podemos observar la obra de drenaje transversal más significativa del trazado actual. No obstante, conforme a la normativa 5.2 IC, la ODT no cumple con los requisitos mínimos, dado que su longitud excede los 5 metros y su diámetro es menor a 1.2 metros. En esta situación, si la solución

proyectada así lo determina, esta obra transversal será reubicada, asegurando que cumpla con las dimensiones mínimas estipuladas por la normativa.

Figura 11. Obra de drenaje transversal (ODT), Tramo I PK 0+390. Fuente: Elaboración propia.

Además, especialmente en el Tramo II, se pueden identificar otros tipos de obras de drenaje, tal como se muestra en la **Figura 12**. Estas estructuras de drenaje serán reubicadas de acuerdo con las especificaciones de la solución propuesta.

Figura 12. Obra de drenaje, Tramo II PK 0+780 .Fuente: Elaboración propia.

5.2. Drenaje longitudinal

En cuanto al drenaje longitudinal del trazado existen distintas tipologías a lo largo del trazado. En algunos puntos, se cuenta con cunetas triangulares ubicadas al pie del desmonte (**Figura 13**).

Figura 13. Cuneta triangular. Fuente: Elaboración propia.

En otras áreas donde la cota de la carretera es más alta que la del terreno, se utiliza el bombeo de la carretera para permitir el drenaje de la plataforma (**Figura 14**).

Figura 14. Desagüe de plataforma. Fuente: Elaboración propia.

Además, se han implementado cunetas trapezoidales en aquellas zonas donde se anticipa un mayor volumen de agua y el terreno presenta pendientes pronunciadas (**Figura 15**).

Figura 15. Cuneta trapezoidal. Fuente: Elaboración propia

6. Conclusión

Tras analizar todas las consideraciones previas, se ha determinado que la opción más adecuada es la utilización de cunetas trapezoidales con dimensiones de 20x20 cm y un talud de 1:1. Estas cuentas estarán revestidas con hormigón y se dispondrán a lo largo del trazado con el fin de proporcionar uniformidad a la carretera. Este diseño permitirá recoger un mayor volumen de agua en comparación con la disposición actual, y brindará una mayor estabilidad estructural para prevenir el colapso de material hacia la cuneta, una problemática que se observa actualmente (**Figura 16**).

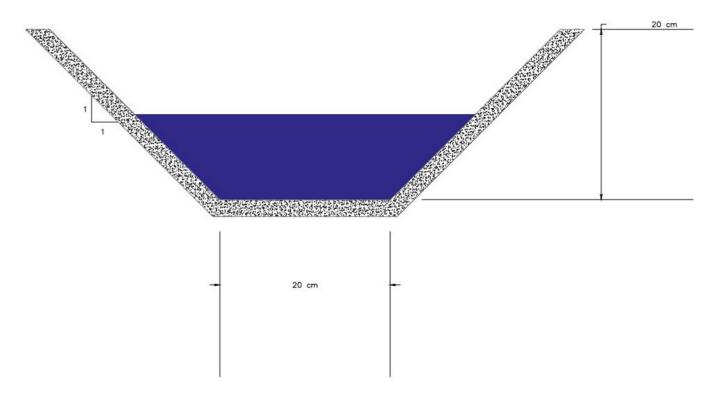


Figura 16. Sección cuneta trapezoidal. Fuente: Elaboración propia

7. Bibliografía

MAPAS CLIMÁTICOS DE ESPAÑA (1981-2010), Aemet, Consultado en junio de 2023 de: MAPAS CLIMÁTICOS DE ESPAÑA (1981-2010) Y ETo (1996-2016) (aemet.es)

Norma 5.2-IC de la instrucción de carreteras "Drenaje Superficial". Consultado en junio de 2023 de: https://cdn.mitma.gob.es/portal-web-drupal/carreteras/52ic fom2982016 err fom1852017 res180326 consolidado.pdf

Máximas Iluvias diarias en la España Peninsular. Consultado en junio de 2023 de: https://www.mitma.gob.es/recursos_mfom/0610300.pdf

ANEJO Nº 5: ESTUDIO DEL TRÁFICO

Curso:

2022/2023

Fecha:

septiembre 2023

Autor:

Jorge Naranjo Martínez

Tutor:

Javier Camacho Torregrosa

INDICE

1.Introducción	2
2.Intensidad media diaria (IMD)	2
2.1 Estimación de la IMD y pesados para año puesta en servicio	2
2.2 Estimación de la IMD y pesados para año horizonte	3
3. Nivel de servicio	3
3.1 Metodología de cálculo	3
3.2 Valoración del nivel de servicio	4
3.3 Parámetros empleados	4
3.4 Cálculo para el año actual	6
3.4 Cálculo para el año puesta en servicio	6
3.5 Cálculo para el año horizonte	7
4. Conclusión	
5. Bibliografía	8

1.Introducción

El presente anejo tiene como objetivo realizar el estudio del tráfico de la CV-445, estimando la Intensidad Media Diaria (IMD) y el nivel de servicio del trazado existente, pudiendo así realizar un diseño adecuado satisfaciendo las necesidades pertinentes.

2.Intensidad media diaria (IMD)

Los datos del estudio se han obtenido a través de la campaña de Aforos del 2021 y 2022 de la Conselleria de Política Territorial, Obras Públicas y Movilidad. mediante el portal de la Comunidad Valenciana.

A continuación, se adjunta un extracto de la evolución histórica de la estación de aforo de la CV-445 (**Figura 1)**.

VALE	RALITAT NCIANA 1 de Publica Obres Nobiques		INTENSIDAD MEDIA DIARIA / INTENSITAT MITJANA DIÀRIA IMD 2018-2022														
cv	Tramo	Pk Ini	Inicio	Pk Fin	Fin	Calzada	Pk Est	2018	%р	2019	%р	2020	%р	2021	%р	2022	%р
CV-440	440005	0+000	N-330	2+700	CV-445	Conv.	2+000	707		701		605		638		588	
CV-440	440010	2+700	CV-445	18+750	L.P. Albacete	Conv.	9+200	307	-	301	-	226	-	283	-	259	
CV-445	445010	0+000	CV-440	5+790	N-330	Conv.	4+000	468	-	472	-	406	-	775	-	475	•

Figura 1. Evolución histórica de la estación de aforo de la CV-445. Fuente: Generalitat Valenciana.

A través de la **Figura 1** podemos deducir que la IMD total ha tenido una variación ligera desde el 2018 hasta el 2021, hasta que en el 2022 se registra un decrecimiento pasando de 775 veh/d a 475 veh/d. Por otro lado, se desconoce el porcentaje de pesados tanto de ese año como el de los cuatro años anteriores; el último conteo oficial que registra dicho porcentaje es el de 2011 con un resultado de un 0%. Por lo que, debido a la veracidad de los datos obtenidos en 2011 y a la falta de ellos hasta la fecha, se ha implantado un porcentaje de pesados del 30%, posicionándose del lado de la seguridad. De esta forma la Intensidad Media Diaria de pesados queda definida de la siguiente manera:

$$IMDp(2022) = IMD(2022) * \%pesados = 475 * 30\% = 143 \frac{veh}{dia}$$

Siendo:

IMDp: Intensidad Media Diaria de Pesados

IMD: Intensidad Media Diaria

% pesados: Porcentaje de pesados

Para la realización de este estudio también se ha consultado la estación móvil 445010 (**Figura 2**) correspondiente a los datos de 2021 de la CV-445. En esta estación se concentran los vehículos que van y vienen de la CV-440 desde y hacia la N-330.

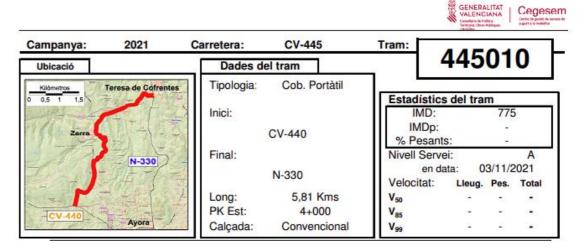


Figura 2. Información técnica de la estación 445010. Fuente: Generalitat Valenciana.

2.1 Estimación de la IMD y pesados para año puesta en servicio

La fecha prevista para el uso de la vía después de haber realizado todas las modificaciones es el año de puesta en servicio. Se pronostica que la puesta en servicio de este acondicionamiento se produzca 3 años después de la redacción del presente estudio.

Para poder calcular la IMD en el año de puesta de servicio y en él año horizonte, en este caso 2026, se han utilizado los datos de crecimiento del tráfico publicados en el BOE de acuerdo con la orden FOM/3317/2010, por la que se aprueba la instrucción sobre las medidas específicas para la mejora de la eficiencia en la ejecución de las obras públicas de infraestructuras ferroviarias, carreteras y aeropuertos del Ministerio de Fomento, en el apartado 5 del Anexo 2, se especifican que los incrementos de tráfico, a efectos de definir la necesidad de carriles adicionales en rampa, terceros carriles por cuestiones de capacidad, la categoría del firme, así como cualquier otra cuestión de la geometría de la carretera, serán los siguientes (Figura 3).

Incrementos de tráfico a utilizar en estudios

Período	Incremento anual acumulativo
2010 - 2012	1,08 %
2013 - 2016	1,12 %
2017 en adelante	1,44 %

Figura 3. Incremento de tráfico a utilizar en estudio. Fuente: Ministerio de fomento En el caso del presente estudio para calcular el crecimiento del tráfico en la CV-445 se considera un incremento anual acumulativo del 1.44% ya que se ha definido como el año de puesta de servicio en el 2026, siendo las IMD para ese año las siguientes.

$$IMD(2026) = IMD(2022) * \left(1 + \frac{I, anual(\%)}{100}\right)^{(2026 - 2022)} = 475 * \left(1 + \frac{1,44}{100}\right)^{(4)} = \frac{503veh}{dia}$$

En cuanto al porcentaje de pesados, se considera el mismo que se ha definido anteriormente partiendo del lado de la seguridad.

$$IMDp(2026) = IMD(2026) * \%pesados = 503 * 30\% = 150 \frac{veh}{dia}$$

2.2 Estimación de la IMD y pesados para año horizonte

El año horizonte queda definido como el año para cuyo tráfico previsible debe ser proyectada la carretera en un periodo de 20 años posteriores al año de puesta en servicio, de esta forma el año horizonte es 2046.

Los cálculos de la Intensidad Media Diaria y el cálculo de los vehículos pesados se obtienen de la misma forma que para el año de puesta en servicio.

$$IMD(2046) = IMD(2022) * \left(1 + \frac{I, anual(\%)}{100}\right)^{(2046 - 2022)} = 503 * \left(1 + \frac{1,44}{100}\right)^{(24)} = 709 \frac{veh}{dia}$$

$$IMDp(2046) = IMD(2046) * \%pesados = 709 * 30\% = 213 \frac{veh}{dia}$$

3. Nivel de servicio

La CV-445 es una carretera con un buen nivel de servicio en la cual los atascos son prácticamente inexistentes. Sin embargo, es necesario calcular el nivel de servicio para conocer la calidad de la circulación y determinar de esta forma si su funcionamiento es correcto.

3.1 Metodología de cálculo

Para la metodología de este estudio se utilizará el Manual de Capacidad de Carreteras (HCM), que enumera diferentes clases de carreteras según sus características, teniendo cálculos particulares para cada una de estas clases.

Según el HCM 6th, la CV-445 se clasifica como una carretera de clase II, en la cual los conductores no esperan viajar necesariamente a velocidades elevadas y los trayectos que se realizan son mayoritariamente para viajes cortos, o inicio/final de viajes largos. En este tipo de carreteras es de gran importancia tener en cuenta el tiempo que el conductor está en la cola. Dicho porcentaje de tiempo en cola se calcula mediante el Percent Time Speed Following (PTSF), Esto representa la comodidad del viaje y la flexibilidad del conductor con respecto a la velocidad, así como el porcentaje medio del tiempo que deben mantener los vehículos para circular en un pelotón por imposibilidad para adelantar a los coches que se mueven más despacio. Se considera que, al calcular este último parámetro, debes estar detrás de otro coche al menos tres segundos.

El PTSF se obtiene a partir de las siguientes expresiones:

$$PTSF = BPTSF * fnp, PTSF * \left(\frac{vd, PTSF}{vd, PTSF + vo, PTS}\right)$$

Correspondiendo:

PTSF: Porcentaje de tiempo en cola BPTSF: Tiempo en cola de base

fnp,PTSF: Factor de corrección por no adelantamientos

vi,PTSF: Intensidad de demanda equivalente en ligeros para cada sentido

A su vez, el tiempo en cola base (BPTSF) se define como:

$$BPTSF = 100 * \left(1 - e^{a * v_d^b}\right)$$

Siendo:

Vd: intensidad de demanda de vehículos equivalentes para PTSF a, b: Coeficientes

Por otro lado, para ajustar la demanda se establece:

$$vi, PTSF = \left(\frac{Vi}{fg, PTSF * fHV, PTS}\right)$$

Siendo:

vi: Volumen de demanda en el sentido i (todos los vehículos de cualquier tipo en una hora)

fg,PTSF: Factor de corrección por pendiente longitudinal

fHV,PTSF: Corrección por vehículos pesados

$$fHV, PTSF = \left(\frac{1}{1 + PT \cdot (ET - 1)}\right)$$

Siendo:

PT: Porcentaje de vehículos pesados (en tanto por uno)

ET: Ligeros equivalentes para PTSF

3.2 Valoración del nivel de servicio

En función de los datos recopilados se han tomado las diferentes suposiciones:

- La distribución de los vehículos en cada dirección se ha supuesto de un 60%-40%, donde el 60% representa el sentido descendente de la carretera hacia el municipio de Ayora, esto se debe a que es el municipio con más población que los colindantes y se conecta tanto con la CV-440 como con la N-330.
- Para la obtención del porcentaje de no adelantamiento, se han recopilado los datos obtenidos a través del estudio de campo, así como de la herramienta Google Maps. De esta manera, se han definido zona de no adelantamiento aquellas que teniendo en cuenta el trazado existente, están formadas por un gran número de curvas en "S", las cuales están compuestas por radios pequeños y unas longitudes inferiores a las mínimas impuestas por la normativa, de igual forma también se incluyen las zonas con escasa visibilidad. En cuanto a las zonas de adelantamiento se han establecido en aquellos lugares donde existen tramos rectos seguidos de curvas con radios de más amplitud. En definitiva, las zonas de no adelantamiento se han definido con un porcentaje de 90% y las de adelantamiento de un 10%.

3.3 Parámetros empleados

La mayoría de los indicadores utilizados para el cálculo proceden de las tablas del HCM 6th Ed , las cuales se muestran a continuación:

a,b; Coeficientes

Opposing Demand Flow Rate, v _o (pc/h)	Coefficient a	Coefficient b
≤200	-0.0014	0.973
400	-0.0022	0.923
600	-0.0033	0.870
800	-0.0045	0.833
1,000	-0.0049	0.829
1,200	-0.0054	0.825
1,400	-0.0058	0.821
≥1,600	-0.0062	0.817

Note: Straight-line interpolation of a to the nearest 0.0001 and b to the nearest 0.001 is recommended.

Figura 3. Coeficientes a y b . Fuente: Apéndice B del HCM 6th Ed

fg,PTS

Grade	Grade Length			Direction	al Dema	nd Flow	Rate, v _v	տ(veh/h)	
(%)	(mi)	≤100	200	300	400	500	600	700	800	≥900
			Passeng	ier Car Eq	uivalents	for Trucks	s (<i>E</i> 1)			
≥3,	≤2.00	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
<3.5	3.00	1.5	1.3	1.3	1.2	1.0	1.0	1.0	1.0	1.0
\3.3	≥4.00	1.6	1.4	1.3	1.3	1.0	1.0	1.0	1.0	1.0
	≤1.00	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
≥3.5,	1.50	1.1	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0
<4.5	2.00	1.6	1.3	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	3.00	1.8	1.4	1.1	1.2	1.2	1.2	1.2	1.2	1.2
	≥4.00	2.1	1.9	1.8	1.7	1.4	1.4	1.4	1.4	1.4
	≤1.00	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
≥4.5,	1.50	1.1	1.1	1.1	1.2	1.2	1.2	1.2	1.2	1.2
<5.5	2.00	1.7	1.6	1.6	1.6	1.5	1.4	1.4	1.3	1.3
\3.3	3.00	2.4	2.2	2.2	2.1	1.9	1.8	1.8	1.7	1.7
	≥4.00	3.5	3.1	2.9	2.7	2.1	2.0	2.0	1.8	1.8
	≤0.75	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	1.00	1.0	1.0	1.1	1.1	1.2	1.2	1.2	1.2	1.2
≥5.5,	1.50	1.5	1.5	1.5	1.6	1.6	1.6	1.6	1.6	1.6
<6.5	2.00	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.8	1.8
	3.00	3.4	3.2	3.0	2.9	2.4	2.3	2.3	1.9	1.9
	≥4.00	4.5	4.1	3.9	3.7	2.9	2.7	2.6	2.0	2.0
	≤0.50	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	0.75	1.0	1.0	1.0	1.0	1.1	1.1	1.1	1.0	1.0
	1.00	1.3	1.3	1.3	1.4	1.4	1.5	1.5	1.4	1.4
≥6.5	1.50	2.1	2.1	2.1	2.1	2.0	2.0	2.0	2.0	2.0
	2.00	2.9	2.8	2.7	2.7	2.4	2.4	2.3	2.3	2.3
	3.00	4.2	3.9	3.7	3.6	3.0	2.8	2.7	2.2	2.2
	≥4.00	5.0	4.6	4.4	4.2	3.3	3.1	2.9	2.7	2.5
				nger Car E						
All	All	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Note: Interpolation for length of grade and demand flow rate to the nearest 0.1 is recommended.

Figura 4. Factor de corrección por pendiente (ascendente) . Fuente: Apéndice B del HCM 6th Ed

ΕT

Vehicle Type	Directional Demand Flow Rate, v _{vph} (veh/h)	Level and Specific Downgrade	Rolling
	≤100	1.1	1.9
	200	1.1	1.8
	300	1.1	1.7
	400	1.1	1.6
Trucks, E_T	500	1.0	1.4
	600	1.0	1.2
	700	1.0	1.0
	800	1.0	1.0
	≥900	1.0	1.0
RVs, E_R	All	1.0	1.0

Note: Interpolation in this exhibit is not recommended.

Figura 5. Valores de ET para terrenos llanos, ondulados y pendientes moderadas. Fuente: Apéndice B del HCM 6th Ed

Fnp, PTSF

Total Two-Way Flow Rate,		Pe	rcent No-F	Passing Zor	nes	
$v = v_d + v_o(pc/h)$	0	20	40	60	80	100
	Direc	tional Split	= 50/50			
≤200	9.0	29.2	43.4	49.4	51.0	52.6
400	16.2	41.0	54.2	61.6	63.8	65.8
600	15.8	38.2	47.8	53.2	55.2	56.8
800	15.8	33.8	40.4	44.0	44.8	46.6
1,400	12.8	20.0	23.8	26.2	27.4	28.6
2,000	10.0	13.6	15.8	17.4	18.2	18.8
2,600	5.5	7.7	8.7	9.5	10.1	10.3
3,200	3.3	4.7	5.1	5.5	5.7	6.1
		tional Split				
≤200	11.0	30.6	41.0	51.2	52.3	53.5
400	14.6	36.1	44.8	53.4	55.0	56.3
600	14.8	36.9	44.0	51.1	52.8	54.6
800	13.6	28.2	33.4	38.6	39.9	41.3
1,400	11.8	18.9	22.1	25.4	26.4	27.3
2,000	9.1	13.5	15.6	16.0	16.8	17.3
2,600	5.9	7.7	8.6	9.6	10.0	10.2
		tional Split				
≤200	9.9	28.1	38.0	47.8	48.5	49.0
400	10.6	30.3	38.6	46.7	47.7	48.8
600	10.9	30.9	37.5	43.9	45.4	47.0
800	10.3	23.6	28.4	33.3	34.5	35.5
1,400	8.0	14.6	17.7	20.8	21.6	22.3
2,000	7.3	9.7	11.7	13.3	14.0	14.5
		tional Split				
≤200	8.9	27.1	37.1	47.0	47.4	47.9
400	6.6	26.1	34.5	42.7	43.5	44.1
600	4.0	24.5	31.3	38.1	39.1	40.0
800	3.8	18.5	23.5	28.4	29.1	29.9
1,400	3.5	10.3	13.3	16.3	16.9	32.2
2,000	3.5	7.0	8.5	10.1	10.4	10.7
		tional Split		45 :	45.	45.5
≤200	4.6	24.1	33.6	43.1	43.4	43.6
400	0.0	20.2	28.3	36.3	36.7	37.0
600	-3.1	16.8	23.5	30.1	30.6	31.1
800	-2.8	10.5	15.2	19.9	20.3	20.8
1,400	-1.2	5.5	8.3	11.0	11.5	11.9

Note: Straight-line interpolation of fig.PTSF for percent no-passing zones, demand flow rate, and directional split is recommended to the nearest 0.1.

Figura 6. Factor de zona de no adelantamiento. Fuente: Apéndice B del HCM 6th Ed

	Cla	ase I	Clase II	Clase III
Nivel de Servicio	ATS (mi/h) PTSF (%)		PTSF (%)	PFFS (%)
А	<i>ATS</i> > 55	<i>PTSF</i> ≤ 35	$PTSF \le 40$	<i>PFFS</i> > 91,7
В	$55 > ATS \ge 50$	$50 \ge PTSF > 35$	$40 \ge PTSF > 55$	$91,7 > PFFS \ge 83,3$
С	$50 > ATS \ge 45$	$65 \ge PTSF > 50$	$55 \ge PTSF > 70$	$83,3 > PFFS \ge 75,0$
D	$45 > ATS \ge 40$	$80 \ge PTSF > 65$	$70 \ge PTSF > 85$	$75,0 > PFFS \ge 66,7$
Е	$ATS \le 40$	<i>PTSF</i> > 80	<i>PTSF</i> > 85	<i>PFFS</i> ≤ 66,7

Figura 7. Determinación del nivel de servicio. Fuente: Temario UPV

3.4 Cálculo para el año actual

En la **Tabla 1** se muestran los cálculos pertinentes para obtener el nivel de servicio de la carretera actual, la cual presenta un Nivel de Servicio "A" en el tramo ascendente y Nivel de Servicio "B" en el tramo descendente.

			NIVEL DE SERV	VICIO PARA EL	AÑO ACTUAL			
			IMD	475	Veh//dia	1		
			%pesados		porcentaje	1		
			Pesados	143	Veh/dia]		
	SENTIDO AS	SCENDENTE		I		SENTIDO DE	SCENDENTE	
IMD	40%	190	Veh/dia]	IMD	60%	285	Veh/di
_	10%	19	Veh/h	Ι	1	10%	29	Veh/h
			LIGENO	J EQUITALEITI	()			
			LIGERO	S EQUIVALENT	ES (ET)			
	CELITICO A	COLLIDERING	LIGENO	T		CELITIC O DE		
Vvnh	SENTIDO AS	SCENDENTE	LIGENO]		SENTIDO DE	SCENDENTE	
Vvph	SENTIDO AS	19	EGENO		Vvph	SENTIDO DE	29	
Vvph Rolling	SENTIDO AS		EGENO			SENTIDO DE		
_	SENTIDO AS	19	PORCENTAJE D		Vvph Rolling		29	
_		19 1			Vvph Rolling		29 1,9	
Rolling		19 1 SCENDENTE			Vvph Rolling PESADOS (PT)		29 1,9	
_		19 1			Vvph Rolling		29 1,9	
Rolling		19 1 SCENDENTE 0,30	PORCENTAJE D	DE VEHICULOS	Vvph Rolling PESADOS (PT)	SENTIDO DE	29 1,9	
Rolling		19 1 SCENDENTE 0,30		DE VEHICULOS	Vvph Rolling PESADOS (PT)	SENTIDO DE	29 1,9	
Rolling		19 1 SCENDENTE 0,30	PORCENTAJE D	DE VEHICULOS	Vvph Rolling PESADOS (PT)	SENTIDO DE	29 1,9	

	FACTOR D	E CORRECCIÓN I	OR PENDIEN	E LONGITUDII	NAL(Fg,ptst)
	SENTIDO ASCENDENTE		Ī		SENTIDO DESCENDENTE
Vvph	19		Ī	Vvph	29
Rolling	1		I	Rolling	0,73
	VC	LUMEN DE DEN	MANDA EN EL S	SENTIDO i (Vi,	otsf)
	SENTIDO ASCENDENTE		Ī		SENTIDO DESCENDENTE
Vd,ptsf	19,00		Ī	Vo,ptsf	49,58
		TIEMPO EI	N COLA DE BA	SE (BTSPF)	
		Coeficientes	a b	-0,0014 0,973	İ
	SENTIDO ASCENDENTE		l		SENTIDO DESCENDENTE
BTSPF	2,43		l	BTSPF	6,06
	FACTOR I	DE CORRECCIÓN	POR NO ADEL	ANTAMIENTO	S(Fnp,ptsf)
		V=Vd+vo	(59	1
	SENTIDO ASCENDENTE		Ī		SENTIDO DESCENDENTE
Fnp,ptsf	52,9		Ī	Fnp,ptsf	52,9
		PERCENT TIM	E SPEED FOLL	OWING(PTSF)	
	SENTIDO ASCENDENTE		Ī		SENTIDO DESCENDENTE
	17.00		Ī	PTSF	44,30
PTSF	17,08		ı	FISE	44,30

Tabla 1: Cálculo Nivel de Servicio para el año actual. Fuente: Apéndice B del HCM 6th Ed.

3.4 Cálculo para el año puesta en servicio

El año puesto en servicio como se ha definido anteriormente es el 2026, a través de los cálculos obtenidos en la **Tabla 2** podemos observar que no existe un crecimiento notable en el valor del PTSF y por lo tanto el Nivel de Servicio se mantendrá con un valor "A" en el sentido ascendente y un Nivel de Servicio "B" en el tramo descendente.

NIVEL DE SERVICIO PARA EL AÑO PUESTA EN SERVICIO

IMD	503	Veh//dia
%pesados	30%	porcentaje
Pesados	151	Veh/dia

	SENTIDO ASCENDENTE					
IMD	40%	201	Veh/dia			
I I	10%	20	Veh/h			

	SENTIDO DE	SCENDENTE	
IMD	60%	302	Veh/dia
1	10%	30	Veh/h

LIGEROS EQUIVALENTES (ET)

SENTIDO ASCENDENTE		
Vvph	20	
Rolling	1	

SENTIDO DESCENDENTE					
Vvph	30				
Rolling	1,9				

PORCENTAJE DE VEHICULOS PESADOS (PT)

SENTIDO ASCENDENTE						
30%	0,3					

	SENTIDO DESCENDENTE						
30%	0,3						

CORRECIÓN POR VEHICULOS PESADOS (Fhv,ptsf)

SENTIDO ASCENDENTE					
Fhv,ptsf	1,00				

	SENTIDO DESCENDENTE					
Fhv,ptsf	0,79					

FACTOR DE CORRECCIÓN POR PENDIENTE LONGITUDINAL(Fg,ptsf)

SENTIDO ASCENDENTE					
Vvph	20				
Rolling	1				

	SENTIDO DESCENDENTE						
Vvph	30						
Rolling	0,73						

VOLUMEN DE DEMANDA EN EL SENTIDO i (Vi,ptsf)

SENTIDO ASCENDENTE					
Vd,ptsf	20,12				

	SENTIDO DESCENDENTE					
Vo,ptsf	52,50					

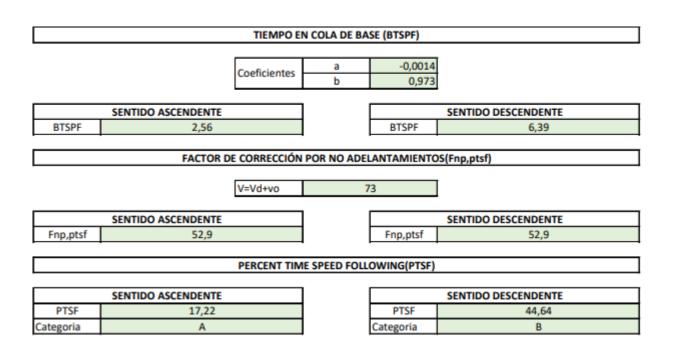


Tabla 2: Cálculo Nivel de Servicio para el año puesta en servicio. Fuente: Apéndice B del HCM 6th Ed

3.5 Cálculo para el año horizonte

En el año horizonte correspondiente al 2046 ocurre lo mismo que sucedió en el año en el año de puesta en servicio y es que, aunque se aumente la IMD el incremento del PTSF no varía de una forma notable por lo que el Nivel de Servicio será "A" en el sentido ascendente y un Nivel de Servicio "B" en el tramo descendente.

		NIVEL DE SERVI	CIO PARA EL A	ÑO HORIZON	TE			
		MITTER DE SENT	CIO I AILA EE A	TO HOMEON				
		IMD	709	Veh//dia	1			
		%pesados	30%	porcentaje	1			
		Pesados	213	Veh/dia	1			
					•			
	SENTIDO ASCENDENTE		1		SENTIDO DI	SCENDENTE		
IMD	40% 284	Veh/dia]	IMD	60%	425	Veh/di	
	10% 28	Veh/h	I	I	10%	43	Veh/h	
		LIGERO	S EQUIVALEN	TES (ET)				
	SENTIDO ASCENDENTE		1		SENTIDO DI	SCENDENTE		
Vvph	28	1	Vvph		43			
Rolling	1		1	Rolling		1,9		
		PORCENTAJE	DE VEHICULOS	PESADOS (PT	1			
			•					
	SENTIDO ASCENDENTE			201	SENTIDO DI	ESCENDENTE		
30%	0,30		ı	30%		0,30		
	C	ORRECIÓN POR	VEHICULOS PE	SADOS (Fhv,	otsf)			
	CENTIDO ACCENIDENTE		1		CENTIDO D	CCENDENTE		
Ebu otef	SENTIDO ASCENDENTE		1	Ehu otef	SENTIDO DI	SCENDENTE		
Fhv,ptsf	1,00		ı	Fhv,ptsf		0,79		
	FACTOR D	E CORRECCIÓN	POR PENDIEN	TE LONGITUD	INAL(Fg,ptsf)			
	SENTIDO ASCENDENTE		l		SENTIDO DI	ESCENDENTE		
Vvph	28		l	Vvph	43			
Rolling	1		J	Rolling		0,73		
	VC	LUMEN DE DEN	MANDA EN EL	SENTIDO i (Vi	ptsf)			
	SENTIDO ASCENDENTE		1		SENTIDO DI	ESCENDENTE		
Vd,ptsf	28,36		1	Vo,ptsf		74,01		
		TIEMPO E	N COLA DE BA	SE (RTSDE)				
		HEWIFOE	N COLA DE BA	3E (B13FF)	_			
		Coeficientes	a	-0,0014				
		Coefficientes	b	0,973				
	SENTIDO ASCENDENTE		l		SENTIDO DI	ESCENDENTE		
BTSPF	3,56		1	BTSPF		8,81		
	FACTOR E	DE CORRECCIÓN	POR NO ADEL	ANTAMIENTO	OS(Fnp,ptsf)			
		V=Vd+vo	10	02	1			
		*-*0**0			1			
	SENTIDO ASCENDENTE				SENTIDO DI	SCENDENTE		
Fnp,ptsf	52,9		I	Fnp,ptsf		52,9		
		PERCENT TIM	IE SPEED FOLL	OWING(PTSF)				
	SENTIDO ASCENDENTE		1		SENTIDO DI	ESCENDENTE		
PTSF	18,22		1	PTSF	JE111100 DI	47,06		
atonoria	10,22		ı	Categoria		47,00		

Tabla 2: Cálculo Nivel de Servicio para el año horizonte. Fuente: Apéndice B del HCM 6th Ed

4. Conclusión

Una vez analizada la Intensidad Media Diaria (IMD) y el nivel de servicio de la CV-445, se ha observado que presenta un bajo volumen de tráfico, esto permite que la circulación en la carretera sea más fluida. Por lo tanto, actualmente y en el año de puesta en servicio, se mantiene un buen nivel de servicio con una clasificación "A" en sentido ascendente y "B" en sentido descendente. Incluso, para el año horizonte considerado, a pesar de un aumento en la IMD, se proyecta que la carretera seguirá manteniendo este nivel satisfactorio de servicio. . Esto se alinea con lo establecido en la Tabla 7.1 de la Norma 3.1 Trazado, que especifica que para el año horizonte, el nivel de servicio mínimo debe clasificarse como "E"; por lo que se puede afirmar que se cumple con las disposiciones de la normativa vigente.

5. Bibliografía

Memoria anual de aforos, Conselleria de Política Territorial, Obres Públiques i Mobilitat, Generalitat Valenciana, Consultado en mayo del 2023 de:

Mapas de tráfico - Carreteras - Generalitat Valenciana (gva.es)

Plan de Aforos de la Generalitat Valenciana 2021, Consultado en mayo del 2023, de: https://mediambient.gva.es/es/web/carreteras/plan-de-aforos-de-la-generalitat-valenciana

Manual de Capacidad - Highway Capacity Manual (HCM) 7th Edition: A Guide for Multimodal Mobility Analysis (HCM, 2022), Consultado en mayo del 2023.

ANEJO Nº 6: DISEÑO GEOMÉTRICO

Curso:

2022/2023

Fecha:

septiembre 2023

Autor:

Jorge Naranjo Martínez

Tutor:

Javier Camacho Torregrosa

INDICE

1. Introducción	
1. Introduction	3
2. Actuaciones proyectadas	3
4. Estado de rasantes	9
5. Coordinación planta-alzado	9
6. Visibilidad	9
7. Sección transversal	11
9. Movimiento de tierras	11
10. Intersecciones y accesos	11
11 Ribliografía	11

1. Introducción

Las principales características de la opción seleccionada en el estudio de soluciones se describirán en detalle en este anejo. Además, se realizará un análisis en comparación con la carretera original señalando las zonas en las que se han realizado las mejoras.

2. Actuaciones proyectadas

A lo largo del trazado de la carretera CV-445, se han identificado numerosas deficiencias en cuanto al cumplimiento de la normativa 3.1 IC de trazado, lo que genera una experiencia incómoda para los conductores. Además, se han determinado áreas con una consistencia catalogada como "pobre" y problemas de visibilidad en diversos tramos. Con el fin de abordar estas problemáticas y proponer soluciones factibles, se han realizado cambios sustanciales en el trazado original en determinadas zonas.

No obstante, cabe destacar que en el anejo de soluciones se han definido zonas específicas en las que existen limitaciones para implementar cambios en el trazado. Sin embargo, se han emprendido acciones adicionales, como la realización de despejes, con el propósito de mejorar las condiciones de la carretera en dichos puntos.

A continuación, se describen los cambios realizados a lo largo del trazado:

• Tramo I (PK 0+000 - PK 0+750)

En la **Figura 1**, se puede observar la modificación realizada en el conjunto de curvas de radio inferior a 50 y rectas intermedias insuficientes. Estas han sido sustituidas por un conjunto de curvas en forma de "S" con un radio notablemente mayor. Esta intervención tiene como objetivo mejorar la consistencia pasando de un nivel previo definido como "pobre" a uno considerado como "bueno" o "aceptable". Además, esta modificación permite una transición fluida al salir de la segunda curva, facilitando el retorno a la dirección original de la carretera.

En particular se ha realizado un despeje en la segunda curva para mejorar la visibilidad tanto en el sentido de ida como en el de vuelta. Este aumento en la visibilidad contribuye significativamente a la seguridad de los usuarios, ya que les permite anticipar mejor las condiciones de la carretera y tomar decisiones más seguras y adecuadas al conducir por el tramo modificado.

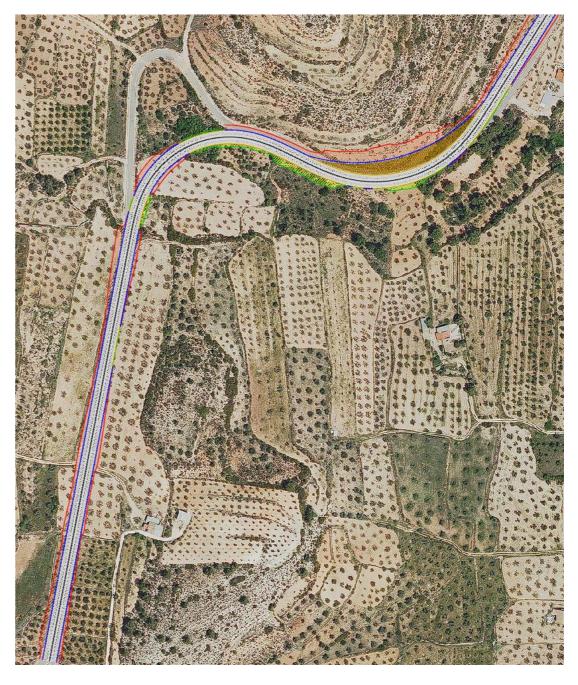


Figura 1. Acondicionamiento Tramo I (PK 0+000 – PK 1+630). Fuente: Elaboración propia.

Tramo I (PK 0+750 – PK 1+630)

En este tramo se ha buscado mantener en la medida de lo posible el trazado original de la carretera. No obstante, se han realizado ajustes en los radios y parámetros de acuerdo con la normativa vigente, con el fin de garantizar su cumplimiento y controlar la velocidad de operación en el recorrido (**Figura 2**).

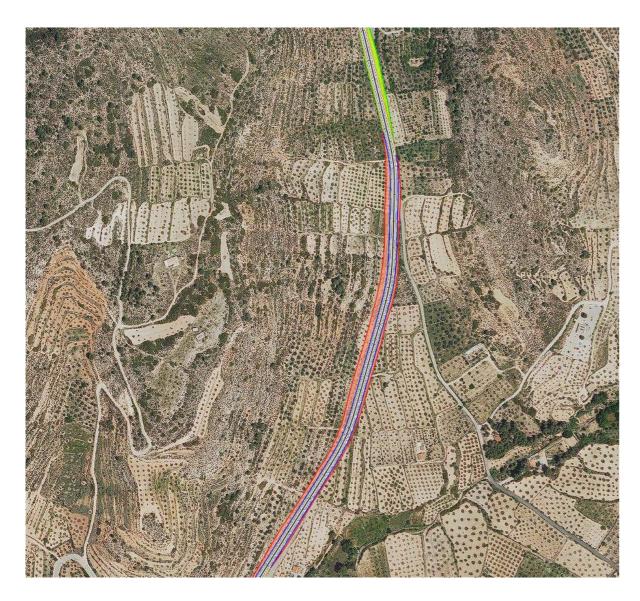


Figura 2. Acondicionamiento Tramo I (PK 0+750 – PK 2+418). Fuente: Elaboración propia.

• Tramo I (PK 1+630 – PK2+370)

De igual forma que en la primera modificación implementada, se ha procedido a reemplazar las numerosas curvas en forma de "S" que no cumplían con los radios, parámetros y rectas intermedias mínimas. En su lugar, se ha establecido una sucesión de curvas en forma de "S" con radios progresivamente menores a medida que se avanza en sentido creciente. Esta mejora tiene como objetivo lograr una mayor consistencia en la carretera antes de ingresar a la zona más sinuosa del trazado siendo una de estas las zonas limitadas que se describirán a continuación. De esta manera, se ha permitido una reducción gradual de la velocidad de operación, así como el cumplimiento de las normativas de trazado antes de llegar a la zona limitada, garantizando así un trazado más seguro y adecuado para los usuarios de la carretera (**Figura 3**).

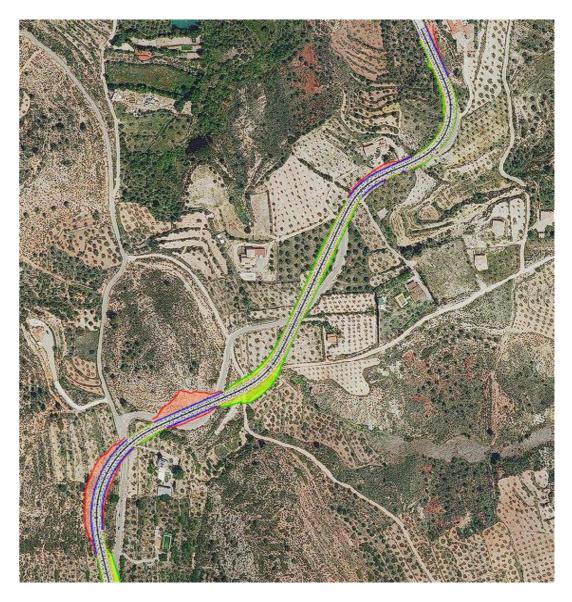


Figura 3. Acondicionamiento Tramo I (PK 1+630 – PK 2+418). Fuente: Elaboración propia.

Zona limitada Tramo I (PK 2+370 - PK 3+133)

En esta zona no se han llevado a cabo modificaciones en el trazado de la carretera debido a la proximidad de los edificios colindantes y la imposibilidad de realizar un desvío. Sin embargo, con el fin de mejorar las condiciones actuales en este tramo, se han llevado a cabo despejes en puntos donde el terreno y la vegetación obstaculizan la visibilidad para los conductores. Además, se ha diseñado la ejecución del arcén en esta zona para mantener la coherencia y uniformidad con el resto de la carretera, proporcionando una mayor comodidad y seguridad a los usuarios.

Figura 4. Acondicionamiento Zona limitada Tramo I (PK 2+370 - PK 3+133). Fuente: Elaboración propia.

• Zona limitada Tramo II (PK 0+000 - PK 0+181)

Por otro lado, en la **Figura 5** podemos observar que no se han realizado modificaciones en el tramo II a la salida de la intersección. Esta falta de modificaciones se debe a la presencia de viviendas cercanas y limitaciones en el espacio público, lo cual imposibilita cualquier tipo de cambio en el trazado actual. Es importante destacar que, en esta zona en particular, la visibilidad es adecuada y no se han identificado necesidades de mejora en este aspecto, no obstante, y como se ha indicado anteriormente se realizaran la ejecución de los arcenes

Figura 5. Acondicionamiento Zona limitada Tramo II (PK 0+000 - PK 0+181). Fuente: Elaboración propia.

• Tramo II (PK 0+181 – PK 0+586)

Se han reducido los radios existentes y a su vez se han eliminado las curvas circulares sin presencia de clotoide. Además, se ha realizado un desvío del trazado ligeramente hacia la derecha con el fin de evitar afectaciones a los edificios ubicados en el borde de la calzada. Este cambio ha implicado la necesidad de realizar un mayor desmonte en el lado opuesto, el cual podría haber afectado a las viviendas de esa área. Para prevenir dicha afección, se ha diseñado un muro (área resaltada en **Figura 6**) que contenga el terreno existente y regule la pendiente.

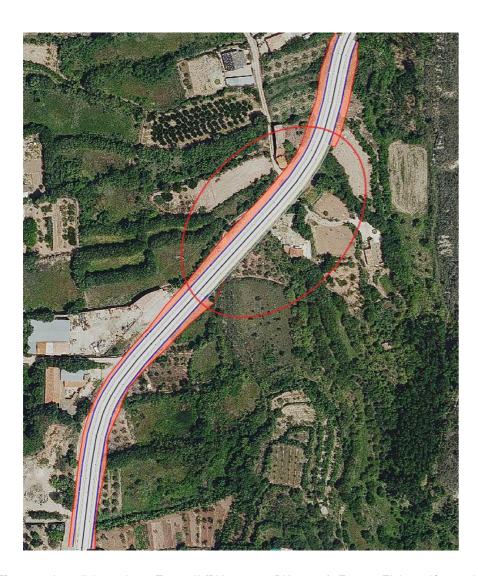


Figura 6. Acondicionamiento Tramo II (PK 0+181 – PK 0+586). Fuente: Elaboración propia.

• Zona limitada Tramo II (PK 0+586 - PK 0+659)

En cuanto a la última zona limitada, tampoco se han realizado modificaciones en el trazado de la carretera. Esto se debe a la presencia de viviendas colindantes y la existencia de un ligero barranco, lo cual dificulta realizar cambios en el trazado existente de manera viable.

No obstante, es importante destacar que en la zona resaltada de la **Figura 7** se ha llevado a cabo un despeje con el objetivo de mejorar la visibilidad en ese punto en particular. Además, de igual forma que en el resto de zonas limitadas se han definido los arcenes para mantener la uniformidad y coherencia en el trazado.

Figura 7. Acondicionamiento Zona limitada Tramo II (PK 0+568 - PK 0+659). Fuente: Elaboración propia

• Tramo II (PK 1+181 - PK 1+965)

Se ha llevado a cabo una modificación en las curvas circulares originales como se observa en la **Figura 8**. Estos cambios se han realizado con el propósito de que las curvas cumplan con la normativa vigente y, al mismo tiempo, reduzcan la velocidad de operación generada en el tramo recto que las precede. Como resultado de esta modificación, se busca mejorar la consistencia y seguridad del trazado de la carretera.

Figura 8. Acondicionamiento Tramo II (PK 1+181 – PK 1+965). Fuente: Elaboración propia.

Tramo II (PK 1+965 – PK 2+427)

En la **Figura 9** se puede apreciar la modificación realizada en las curvas circulares de acuerdo con la normativa vigente. Se han reducido los radios en las curvas en forma de "S" y se ha aumentado el radio de la última curva. A continuación de la curva circular mencionada previamente, se ha establecido un enlace con otra curva circular, formando así un conjunto de curvas en forma de "S". Esto se ha llevado a cabo para evitar una desaceleración brusca y mantener adecuadamente la consistencia del trazado de la carretera. Además, al igual que en el PK 0+181 mencionado anteriormente, se ha planificado la colocación de un muro desde el PK 1+965 hasta el PK 2+199 con el objetivo de disminuir las operaciones de desmonte en dicho tramo.

Figura 9. Acondicionamiento Tramo II (PK 1965 – PK 2+427). Fuente: Elaboración propia.

3. Estado de alineaciones

A lo largo del nuevo trazado de la CV-445 se puede apreciar una mejora significativa en comparación con el estado de alineaciones actual visto en el Anejo Nº1: Situación actual. Sin embargo, es importante destacar que, en las zonas limitadas descritas anteriormente, no se han realizado cambios en el trazado, lo que ha imposibilitado mejorar su cumplimiento normativo.

En la **Tabla 1** y **Tabla 2** se presentan los progresos alcanzados en cuanto al cumplimiento de la normativa, a su vez se reconoce la existencia de restricciones en zonas específicas donde no ha sido posible realizar mejoras en el trazado. Dichas comprobaciones se han realizado siguiendo la nomenclatura que se muestra a continuación y, siguiendo las mismas características y pesquisas que en el Anejo Nº1: Situación actual.

- -Parámetro de acuerdo máximo o mínimo (A)
- -Longitud mínima o máxima (L)
- -Radio mínimo o máximo (R)
- Coordinación de radios consecutivos (CRC)

Número de elemento	Tipo de elemento	P.K. inicial	P.K. final	Longitud	Radio	Α	A	ımplimiento ı	de la normati R	iva CRC
1	Recta	0	359.067	359.666			_ ^	Cumple	_ ^	CNC
2	Clotoide	359.067	404.067	45		60	Cumple			
3	Curva circular	404.067	507.03	102.634	80				Cumple	Cumple
4	Clotoide	507.03	552.03	45		60	Cumple			
5	Recta	552.03	552.032	0.022		CO	Commis	Cumple		
<u>6</u> 7	Clotoide Curva circular	552.032 598.056	598.056 699.059	46.24 101.022	100	68	Cumple		Cumple	Cumple
8	Clotoide	699.059	745.083	46.24	100	68	Cumple		cumpic	Cumpic
9	Recta	745.083	945.039	199.566				Cumple		
10	Clotoide	945.039	998	52.609		110	Cumple			
11	Curva circular	998	1011	13	230				Cumple	No cumple
12	Clotoide	1011 1063.061	1063.061	52.609		110	Cumple	Cumple		
13 14	Recta Clotoide	1193.058	1193.058 1248.051	129.975 54.922		116	Cumple	Cumple		
15	Curva circular	1248.051	1254.088	6.369	245	110	Cumpic		Cumple	Cumple
16	Clotoide	1254.088	1309.08	54.922		116	Cumple			·
17	Recta	1309.08	1373.043	63.628				No cumple		
18	Clotoide	1373.043	1424.043	51.005		101	Cumple			
19	Curva circular	1424.043	1425.068	1.25	200	404	6		Cumple	Cumple
20 21	Clotoide	1425.068 1476.069	1476.069 1631.067	51.005 154.98		101	Cumple	Cumple		
22	Recta Clotoide	1631.067	1678.079	47.127		72	Cumple	Cumple		
23	Curva circular	1678.079	1784.044	105.644	110	,,,	Campie		Cumple	No cumple
24	Clotoide	1784.044	1831.056	47.127		72	Cumple			
25	Recta	1831.056	1893.006	61.491				Cumple		
26	Clotoide	1893.006	1939.021	46.154		60	Cumple			
27	Curva circular	1939.021	1949.076	10.549	78				Cumple	Cumple
28	Clotoide	1949.076	1995.091	46.154		60	Cumple	Comment		
29 30	Recta Clotoide	1995.091 2135.025	2135.025 2178.046	139.338 43.214		55	No cumple	Cumple		
31	Curva circular	2178.046	2187.034	8.871	70	33	140 campic		Cumple	Cumple
32	Clotoide	2187.034	2230.055	43.214		55	No cumple			
33	Recta	2230.055	2230.06	0.053				Cumple		
34	Clotoide	2230.06	2272.055	41.952		51	Cumple			
35	Curva circular	2272.055	2328.07	56.146	62				Cumple	Cumple
36	Clotoide	2328.07	2370.065	41.952		51	Cumple	6		
37 38	Recta	2370.065 2418.097	2418.097 2440.047	48.317 21.5		42	No cumple	Cumple		
39	Clotoide Curva circular	2440.047	2446.063	6.158	86	43	No cumple		Cumple	No cumple
40	Clotoide	2446.063	2453.09	7.267	00	25	No cumple		Cumpic	140 cumpic
41	Recta	2453.09	2457.022	3.321				No cumple		
42	Clotoide	2457.022	2461.039	4.17		14	No cumple			
43	Curva circular	2461.039	2487.059	26.2	47				No cumple	No cumple
44	Clotoide	2487.059	2506.074	19.149		30	No cumple			
45 46	Recta Clotoide	2506.074 2517.041	2517.041 2523.059	10.677 6.178		27	No cumple	No cumple		
47	Curva circular	2523.059	2533.079	10.202	118	21	No cumple		Cumple	No cumple
48	Clotoide	2533.079	2540.092	7.127		29	No cumple			
49	Recta	2540.092	2552.035	11.431				No cumple		
50	Curva circular	2552.035	2574.008	21.725	50					No cumple
51	Recta	2574.008	2604.083	20.754					Cumple	
52	Curva circular	2604.083		30.754				No cumple		
53			2636.018	31.355	50				Cumple	Cumple
	Recta	2636.018	2645.02	31.355 9.017		10	No supple	No cumple		
54 55	Clotoide	2636.018 2645.02	2645.02 2650.076	31.355 9.017 5.556	50	10	No cumple		Cumple	Cumple
54 55 56		2636.018	2645.02	31.355 9.017		10	No cumple			
55	Clotoide Curva circular	2636.018 2645.02 2650.076	2645.02 2650.076 2671.07	31.355 9.017 5.556 20.944	50				Cumple	Cumple
55 56 57 58	Clotoide Curva circular Clotoide Recta Clotoide	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001	31.355 9.017 5.556 20.944 12.5 8.004 10.8	50			No cumple	Cumple	Cumple
55 56 57 58 59	Clotoide Curva circular Clotoide Recta Clotoide Curva circular	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197	50	15	No cumple	No cumple	Cumple	Cumple
55 56 57 58 59 60	Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197 6.533	50	15	No cumple	No cumple	Cumple No cumple	Cumple No cumple
55 56 57 58 59 60 61	Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197 6.533 22.667	50	15 18 14	No cumple No cumple	No cumple	Cumple No cumple	Cumple No cumple
55 56 57 58 59 60 61 62	Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Clotoide Recta Clotoide	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197 6.533 22.667 13	18	15	No cumple	No cumple	Cumple No cumple No cumple	Cumple No cumple No cumple
55 56 57 58 59 60 61	Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197 6.533 22.667	50	15 18 14	No cumple No cumple	No cumple	Cumple No cumple	Cumple No cumple
55 56 57 58 59 60 61 62 63	Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Curva circular	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197 6.533 22.667 13 18.065	18	15 18 14 13	No cumple No cumple No cumple	No cumple	Cumple No cumple No cumple	Cumple No cumple No cumple
55 56 57 58 59 60 61 62 63 64 65 66	Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2794.054 2830.099	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2794.054 2830.099 2848.081	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197 6.533 22.667 13 18.065 15.077 36.447 17.818	50 18 30	15 18 14 13	No cumple No cumple No cumple	No cumple No cumple	Cumple No cumple No cumple	No cumple No cumple No cumple
55 56 57 58 59 60 61 62 63 64 65 66 67	Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Curva circular	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2794.054 2830.099 2848.081	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2794.054 2830.099 2848.081 2862.012	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197 6.533 22.667 13 18.065 15.077 36.447 17.818 13.309	18	15 18 14 13 14 14	No cumple No cumple No cumple No cumple No cumple	No cumple No cumple	Cumple No cumple No cumple	Cumple No cumple No cumple
55 56 57 58 59 60 61 62 63 64 65 66 67 68	Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Curva circular Clotoide Curva Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2779.047 2794.054 2830.099 2848.081 2862.012	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2794.054 2830.099 2848.081 2862.012	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197 6.533 22.667 13 18.065 15.077 36.447 17.818 13.309 7.364	50 18 30	15 18 14 13	No cumple No cumple No cumple No cumple	No cumple No cumple No cumple	No cumple No cumple	No cumple No cumple No cumple
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69	Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Recta	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2794.054 2830.099 2848.081 2862.012 2869.048	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2794.054 2830.099 2848.081 2862.012 2869.048	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197 6.533 22.667 13 18.065 15.077 36.447 17.818 13.309 7.364 12.676	50 18 30	15 18 14 13 14 14 9	No cumple No cumple No cumple No cumple No cumple No cumple	No cumple No cumple	No cumple No cumple	No cumple No cumple No cumple
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69	Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Recta	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2794.054 2830.099 2848.081 2862.012 2869.048	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2779.047 2794.054 2830.099 2848.081 2862.012 2869.048 2882.016	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197 6.533 22.667 13 18.065 15.077 36.447 17.818 13.309 7.364 12.676 7.348	50 18 30 13	15 18 14 13 14 14	No cumple No cumple No cumple No cumple No cumple	No cumple No cumple No cumple	No cumple No cumple No cumple	No cumple No cumple No cumple
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69	Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Recta	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2794.054 2830.099 2848.081 2862.012 2869.048	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2794.054 2830.099 2848.081 2862.012 2869.048	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197 6.533 22.667 13 18.065 15.077 36.447 17.818 13.309 7.364 12.676	50 18 30	15 18 14 13 14 14 9	No cumple No cumple No cumple No cumple No cumple No cumple	No cumple No cumple No cumple	No cumple No cumple	No cumple No cumple No cumple
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Curva circular	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2794.054 2830.099 2848.081 2862.012 2869.048 2882.016 2889.051	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2779.047 2794.054 2830.099 2848.081 2862.012 2869.048 2882.016 2889.051	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197 6.533 22.667 13 18.065 15.077 36.447 17.818 13.309 7.364 12.676 7.348 26.407	50 18 30 13	15 18 14 13 14 14 14 19	No cumple	No cumple No cumple No cumple	No cumple No cumple No cumple	No cumple No cumple No cumple
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71	Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Curva circular	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2794.054 2830.099 2848.081 2862.012 2869.048 2882.016 2889.051 2915.091	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2779.054 2830.099 2848.081 2862.012 2869.048 2882.016 2889.051 2915.091	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197 6.533 22.667 13 18.065 15.077 36.447 17.818 13.309 7.364 12.676 7.348 26.407 15.696	50 18 30 13	15 18 14 13 14 14 14 19	No cumple	No cumple No cumple No cumple	No cumple No cumple No cumple	No cumple No cumple No cumple
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74	Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Curva circular	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2794.054 2830.099 2848.081 2862.012 2869.048 2882.016 2889.051 2915.091 2931.061 2934.065 2947.045	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2794.054 2830.099 2848.081 2862.012 2869.048 2882.016 2899.051 2915.091 2931.061 2934.065 2947.045	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197 6.533 22.667 13 18.065 15.077 36.447 17.818 13.309 7.364 12.676 7.348 26.407 15.696 3.045 12.8 17.275	50 18 30 13	15 18 14 13 14 14 14 9 13 19	No cumple	No cumple No cumple No cumple	No cumple No cumple No cumple	No cumple No cumple No cumple
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76	Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Curva circular Clotoide Curva circular Clotoide	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2779.047 2794.054 2830.099 2848.081 2862.012 2869.048 2882.016 2889.051 2915.091 2931.061 2934.065 2947.045	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2761.04 2830.099 2848.081 2862.012 2869.048 2882.016 2889.051 2915.091 2931.061 2934.065 2947.045	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197 6.533 22.667 13 18.065 15.077 36.447 17.818 13.309 7.364 12.676 7.348 26.407 15.696 3.045 12.8 17.275 11.25	18 30 13 11	15 18 14 13 14 14 14 9 13	No cumple	No cumple No cumple No cumple No cumple	No cumple No cumple No cumple No cumple	No cumple No cumple No cumple No cumple
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76	Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Recta	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2794.054 2830.099 2848.081 2862.012 2869.048 2882.016 2889.051 2931.061 2934.065 2947.045 2934.065	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2779.047 2794.054 2830.099 2848.081 2862.012 2869.048 2882.016 2889.051 2915.091 2931.061 2934.065 2947.045 2964.073 2975.098	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197 6.533 22.667 13 18.065 15.077 36.447 17.818 13.309 7.364 12.676 7.348 26.407 12.8 17.275 11.25 13.334	18 30 13 11	15 18 14 13 14 14 19 13 19 16	No cumple	No cumple No cumple No cumple	No cumple No cumple No cumple No cumple	No cumple No cumple No cumple No cumple
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Recta	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2794.054 2830.099 2848.081 2862.012 2869.048 2882.016 2889.051 2915.091 2931.061 2934.065 2947.045 2964.073 2975.098	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2794.054 2830.099 2848.081 2862.012 2869.048 2882.016 2899.051 2915.091 2934.065 2947.045 2964.073 2975.098	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197 6.533 22.667 13 18.065 15.077 36.447 17.818 13.309 7.364 12.676 7.348 26.407 15.696 3.045 12.8 17.275 11.25 11.25 13.334 13.444	18 30 13 11 23	15 18 14 13 14 14 14 9 13 19	No cumple	No cumple No cumple No cumple No cumple	No cumple No cumple No cumple No cumple No cumple	No cumple No cumple No cumple No cumple No cumple
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76	Clotoide Curva circular Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Recta Clotoide Recta Clotoide Recta Clotoide Curva circular Clotoide Curva circular Clotoide Recta Clotoide Recta	2636.018 2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2761.04 2779.047 2794.054 2830.099 2848.081 2862.012 2869.048 2882.016 2889.051 2931.061 2934.065 2947.045 2934.065	2645.02 2650.076 2671.07 2684.02 2692.021 2703.001 2719.02 2725.074 2748.04 2779.047 2794.054 2830.099 2848.081 2862.012 2869.048 2882.016 2889.051 2915.091 2931.061 2934.065 2947.045 2964.073 2975.098	31.355 9.017 5.556 20.944 12.5 8.004 10.8 16.197 6.533 22.667 13 18.065 15.077 36.447 17.818 13.309 7.364 12.676 7.348 26.407 12.8 17.275 11.25 13.334	18 30 13 11	15 18 14 13 14 14 19 13 19 16	No cumple	No cumple No cumple No cumple No cumple	No cumple No cumple No cumple No cumple	No cumple No cumple No cumple No cumple

Tabla 1. Estado de alineaciones en el primer tramo. Fuente: Elaboración propia

Número de					·		Cumplimiento de la normativa		iva	
elemento	Tipo de elemento	P.K. inicial	P.K. final	Longitud	Radio	A	Α	L	R	CRC
1	Recta	0	60.091	60.914				Cumple		
2	Curva circular	60.091	88.091	27.991	91				Cumple	Cumple
3	Recta	88.091	140.08	51.898				No cumple		
4	Curva circular	140.08	156.046	15.653	339				Cumple	No cumple
5	Recta	156.046	229.065	73.198				Cumple		
6	Clotoide	229.065	275.089	46.24		68	Cumple			
7	Curva circular	275.089	289.008	13.188	100				Cumple	No cumple
8	Clotoide	289.008	335.032	46.24		68	Cumple			
9	Recta	335.032	448.039	113.064				Cumple		
10	Clotoide	448.039	496.052	48.133		76	Cumple			
11	Curva circular	496.052	512.001	15.487	120				Cumple	Cumple
12	Clotoide	512.001	560.014	48.133		76	Cumple			
13	Recta	560.014	560.024	0.104				Cumple		
14	Clotoide	560.024	574.001	13.762		34	No cumple			
15	Curva circular	574.001	602.036	28.36	85				Cumple	Cumple
16	Clotoide	602.036	619.056	17.19		38	No cumple			
17	Recta	619.056	632.016	12.6				No cumple		
18	Clotoide	632.016	675.071	43.556		56	No cumple			
19	Curva circular	675.071	676.085	1.141	72				Cumple	Cumple
20	Clotoide	676.085	720.041	43.556		56	No cumple			
21	Recta	720.041	775.015	54.743				No cumple		
22	Curva circular	775.015	961.034	186.191	1297				Cumple	No cumple
23	Recta	961.034	1251.037	290.024				Cumple		
24	Clotoide	1251.037	1307.037	56.008		85	Cumple			
25	Curva circular	1307.037	1308.059	1.218	129				Cumple	No cumple
26	Clotoide	1308.059	1364.06	56.008		85	Cumple			
27	Recta	1364.06	1364.063	0.035				Cumple		
28	Clotoide	1364.063	1419.008	54.444		70	Cumple			
29	Curva circular	1419.008	1433.079	14.708	90				Cumple	Cumple
30	Clotoide	1433.079	1488.023	54.444		70	Cumple			
31	Recta	1488.023	1637.06	149.37				Cumple		
32	Clotoide	1637.06	1682.005	44.444		60	Cumple			
33	Curva circular	1682.005	1723.069	41.645	81				Cumple	Cumple
34	Clotoide	1723.069	1768.013	44.444		60	Cumple			
35	Recta	1768.013	1827.062	59.484				Cumple		
36	Clotoide	1827.062	1872.062	45		60	Cumple			
37	Curva circular	1872.062	1875.003	2.416	80				Cumple	Cumple
38	Clotoide	1875.003	1920.003	45		60	Cumple			
39	Recta	1920.003	1920.064	0.606				Cumple		
40	Clotoide	1920.064	1965.064	45	0.0	60	Cumple			0 1
41	Curva circular	1965.064	1967.016	1.515	80		0 1		Cumple	Cumple
42	Clotoide	1967.016	2012.016	45		60	Cumple			
43	Recta	2012.016	2066.031	54.159				Cumple		
44	Clotoide	2066.031	2109.053	43.215	C.T.	53	No cumple		C	C
45	Curva circular	2109.053	2200.084	91.311	65				Cumple	Cumple
46	Clotoide	2200.084	2244.006	43.215		53	No cumple			
47	Recta	2244.006	2244.024	0.182				Cumple		
48	Clotoide	2244.024	2284.04	40.164		47	No cumple			0 1
49	Curva circular	2284.04	2304.017	19.767	55				Cumple	Cumple
50	Clotoide	2304.017	2344.033	40.164		47	No cumple			L

Tabla 2. Estado de alineaciones en el segundo tramo. Fuente: Elaboración propia

4. Estado de rasantes

En la **Tabla 3** y **Tabla 4** podemos observar que, a pesar de que el estado de rasantes presentaba un cumplimento aceptable, se han realizado mejoras en ciertos aspectos en comparación con el estado de rasantes actual, teniendo como resultado un cumplimiento total. Estas modificaciones se han llevado a cabo principalmente debido a cambios significativos en ciertos puntos del trazado.

Nóme de elemente	The de classicate	D K !!-!-	D.V. Caral	Lauretteral	.,	Do and to anti-		Cumplin	niento de la n	ormativa	
Número de elemento	Tipo de elemento	P.K. inicial	P.K. final	Longitud	К	Pendiente	Kv.min	L	Estética	Pen.min	Pen.max
1	Rasante	0	134.094	134.941		5.42%				Cumple	Cumple
2	Convexo	134.094	231.018	96.238	1276		Cumple	Cumple	Cumple		
3	Rasante	231.018	392.009	160.914		-2.12%				Cumple	Cumple
4	Convexo	392.009	438.091	46.816	2390		Cumple	Cumple	Cumple		
5	Rasante	438.091	1021.05	582.587		-4.08%				Cumple	Cumple
6	Cóncavo	1021.05	1183.054	162.039	3184		Cumple	Cumple	Cumple		
7	Rasante	1183.054	1556.061	373.072		1.01%				Cumple	Cumple
8	Convexo	1556.061	1784.083	228.224	2860		Cumple	Cumple	Cumple		
9	Rasante	1784.083	1915.004	130.211		-6.97%				Cumple	Cumple
10	Cóncavo	1915.004	2007.003	91.987	3747		Cumple	Cumple	Cumple		
11	Rasante	2007.003	2343.036	336.33		-4.51%				Cumple	Cumple
12	Convexo	2343.036	2496	152.635	6939		Cumple	Cumple	Cumple		
13	Rasante	2496	2627.021	131.213		-6.71%				Cumple	Cumple
14	Convexo	2627.021	2677.021	50	2539		Cumple	Cumple	Cumple		
15	Rasante	2677.021	2762.027	85.061		-8.68%				Cumple	Cumple
16	Cóncavo	2762.027	2812.027	50	4845		Cumple	Cumple	Cumple		
17	Rasante	2812.027	2961.082	149.55		-7.65%				Cumple	Cumple
18	Cóncavo	2961.082	3011.082	50	1460		Cumple	Cumple	Cumple		
19	Rasante	3011.082	3134.022	122.404		-4.23%				Cumple	Cumple

Tabla 3. Estado de rasantes en el primer tramo. Fuente: Elaboración propia

Niómana da alamanta	Tine de elemente	P.K. inicial	P.K. final	Lamaitud		Dandianta	Cumplimiento de la normativa				
Número de elemento	Tipo de elemento	P.K. Inicial	P.K. Tinai	Longitud	K	Pendiente	Kv.min	L	Estética	Pen.min	Pen.max
1	Rasante	0	275.053	275.525		-6.97%				Cumple	Cumple
2	Cóncavo	275.053	333.09	58.379	6812		Cumple	Cumple	Cumple		
3	Rasante	333.09	561.078	227.874		-6.12%				Cumple	Cumple
4	Cóncavo	561.078	611.078	50	1534		Cumple	Cumple	Cumple		
5	Rasante	611.078	773.076	161.979		-2.86%				Cumple	Cumple
6	Convexo	773.076	823.076	50	1302		Cumple	Cumple	Cumple		
7	Rasante	823.076	899.026	75.499		-6.70%				Cumple	Cumple
8	Cóncavo	899.026	1027.023	127.978	1758		Cumple	Cumple	Cumple		
9	Rasante	1027.023	1458.089	431.652		0.58%				Cumple	Cumple
10	Convexo	1458.089	1506.051	47.628	1809		Cumple	Cumple	Cumple		
11	Rasante	1506.051	1630.026	123.743		-2.05%				Cumple	Cumple
12	Cóncavo	1630.026	1678.018	47.922	1786		Cumple	Cumple	Cumple		
13	Rasante	1678.018	1839.042	161.244		0.63%				Cumple	Cumple
14	Convexo	1839.042	1941.006	101.639	6171		Cumple	Cumple	Cumple		
15	Rasante	1941.006	2294.071	353.65		-1.02%				Cumple	Cumple
16	Cóncavo	2294.071	2354.026	59.546	2635		Cumple	Cumple	Cumple		
17	Rasante	2354.026	2429.013	74.875		1.24%				Cumple	Cumple

Tabla 4. Estado de rasantes en el segundo tramo. Fuente: Elaboración propia

5. Coordinación planta-alzado

Tras realizar modificaciones en la planta y el alzado, se ha buscado lograr una adecuada coordinación entre ambas. Esto se aplica tanto a las partes más modificadas como a las que no han sido alteradas. Siguiendo el anejo de la situación actual, se han obtenido la **Tabla 5** y la **Tabla 6** correspondiente a cada tramo. Al comparar estos resultados con los obtenidos en dicho anejo, se puede observar que se ha logrado una mejora al cumplir en la mayoría de casos con los requisitos mínimos.

Número de elemento	PK	Radio	Peralte	Kv	Fórmula 2ª Criterio	Fórmula 3º Criterio	Cumplimiento de la normativa		
Numero de elemento	PK	Raulo	Peralle	NV	Formula 2= Criterio	Formula 5= Criterio	1º Criterio	2ª Criterio	3ª Criterio
1	183	0	7	1276.502	0.0	0	No cumple	No cumple	No cumple
2	415.501	80	7	2390.608	29.9	1143	Cumple	Cumple	No cumple
3	1102.516	230	7	3184.265	13.8	3286	Cumple	Cumple	No cumple
4	1670.72	110	7	2860.273	26.0	1571	Cumple	Cumple	No cumple
5	1981.037	78	7	3411.489	43.7	1114	Cumple	Cumple	No cumple
6	2419.678	36	7	6939.401	192.8	514	Cumple	Cumple	No cumple
7	2652.21	18	7	2539.371	141.1	257	Cumple	Cumple	No cumple
8	2787.27	13	7	4845.372	372.7	186	Cumple	Cumple	No cumple
9	2986.82	20	7	1460.007	73.0	286	Cumple	Cumple	No cumple

Tabla 5. Coordinación planta-alzado en el primer tramo. Fuente: Elaboración propia

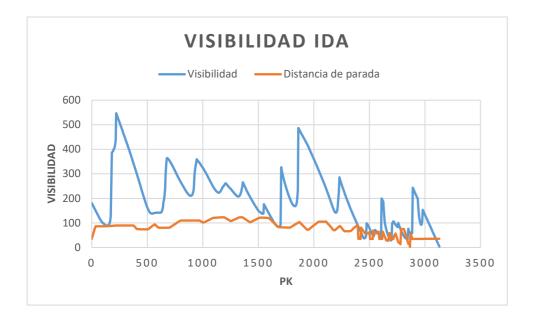

Número de elemento	PK	Radio	Peralte	Kv	Eármula 28 Critoria	Fórmula 3º Criterio	Cumplimiento de la normativa		
Numero de elemento	FK	Naulo	relaite	KV	Formula 2- Criterio	Formula 5- Criterio	1º Criterio	2ª Criterio	3ª Criterio
1	304.715	100	7	6812.54	1429	68.1	Cumple	Cumple	No cumple
2	586.778	84	7	1534.038	1200	18.3	Cumple	Cumple	No cumple
3	798.758	1297	7	1302.998	18529	0.0	Cumple	No cumple	No cumple
4	962.245	1297	7	1758.686	18529	0.0	Cumple	No cumple	No cumple
5	1482.7	90	7	1809.833	1286	20.1	Cumple	Cumple	No cumple
6	1654.218	81	7	1786.746	1157	22.1	Cumple	Cumple	No cumple
7	1890.242	80	7	6171.227	1143	77.1	Cumple	Cumple	No cumple
8	2324.485	55	7	2635.216	786	47.9	Cumple	Cumple	No cumple

Tabla 6. Coordinación planta-alzado en el segundo tramo. Fuente: Elaboración propia

6. Visibilidad

Del mismo modo que en el Anejo Nº1: Situación actual, se han obtenido los siguientes gráficos de visibilidad en sentido creciente y decreciente para ambos tramos. En comparación con los gráficos obtenidos en dicho anejo, se ha observado una mejora significativa en la visibilidad a lo largo de gran parte del trazado, principalmente debido a los cambios realizados en el trazado tal y como se ha descrito anteriormente. Además, se han llevado a cabo despejes en aquellas áreas donde aún existían deficiencias más graves, como también se describió anteriormente, lo que ha permitido mejorar la visibilidad en puntos específicos. Es importante destacar que en aquellas zonas donde no ha sido posible modificar el trazado, se han implementado medidas de despeje para mejorar la visibilidad.

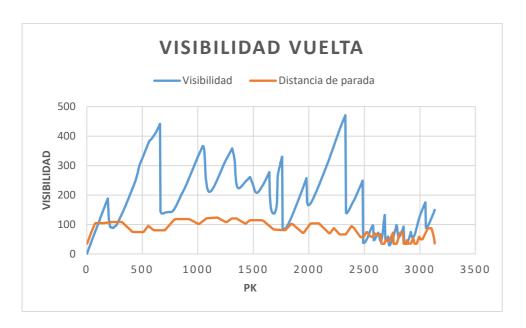
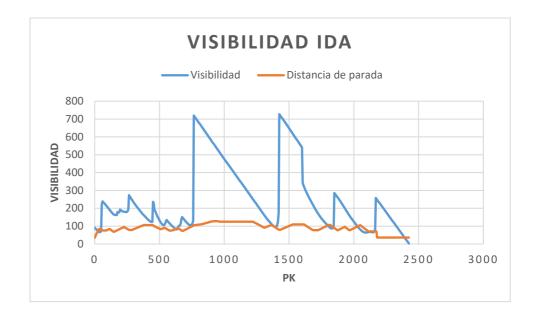



Gráfico 1. Perfiles de Visibilidad en el Tramo I: Elaboración propia

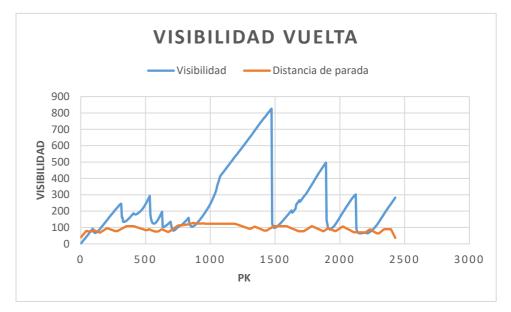


Gráfico 2. Perfiles de Visibilidad en el Tramo II: Elaboración propia

7. Sección transversal

De acuerdo a la tabla 7.1 de la Norma 3.1 IC (Ministerio de Fomento, 2016), para una carretera que cuenta con una vía de servicio de sentido único y una velocidad de proyecto de 40 km/h, se han definido carriles de 3 metros de ancho, unos arcenes de 0,5 metros y una berma de 0,5 metros.

8. Bombeo y peralte

Atendiendo a la normativa vigente para el diseño del bombeo en una carretera de calzada única, se ha determinado que tanto la calzada como los arcenes deberán ser configurados con una inclinación transversal mínima del dos por ciento (2%) hacia cada lado, a partir del eje de la calzada. Por otro lado, las bermas dispondrán de una inclinación transversal del cuatro por ciento (4 %) hacia el exterior de la plataforma.

En cuanto al peralte, se ha seguido lo establecido en la tabla 4.5 de la norma 3.1 IC. Según dicha tabla, para carreteras convencionales con radios de curvatura comprendidos entre 50 y 350 metros, el peralte será del 7%

9. Movimiento de tierras

En la tabla 7 se muestra el volumen de movimiento de tierras en ambos tramos. Cabe destacar que, en el conjunto global, la diferencia entre el terraplén y el desmonte no es excesivamente notoria. Además, el volumen total de movimiento de tierras es de 133.565,92 m3, lo cual indica que no se ha generado un movimiento de tierras excesivo. Esto se debe principalmente a las zonas del trazado donde no se han realizado modificaciones y a aquellas áreas donde se ha buscado minimizar la afectación al terreno.

TRAMO	TERRAPLEN	DESMONTE		
1	61.577,59	16.704,96		
2	10.051,44	42.531,93		
TOTAL	71.629,03	61.936,89		

Tabla 7. Volumen de movimiento de tierras en m3. Fuente: Elaboración propia

10. Intersecciones y accesos

No se han realizado modificaciones en las intersecciones existentes debido a que el trazado de la carretera se mantiene en el mismo punto que en la carretera actual. Sin embargo, se llevarán a cabo cambios en el firme para mantener la uniformidad del trazado. En relación a los accesos a viviendas y caminos existentes, algunos de ellos han sido desplazados o modificados debido al nuevo trazado. No obstantes, dado que estos caminos están compuestos principalmente por tierra, podrán adaptarse al

trazado de la carretera con la señalización adecuada para facilitar el acceso de la mejor manera posible.

11. Bibliografía

Orden FOM/273/2016, de 19 de febrero, por la que se aprueba la Norma 3.1-IC Trazado, de la Instrucción de Carreteras. Consultado en junio de 2023 de: https://www.boe.es/boe/dias/2016/03/04/pdfs/BOE-A-2016-2217.pd

ANEJO Nº 7: ESTUDIO DE SOLUCIONES

Curso:

2022/2023

Fecha:

septiembre 2023

Autor:

Jorge Naranjo Martínez

Tutor:

Javier Camacho Torregrosa

ÍNDICE

1. Introducción	3
2. Parámetros de diseño	3
2.1 Velocidad de proyecto	3
2.2 Normativa para el diseño del trazado	3
2.2.1 Trazado en planta	3
2.2.2 Trazado en alzado	4
2.2.3. Coordinación planta-alzado.	4
2.2.4. Sección transversal.	4
3. Limitaciones del trazado	4
4. Alternativas planteadas	6
4.1 Alternativa 1	6
4.2 Alternativa 2	8
4.2 Alternativa 3	
5. Análisis multicriterio.	
5.1. Criterios seleccionados	13
5.2. Valoración de los criterios	13
5.2.1. Costes generales	13
5.2.2. Seguridad vial	14
5.2.3. Impacto ambiental e integración paisajística	14
5.2.4. Trazado	14
5.2.5. Funcionalidad	15
5.2.6. Resultados	15
5.3. Ponderación	15
5.4. Cuadro comparativo	16
Apéndice 1: Estados de alineaciones	17
Apéndice 2: Estados de rasantes	16

1. Introducción

En el presente anejo se exponen las distintas alternativas propuestas para mejorar la problemática existente en la carretera CV-445. Para ello, se ha realizado un análisis multicriterio con el objetivo de seleccionar la solución óptima. El objetivo principal de estas mejoras es incrementar la seguridad vial y mejorar la experiencia de los usuarios.

2. Parámetros de diseño

2.1 Velocidad de proyecto

La velocidad de proyecto para la carretera original se ha establecido en 40 Km/h debido a que su trazado presenta múltiples radios que no superan los 50 metros llegando incluso a los 11 metros Por lo que, esta velocidad se determina como la mínima requerida según la normativa correspondiente. Del mismo modo, en las alternativas planteadas no se produce un cambio en la velocidad de proyecto. Esto se debe principalmente a que el trazado de la carretera se encuentra en un terreno en el cual existen condiciones geográficas y topográficas que restringen la capacidad de realizar excavaciones o rellenos extensos para modificar el terreno.

2.2 Normativa para el diseño del trazado

En el proceso de diseño de las distintas alternativas planteadas, se ha seguido la "Norma 3.1 IC Trazado", perteneciente a la Instrucción de Carreteras del Ministerio de Fomento. A través de ella se han establecido los criterios necesarios para cumplir con sus dos componentes principales, la planta y el alzado.

Según las directrices del Ministerio de Fomento (2016), la "Norma 3.1 IC Trazado" define la velocidad del proyecto como el valor a partir del cual se determinan todas las características geométricas del trazado, con el fin de garantizar las mejores condiciones de confort y seguridad para los usuarios de la vía.

De esta forma, con el cumplimiento de dicha normativa, se asegura que las alternativas propuestas cumplan con los criterios establecidos y se diseñan teniendo en cuenta los parámetros adecuados.

2.2.1 Trazado en planta

Se deben tener en cuenta cuatro criterios importantes que son cruciales para determinar el diseño del trazado vial. Estos requisitos son los siguientes:

• Longitudes mínimas y máximas en rectas: Con el fin de proporcionar un equilibrio adecuado entre el flujo de tráfico y la seguridad de los usuarios, se establecen valores mínimos y

máximos para las longitudes rectilíneas en la calzada. Para una vp de 40 km/h, se definen las siguientes longitudes.

- Radio mínimo: Este criterio se relaciona con el valor mínimo permitido para los radios de curvatura en el diseño del trazado. La curvatura máxima que se puede aplicar a un tramo de carretera está determinada por el radio mínimo. En el caso de una velocidad de proyecto de 40 km/h, este radio mínimo establecido por la normativa de carreteras del grupo 3 es de 50 metros. Por lo que, para que el radio de curvatura sea igual o superior a 50 metros, es fundamental que el diseño de la vía se ajuste a las especificaciones establecidas por la normativa.
- Criterio de los radios consecutivos: En cuanto a los radios consecutivos existen limitaciones
 establecidas en la normativa, tanto en los radios máximos y mínimos que pueden seguir a un
 radio determinado, como en la relación entre ellos. A pesar de que la normativa exige una
 relación no simétrica, en este caso se ha optado por una relación simétrica para garantizar el
 cumplimiento en ambos sentidos (Tabla 1).

Por otro lado, se aplican distintas condiciones según si hay una recta intermedia de longitud inferior o superior a 400 metros. En el primer caso, la relación entre los radios de las curvas debe cumplir con los valores indicados en la **Tabla 1.** Si la recta intermedia supera los 400 metros, el radio de las curvas adyacentes debe ser mayor a 300 metros.

R (m)	R' (m)
50-450	$\frac{41}{65} * R + \frac{110}{13} \le R' < \frac{65}{41} * R - \frac{550}{41}$
450-700	$\frac{41}{65} * R + \frac{110}{13} \le R' < \frac{22}{5} * R - 1280$
700-1800	$\frac{5}{22} * R + \frac{3200}{11} \le R' < \frac{22}{5} * R - 1280$

Tabla 1. Relación entre radios de curvas circulares consecutivas. Fuente: Adaptado de la Norma 3.1. IC.

 Parámetros en las clotoides: Las clotoides son transiciones curvas utilizadas para suavizar los cambios de curvatura en el trazado de la carretera. En este caso, se emplearán clotoides simétricas, y su parámetro mínimo estará determinado por el radio de la curva circular y otros factores indicados en la normativa. Para garantizar las mejores condiciones posibles de confort

y seguridad en las curvas, el objetivo es mantener este parámetro mínimo y evitar la disposición de clotoides en punta.

2.2.2 Trazado en alzado

En el proceso de diseño el alzado de un trazado es fundamental considerar los siguientes elementos:

- Inclinación máxima y mínima: Se establecen límites para la inclinación de la carretera. Ante una velocidad de proyecto de 40 km/h se establece una inclinación máxima del 7%, no obstante, en casos excepcionales se puede implementar hasta el 10%. Por otro lado, la inclinación mínima requerida es del 0.5%, pudiendo variar hasta el 0.2% en circunstancias excepcionales y debidamente justificadas.
- Estética: No se permite la construcción de rampas o pendientes, a menos que exista una
 justificación válida. Esta restricción se aplica específicamente a aquellos tramos cuyo tiempo de
 recorrido, a la velocidad de proyecto (Vp), sea inferior a diez segundos (≮ 10 s). La longitud
 correspondiente se medirá entre vértices consecutivos.
- Acuerdos verticales: También es necesario considerar los acuerdos verticales en el diseño del alzado. Estos acuerdos están relacionados con la visibilidad en el trazado y varían según si son cóncavos o convexos. Para garantizar la suficiente visibilidad y seguridad vial, se establecen parámetros y longitudes mínimas (Tabla 2).

Vp	Longitud	Acuerdos	convexos	Acuerdos convexos		
(km/h)	mínima (m)	Kv (m) Parada	Kv(m) Adelantamiento	Kv (m) Parada	Kv(m) Adelantamiento	
40	40	250	300	760	2400	

Tabla 2. Parámetros y longitud mínimos de los acuerdos verticales. R. Fuente: Adaptado de la Norma 3.1. IC.

2.2.3. Coordinación planta-alzado.

La coordinación entre la planta y el alzado de un trazado de carretera es un aspecto fundamental que se busca cumplir según lo establecido en la Norma 3.1 IC. Sin embargo, es importante tener en cuenta que en algunos casos no es posible lograr una coordinación perfecta. La Norma establece ciertos criterios para determinar si se cumple con la coordinación planta-alzado: "En carreteras con velocidad de proyecto (Vp) menor o igual que sesenta kilómetros por hora (≤ 60 km/h) y en carreteras de

características reducidas, se cumpliría cuando sea posible la condición Kv = 100 * Ro/p. Si no fuese así, el cociente Kv/Ro será mayor o igual que seis (\geq 6), siendo Kv el parámetro de la curva de acuerdo vertical (m), Kv0 el radio de la curva circular en planta en metros (m), Kv1 p el peralte correspondiente a la curva circular en tanto por ciento (m).

2.2.4. Sección transversal.

La Norma 3.1 IC establece criterios específicos para determinar las dimensiones de la sección transversal de una carretera, considerando tanto su clase como la velocidad de proyecto. En el caso del trazado que se va a mejorar, se trata de una carretera convencional con una velocidad de proyecto de 40km/h.

Para este tipo de carreteras, la Norma proporciona las dimensiones recomendadas en función de la velocidad de proyecto (**Tabla 3**).

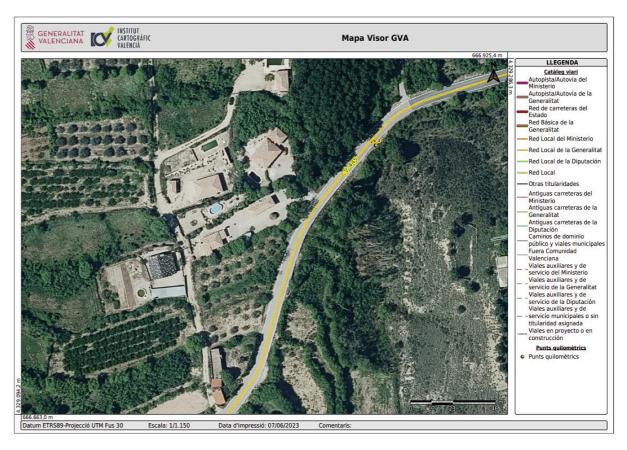
	Ancho(m)						
Vp (km/h)		Arco					
	Carriles	Interior/izquierdo	Exterior/derecho	Bermas(mínimo)			
50 y 40	3,00 a 3,50	0.50	0,50				

Tabla 3. Dimensiones de la sección transversal. Fuente: Adaptado de la Norma 3.1.IC.

3. Limitaciones del trazado


A la hora de desarrollar las alternativas propuestas se deben de tener en cuenta diversas limitaciones que afectan al trazado actual de la carretera. Estas limitaciones se refieren principalmente a las zonas con un trazado sinuoso en las cuales no se realizarán modificaciones significativas en la carretera existente. Esto se debe principalmente a la presencia de viviendas cercanas, así como la poca viabilidad de realizar un desvío de la carretera hacia una ubicación alternativa debido a la necesidad de preservar el entorno y respetar el espacio protegido.

Las restricciones presentan una limitación en el diseño de las alternativas, ya que se busca minimizar el impacto en las áreas residenciales y preservar el entorno protegido. Por ello, en las zonas que se


definen a continuación se adoptarán soluciones para mejorar la seguridad vial , sin alterar el trazado actual de forma radical.

En la **Figura 1** situada entre el PK 2+630 del primer tramo hasta el PK0+330 del segundo tramo, podemos observar como la carretera transcurre por una zona residencial con instalaciones deportivas y colegios, lo que impide modificar su trazado. A pesar de esto, se enfocará en mejorar la seguridad vial en el área mediante medidas como señalización, iluminación y control de velocidad y se considerará la opción de realizar despejes en aquellas zonas en las que la visibilidad no cumpla con la establecido.

Figura 1. Limitación del trazado entre el PK 2+630 (Tramo I) y PK 0+330 (Tramo II) Fuente: Adaptado de la Norma 3.1. IC Visor Cartogràfic de la Generalitat Valenciana.

Por otro lado, en la **Figura 2**, se muestra de igual forma en el tramo II una zona comprendida entre el PK 0+500 y el PK 0+700 en la que la carretera atraviesa casas colindantes y un ligero barranco.

Figura 2. Limitación del trazado entre el PK 0+500 y PK 0+700. Fuente: Adaptado de la Norma 3.1. IC Visor Cartogràfic de la Generalitat Valenciana.

Debido a estas circunstancias, no es factible realizar modificaciones significativas en el trazado de la carretera. Sin embargo, se tomarán las medidas necesarias para mejorar la seguridad vial y la visibilidad.

3.1 Medidas implantadas

Las medidas que se han implementado en las zonas descritas anteriormente consisten en la ejecución de despejes, focalizándose especialmente en aquellas zonas donde la visibilidad no alcanza los estándares requeridos por la normativa. Además, en los lugares donde el diseño del terreno y la proximidad de viviendas lo permiten, se llevará a cabo la creación de arcenes con el objetivo de mantener una uniformidad en todo el trayecto y cumplir con la normativa.

La **Figura 3** y la **Figura 4** muestran los despejes realizados en estas áreas limitadas, los cuales se aplicarán en todas las alternativas del proyecto. Estos despejes tienen como objetivo garantizar una adecuada visibilidad y contribuir a la seguridad vial.

Figura 3. Despeje en el Tramo I PK 2+830 – PK 2+934 Fuente: Elaboración propia.

Figura 4. Despeje en el Tramo II PK 0+700 Fuente: Elaboración propia.

4. Alternativas planteadas

Cada alternativa propuesta tiene como objetivo mejorar tanto el cumplimiento de las normativas vigentes como la coherencia general del trazado, es decir, garantizar que la experiencia de conducción se ajuste adecuadamente a las expectativas de los conductores.

El alcance de las acciones sugeridas varía para cada alternativa, desde intervenciones a pequeña escala hasta cambios más significativos. Esto sugiere que se investigarán diseños que conserven y respeten en gran medida el trazado actual, así como opciones que ofrecen más flexibilidad y adaptación a las necesidades del proyecto.

Todas las modificaciones descritas a continuación están detalladas en el **Apéndice 1 "Estados de Alineaciones"** y en el **Apéndice 2 "Estados de Rasantes"**. A continuación, se presentarán y describirán de forma breve las diversas alternativas consideradas.

4.1 Alternativa 1

La alternativa 1 ha sido diseñada con el objetivo de reducir la sinuosidad del trazado. Esta estrategia ha permitido mejorar el cumplimiento de la normativa en términos de planta y alzado, mediante la implementación de clotoides de entrada y salida en las curvas circulares. Además, se han realizado ajustes en los radios inferiores a 50 m, lo que ha resultado en la introducción de tramos rectos que desvían el eje de la carretera con respecto al eje original del trazado. Estas modificaciones han contribuido a mejorar la consistencia del trazado, especialmente en las áreas previamente identificadas como "pobres".

Por otro lado, en las zonas estrechas y cercanas a viviendas particulares mencionadas anteriormente, se han realizado cambios menores para mejorar la adecuación de la carretera.

Teniendo en cuenta las limitaciones impuestas anteriormente, los cambios más destacables en el primer tramo del trazado de la carretera son los siguientes:

 Tramo I (PK 0+250 -PK 0+750): En la Figura 5 podemos observar cómo se ha modificado el trazado sinuoso de curvas inferiores a 50 m, por un trazado en "S" (alineación recta entre alineaciones curvas con radios de curvatura de sentido contrario) constituido por dos curvas de 80 y 90 m de radio.

Figura 5. Cambios en el trazado Fuente: Elaboración propia.

 Tramo I (PK 1+715 - PK 2+300): En este tramo se ha realizado la mayor modificación respecto al eje original del trazado. El objetivo ha sido restituir las numerosas curvas en "S" formadas en su mayoría por radios inferiores a 50m, por una curva que mantenga la homogeneidad de los radios establecidos hasta dicha zona y, una recta que conecte con la zona ilimitada del trazado

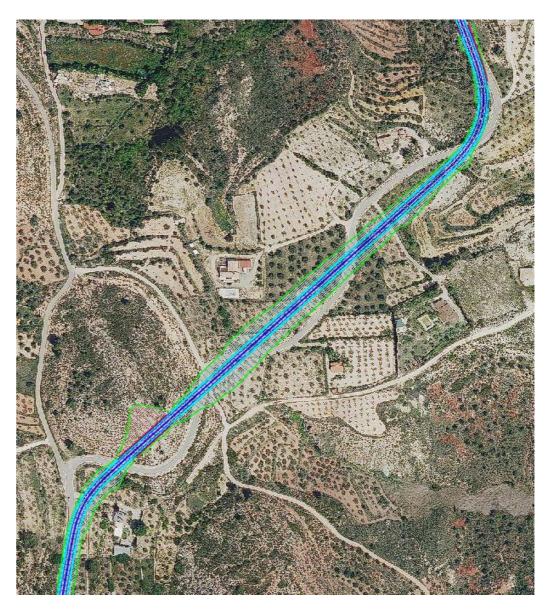


Figura 6. Sustitución de curvas en "S" por un tramo recto Fuente: Elaboración propia.

En cuanto al segundo tramo podemos destacar:

 Tramo II (PK 1+220 - PK 1+770): En esta zona específica se ha realizado una modificación en el trazado, reemplazando la curva en "S" y la recta intermedia que no cumplían con la normativa por una configuración que sí cumple con los requisitos establecidos. Además, se han realizado ajustes en los radios y parámetros de la curva circular siguiente para asegurar su adecuación a la normativa vigente.

Figura 7. Cambios en el trazado y mejora de las curvas circulares Fuente: Elaboración propia.

 Tramo II (PK 1+770 - PK 2410): En la Figura 7 podemos observar cómo en esta zona también se ha realizado un cambio mayor en la trazada, eliminando la consecución de curvas en "s" por un tramo recto y adecuando las curvas circulares y los acuerdos.

Figura 7. Sustitución de curvas en "S" por un tramo recto y mejora de las curvas circulares Fuente: Elaboración propia.

4.2 Alternativa 2

Esta alternativa se ha desarrollado con el objetivo de minimizar las modificaciones en el trazado de la carretera, mejorando en la medida de lo posible la consistencia y el cumplimiento de la normativa 3.1 IC. Para ello, se han realizado cambios menores, pero de gran impacto, en las zonas identificadas como "pobres" en términos de consistencia y, se ha buscado optimizar los recursos, así como reducir al mínimo los movimientos de tierra, lo que la convierte en una opción económica.

Es importante señalar que esta alternativa genera cambios de dirección en la carretera, particularmente en las curvas donde el cumplimiento de la norma era menor. Sin embargo, en gran parte del trazado, se ha mejorado el cumplimiento de la normativa y mantenido la alineación original de la carretera.

A continuación, se muestran los cambios más significativos en el diseño de esta alternativa, teniendo en cuenta las restricciones en el diseño mencionadas anteriormente.

En lo referente al primer tramo se presentan los dos mayores cambios que se van a realizar en todo el trazado:

 PK 0+300 - PK 0+816: Se ha aumentado el radio de la primera curva circular, así como eliminado el trazado sinuoso por una recta. De esta manera se garantiza un mayor cumplimiento normativo y una deceleración menos pronunciada.

Figura 8. Cambios en el trazado y mejora de las curvas circulares Fuente: Elaboración propia.

 PK 1+650 - PK 2+430: A lo largo de esta sección se ha realizado el cambio más sustancial respecto al eje original del trazado. Como se observa en la Figura 9 se ha sustituido el trazado en "s" de radios inferiores a 50m por una consecución de curvas que cumplen con la normativa, con el criterio de radios consecutivos y no afecta a las viviendas colindantes.

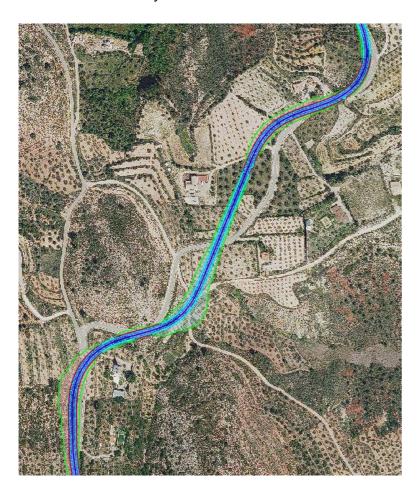


Figura 8. Cambios en el trazado y mejora de las curvas circulares Fuente: Elaboración propia.

A lo largo del recorrido correspondiente al segundo tramo no se han realizado cambios significativos en cuanto a la dirección de la carretera, pero si se han impuesto en la medida de lo posibles radios circulares y de acuerdo que cumplen con la normativa, dichos cambios han mejorado las deceleraciones críticas existentes en la carretera.

4.2 Alternativa 3

La presente alternativa tiene como propósito mejorar el trazado de la carretera lo máximo posible, sin comprometer la integridad del espacio urbano protegido y manteniendo el equilibrio necesario entre las mejoras viales y la conservación del entorno natural y urbano. Por otro lado, se busca priorizar la mejora de la seguridad vial y el cumplimiento de la normativa minimizando los movimientos de tierra y los cambios excesivos en el trazado, los cuales podrían afectar negativamente a los espacios protegidos.

En el primer tramo se ha realizado una corrección del trazado de tal forma que la mayoría de los radios circulares y de acuerdo se han modificado para que se adecuen al cumplimiento de la normativa; no obstante, a la hora de realizar dichos cambios se ha priorizado la idea de desviarse del trazado de la carretera lo mínimo posible. Los cambios más sustanciales son los siguientes:

• Tramo I PK 0+359 - PK 0+945: Se Se ha realizado una mejora en el trazado mediante el aumento del radio de la primera curva y la sustitución de la curva intermedia por una serie de curvas en forma de "S". Estos cambios han contribuido a un mejor cumplimiento de la normativa de trazado. Además, se ha logrado aumentar significativamente la consistencia en la zona de actuación. Con el fin de mejorar la visibilidad en la salida de la última curva, se ha llevado a cabo un despeje que permite una buena visibilidad en el punto de mayor conflicto.

Figura 9. Cambio de trazado en curvas en "s" de radio inferior a 50m Fuente: Elaboración propia.

• Tramo I PK 1+632 - PK 2+370: El objetivo principal de esta modificación ha sido reducir el número consecutivo de curvas con radio inferior a 50 m y sin la longitud mínima intermedia definida para una velocidad de proyecto de 40 km/h. Como se observa en la Figura X, la primera curva consta de un radio bastante más elevado y este va disminuyendo en las siguientes curvas en "S"; con esto se consigue no solo cumplir con la normativa en planta, sino que también se reduce la notable la velocidad de operación a lo largo de las curvas, logrando una consistencia aceptable.

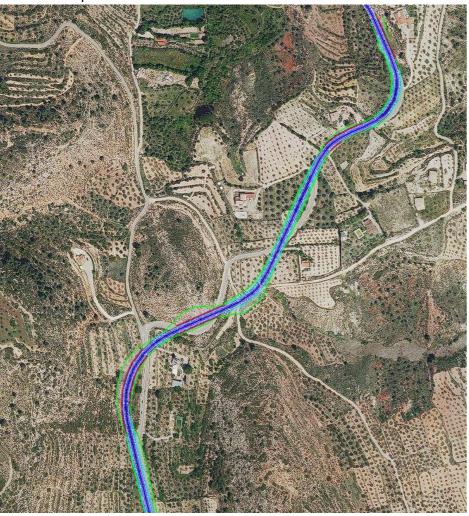


Figura 10. Cambio de trazado en curvas en "s" de radio inferior a 50m Fuente: Elaboración propia.

• Tramo II PK 0+200 - PK 0+574 Se han realizado cambios en los radios y parámetros en las curvas circulares de acuerdo a lo establecido por la normativa de trazado. Además, en la zona delimitada en rojo en la Figura X, se ha decidido colocar un muro con el objetivo de evitar un desmonte pronunciado que afectaría a las viviendas cercanas.

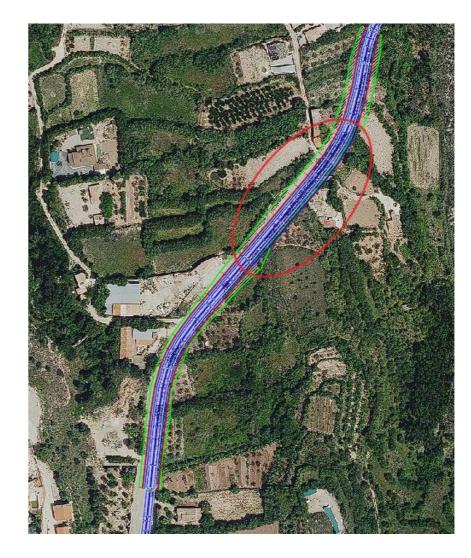


Figura 11. Mejora de radios y parámetros Fuente: Elaboración propia.

• Tramo II PK 1+300 - PK 1+723: Se ha realizado una desviación de la carretera hacia la izquierda con el objetivo de eliminar las curvas en "S" que no cumplían con la normativa. En su lugar, se ha diseñado una configuración en forma de "S" con radios mayores que se ajustan a los estándares establecidos y mejoran la consistencia de la vía. Además, se han mejorado los radios y parámetros de la última curva circular para garantizar el cumplimiento de la normativa de trazado.

Figura 12. Cambios en el trazado y mejora de las curvas circulares Fuente: Elaboración propia.

• Tramo II PK 1+800 - PK 2+427: Se han realizado modificaciones en el trazado de la carretera, reemplazando las curvas continuas con radios inferiores a 50 metros por una secuencia de curvas en forma de "S". Esta modificación tiene como objetivo mejorar el cumplimiento de la normativa de trazado, así como la consistencia y la visibilidad en la vía. Además, como se mencionó anteriormente, se ha utilizado la colocación de muros en la zona delimitada en color rojo para contrarrestar el impacto del gran movimiento de tierras que se generarían por el desmonte.

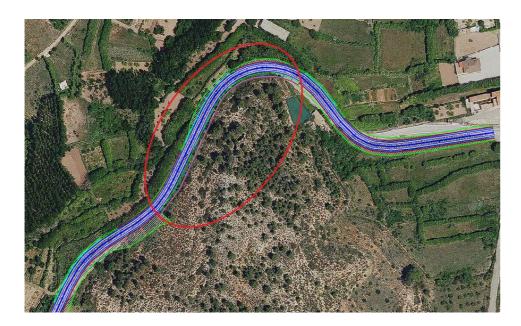


Figura 13. Cambios en el trazado y mejora de las curvas circulares Fuente: Elaboración propia.

Finalmente, en el **Comparativo 1**, se presenta una visión global de los trazados correspondientes a cada una de las alternativas, lo que facilita la apreciación de las características generales de cada una de ellas, como se ha descrito anteriormente.

Comparativo 1. Planta solución proyectada de las alternativas 1,2 y 3 Fuente: Elaboración propia.

5. Análisis multicriterio.

Es crucial considerar cuidadosamente todas las opciones disponibles al momento de tomar decisiones, por lo que es necesario emplear estrategias que reduzcan la posibilidad de error y aseguren que las decisiones se tomen con criterio. Para ello, se ha realizado un análisis multicriterio, que permite tener en cuenta y evaluar los factores más cruciales en el diseño de la carretera.

5.1. Criterios seleccionados

A continuación, se exponen los criterios seleccionados:

- Costes generales: El costo económico de la obra es un criterio de peso a la hora de seleccionar entre las distintas alternativas. Los dos aspectos clave que se evalúan son el movimiento de tierras y el aprovechamiento de la infraestructura existente.
 - Para evaluar el movimiento de tierras se ha hecho uso de modelos digitales del terreno (MDT) en base a los trazados de cada una de las alternativas, permitiendo conocer así la cantidad de desmonte o terraplén necesario.
 - El aprovechamiento de las infraestructuras existentes consta principalmente de maximizar la conservación de las secciones de la vía que mantiene su trazado original, reduciendo así las operaciones a realizar y, por lo tanto, el coste general.
- Seguridad vial: Los dos aspectos clave a analizar en este criterio son la consistencia y la visibilidad.
 - Consistencia: Globalmente, se analizará qué alternativa ofrece una mayor consistencia, ya que una mayor consistencia implica una mayor seguridad en la carretera. En el caso de la consistencia local se valorará negativamente la cantidad de tramos calificados con una consistencia pobre, por otro lado, en la consistencia global, se tendrá en cuenta el número de accidentes estimados en 10 años.
 - Visibilidad: Se valorará la cantidad de tramos en los que no se cumpla la normativa, así como la presencia de puntos ciegos en curvas o intersecciones.
- Impacto ambiental e integración paisajística: Se tendrán en cuenta aspectos como el uso del suelo e de igual forma que en los costes generales el aprovechamiento de la infraestructura existente.
 - Uso del suelo: Se analizará aquellas opciones que requieran una mayor deforestación de las áreas naturales, del mismo modo, se tendrá en cuenta la integración paisajística del trazado. Es importante seleccionar aquellas alternativas que minimicen la pérdida de vegetación y la alteración de los ecosistemas existentes.
- Trazado: Se valorará positivamente un mayor cumplimiento de la normativa 3.1IC tanto para el trazado en planta como en alzado.

- Funcionalidad: Para garantizar una buena operatividad se deben de tener en cuenta los siguientes factores:
 - Eficiencia del tráfico: Se evaluará la capacidad de los usuarios para desplazarse de una forma segura y fluida.
 - Comodidad del conductor: Se examinará la variación de los radios de curvatura a lo largo del trazado de la carretera, así como los cambios de pendientes con el objetivo de minimizar los cambios bruscos y mantener radios y acuerdos verticales adecuados.

5.2. Valoración de los criterios

Para evaluar los criterios y/o subcriterios se les dará un valor de 0 siendo este el peor y 10 siendo el mejor en función de su cumplimiento con los criterios seleccionados.

5.2.1. Costes generales

En la **Gráfica 1** se puede observar un comparativo entre el movimiento de tierras asociado a cada una de las alternativas y el coste que este supone. Se puede observar que la Alternativa 2 muestra un menor movimiento de tierras en comparación con las demás alternativas, lo cual la hace notablemente más económica. Por esta razón, se le asigna un valor de 9. Por otro lado, las Alternativas 3 y 2 están bastante cercanas en términos de movimiento de tierras y coste, aunque se puede observar que en la Alternativa 3 es mayor. En consecuencia, se le asigna un valor de 6 a la Alternativa 3 y un valor de 7 a la Alternativa 1.

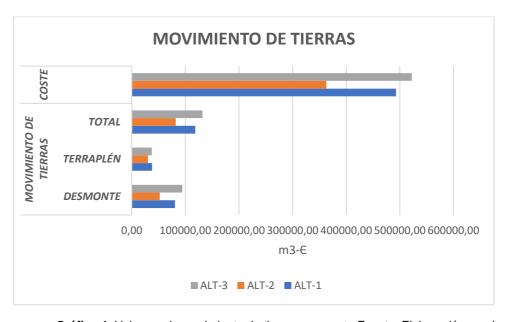


Gráfico 1. Volumen de movimiento de tierras y su coste Fuente: Elaboración propia.

Por otro lado, se ha establecido un porcentaje para representar la cantidad de trazado que se ha mantenido sin cambios significativos o que ha sido ligeramente modificado, lo cual ha resultado en un menor coste de ejecución.

- Alternativa 1 41%
- Alternativa 2 82%
- Alternativa 3 49%

En relación con los porcentajes definidos, donde el valor máximo del 100% se corresponde con una puntuación de 10, se puede establecer que la Alternativa 1 obtiene una puntuación de 4.1, la Alternativa 2 alcanza una puntuación de 8.2, y la Alternativa 3 se sitúa en una puntuación de 4.9.

5.2.2. Seguridad vial

Se ha realizado una evaluación en la cual se ha medido el área que refleja un mayor cumplimiento tanto en términos de consistencia como de visibilidad. De esta manera, la alternativa que ha obtenido una mayor valoración es aquella que presenta un mayor nivel de cumplimiento en estos aspectos.

Para evaluar la seguridad vial, se ha obtenido el porcentaje de inconsistencias clasificadas como buenas, aceptables o pobres en cada una de las alternativas (**Tabla 4**). Esto nos permite realizar una comparación entre las distintas alternativas y determinar su nivel de cumplimiento en términos de seguridad vial.

ALTERNATIVA	TIPO DE INCONSISTENCIA						
ALIERIVATIVA	BUENA	ACEPTABLE	POBRE				
1	14,1	62,5	23,4				
2	19,4	51,4	29,2				
3	25,0	54,2	20,8				

Tabla 4. Porcentaje de tipos de inconsistencias. Fuente: Elaboración propia

Tras analizar los porcentajes de inconsistencias, se ha determinado que la alternativa 3 muestra un mayor cumplimiento en términos de seguridad vial. Esto se debe a que presenta un menor porcentaje de inconsistencias clasificadas como pobres y un mayor porcentaje de inconsistencias calificadas como buenas y aceptables. Por consiguiente, se le ha asignado una puntuación de 9. Por otro lado, la alternativa 1 obtuvo una puntuación de 7.9, mientras que la alternativa 2 obtuvo una puntuación de 5.5.

En cuanto a la visibilidad, se ha calculado el porcentaje de carretera que cumple con la normativa establecida:

Alternativa 1 – 80%

- Alternativa 2 75%
- Alternativa 3 90%

En relación a los porcentajes establecidos, donde el valor máximo del 100% equivale a una puntuación de 10, se puede concluir que la Alternativa 1 obtiene una puntuación de 8, la Alternativa 2 alcanza una puntuación de 7.5, y la Alternativa 3 se sitúa en una puntuación de 9.

5.2.3. Impacto ambiental e integración paisajística

Se ha asignado una valoración negativa a aquellas zonas de las alternativas que se alejan más del trazado original de la carretera y generen un mayor impacto visual en el entorno natural, ya que esto implicaría una mayor afectación en el medio natural. De acuerdo con este criterio, las alternativas que generan menor impacto ambiental obtienen una puntuación más alta. En este sentido, la Alternativa 2 ha sido calificada como la mejor opción, con una valoración de 8. A continuación, la Alternativa 3 ha obtenido una valoración de 7.5, indicando un nivel moderado de afección al medio ambiente. Por último, la Alternativa 1 ha sido calificada con una puntuación de 6, mostrando un grado más alto de afección al entorno en comparación con las otras alternativas.

5.2.4. Trazado

En el siguiente **Comparativo de tablas 1** se muestra el porcentaje de trazado existente que se ajusta a la normativa 3. IC de trazado en relación a la planta. Es importante destacar que todas las alternativas cumplen en su totalidad con dicha normativa en cuanto al alzado, por lo que no se ha realizado una comparación específica. La valoración se basará en el grado de cumplimiento de la normativa 3. IC de trazado en relación a la planta, por lo que, la alternativa que presente un mayor grado de cumplimiento será considerada como la mejor valorada, mientras que aquella que tenga un menor cumplimiento será considerada como la peor valorada.

Planta	Cumple	No cumple	% Cumple
Α	24	32	42,9
L	19	16	54,3
R	25	8	75,8
CRC	16	17	48,5
TOTAL	84	73	53,5

Planta	Cumple	No cumple	% Cumple		
Α	21	41	33,9		
L	18	20	47,4 68,2 42,1		
R	30	14			
CRC	16	22			
TOTAL	85	97	46,7		

Planta	Cumple	ımple No cumple			
Α	30	30	50,0		
L	21	15	58,3		
R	27	8	77,1		
CRC	18	17	51,4		
TOTAL	96	70	57,8		

Comparativo de tablas 1. Porcentaje de elementos que cumplen con la normativa: Elaboración propia.

Como se puede apreciar en las tablas, la alternativa 3 muestra un mayor grado de cumplimiento, lo cual la posiciona como la mejor opción con una puntuación de 8; por otro lado, la alternativa 1 también obtiene una valoración destacada, con un valor de 7.4; y finalmente, la alternativa 2 se sitúa en tercer lugar con una puntuación de 4.5.

5.2.5. Funcionalidad

Se ha medido la velocidad media de los usuarios en cada alternativa, así como el tiempo que tarda el usuario en recorrer cada alternativa, por otro lado, se ha contemplado también la comodidad de ese trayecto es decir la presencia de variaciones bruscas de pendientes y que se adopten unas curvas circulares y de acuerdo adecuadas, la suma de todo esto hará que la alternativa sea mejor valorada.

En el **Comparativo de tablas 2** podemos observar podemos observar las distintas velocidades medias de operación, así como el tiempo de recorrido de cada alternativa en minutos.

Alternativa 1	V85 media (Km/hora)	Tiempo de recorrido (min)			
T1	72,8	2,56			
T2	76,71	1,89			
TOTAL	74,76	4,44			

Alternativa 2	V85 media (Km/hora)	Tiempo de recorrido (min)			
T1	72,89	2,62			
T2	77,14	1,88			
TOTAL	75,02	4,50			

Alternativa 3	V85 media (Km/hora)	Tiempo de recorrido (min)		
T1	72,84	2,58		
T2	77,3	1,88		
TOTAL	75,07	4,47		

Comparativo de tablas 2. Velocidad media y tiempo de recorrido: Elaboración propia.

Al analizar los datos, podemos observar que no existe una diferencia significativa entre las distintas alternativas en este aspecto. Se ha asignado una puntuación de 8 a la alternativa 1 y de 7.8 a las alternativas 2 y 3.

Finalmente, tras analizar los trazados, en cuanto a la comodidad de los conductores se refiere se ha otorgado una puntuación de 8 a la alternativa 3, de 7 a la alternativa 1 y de 6 a la alternativa 2.

5.2.6. Resultados

En la **Tabla 5** se presenta un resumen de todas las puntuaciones definidas en la valoración de criterios.

	COSTES GENERALES		SEGURIDAD VIAL		IMPACTO AMBIENTAL	TRAZADO	FUNCIONALIDAD		
ALTERNATIVAS Mov.Tierras		Aprov.Inftra	Aprov.Inftra Consistencia Visibilidad		Conservación del entorno	Cumplimiento normativa	Efic.Tráfico	Comodidad	
1	7	4,1	7,9	8	6	7,4	8	7	
2	9	8,2	5,5	7,5	8	5	7,8	6	
3	6	4,9	9	9	7,5	8	7,8	8	

Tabla 5. Valoración de los criterios: Elaboración propia.

5.3. Ponderación

Una vez definida la valoración de cada uno de los criterios y sus factores, se ha asignado un porcentaje de pesos a cada de uno de ellos, considerando que no todos los factores tienen la misma importancia en la ponderación de un criterio determinado. Por lo que analizando cada criterio individualmente obtenemos los siguientes valores:

- Costes generales (25%):
 - Movimiento de tierra (60%): El movimiento de tierra es uno de los aspectos más costos a la hora de realizar la obra por lo que se le asigna un mayor peso.
 - Aprovechamiento de infraestructura existente (40%): Al aprovechar la infraestructura existente podemos reducir los costes de movimiento de tierras, sin embargo, aún se deben realizar operaciones como la colocación del firme y la explanada por lo que adopta un valor menor.
- Seguridad Vial (30%):
 - Consistencia (55%): Se considera un peso mayor en la consistencia debido a que es una característica crucial para reducir el riesgo de accidentes.
 - Visibilidad (45%): Es de gran importancia proporcionar una buena capacidad de reacción a los conductores para anticiparse ante situaciones de peligro, no obstante, se
 - le determina un porcentaje ligeramente inferior por la dificultad de cumplimiento en zonas determinadas del trazado.

- Impacto ambiental (20%):
 - Conservación del entorno (100%): La conservación del suelo, la reducción de la deforestación y la minimización del impacto visual en el entorno natural son aspectos fundamentales en la evaluación del impacto ambiental de la carretera.
- Trazado (15%):
 - Cumplimiento de la normativa (100%): Se valorará positivamente el cumplimiento de las normativas.
- Funcionalidad (10%):
 - Eficiencia del tráfico (55%): Es importante asegurar una conducción segura y fluida, por lo que se asigna un mayor porcentaje.
 - Comodidad del conductor (45%): Genera un impacto en la experiencia del conductor a través de la facilidad y confort durante la conducción, considerando aspectos como curvas suaves, pendientes adecuadas, entre otros.

5.4. Cuadro comparativo.

Una vez definidos los valores y ponderaciones de cada criterio, en el siguiente cuadro comparativo se presentan los valores ponderados para cada uno de los criterios generales, así como la puntuación total obtenida (**Tabla 6**).

ALTERNATIVAS	COSTES GENERALES	SEGURIDAD VIAL	IMPACTO AMBIENTAL	TRAZADO	FUNCIONALIDAD	TOTAL	
1	5,8	7,9	6	7,4	7,6	6,9	
2	8,7	6,4	8	5	7	7,1	
3	5,6	9	7,5	8	7,9	7,6	

Tabla 6. Cuadro comparativo: Elaboración propia.

Al analizar los resultados, se puede concluir que la alternativa 3 ha obtenido la puntuación total más alta. Aunque esta alternativa tiene un desempeño menos favorable en términos de costes generales, compensa esta debilidad con un buen rendimiento en seguridad vial, trazado y operatividad. Desde un punto de vista objetivo y neutral, la alternativa 3 se muestra como la opción más adecuada para su ejecución. Sin embargo, es importante mencionar que las otras alternativas también presentan resultados cercanos en puntuación. Por lo tanto, la elección final dependerá de los intereses y preferencias del promotor del proyecto.

Apéndice 1: Estados de alineaciones

Número de elemento	Tipo de elemento	P.K. inicial	P.K. final	Longitud	Radio	۸	Cı	umplimiento	de la normati	va
Numero de elemento	ripo de elemento	P.K. IIIICiai	P.K. IIIIai	Longituu	Naulu	Α	Α	L	R	CRC
1	Recta	0	345,03	345,303				Cumple		
2	Clotoide	345,03	390,03	45		60	Cumple			
3	Curva circular	390,03	483,032	93,016	80				Cumple	Cumple
4	Clotoide	483,032	528,032	45		60	Cumple			
5	Recta	528,032	588,075	60,434				Cumple		
6	Clotoide	588,075	635,07	46,944		65	Cumple			
7	Curva circular	635,07	704,015	68,45	90				Cumple	Cumple
8	Clotoide	704,015	751,009	46,944		65	Cumple			
9	Recta	751,009	999,049	248,403				Cumple		
10	Clotoide	999,049	1045,073	46,24		68	Cumple			
11	Curva circular	1045,073	1045,079	0,051	100				Cumple	Cumple
12	Clotoide	1045,079	1092,003	46,24		68	Cumple			
13	Recta	1092,003	1369,07	277,678				Cumple		
14	Clotoide	1369,07	1416,037	46,667		70	Cumple			
15	Curva circular	1416,037	1417	0,626	105				Cumple	Cumple
16	Clotoide	1417	1463,066	46,667		70	Cumple			
17	Recta	1463,066	1533,085	70,183				Cumple		
18	Clotoide	1533,085	1581,003	47,184		68	Cumple			
19	Curva circular	1581,003	1581,032	0,293	98				Cumple	Cumple
20	Clotoide	1581,032	1628,051	47,184		68	Cumple			
21	Recta	1628,051	1718,056	90,058				Cumple		
22	Clotoide	1718,056	1763,019	44,628		59	Cumple			
23	Curva circular	1763,019	1767,097	4,781	78				Cumple	Cumple
24	Clotoide	1767,097	1812,06	44,628		59	Cumple			
25	Recta	1812,06	2198,006	385,462				Cumple		
26	Clotoide	2198,006	2250,088	52,812		65	Cumple			
27	Curva circular	2250,088	2287,095	37,077	80				Cumple	Cumple
28	Clotoide	2287,095	2340,077	52,812		65	Cumple			
29	Recta	2340,077	2379,077	39,006				No cumple		
30	Clotoide	2379,077	2401,027	21,5		43	No cumple			
31	Curva circular	2401,027	2413,059	12,317	86				Cumple	Cumple
32	Clotoide	2413,059	2420,086	7,267		25	No cumple			
33	Recta	2420,086	2424,089	4,035				No cumple		
34	Clotoide	2424,089	2429,006	4,17		14	Cumple			
35	Curva circular	2429,006	2456,011	27,046	47				No cumple	No cumple
36	Clotoide	2456,011	2475,026	19,149		30	Cumple			
37	Recta	2475,026	2481,068	6,421				No cumple		

38	Clotoide	2481,068	2487,085	6,178		27	No cumple			
39	Curva circular	2487,085	2507,033	19,474	118				Cumple	No cumple
40	Clotoide	2507,033	2514,046	7,127		29	No cumple			
41	Recta	2514,046	2514,085	0,392				No cumple		
42	Curva circular	2514,085	2537,066	22,815	50				Cumple	No cumple
43	Recta	2537,066	2567,082	30,158				No cumple		
44	Curva circular	2567,082	2610,044	42,615	70				Cumple	No cumple
45	Recta	2610,044	2610,082	0,384				No cumple		
46	Clotoide	2610,082	2616,037	5,556		10	No cumple			
47	Curva circular	2616,037	2638,027	21,896	18				No cumple	No cumple
48	Clotoide	2638,027	2650,077	12,5		15	No cumple			
49	Recta	2650,077	2660,018	9,405				No cumple		
50	Clotoide	2660,018	2670,098	10,8		18	No cumple			
51	Curva circular	2670,098	2686,039	15,416	30				No cumple	No cumple
52	Clotoide	2686,039	2692,093	6,533		14	No cumple			
53	Recta	2692,093	2715,074	22,818				No cumple		
54	Clotoide	2715,074	2728,074	13		13	No cumple			
55	Curva circular	2728,074	2746,076	18,013	13				No cumple	No cumple
56	Clotoide	2746,076	2761,083	15,077		14	No cumple			
57	Recta	2761,083	2798,053	36,699				No cumple		
58	Clotoide	2798,053	2816,035	17,818		14	No cumple			
59	Curva circular	2816,035	2829,066	13,309	11				No cumple	No cumple
60	Clotoide	2829,066	2837,002	7,364		9	No cumple			
61	Recta	2837,002	2849,07	12,676				No cumple		
62	Clotoide	2849,07	2857,005	7,348		13	No cumple			
63	Curva circular	2857,005	2883,045	26,407	23				No cumple	No cumple
64	Clotoide	2883,045	2899,015	15,696		19	No cumple			
65	Recta	2899,015	2902,02	3,045				No cumple		
66	Clotoide	2902,02	2915	12,8		16	No cumple			
67	Curva circular	2915	2932,027	17,275	20				No cumple	No cumple
68	Clotoide	2932,027	2943,052	11,25		15	No cumple			
69	Recta	2943,052	2956,085	13,334				No cumple		
70	Clotoide	2956,085	2970,03	13,444		22	No cumple			
71	Curva circular	2970,03	2987,037	17,072	36				No cumple	No cumple
72	Clotoide	2987,037	3012,037	25		30	No cumple			
73	Recta	3012,037	3101,008	88,704				Cumple		

Tabla 1. Estado de alineaciones en planta (Alternativa 1, Tramo I) Fuente: Elaboración propia.

Número de	Tipo de elemento	P.K. inicial	P.K. final	Longitud	Radio	А	Cı	umplimiento	de la normat	iva
elemento	ripo de elemento	P.R. IIIICIAI	P.N. IIIIdi	Longituu	Naulo		Α	L	R	CRC
1	Recta	0	58,09	58,899				Cumple		
2	Curva circular	58,09	94,046	35,557	106				Cumple	Cumple
3	Recta	94,046	112,074	18,283				No cumple		
4	Curva circular	112,074	188,002	75,281	443				Cumple	No cumple
5	Recta	188,002	208,052	20,497				No cumple		
6	Clotoide	208,052	256,019	47,669		75	Cumple			
7	Curva circular	256,019	294,048	38,296	118				Cumple	No cumple
8	Clotoide	294,048	342,015	47,669		75	Cumple			
9	Recta	342,015	433,098	91,823				Cumple		
10	Clotoide	433,098	480,022	46,24		68	Cumple			
11	Curva circular	480,022	480,067	0,458	100				Cumple	Cumple
12	Clotoide	480,067	526,091	46,24		68	Cumple			
13	Recta	526,091	567,09	40,987				No cumple		
14	Clotoide	567,09	582,053	14,633		34	No cumple			
15	Curva circular	582,053	598,058	16,042	85				Cumple	No cumple
16	Clotoide	598,058	616,085	18,278		38	No cumple			
17	Recta	616,085	642,097	26,114				No cumple		
18	Clotoide	642,097	685,005	42,087		44	No cumple			
19	Curva circular	685,005	687,036	2,308	46				Cumple	No cumple
20	Clotoide	687,036	696,006	8,696		20	No cumple			
21	Recta	696,006	873,017	177,113				Cumple		
22	Curva circular	873,017	883,069	10,521	112				Cumple	No cumple
23	Recta	883,069	1215,009	331,398				Cumple		
24	Clotoide	1215,009	1261,033	46,24		68	No cumple			
25	Curva circular	1261,033	1261,043	0,095	129				Cumple	Cumple
26	Clotoide	1261,043	1307,067	46,24		68	No cumple		·	
27	Recta	1307,067	1371,006	63,392				Cumple		
28	Clotoide	1371,006	1415,032	44,263		58	No cumple			
29	Curva circular	1415,032	1430,051	15,19	76				Cumple	No cumple
30	Clotoide	1430,051	1474,077	44,263		58	No cumple		·	
31	Recta	1474,077	1649,005	174,28				Cumple		
32	Clotoide	1649,005	1693,05	44,444		60	Cumple			
33	Curva circular	1693,05	1724,058	31,08	81				Cumple	Cumple
34	Clotoide	1724,058	1769,002	44,444		60	Cumple			
35	Recta	1769,002	2064,036	295,341				Cumple		
36	Clotoide	2064,036	2107,068	43,32		57	No cumple			
37	Curva circular	2107,068	2191,059	83,902	75				Cumple	Cumple

38	Clotoide	2191,059	2234,091	43,32		57	No cumple			
39	Recta	2234,091	2235,014	0,235				Cumple		
40	Clotoide	2235,014	2278,065	43,512		59	Cumple			
41	Curva circular	2278,065	2291,08	13,143	80				Cumple	Cumple
42	Clotoide	2291,08	2335,031	43,512		59	Cumple			
43	Recta	2335,031	2410,056	75,254				Cumple		
44	Clotoide	2066,031	2109,053	43,215		53	No cumple			
45	Curva circular	2109,053	2200,084	91,311	65				Cumple	Cumple
46	Clotoide	2200,084	2244,006	43,215		53	No cumple			
47	Recta	2244,006	2244,024	0,182				Cumple		
48	Clotoide	2244,024	2284,04	40,164		47	No cumple			
49	Curva circular	2284,04	2304,017	19,767	55				Cumple	Cumple
50	Clotoide	2304,017	2344,033	40,164		47	No cumple			
51	Recta	2344,033	2427,089	83,563				Cumple		

Tabla 2. Estado de alineaciones en planta (Alternativa 1, Tramo II) Fuente: Elaboración propia.

Número de elemento	Tipo de elemento	P.K. inicial	P.K. final	Longitud	Radio	Λ.	Cı	umplimiento d	le la normat	iva
Numero de elemento	ripo de elemento	P.R. IIIICIAI	P.K. IIIIai	Longituu	Naulu	Α	Α	L	R	CRC
1	Recta	0	161,055	161,546				Cumple		
2	Curva circular	161,055	177,086	16,315	250				Cumple	Cumple
3	Recta	177,086	300,073	122,87				Cumple		
4	Clotoide	300,073	346,097	46,24		68	Cumple			
5	Curva circular	346,097	347,073	0,761	100				Cumple	No cumple
6	Clotoide	347,073	363,073	16		40	No cumple			
7	Recta	363,073	406,001	42,276				No cumple		
8	Clotoide	406,001	441,029	35,28		42	No cumple			
9	Curva circular	441,029	511,006	69,773	50				Cumple	No cumple
10	Clotoide	511,006	546,034	35,28		42	No cumple			
11	Recta	546,034	623,034	77,001				Cumple		
12	Clotoide	623,034	669,058	46,24		68	Cumple			
13	Curva circular	669,058	770,037	100,79	100				Cumple	No cumple
14	Clotoide	770,037	816,061	46,24		68	Cumple		•	
15	Recta	816,061	983,096	167,349			·	Cumple		
16	Clotoide	983,096	1053,021	69,245		162	No cumple	·		
17	Curva circular	1053,021	1088,067	35,462	379		·		Cumple	No cumple
18	Clotoide	1088,067	1157,091	69,245		162	No cumple			
19	Recta	1157,091	1267,084	109,925				No cumple		
20	Clotoide	1267,084	1317,055	49,707		93	Cumple	·		
21	Curva circular	1317,055	1317,065	0,102	174				Cumple	No cumple
22	Clotoide	1317,065	1350,084	33,195		76	No cumple			
23	Recta	1350,084	1420	69,157				No cumple		
24	Clotoide	1420	1474,015	54,15		114	Cumple			
25	Curva circular	1474,015	1478,091	4,759	240				Cumple	Cumple
26	Clotoide	1478,091	1517,031	38,4		96	No cumple			
27	Recta	1517,031	1662,021	144,901				Cumple		
28	Curva circular	1662,021	1705,014	42,933	253				Cumple	Cumple
29	Recta	1705,014	1733,08	28,655				No cumple		
30	Clotoide	1733,08	1778,08	45		60	Cumple			
31	Curva circular	1778,08	1839,078	60,983	80				Cumple	No cumple
32	Clotoide	1839,078	1884,078	45		60	Cumple			
33	Recta	1884,078	1886,043	1,651				No cumple		
34	Clotoide	1886,043	1939,059	53,157		61	Cumple			
35	Curva circular	1939,059	1951,017	11,578	70				Cumple	Cumple
36	Clotoide	1951,017	2004,033	53,157		61	Cumple			3
37	Recta	2004,033	2152,089	148,564			Campic	Cumple		

38	Clotoide	2152,089	2202,05	49,613		61	Cumple			
39	Curva circular	2202,05	2217,044	14,934	75				Cumple	Cumple
40	Clotoide	2217,044	2267,005	49,613		61	Cumple			
41	Recta	2267,005	2267,061	0,565				Cumple		
42	Clotoide	2267,061	2333,076	66,15		63	Cumple			
43	Curva circular	2333,076	2364,094	31,174	60				Cumple	Cumple
44	Clotoide	2364,094	2431,009	66,15		63	Cumple			
45	Recta	2431,009	2469,03	38,211				No cumple		
46	Clotoide	2469,03	2490,08	21,5		43	No cumple			
47	Curva circular	2490,08	2497,041	6,607	86				Cumple	No cumple
48	Clotoide	2497,041	2504,067	7,267		25	No cumple			
49	Recta	2504,067	2511,06	6,926				No cumple		
50	Clotoide	2511,06	2515,077	4,17		14	No cumple			
51	Curva circular	2515,077	2541,057	25,802	47				No cumple	No cumple
52	Clotoide	2541,057	2560,072	19,149		30	No cumple			
53	Recta	2560,072	2567,079	7,071				No cumple		
54	Clotoide	2567,079	2573,097	6,178		27	No cumple			
55	Curva circular	2573,097	2593,005	19,078	118				Cumple	No cumple
56	Clotoide	2593,005	2600,018	7,127		29	No cumple			
57	Recta	2600,018	2600,077	0,593				Cumple		
58	Curva circular	2600,077	2623,058	22,815	50				Cumple	Cumple
59	Recta	2623,058	2653,074	30,158				No cumple		
60	Curva circular	2653,074	2696,036	42,615	70				Cumple	Cumple
61	Recta	2696,036	2696,074	0,384				Cumple		
62	Clotoide	2696,074	2702,03	5,556		10	No cumple			
63	Curva circular	2702,03	2724,019	21,896	18				No cumple	No cumple
64	Clotoide	2724,019	2736,069	12,5		15	No cumple			
65	Recta	2736,069	2746,01	9,405				No cumple		
66	Clotoide	2746,01	2756,09	10,8		18	No cumple			
67	Curva circular	2756,09	2772,031	15,416	30				No cumple	No cumple
68	Clotoide	2772,031	2778,085	6,533		14	No cumple			
69	Recta	2778,085	2801,066	22,818				No cumple		
70	Clotoide	2801,066	2814,066	13		13	No cumple			
71	Curva circular	2814,066	2832,068	18,013	13				No cumple	No cumple
72	Clotoide	2832,068	2847,075	15,077		14	No cumple			
73	Recta	2847,075	2884,045	36,699				No cumple		
74	Clotoide	2884,045	2902,027	17,818		14	No cumple			
75	Curva circular	2902,027	2915,058	13,309	11				No cumple	No cumple
76	Clotoide	2915,058	2922,094	7,364		9	No cumple			

77	Recta	2922,094	2935,062	12,676				No cumple		
78	Clotoide	2935,062	2942,097	7,348		13	No cumple			
79	Curva circular	2942,097	2969,037	26,407	23				No cumple	No cumple
80	Clotoide	2969,037	2985,007	15,696		19	No cumple			
81	Recta	2985,007	2988,012	3,045				No cumple		
81	Clotoide	2988,012	3000,092	12,8		16	No cumple			
81	Curva circular	3000,092	3018,019	17,275	20				No cumple	No cumple
81	Clotoide	3018,019	3029,044	11,25		15	No cumple			
81	Recta	3029,044	3042,078	13,334				No cumple		
81	Clotoide	3042,078	3056,022	13,444		22	No cumple			
81	Curva circular	3056,022	3073,029	17,072	36				No cumple	No cumple
81	Clotoide	3073,029	3098,029	25		30	No cumple			

Tabla 3. Estado de alineaciones en planta (Alternativa 2, Tramo I) Fuente: Elaboración propia.

Número de elemento	Tipo de elemento	P.K. inicial	P.K. final	Longitud	Radio	۸	Cu	mplimiento de	e la normat	iva
Numero de elemento	ripo de elemento	P.K. IIIICIAI	P.K. IIIIdi	Longituu	Naulo	Α	Α	L	R	CRC
1	Recta	0	62,001	62,011				Cumple		
2	Curva circular	62,001	87,078	25,768	76				Cumple	Cumple
3	Recta	87,078	87,08	0,019				Cumple		
4	Curva circular	87,08	208,069	120,895	721				Cumple	No cumple
5	Recta	208,069	218,042	9,727				No cumple		
6	Clotoide	218,042	264,066	46,24		68	Cumple			
7	Curva circular	264,066	286,012	21,464	100				Cumple	No cumple
8	Clotoide	286,012	332,036	46,24		68	Cumple			
9	Recta	332,036	456,023	123,863				Cumple		
10	Clotoide	456,023	504,036	48,133		76	Cumple			
11	Curva circular	504,036	514,08	10,437	120				Cumple	Cumple
12	Clotoide	514,08	562,093	48,133		76	Cumple			
13	Recta	562,093	563,037	0,441				Cumple		
14	Clotoide	563,037	577,013	13,762		34	No cumple			
15	Curva circular	577,013	602,039	25,26	85				Cumple	Cumple
16	Clotoide	602,039	619,058	17,19		38	No cumple			
17	Recta	619,058	634,033	14,744				No cumple		
18	Clotoide	634,033	677,088	43,556		56	No cumple			
19	Curva circular	677,088	678,016	0,281	72				Cumple	Cumple
20	Clotoide	678,016	721,072	43,556		56	No cumple			-
21	Recta	721,072	835,042	113,702				Cumple		
22	Curva circular	835,042	907,055	72,134	581				Cumple	No cumple
23	Recta	907,055	1288,084	381,285				Cumple		-
24	Clotoide	1288,084	1335,008	46,24		68	No cumple			
25	Curva circular	1335,008	1336,06	1,522	129				Cumple	No cumple
26	Clotoide	1336,06	1352,06	16		40	No cumple		·	·
27	Recta	1352,06	1415,077	63,17				Cumple		
28	Clotoide	1415,077	1459,033	43,556		56	No cumple			
29	Curva circular	1459,033	1462,034	3,013	72				Cumple	No cumple
30	Clotoide	1462,034	1505,09	43,556		56	No cumple			
31	Recta	1505,09	1635	129,109				Cumple		
32	Clotoide	1635	1679,045	44,444		60	Cumple			
33	Curva circular	1679,045	1719,008	39,631	81				Cumple	Cumple
34	Clotoide	1719,008	1763,052	44,444		60	Cumple			
35	Recta	1763,052	1814,039	50,862				No cumple		
36	Clotoide	1814,039	1840,066	26,273		51	No cumple			
37	Curva circular	1840,066	1862,008	21,42	99				Cumple	Cumple

38	Clotoide	1862,008	1879,006	16,98		41	No cumple			
39	Recta	1879,006	1906,097	27,914				No cumple		
40	Clotoide	1906,097	1956,02	49,231		80	Cumple			
41	Curva circular	1956,02	1961,049	5,291	130				Cumple	Cumple
42	Clotoide	1961,049	2010,073	49,231		80	Cumple			
43	Recta	2010,073	2078,001	67,284				Cumple		
44	Clotoide	2078,001	2113,029	35,28		42	No cumple			
45	Curva circular	2113,029	2171,001	57,718	50				Cumple	No cumple
46	Clotoide	2171,001	2206,029	35,28		42	No cumple			
47	Recta	2206,029	2241,021	34,925				No cumple		
48	Clotoide	2241,021	2276,049	35,28		42	No cumple			
49	Curva circular	2276,049	2283,014	6,652	50				Cumple	Cumple
50	Clotoide	2283,014	2318,042	35,28		42	No cumple			

Tabla 4. Estado de alineaciones en planta (Alternativa 2, Tramo II) Fuente: Elaboración propia.

Número de elemento	Tipo de elemento	P.K. inicial	P.K. final	Longitud	Radio	Α	Cı	umplimiento d	de la normat	va
Numero de elemento	ripo de elemento	r.K. IIIIciai	F.K. IIIIai	Longituu	Naulo	A	Α	L	R	CRC
1	Recta	0	359,067	359,666				Cumple		
2	Clotoide	359,067	404,067	45		60	Cumple			
3	Curva circular	404,067	507,03	102,634	80				Cumple	Cumple
4	Clotoide	507,03	552,03	45		60	Cumple			
5	Recta	552,03	552,032	0,022				Cumple		
6	Clotoide	552,032	598,056	46,24		68	Cumple			
7	Curva circular	598,056	699,059	101,022	100				Cumple	Cumple
8	Clotoide	699,059	745,083	46,24		68	Cumple			
9	Recta	745,083	945,039	199,566				Cumple		
10	Clotoide	945,039	998	52,609		110	Cumple			
11	Curva circular	998	1011	13	230				Cumple	No cumple
12	Clotoide	1011	1063,061	52,609		110	Cumple			
13	Recta	1063,061	1193,058	129,975				Cumple		
14	Clotoide	1193,058	1248,051	54,922		116	Cumple			
15	Curva circular	1248,051	1254,088	6,369	245		·		Cumple	Cumple
16	Clotoide	1254,088	1309,08	54,922		116	Cumple		•	
17	Recta	1309,08	1373,043	63,628			·	No cumple		
18	Clotoide	1373,043	1424,043	51,005		101	Cumple	·		
19	Curva circular	1424,043	1425,068	1,25	200				Cumple	Cumple
20	Clotoide	1425,068	1476,069	51,005		101	Cumple		•	
21	Recta	1476,069	1631,067	154,98			·	Cumple		
22	Clotoide	1631,067	1678,079	47,127		72	Cumple			
23	Curva circular	1678,079	1784,044	105,644	110		•		Cumple	No cumple
24	Clotoide	1784,044	1831,056	47,127		72	Cumple		•	
25	Recta	1831,056	1893,006	61,491				Cumple		
26	Clotoide	1893,006	1939,021	46,154		60	Cumple			
27	Curva circular	1939,021	1949,076	10,549	78		•		Cumple	Cumple
28	Clotoide	1949,076	1995,091	46,154		60	Cumple		•	
29	Recta	1995,091	2135,025	139,338			·	Cumple		
30	Clotoide	2135,025	2178,046	43,214		55	No cumple			
31	Curva circular	2178,046	2187,034	8,871	70				Cumple	Cumple
32	Clotoide	2187,034	2230,055	43,214		55	No cumple			
33	Recta	2230,055	2230,06	0,053				Cumple		
34	Clotoide	2230,06	2272,055	41,952		51	Cumple			
35	Curva circular	2272,055	2328,07	56,146	62		Californ		Cumple	Cumple
36	Clotoide	2328,07	2370,065	41,952		51	Cumple		- CE.IIIpic	osipic
37	Recta	2370,065	2418,097	48,317			Carripic	Cumple		

38	Clotoide	2418,097	2440,047	21,5		43	No cumple			
39	Curva circular	2440,047	2446,063	6,158	86				Cumple	No cumple
40	Clotoide	2446,063	2453,09	7,267		25	No cumple			
41	Recta	2453,09	2457,022	3,321				No cumple		
42	Clotoide	2457,022	2461,039	4,17		14	No cumple			
43	Curva circular	2461,039	2487,059	26,2	47				No cumple	No cumple
44	Clotoide	2487,059	2506,074	19,149		30	No cumple			
45	Recta	2506,074	2517,041	10,677				No cumple		
46	Clotoide	2517,041	2523,059	6,178		27	No cumple			
47	Curva circular	2523,059	2533,079	10,202	118				Cumple	No cumple
48	Clotoide	2533,079	2540,092	7,127		29	No cumple			
49	Recta	2540,092	2552,035	11,431				No cumple		
50	Curva circular	2552,035	2574,008	21,725	50				Cumple	No cumple
51	Recta	2574,008	2604,083	30,754				No cumple		
52	Curva circular	2604,083	2636,018	31,355	50				Cumple	Cumple
53	Recta	2636,018	2645,02	9,017				No cumple		
54	Clotoide	2645,02	2650,076	5,556		10	No cumple			
55	Curva circular	2650,076	2671,07	20,944	18				No cumple	No cumple
56	Clotoide	2671,07	2684,02	12,5		15	No cumple			
57	Recta	2684,02	2692,021	8,004				No cumple		
58	Clotoide	2692,021	2703,001	10,8		18	No cumple			
59	Curva circular	2703,001	2719,02	16,197	30				No cumple	No cumple
60	Clotoide	2719,02	2725,074	6,533		14	No cumple			
61	Recta	2725,074	2748,04	22,667				No cumple		
62	Clotoide	2748,04	2761,04	13		13	No cumple			
63	Curva circular	2761,04	2779,047	18,065	13				No cumple	No cumple
64	Clotoide	2779,047	2794,054	15,077		14	No cumple			
65	Recta	2794,054	2830,099	36,447				No cumple		
66	Clotoide	2830,099	2848,081	17,818		14	No cumple			
67	Curva circular	2848,081	2862,012	13,309	11				No cumple	No cumple
68	Clotoide	2862,012	2869,048	7,364		9	No cumple			
69	Recta	2869,048	2882,016	12,676				No cumple		
70	Clotoide	2882,016	2889,051	7,348		13	No cumple			
71	Curva circular	2889,051	2915,091	26,407	23				No cumple	No cumple
72	Clotoide	2915,091	2931,061	15,696		19	No cumple			
73	Recta	2931,061	2934,065	3,045				No cumple		
74	Clotoide	2934,065	2947,045	12,8		16	No cumple			
75	Curva circular	2947,045	2964,073	17,275	20				No cumple	No cumple
76	Clotoide	2964,073	2975,098	11,25		15	No cumple			

77	Recta	2975,098	2989,031	13,334				No cumple		
78	Clotoide	2989,031	3002,076	13,444		22	No cumple			
79	Curva circular	3002,076	3019,083	17,072	36				No cumple	No cumple
80	Clotoide	3019,083	3044,083	25		30	No cumple			
81	Recta	3044,083	3133,053	88,704				Cumple		

Tabla 5. Estado de alineaciones en planta (Alternativa 3, Tramo I) Fuente: Elaboración propia.

Número de	Tipo de elemento	P.K. inicial	P.K. final	Longitud	Radio	А	Cui	mplimiento de	la normat	iva
elemento	Tipo de elemento	r.K. IIIIciai	r.K. IIIdi	Longituu	Nauto	^	Α	L	R	CRC
1	Recta	0	60,091	60,914				Cumple		
2	Curva circular	60,091	88,091	27,991	91				Cumple	Cumple
3	Recta	88,091	140,08	51,898				No cumple		
4	Curva circular	140,08	156,046	15,653	339				Cumple	No cumple
5	Recta	156,046	229,065	73,198				Cumple		
6	Clotoide	229,065	275,089	46,24		68	Cumple			
7	Curva circular	275,089	289,008	13,188	100				Cumple	No cumple
8	Clotoide	289,008	335,032	46,24		68	Cumple			
9	Recta	335,032	448,039	113,064				Cumple		
10	Clotoide	448,039	496,052	48,133		76	Cumple			
11	Curva circular	496,052	512,001	15,487	120				Cumple	Cumple
12	Clotoide	512,001	560,014	48,133		76	Cumple			
13	Recta	560,014	560,024	0,104				Cumple		
14	Clotoide	560,024	574,001	13,762		34	No cumple			
15	Curva circular	574,001	602,036	28,36	85				Cumple	Cumple
16	Clotoide	602,036	619,056	17,19		38	No cumple			
17	Recta	619,056	632,016	12,6				No cumple		
18	Clotoide	632,016	675,071	43,556		56	No cumple			
19	Curva circular	675,071	676,085	1,141	72				Cumple	Cumple
20	Clotoide	676,085	720,041	43,556		56	No cumple			
21	Recta	720,041	775,015	54,743				No cumple		
22	Curva circular	775,015	961,034	186,191	1297				Cumple	No cumple
23	Recta	961,034	1251,037	290,024				Cumple		
24	Clotoide	1251,037	1307,037	56,008		85	Cumple			
25	Curva circular	1307,037	1308,059	1,218	129				Cumple	No cumple
26	Clotoide	1308,059	1364,06	56,008		85	Cumple			
27	Recta	1364,06	1364,063	0,035				Cumple		
28	Clotoide	1364,063	1419,008	54,444		70	Cumple			
29	Curva circular	1419,008	1433,079	14,708	90				Cumple	Cumple
30	Clotoide	1433,079	1488,023	54,444		70	Cumple			
31	Recta	1488,023	1637,06	149,37				Cumple		
32	Clotoide	1637,06	1682,005	44,444		60	Cumple			
33	Curva circular	1682,005	1723,069	41,645	81				Cumple	Cumple
34	Clotoide	1723,069	1768,013	44,444		60	Cumple			
35	Recta	1768,013	1827,062	59,484				Cumple		
36	Clotoide	1827,062	1872,062	45		60	Cumple			
37	Curva circular	1872,062	1875,003	2,416	80				Cumple	Cumple

38	Clotoide	1875,003	1920,003	45		60	Cumple			
39	Recta	1920,003	1920,064	0,606				Cumple		
40	Clotoide	1920,064	1965,064	45		60	Cumple			
41	Curva circular	1965,064	1967,016	1,515	80				Cumple	Cumple
42	Clotoide	1967,016	2012,016	45		60	Cumple			
43	Recta	2012,016	2066,031	54,159				Cumple		
44	Clotoide	2066,031	2109,053	43,215		53	No cumple			
45	Curva circular	2109,053	2200,084	91,311	65				Cumple	Cumple
46	Clotoide	2200,084	2244,006	43,215		53	No cumple			
47	Recta	2244,006	2244,024	0,182				Cumple		
48	Clotoide	2244,024	2284,04	40,164		47	No cumple	_		
49	Curva circular	2284,04	2304,017	19,767	55				Cumple	Cumple
50	Clotoide	2304,017	2344,033	40,164		47	No cumple			

Tabla 6. Estado de alineaciones en planta (Alternativa 3, Tramo II) Fuente: Elaboración propia.

Apéndice 2: Estados de rasantes

Nićas ara da alamanta	Time de alemente	D.K. initial	D.V. final	1	.,	Daniel auto		Cumpli	imiento de la	normativa	
Número de elemento	Tipo de elemento	P.K. inicial	P.K. final	Longitud	K	Pendiente	Kv.min	L	Estética	Pen.min	Pen.max
1	Rasante	0	134,094	134,941		5,42%				Cumple	Cumple
2	Convexo	134,094	231,018	96,238	1276		Cumple	Cumple	Cumple		
3	Rasante	231,018	392,009	160,914		-2,12%				Cumple	Cumple
4	Convexo	392,009	438,091	46,816	2390		Cumple	Cumple	Cumple		
5	Rasante	438,091	1021,05	582,587		-4,08%				Cumple	Cumple
6	Cóncavo	1021,05	1183,054	162,039	3184		Cumple	Cumple	Cumple		
7	Rasante	1183,054	1556,061	373,072		1,01%				Cumple	Cumple
8	Convexo	1556,061	1784,083	228,224	2860		Cumple	Cumple	Cumple		
9	Rasante	1784,083	1915,004	130,211		-6,97%				Cumple	Cumple
10	Cóncavo	1915,004	2007,003	91,987	3411		Cumple	Cumple	Cumple		
11	Rasante	2007,003	2329,007	322,036		-4,27%				Cumple	Cumple
12	Convexo	2329,007	2518,079	189,72	6939		Cumple	Cumple	Cumple		
13	Rasante	2518,079	3134,022	615,437		-7,01%				Cumple	Cumple

Tabla 1. Estado de rasantes (Alternativa 1, Tramo I) Fuente: Elaboración propia.

Némana da alamanta	The de alemente	D.K. initial	D.V. Smal	1	.,	Daniel anta		Cumpli	miento de la	normativa	
Número de elemento	Tipo de elemento	P.K. inicial	P.K. final	Longitud	K	Pendiente	Kv.min	L	Estética	Pen.min	Pen.max
1	Rasante	0	270,065	270,654		-6,97%				Cumple	Cumple
2	Cóncavo	270,065	338,078	68,121	4199		Cumple	Cumple	Cumple		
3	Rasante	338,078	903,044	564,662		-5,35%				Cumple	Cumple
4	Cóncavo	903,044	1009,052	106,085	1758		Cumple	Cumple	Cumple		
5	Rasante	1009,052	1458	448,473		0,68%				Cumple	Cumple
6	Convexo	1458	1507,04	49,409	1809		Cumple	Cumple	Cumple		
7	Rasante	1507,04	1630,026	122,853		-2,05%				Cumple	Cumple
8	Cóncavo	1630,026	1678,018	47,922	1786		Cumple	Cumple	Cumple		
9	Rasante	1678,018	1848,033	170,15		0,63%				Cumple	Cumple
10	Convexo	1848,033	1932,016	83,826	6171		Cumple	Cumple	Cumple		
11	Rasante	1932,016	2089,073	157,571		-0,73%				Cumple	Cumple
12	Convexo	2089,073	2139,097	50,24	8403		Cumple	Cumple	Cumple		
13	Rasante	2139,097	2290,064	150,671		-1,32%				Cumple	Cumple
14	Cóncavo	2290,064	2358,033	67,695	2635		Cumple	Cumple	Cumple		
15	Rasante	2358,033	2429,013	70,8		1,24%				Cumple	Cumple

Tabla 2. Estado de rasantes (Alternativa 1, Tramo II) Fuente: Elaboración propia.

Número de elemente	Time de alemante	D.K. inicial	D K final	l a sa aite sal		Dandianta		Cumpli	imiento de la	normativa	
Número de elemento	Tipo de elemento	P.K. inicial	P.K. final	Longitud	K	Pendiente	Kv.min	L	Estética	Pen.min	Pen.max
1	Rasante	0	134,094	134,941		5,42%				Cumple	Cumple
2	Convexo	134,094	231,018	96,238	1276		Cumple	Cumple	Cumple		
3	Rasante	231,018	392,009	160,914		-2,12%				Cumple	Cumple
4	Convexo	392,009	438,091	46,816	2390		Cumple	Cumple	Cumple		
5	Rasante	438,091	1021,05	582,587		-4,08%				Cumple	Cumple
6	Cóncavo	1021,05	1183,054	162,039	3184		Cumple	Cumple	Cumple		
7	Rasante	1183,054	1556,061	373,072		1,01%				Cumple	Cumple
8	Convexo	1556,061	1784,083	228,224	2860		Cumple	Cumple	Cumple		
9	Rasante	1784,083	1915,004	130,211		-6,97%				Cumple	Cumple
10	Cóncavo	1915,004	2007,003	91,987	3411		Cumple	Cumple	Cumple		
11	Rasante	2007,003	2329,007	322,036		-4,27%				Cumple	Cumple
12	Convexo	2329,007	2518,079	189,72	6939		Cumple	Cumple	Cumple		
13	Rasante	2518,079	3134,022	615,437		-7,01%				Cumple	Cumple

Tabla 3. Estado de rasantes (Alternativa 2, Tramo I) Fuente: Elaboración propia.

Número do elemento	Tino do alamanto	P.K. inicial	D V final	Longitud	V	Dondionto		Cumpli	miento de la	normativa	
Número de elemento	Tipo de elemento	P.K. INICIAI	P.K. final	Longitud	K	Pendiente	Kv.min	L	Estética	Pen.min	Pen.max
1	Rasante	0	270,065	270,654		-6,97%				Cumple	Cumple
2	Cóncavo	270,065	338,078	68,121	4199		Cumple	Cumple	Cumple		
3	Rasante	338,078	903,044	564,662		-5,35%				Cumple	Cumple
4	Cóncavo	903,044	1009,052	106,085	1758		Cumple	Cumple	Cumple		
5	Rasante	1009,052	1458	448,473		0,68%				Cumple	Cumple
6	Convexo	1458	1507,04	49,409	1809		Cumple	Cumple	Cumple		
7	Rasante	1507,04	1630,026	122,853		-2,05%				Cumple	Cumple
8	Cóncavo	1630,026	1678,018	47,922	1786		Cumple	Cumple	Cumple		
9	Rasante	1678,018	1848,033	170,15		0,63%				Cumple	Cumple
10	Convexo	1848,033	1932,016	83,826	6171		Cumple	Cumple	Cumple		
11	Rasante	1932,016	2089,073	157,571		-0,73%				Cumple	Cumple
12	Convexo	2089,073	2139,097	50,24	8403		Cumple	Cumple	Cumple		
13	Rasante	2139,097	2290,064	150,671		-1,32%				Cumple	Cumple
14	Cóncavo	2290,064	2358,033	67,695	2635		Cumple	Cumple	Cumple		
15	Rasante	2358,033	2429,013	70,8		1,24%				Cumple	Cumple

Tabla 4. Estado de rasantes (Alternativa 2, Tramo II) Fuente: Elaboración propia.

Niśmana da alamanta	The de alone and	D.K. initial	D.V. Small	1		Dan dianta		Cumpli	miento de la	normativa	
Número de elemento	Tipo de elemento	P.K. inicial	P.K. final	Longitud	K	Pendiente	Kv.min	L	Estética	Pen.min	Pen.max
1	Rasante	0	134,094	134,941		5,42%				Cumple	Cumple
2	Convexo	134,094	231,018	96,238	1276		Cumple	Cumple	Cumple		
3	Rasante	231,018	392,009	160,914		-2,12%				Cumple	Cumple
4	Convexo	392,009	438,091	46,816	2390		Cumple	Cumple	Cumple		
5	Rasante	438,091	1021,05	582,587		-4,08%				Cumple	Cumple
6	Cóncavo	1021,05	1183,054	162,039	3184		Cumple	Cumple	Cumple		
7	Rasante	1183,054	1556,061	373,072		1,01%				Cumple	Cumple
8	Convexo	1556,061	1784,083	228,224	2860		Cumple	Cumple	Cumple		
9	Rasante	1784,083	1915,004	130,211		-6,97%				Cumple	Cumple
10	Cóncavo	1915,004	2007,003	91,987	3747		Cumple	Cumple	Cumple		
11	Rasante	2007,003	2343,036	336,33		-4,51%				Cumple	Cumple
12	Convexo	2343,036	2496	152,635	6939		Cumple	Cumple	Cumple		
13	Rasante	2496	2627,021	131,213		-6,71%				Cumple	Cumple
14	Convexo	2627,021	2677,021	50	2539		Cumple	Cumple	Cumple		
15	Rasante	2677,021	2762,027	85,061		-8,68%				Cumple	Cumple
16	Cóncavo	2762,027	2812,027	50	4845		Cumple	Cumple	Cumple		
17	Rasante	2812,027	2961,082	149,55		-7,65%				Cumple	Cumple
18	Cóncavo	2961,082	3011,082	50	1460		Cumple	Cumple	Cumple		
19	Rasante	3011,082	3134,022	122,404		-4,23%				Cumple	Cumple

Tabla 5. Estado de rasantes (Alternativa 3, Tramo I) Fuente: Elaboración propia

Niómana da alamanta	Tine de elemente	D.K. inicial	D V final	Lanaitud		Dondiente		Cumpli	miento de la	normativa	
Número de elemento	Tipo de elemento	P.K. inicial	P.K. final	Longitud	K	Pendiente	Kv.min	L	Estética	Pen.min	Pen.max
1	Rasante	0	275,053	275,525		-6,97%				Cumple	Cumple
2	Cóncavo	275,053	333,09	58,379	6812		Cumple	Cumple	Cumple		
3	Rasante	333,09	561,078	227,874		-6,12%				Cumple	Cumple
4	Cóncavo	561,078	611,078	50	1534		Cumple	Cumple	Cumple		
5	Rasante	611,078	773,076	161,979		-2,86%				Cumple	Cumple
6	Convexo	773,076	823,076	50	1302		Cumple	Cumple	Cumple		
7	Rasante	823,076	899,026	75,499		-6,70%				Cumple	Cumple
8	Cóncavo	899,026	1027,023	127,978	1758		Cumple	Cumple	Cumple		
9	Rasante	1027,023	1458,089	431,652		0,58%				Cumple	Cumple
10	Convexo	1458,089	1506,051	47,628	1809		Cumple	Cumple	Cumple		
11	Rasante	1506,051	1630,026	123,743		-2,05%				Cumple	Cumple
12	Cóncavo	1630,026	1678,018	47,922	1786		Cumple	Cumple	Cumple		
13	Rasante	1678,018	1839,042	161,244		0,63%				Cumple	Cumple
14	Convexo	1839,042	1941,006	101,639	6171		Cumple	Cumple	Cumple		
15	Rasante	1941,006	2294,071	353,65		-1,02%				Cumple	Cumple
16	Cóncavo	2294,071	2354,026	59,546	2635		Cumple	Cumple	Cumple		
17	Rasante	2354,026	2429,013	74,875		1,24%				Cumple	Cumple

Tabla 6. Estado de rasantes (Alternativa 3, Tramo II) Fuente: Elaboración propia

ANEJO Nº 8: SEGURIDAD VIAL

<u>Curso</u>: 2022/2023

Fecha:

septiembre 2023

Autor:

Jorge Naranjo Martínez

Tutor:

Javier Camacho Torregrosa

INDICE

1.Introducción	
2. Consistencia	
2.1. Consistencia local	
2.1.1. Velocidad de operación	
2.1.2. Análisis de la consistencia local mediante el Criterio II de Lamm	
2.2. Consistencia global	
2.2.1. Modelo de Camacho-Torregrosa (2015)	
3. Evaluación de accidentes	
4. Conclusión	f

1.Introducción

Como se ha descrito en el Anejo Nº7 : Estudio de soluciones, se ha realizado un análisis exhaustivo de la seguridad vial para cada una de las alternativas expuesta. Este análisis incluye aspectos fundamentales como la incorporación de arcenes y despejes en las zonas áreas designadas para mejorar la visibilidad, como también la comparativa de la consistencia y visibilidad de cada una de las alternativas.

En este anejo, se procede a evaluar más en profundidad aspectos de la seguridad vial de la alternativa seleccionada, definiendo principalmente la velocidad de operación y la consistencia del trazado.

2. Consistencia

La consistencia representa el grado de concordancia entre las expectativas de los conductores y el comportamiento de la carretera. Para definirla, se va a utilizar la velocidad asociada al percentil 85 (V85) para evaluar la consistencia del diseño geométrico de la carretera. Este análisis se realizará localmente, evaluando la declaración entre elementos sucesivos, y globalmente, considerando las variables obtenidas del perfil continuo de velocidades en un tramo completo.

2.1. Consistencia local

Para el análisis de la consistencia local se utilizará el Criterio II de Lamm et al (1998). Este criterio permite identificar las transiciones recta-curva que generan un descenso significativo en la velocidad de operación. A continuación, en la **Tabla 1** podemos observar los umbrales para los que la consistencia de un elemento viario se considera buena, aceptable o pobre.

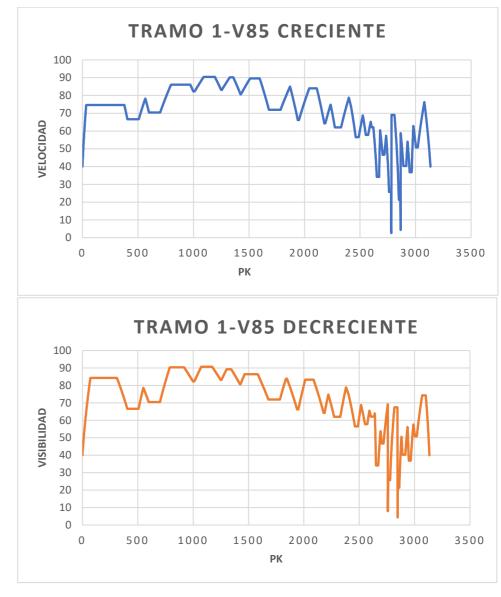
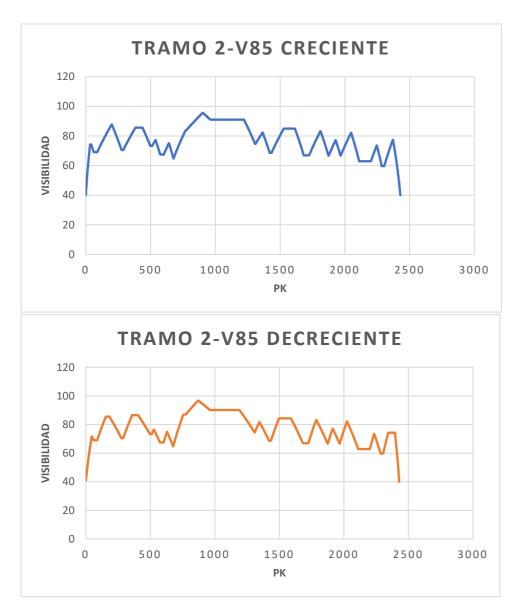


Figura 1. Umbrales en consistencia local según modelo de Lamm et al. (1988). Fuente: Camacho Torregrosa.

2.1.1. Velocidad de operación


La velocidad de operación en un tramo de carretera es definida por la velocidad experimentada por los usuarios de la vía y está influenciada por varios criterios, como la comodidad del conductor, el riesgo asumido, el propósito del viaje y las características del entorno. Para su obtención, se extrajo el estado de alineaciones de la carretera de Autodesk Civil 3D, el cual permitió definir el percentil 85 de la velocidad a la que los conductores transitan en condiciones de flujo libre. A partir del estado de alineaciones, se utilizó un software proporcionado por el tutor Francisco Javier Camacho Torregrosa con el objetivo de obtener la velocidad de operación en sentido creciente y decreciente.

A continuación, en la **Gráfica 1 y** en la **Gráfica 2 se** muestran las velocidades de operación V (85) definidas en el primer y segundo tramo respectivamente tanto en sentido creciente como decreciente.

Gráfica 1. Velocidad de operación en el primer tramo. Fuente: Elaboración propia

Gráfica 2. Velocidad de operación en el segundo tramo. Fuente: Elaboración propia.

2.1.2. Análisis de la consistencia local mediante el Criterio II de Lamm

Una vez obtenida la reducción de la velocidad de operación en cada elemento del trazado, se va a analizar la consistencia correspondiente para cada uno de estos elementos. La **Tabla 1** y la **Tabla 2 se** presentan los resultados de la consistencia local en sentido creciente y decreciente para el tramo I y tramo II.

En la **Tabla 1** se presenta el resultado del análisis del primer tramo de la carretera. Se puede observar que, en comparación con la consistencia de la carretera actual definida en el Anejo Nº1: Situación

actual, las zonas en las que se ha modificado el trazado han experimentado una mejora en la consistencia, alcanzando niveles considerados como buenos o aceptables.

CONSISTENCIA SEGÚN LAMM II	
Sentido creciente	

PK inicial	PK final	Velocidad inicial (km/h)	Velocidad final (km/h)	Decremento de velocidad (km/h)	Tipo de inconsistencia
377	405	74.64	66.65	7.99	Buena
566	599	78.25	70.43	7.82	Buena
970	998	86.1	82.33	3.78	Buena
1192	1249	90.44	83.1	7.33	Buena
1358	1424	90.24	80.55	9.69	Buena
1596	1679	89.57	71.96	17.61	Aceptable
1870	1939	84.96	66.21	18.75	Aceptable
2110	2178	84	64.26	19.74	Aceptable
2235	2273	74.83	62	12.83	Aceptable
2399	2461	78.74	56.51	22.22	Pobre
2525	2552	68.78	57.78	11	Aceptable
2596	2605	65.21	62.11	3.1	Buena
2619	2651	62.11	34.17	27.94	Pobre
2681	2703	60.39	46.66	13.72	Aceptable
2735	2761	57.38	25.73	31.64	Pobre
2779	2782	25.73	2.6	23.13	Pobre
2810	2849	69.04	21.34	47.7	Pobre
2862	2865	21.34	4.33	17.01	Aceptable
2866	2890	58.8	40.32	18.49	Aceptable
2928	2947	53.98	36.84	17.14	Aceptable
2980	3003	62.87	50.8	12.07	Aceptable
3079	3134	76.29	40	36.29	Pobre

Sentido decreciente	

PK inicial	PK final	Velocidad inicial (km/h)	Velocidad final (km/h)	Decremento de velocidad (km/h)	Tipo de inconsistencia
3069	3020	74.28	50.8	23.48	Pobre
2989	2965	57.65	36.84	20.81	Pobre
2936	2916	56.15	40.32	15.83	Aceptable
2881	2862	50.57	21.34	29.23	Pobre
2849	2846	21.34	4.33	17.01	Aceptable
2818	2779	67.45	25.73	41.72	Pobre
2761	2759	25.73	7.92	17.81	Aceptable
2758	2719	69.15	46.66	22.49	Pobre
2692	2672	53.81	34.17	19.64	Aceptable
2640	2635	63.94	62.11	1.83	Buena
2592	2573	65.52	57.78	7.74	Buena
2517	2488	68.77	56.51	12.25	Aceptable
2381	2329	78.88	62	16.88	Aceptable
2221	2187	74.79	64.26	10.53	Aceptable
2013	1950	83.3	66.21	17.09	Aceptable
1839	1784	83.87	71.96	11.91	Aceptable
1466	1426	86.45	80.55	5.9	Buena
1303	1255	89.31	83.1	6.21	Buena
1074	1011	90.72	82.33	8.39	Buena
791	700	90.42	70.43	19.99	Aceptable
550	507	78.66	66.65	12	Aceptable
74	0	84.31	40	44.31	Pobre

Tabla 1. Análisis de la consistencia local en el primer tramo. Fuente: Elaboración propia

Por otro lado, podemos observar que en el tramo II se ha logrado alcanzar una consistencia local considerada como buena o aceptable en prácticamente la totalidad del trazado.

CONSISTENCIA SEGÚN LAMM II	
Sentido creciente	

PK inicial	PK final	Velocidad inicial (km/h)	Velocidad final (km/h)	Decremento de velocidad (km/h)	Tipo de inconsistencia
41	61	74.29	69.05	5.24	Buena
200	276	87.79	70.43	17.37	Aceptable
437	497	85.6	73.32	12.28	Aceptable
538	574	77.27	67.5	9.77	Buena
642	676	75.18	64.78	10.4	Aceptable
903	961	95.64	91	4.65	Buena
1220	1307	91	74.53	16.47	Aceptable
1365	1419	82.33	68.68	13.65	Aceptable
1613	1682	84.97	66.87	18.1	Aceptable
1811	1873	83.25	66.65	16.6	Aceptable
1928	1966	77.15	66.65	10.5	Aceptable
2048	2110	82.16	62.89	19.26	Aceptable
2246	2284	73.62	59.68	13.94	Aceptable
2370	2427	77.4	40.95	36.45	Pobre

Sentido decreciente	

PK inicial	PK final	Velocidad inicial (km/h)	Velocidad final (km/h)	Decremento de velocidad (km/h)	Tipo de inconsistencia
2345	2304	74.29	59.68	14.61	Aceptable
2234	2201	73.49	62.89	10.6	Aceptable
2024	1967	82.19	66.65	15.53	Aceptable
1913	1875	77.15	66.65	10.5	Aceptable
1785	1724	83.25	66.87	16.38	Aceptable
1498	1434	84.32	68.68	15.64	Aceptable
1345	1309	81.76	74.53	7.23	Buena
871	774	96.84	86.99	9.85	Buena
757	677	86.99	64.78	22.21	Pobre
629	602	75	67.5	7.49	Buena
527	512	76.53	73.32	3.21	Buena
360	289	86.64	70.43	16.21	Aceptable
157	88	85.63	69.05	16.58	Aceptable
47	0	71.66	40	31.66	Pobre

Tabla 2. Análisis de la consistencia local en el segundo tramo. Fuente: Elaboración propia.

2.2. Consistencia global

2.2.1. Modelo de Camacho-Torregrosa (2015)

Se utilizará el modelo de Camacho-Torregrosa (2015) para analizar la consistencia global del trazado. Este modelo tiene en cuenta la velocidad de operación promedio y la tasa de deceleración promedio de los conductores en un tramo de carretera. Una mayor velocidad de operación promedio y una menor tasa de deceleración promedio se asocian con una menor incidencia de accidentes.

Según el modelo descrito la consistencia global del trazado se determina a través de la siguiente expresión:

$$C = \sqrt[3]{\frac{V_{85}}{d_{85}}}$$

Siendo:

C: Parámetro de consistencia (s1/3)

V₈₅: Velocidad de operación media (m/s)

d₈₅: Deceleración media (m/s2)

Los umbrales correspondientes a esta metodología se encuentran ilustrados en la Figura 3.

Buena	Aceptable	Pobre
$C \ge 3,25 \text{ s}^{1/3}$	$2,55 \text{ s}^{1/3} \le C < 3,25 \text{ s}^{1/3}$	$C < 2,55 \text{ s}^{1/3}$

Figura 3. Umbrales en consistencia global según modelo de Camacho-Torregrosa (2018)

El análisis de consistencia de este modelo se ha llevado a cabo mediante el cálculo de la velocidad de operación media y la tasa de deceleración media. Los resultados muestran una consistencia global de 1.97 en el tramo I y 2.4 en el tramo II, pese a que se han mejorado los resultados no ha sido suficientes para conseguir un nivel de consistencia global considerado como bueno o aceptable. Ante este resultado, se deben aplicar diferentes metodologías para advertir a los usuarios sobre los peligros presentes en la vía.

3. Evaluación de accidentes

Mediante el modelo Camacho-Torregrosa (2015) es posible calcular el número de accidentes con víctimas durante un período de 10 años. Este cálculo se basa en el análisis de la consistencia, la intensidad del tráfico y la longitud del trazado. Para estimar el número de accidentes con dicho modelo se emplea la siguiente expresión:

$$y_{i,10} = e^{-4,26225} \cdot L^{1.13196} \cdot IMD^{0,85298} \cdot e^{-0,6574 \cdot C}$$

Siendo:

Yi,10: Accidentes con víctimas estimados en 10 años

L: Longitud del segmento de carretera homogéneo (km)

IMD: Intensidad Media Diaria de tráfico (veh/día)

C: Parámetro de consistencia de Camacho-Torregrosa (2015) (s1/3)

Una vez realizada la expresión se ha obtenido que en los próximos 10 años se esperan 1,15 accidentes teniendo en cuenta los dos tramos.

4. Conclusión

Una vez definida la consistencia y la evaluación de accidentes, se puede apreciar que la carretera acondicionada ha logrado solucionar la mayoría de los problemas relacionados con la consistencia local pasando de tener una calificación de "pobre" a "buena" o "aceptable". Sin embargo, en cuanto a la consistencia global, los cambios realizados mediante el modelo definido anteriormente no han podido revertir de una forma significativa la consistencia global y se define como "deficiente".

Con el objetivo de contrarrestar el resultado de la consistencia se dispondrá de una señalización clara y precisa que permita alertar a los conductores sobre las condiciones de la vía.

ANEJO Nº 9: DIMENSIONAMIENTO DEL FIRME

Curso:

2022/2023

Fecha:

septiembre 2023

Autor:

Jorge Naranjo Martínez

Tutor:

Javier Camacho Torregrosa

INDICE

1. Introducción	3
2. Categoría del tráfico pesado	3
3. Explanada	3
4. Firme	4
4.1 Zahorra	5
4.2 Mezcla bituminosa	5
4.2.1 Capa Rodadura	7
4.2.2 Capa intermedia y base	8
5. Arcén	9
6. Riego	9
7. Sección tipo del trazado	9
B. Bibliografía	10

1. Introducción

Para lograr un adecuado acondicionamiento de la CV-445, es esencial contar con una superficie firme capaz de soportar las cargas generadas por el tráfico vehicular, especialmente por los vehículos pesados. Este factor resulta determinante para definir tanto el diseño de la explanada como el tipo de pavimento necesario.

Las capas de pavimento de este anexo se diseñarán de acuerdo con la Norma 6.1 IC. Secciones de firme, de la Instrucción de Carreteras (2003). Además, como fuente primaria de información se utilizarán los datos recogidos en los anexos, coincidiendo con el estudio geológico y geotécnico, así como con el estudio de tráfico.

2. Categoría del tráfico pesado

En primera instancia la sección estructural del firme dependerá de la intensidad media diaria de vehículos pesados (IMDp), que se prevea en el carril de proyecto del año de puesta en servicio. En el Anejo Nº5: Estudio del tráfico se ha definido que la que la Intensidad Media Diaria (IMD) de vehículos pesados es de 150 veh/d. Por otro lado, en el sentido más demandado es de 90 veh/d.

Una vez definida dicha intensidad y con las tablas proporcionados por la norma 6.1 IC (Figura 1), podemos definir la categoría de tráfico pesado de la carretera como una T32.

TABLA 1.B. CATEGORÍAS DE TRÁFICO PESADO T3 Y T4

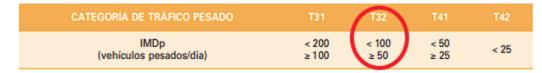


Figura 1. Categoría de tráfico pesado. Fuente: Norma 6.1 IC. Secciones de firme.

3. Explanada

La explanada es una parte crucial de la estructura del pavimento, por lo que debe ser cuidadosamente diseñada y dimensionada. Para lograrlo, es importante considerar cuidadosamente las condiciones del terreno en la zona de construcción, así como también los terrenos de préstamo disponibles.

El correcto diseño de la explanada permitirá que el firme se apoye adecuadamente sobre ella, garantizando una mayor estabilidad y durabilidad en la superficie de la carretera.

Según la normativa 6.1 IC. para poder establecer la categoría de la explanada es necesario conocer el módulo de compresibilidad en el segundo ciclo de carga del terreno. Ante la ausencia de dicha

información, se ha definido una categoría de explanada E2, teniendo en cuenta el número de pesados, así como la posibilidad de utilizar un suelo estabilizado S-EST2. Esta elección presenta la ventaja de aprovechar los terrenos resultantes durante el desmonte para su implementación.

Por otro lado, en el Anejo Nº 2: Geología y geotecnia, se ha concluido que el terreno por el que discurre la traza de la carretera se clasifica como un suelo marginal.

Una vez definida la clasificación del terreno, así como la categoría de la explanada, podemos observar en la **Figura 2** las opciones de explanada que ofrece la Norma 6.1 IC.

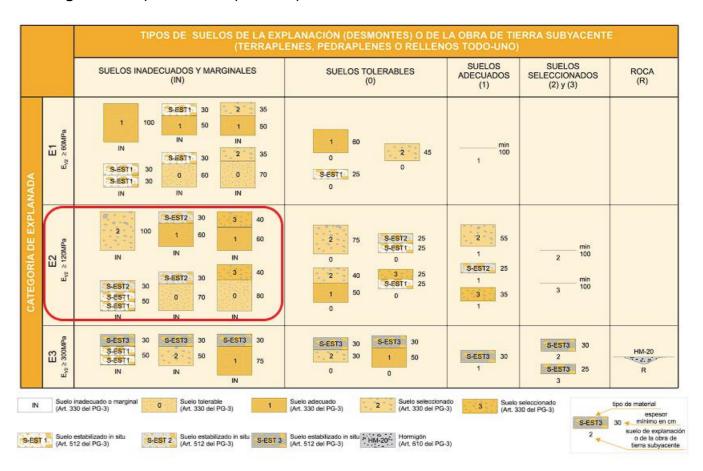


Figura 2. Formación de la explanada. Fuente: Norma 6.1 IC. Secciones de firme.

Estas seis opciones de explanada dependen del tipo de suelo que se utilice, así como del tipo de tratamiento que recibe. Se pueden implementar suelos seleccionados, adecuados y tolerables además de suelos estabilizados del tipo 1 (S-EST1) y del tipo 2 (S-EST2)

Como se describió en el Anejo Nº 2: Geología y geotecnia el suelo procedente de las excavaciones y desmonte puede emplearse como explanada sí es sometido a una estabilización "in situ" con cemento (S-EST2 CEM).

A continuación, se va a realizar una valoración económica basada en las opciones de explanada disponibles, con el objetivo de identificar la opción que ofrezca la mejor relación calidad-precio. En la **Tabla 1** se presentan los precios de cada unidad de obra, en términos de material, para las secciones de la explanada E2. Por otro lado, la **Tabla 2** muestra el precio por metro cuadrado de cada una de las secciones de la explanada E2 correspondientes a suelo tolerable, adecuado y seleccionado en la traza. Los precios presentados en las tablas han sido proporcionados por la Dirección General de Carreteras (2022).

UNIDAD	DESCRIPCIÓN	PRECIO UNITARIO (€)
m3	Suelo adecuado procedente de yacimiento granular o cantera para formación de explanada en coronación de terraplén y en fondo de desmonte i/ canon de préstamo, excavación del material, carga y transporte al lugar de empleo hasta una distancia de 5 km, extendido, humectación, compactación, terminación y refino de la superficie de la coronación y refino de taludes.	8,56
m3	Suelo seleccionado procedente de yacimiento granular o cantera para formación de explanada en coronación de terraplén y en fondo de desmonte i/ canon de cantera, excavación del material, carga y transporte al lugar de empleo hasta una distancia de 5 km, extendido, humectación, compactación, terminación y refino de la superficie de la coronación y refino de taludes.	9.22
m3	Suelo tolerable procedente de préstamo, yacimiento granular o cantera para formación de explanada en coronación de terraplén y en fondo de desmonte i/ canon de préstamo, excavación del material, carga y transporte al lugar de empleo hasta una distancia de 5 km, extendido, humectación, compactación, terminación y refino de la superficie de la coronación y refino de taludes.	4.62
m3	Suelo estabilizado "in situ" con cemento o cal, tipo S-EST2 con tierras de la propia excavación, extendido y compactado, humectación o secado y preparación de la superficie de asiento, totalmente terminado, sin incluir conglomerante.	4.90

Tabla 1. Precio del material necesario para realizar la explanada, Fuente: Dirección General de Carreteras 2022.

	Formación de la explanada (cm)									
Tipos de suelos	2 100 IN		1 60 IN		3 40 1 60 IN		- S-EST2 30 70 IN		3 40 0 80	
	Espesor en m	Precio	Espesor en m	Precio	Espesor en m	Precio	Espesor en m	Precio	Espesor en m	Precio
Suelo tolerable(0)	-	-	-	-	-	-	0.7	4.62	0.8	4.62
Suelo adecuado(1)	-	-	0.6	8.56	0.6	8.56				
Suelo seleccionado(2)	1	9.22	-	-	-	-				
Suelo seleccionado(3)	-	-	-	-	0.4	9.22			0.4	9.22
S-EST2	-	-	0.3	4.9	-	-	0.3	4.9		
Precio total (€)	9.22	€	6.61	€	8.82	€	4.70	€	7.38	€

Tabla 2. Precios de las explanadas posibles. Fuente: Elaboración propia.

En la **Tabla 2** se puede observar que la opción de explanada compuesta por una capa de 30 cm de suelo estabilizado in situ S-EST2 y una capa de 70 cm de suelo tolerable, resulta ser más económica que las otras alternativas consideradas. Esta alternativa además ofrece la posibilidad de aprovechar el terreno existente durante el desmonte, evitando así los costos asociados al transporte del material al vertedero. De esta forma se pueden reducir los costes de la explanada y contribuir con el medioambiente. Por ende, dicha explanada es la mejor de las alternativas propuestas y será la explanada a utilizar.

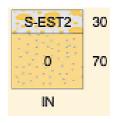


Figura 3. Explanada seleccionada. Fuente: Norma 6.1 IC. Secciones de firme.

4. Firme

Después de haber definido la explanada y determinado la categoría de tráfico pesado, se va realizar la selección de la capa del firme.

En la **Figura 4** podemos observar las opciones de firme a estudiar para una explanada E2 y una categoría de tráfico T32.

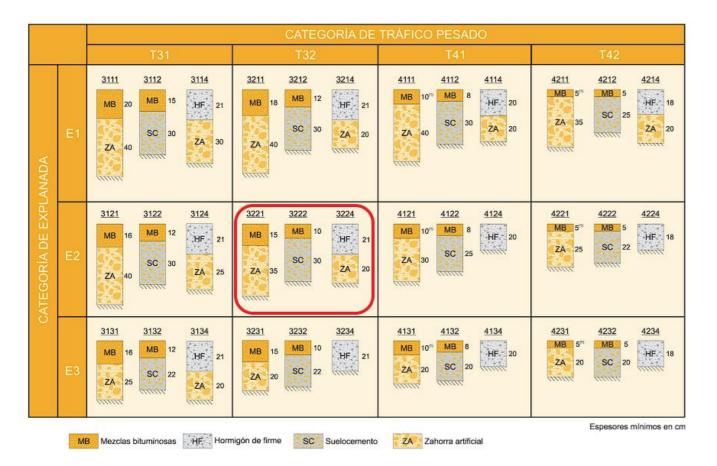


Figura 4. Catálogo de secciones de firme. Fuente: Norma 6.1 IC. Secciones de firme.

Las tres opciones disponibles para dimensionar el firme son las siguientes:

- 3224: Esta sección de firme está compuesta por una capa de hormigón de 21 cm y una capa de zahorra artificial de 20 cm. Esta capa de hormigón nos ofrece una mayor vida útil y un precio más económico en su elaboración, sin embargo, su rigidez y fragilidad hacen que el mantenimiento del hormigón pueda ser más costoso a lo largo del tiempo, además es un material menos adherente que el asfalto por lo que puede provocar problemas de circulación. Por todo ello se descarta esta sección de firme.
- 3222: Esta sección de firme está compuesta por una capa de 10 cm de mezcla bituminosa y una capa de 30 cm de suelo cemento. El espesor de esta sección, así como la utilización del suelo cemento es menor que el resto de las opciones, sin embargo, no la hace más económica debido al equipo necesario para su construcción, por lo que también se descarta esta opción.

3221: Esta sección de firme está compuesta por una capa de 15 cm de mezcla bituminosa y una capa de 35 cm de zahorra artificial. La zahorra artificial es un material más económico que el suelo cemento, debido a que los materiales necesarios para su fabricación son menos costosos y el proceso de construcción es más sencillo. Por ello esta sección de firme es la que se dispondrá en la traza de la carretera (Figura 5).

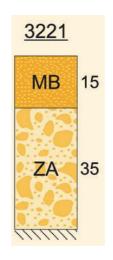


Figura 5. Sección de firme escogida. Fuente: Norma 6.1 IC. Secciones de firme.

4.1 Zahorra

Se ha decidido seleccionar la utilización de zahorras artificiales procedentes de préstamo con el fin de cumplir con el Artículo 510 del PG-3. De acuerdo con este artículo, se establecen diversas características que deben cumplir los suelos que puedan ser empleados como zahorra. Estas características incluyen la composición química, el coeficiente de Los Ángeles (LA), el equivalente de arena (SE4) y los usos granulométricos cernido acumulado. Es importante destacar que las especificaciones de los valores requeridos para cada una de estas características pueden ser encontradas en el mismo artículo del PG-3.

Dicha zahorra se obtendrá de una cantera específica con el fin de asegurar su calidad y cumplir con los requisitos de resistencia y compactación necesarios para una correcta construcción de la explanada

4.2 Mezcla bituminosa

La mezcla bituminosa está compuesta por una capa base, una intermedia y una de rodadura, estás son de una gran importancia en la construcción de carreteras y su elección varía dependiendo de la categoría del tráfico pesado que se espera en la vía. En la **Tabla 3**, podemos observar los diferentes tipos de mezcla que se pueden utilizar en cada capa, en función del tráfico pesado.

TIPO DE CAPA	TIPO DE MEZCLA	CATEGORÍA DE LA EXPLANADA			
TIPO DE CAPA	TIPO DE MEZGLA	T00 a T1	T2 y T31	T32 y T4 (T41 y T42)	
	PA		4		
Rodadura	M (BBTM-B)	3	2-3		
Nouauura	F (BBTM-A)				
	D y S (AC-Surf)		6-5	5	
Intermedia	D y S (AC-Bin)	5-10(**)			
Base	S y G (Ac-Base)	7-15		7-15	
Dase	MAM	7-13			

Tabla 4. Espesor de capas de mezcla bituminosa en caliente. Fuente: Adaptado Norma 6.1 IC. Secciones de firme.

Es fundamental tener en cuenta una serie de factores para hacer la elección correcta del ligante bituminoso, la dosificación en masa y la de polvo mineral en una carretera. Uno de ellos es la zona térmica estival, está se puede encontrar en la **Figura 6**, la cual nos permite identificar el tipo de ligante que mejor se adapta al clima local donde se encuentra la vía.

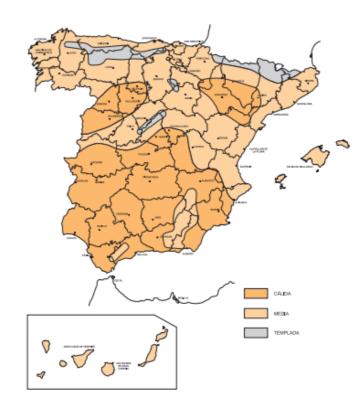


Figura 6. Zonas térmicas estivales. Fuente: Norma 6.1 IC. Secciones de firme.

Asimismo, la **Figura 7** nos permite conocer dependiendo de la zona pluviométrica en la que se encuentra la carretera, si se pueden aplicar mezclas drenantes o no.

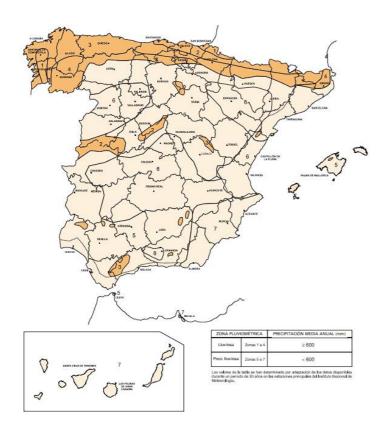


Figura 7. Zonas pluviométricas. Fuente: Norma 6.1 IC. Secciones de firme.

4.2.1 Capa Rodadura

Se han identificado tres tipos diferentes de mezclas bituminosas apropiadas para tráfico pesado T32, BBTM-A, BBTM-B y AC-Surf, según los datos de la **Tabla 5**. En cumplimiento del artículo 543 del PG-3, se ha llevado a cabo una evaluación para determinar la capa de rodadura más adecuada a emplear en las condiciones específicas del proyecto.

La **Tabla 5 y 6** determinan el tipo y composición de la mezcla bituminosa:

TABLA 543.8 - HUSOS GRANULOMÉTRICOS. CERNIDO ACUMULADO (% en masa)

TIPO DE		ABERTURA DE LOS TAMICES. NORMA UNE-EN 933-2 (mm)									
MEZCLA (**)	22	16	11,2	8	5,6	4	2	0,5	0,063		
BBTM 8B (*)			100	90-100	42-62	17-27	15-25	8-16	4-6		
BBTM 11B (*)		100	90-100	60-80		17-27	15-25	8-16	4-6		
BBTM 8A (*)			100	90-100	50-70	28-38	25-35	12-22	7-9		
BBTM 11A (*)		100	90-100	62-82		28-38	25-35	12-22	7-9		
PA 16	100	90-100		40-60		13-27	10-17	5-12	3-6		
PA 11		100	90-100	50-70		13-27	10-17	5-12	3-6		

Tabla 5. Husos granulométricos, Cernido acumulado. Fuente: PG-3. Artículo 543.

TABLA 543.9 - TIPO, COMPOSICIÓN Y DOTACIÓN DE LA MEZCLA

CARACTERÍST	TIPO DE MEZCLA						
CARACTERIST		PA 11	PA 16	BBTM8B	BBTM11B	BBTM8A	BBTM11A
DOTACIÓN MEDIA D (kg/m²)	75-90	95-110	35-50	55-70	40-55	65-80	
DOTACIÓN MÍNIMA(*) DO (% en masa sobre el mezcla)	4,30		4,75		5,20		
LIGANTE RESIDUAL EN RIEGO DE	FIRME NUEVO	> 0,30			> 0,25		
ADHERENCIA (kg/m²)	FIRME ANTIGUO	> 0,40 > 0,35		0,35			

Tabla 6. Tipo de mezcla bituminosa en caliente para rodadura. Fuente: PG-3. Artículo 543.

Por otro lado, en la **Tabla 7** podemos observar cómo en base a la categoría de tráfico pesado y al tipo de mezcla, se especifica el ligante hidrocarbonado que se debe emplear. La **Figura 7** nos indica que la CV-445 se encuentra en una zona catalogada de pocas lluvias por lo que el uso de mezclas drenantes se descarta; en este caso se selecciona una mezcla bituminosa de tipo discontinuo.

TIPO DE	CATEGORÍA DE TRÁFICO PESADO							
TIPO DE MEZCLA	Т00 у Т0	T1	T2 (**) y T31	T32 y ARCENES	T4			
DISCONTINUA	PMB 45/80-65	PMB 45/80-65 PMB 45/80-60	PMB 45/80-60 50/70 BC50/70	50/70 70/100 BC50/70				
DRENANTE	PMB 45/80-65	PMB 45/80-65 PMB 45/80-60	PMB 45/80-60 50/70 BC50/70	50/70 70/100 BC50/70				

Tabla 7. Tipo de ligante hidrocarbonado a emplear. Fuente: PG-3. Artículo 543.

Teniendo en cuenta todo lo expuesto, se ha decido para la ejecución de este estudio la utilización de una capa de rodadura de 3 cm de mezcla tipo BBTM 11B con un ligante hidrocarbonado 50/70.

4.2.2 Capa intermedia y base

La **Tabla 4** nos indica que la mezcla a utilizar para la capa intermedia es una AC-BIN, por otro lado, la capa base está formada por una mezcla AC-base. Esta capa denominada AC está compuesta por una mezcla de hormigón bituminoso y presenta distintas alternativas en función del tipo de capa y el tamaño de árido.

Para determinar la capa intermedia se analizan las siguientes tablas extraídas del artículo 542 del PG-3:

- La **Tabla 8** determina el tipo de mezcla en función del tipo y espesor de capa.

	TIPO DE MEZCLA	
TIPO DE CAPA	DENOMINACIÓN. NORMA UNE-EN 13108-1(*)	ESPESOR (cm)
RODADURA	AC16 surf D AC16 surf S	4 – 5
RODADURA	AC22 surf D AC22 surf S	> 5
INTERMEDIA	AC22 bin D AC22 bin S AC32 bin S AC 22 bin S MAM (**)	5-10
BASE	AC32 base S AC22 base G AC32 base G AC32 base S AC 22 base S MAM (***)	
ARCENES(****)	AC16 surf D	4-6

Tabla 8. Tipo de mezcla en función del tipo y espesor de capa. Fuente: PG-3. Artículo 542.

- La Tabla 9 determina el tipo de ligante hidrocarbonado a emplear en capa de base.

ZONA TÉRMICA ESTIVAL	CATEGORÍA DE TRÁFICO PESADO						
	Т00	то	Т1	T2 y T31	T32 y ARCENES	T4	
CÁLIDA	35/3 BC35 PMB 25 PMB 45	5/50 5/55-65	35/50 BC35/50 PMB 25/55-65 PMB 45/80-60 PMB 45/80-65	35/50 50/70 BC35/50 BC50/70 PMB 45/80-60	50/70 BC50/70		
MEDIA	35/50 BC35/50 PMB 45/80-60 PMB 45/80-65		35/50 50/70 BC35/50 BC50/70 PMB 45/80-60	50/70 BC50/70 PMB 45/80-60	50/70 70/100	50/70 70/100 BC50/70	
TEMPLADA	50/70 50/70 BC50/70 70/100 PMB 45/80-60 BC50/70 PMB 45/80-65 PMB 45/80-60			BC50/70			

Tabla 9 Tipo de ligante hidrocarbonado a emplear en capa de base en capa intermedia. Fuente: PG-3. Artículo 542.

Tras analizar ambas tablas, se ha determinado que para la capa intermedia se empleará una mezcla de asfalto AC 22 bin S con un espesor de 5 cm. Además, se utilizará una ligante de betún asfáltico 50/70 para garantizar la cohesión entre las capas.

En cuanto a la capa base, se ha seguido un procedimiento similar, basado en los datos proporcionados en la **Tabla 8** y se ha decidido utilizar la mezcla AC32 base G con un espesor de 7 cm. Por otro lado, en la **Tabla 10**, se muestran las diversas opciones de ligantes disponibles para la capa base, sin embargo, siguiendo el principio de mantener la homogeneidad, se optará por utilizar un betún asfáltico 50/70.

Estas decisiones se han tomado con el propósito de garantizar la coherencia y la calidad en todas las capas del pavimento.

ZONA	CATEGORÍA DE TRÁFICO PESADO				
TÉRMICA ESTIVAL	T00	ТО	T1	T2 y T3	
CÁLIDA	35/50 BC35/50 PMB 25/55-65		35/50 50/70	50/70 BC50/70	
MEDIA			BC35/50 BC50/70	50/70 70/100 BC50/70	
TEMPLADA		50/70 70/100 BC50/70		70/100	

Tabla 9 Tipo de ligante hidrocarbonado a emplear en capa de base. Fuente: PG-3. Artículo 542.

5. Arcén

Según lo establecido en la Norma 6.1 IC para las categorías de tráfico pesado T32 y T4 (T41 y T42), se permite que el arcén, alineado con la calzada, no esté pavimentado o tenga un pavimento de riego con gravilla. Para la pavimentación del arcén se utilizará zahorra artificial, que quedará nivelada con una de las capas del pavimento de la calzada. La parte restante del arcén, procedente de la explanada, podrá cubrirse con zahorra artificial o suelo seleccionado. Si no se requiere pavimentación, se utilizarán agregados con finos que tengan un índice de plasticidad (IP) de 6 a 10.

En el presente caso, se ha decidido implementar en el arcén una capa de rodadura compuesta por una mezcla bituminosa y zahorra artificial.

6. Riego

Es fundamental tener en cuenta que cada capa de pavimento requiere un tipo de riego específico dependiendo de los materiales que componen la capa. Según lo establecido en la Norma 6.1 IC. Secciones de Firmes, se identifican tres tipos de riego:

- Riego de imprimación: Este se realiza sobre la capa granular que recibirá una capa de mezcla bituminosa o un tratamiento superficial. Para este caso, se emplearán emulsiones bituminosas C50BF4 IMP o C60BF4 IMP, según lo indicado en el artículo 530 del PG-3.
- Riego de adherencia: Se lleva a cabo en capas tratadas con cemento y capas de mezcla bituminosa que recibirán una nueva capa de mezcla bituminosa. Según el PG-3 Artículo 531, para este tipo de riego se pueden utilizar emulsiones bituminosas "C60B3 ADH" o "C60B3 TER"
- Riego de curado: Este riego aplica una película continua y uniforme de emulsión bituminosa sobre una capa que contiene un conglomerante hidráulico. Las emulsiones bituminosas recomendadas para este riego son C60B3 CUR o C60B2 CUR, tal como se indica en el artículo 532 del PG-3.

Teniendo en cuenta los riesgos mencionados, en el trazado que se está llevando a cabo se aplicarán los siguientes riegos:

- Riego de imprimación: Se utilizará un riesgo de imprimación entre la capa de rodadura y la zahorra artificial de tipo C60BF4 IMP. De igual forma se emplea entre la zahorra artificial y la capa base.
- Riego de adherencia: El riego de adherencia empleado será tipo C60BP3 ADH y su uso se comprende entre la capa base, intermedia y rodadura

7. Sección tipo del trazado

A lo largo del trazado, se emplearán diferentes secciones, siendo la sección principal la descrita en los aparatados anteriores. En aquellas zonas que no estén clasificadas como zonas limitadas en el Anejo Nº7: Estudio de soluciones, se utilizará la sección completa definida (Figura 8). Sin embargo, en estas áreas no se realizarán modificaciones en el trazado, por lo que se llevará a cabo una operación de fresado y reasfaltado utilizando únicamente una capa de 3 cm de mezcla tipo BBTM 11B con un ligante hidrocarbonado 50/70.

Es importante mencionar que estas zonas carecen de arcén, por lo que, para mantener la homogeneidad con el resto del trazado, se implementará una sección de arcén de 1 metro de la sección completa utilizada en el resto del trazado. Esto facilitará los métodos constructivos y permitirá reubicar las marcas viales de la carretera, manteniendo la uniformidad de la sección en todo el trazado.

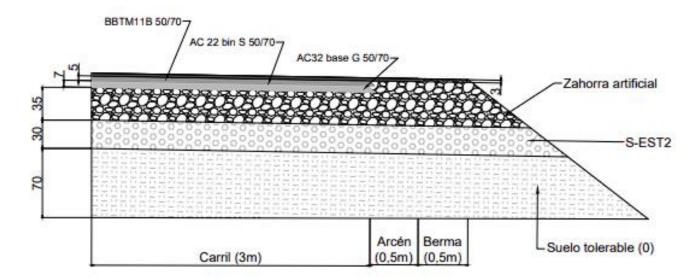


Figura 8. Sección transversal completa. Fuente: Elaboración propia.

8. Bibliografía

ORDEN FOM/3460/2003, DE 28 DE NOVIEMBRE, POR LA QUE SE APRUEBA LA NORMA 6.1 IC SECCIONES DE FIRME, DE LA INSTRUCCIÓN DE CARRETERAS (BOE DE 12 DE DICIEMBRE DE 2003). Consultado en junio de 2023 de:

https://www.mitma.gob.es/recursos_mfom/1010100.pdf

Orden FOM/2523/2014, de 12 de diciembre, por la que se actualizan determinados artículos del pliego de prescripciones técnicas generales para obras de carreteras y puentes, relativos a materiales básicos, a firmes y pavimentos, y a señalización, balizamiento y sistemas de contención de vehículos. Consultado en junio de 2023.

Base de Precios de Referencia de la Dirección General de Carreteras del 2022. Consultado en junio del 2023 de:

https://cdn.mitma.gob.es/portal-web-drupal/carreteras/normativa/oc 2-2022 actualizacion base de precios dgc.pdf

ANEJO Nº 10: RELACIÓN VALORADA

Curso:

2022/2023

Fecha:

septiembre 2023

Autor:

Jorge Naranjo Martínez

Tutor:

Javier Camacho Torregrosa

INDICE

1. Introducción	3
2. Unidades de obra	
3. Relación valorada	
4. Resumen de relación valorada	5
5. Fuentes de referencia	

1. Introducción

En el siguiente anejo se presenta una relación valorada, así como un desglose detallado de las unidades de obra y sus respectivos precios para el acondicionamiento de la carretera CV-445. Los precios utilizados se fundamentan en presupuestos recientes y en la base de precios de referencia de la Dirección General de Carreteras.

2. Unidades de obra

Código	Ud	Resumen	Pres
1 ACTUACIONES PREVIAS			
1.1		DEMOLICIÓN DE FIRME O PAVIMENTO EXISTENTE	3,90
301.0040	m2	Fresado de pavimento bituminoso o de hormigón existente i/ carga, barrido, retirada y transporte de residuos a lugar de acopio en obra.	
1,2		DESPEJE Y DESBROCE DEL TERRENO POR MEDIOS MECÁNICOS	0,57
300.0010	m2	Despeje y desbroce del terreno por medios mecánicos i/ destoconado, arranque, carga y transporte a vertedero o gestor autorizado de aquellos restos que sea necesario, hasta una distancia de 60 km o al lugar de utilización dentro de la obra sea cual sea la distancia.	
2 EXCAVACIONES			
2.1		EXCAVACIÓN EN DESMONTE EN TIERRA CON MEDIOS MECÁNICOS SIN EXPLOSIVOS	2,37
320.0020	m3	Excavación en desmonte en tierra con medios mecánicos (tipo excavadora o similar) sin explosivos i/ agotamiento y drenaje durante la ejecución, saneo de desprendimientos, formación, y perfilado de cunetas, refino de taludes, carga y transporte a vertedero hasta una distancia de 5 km o al lugar de utilización dentro de la obra sea cual sea la distancia.	2,37
2.2		EXCAVACIÓN MECÁNICA DE ZANJAS, POZOS O CIMIENTOS EN TIERRA O TRÁNSITO	47,94
321.0010	m3	Excavación mecánica de zanjas, pozos o cimientos en tierra o tránsito, considerándose zanjas y cimientos aquellos que tengan una anchura < 3 m y una profundidad< 6 m, y pozos los que tengan una profundidad < 2 veces el diámetro o ancho i/ entibación, agotamiento y drenaje durante la ejecución, saneo de desprendimientos, carga y transporte a lugar de empleo o a vertedero hasta una distancia de 5 km o al lugar de utilización dentro de la obra sea cual sea la distancia.	47,94
3 RELLENOS			
3.1		TERRAPLÉN O RELLENO TODO-UNO CON MATERIAL PROCEDENTE DE CANTERA	7,99
330.0035	m3	Terraplén o relleno todo-uno con material procedente de cantera, extendido, humectado, nivelado y compactado, incluso p.P. De sobreanchos s/pg-3, completamente terminado i/ material, canon de préstamo y transporte hasta una distancia de 5 km, terminación y refino de la superficie de coronación y refino de taludes.	
3.2		SUELO TOLERABLE PROCEDENTE DE YACIMIENTO GRANULAR O CANTERA PARA FORMACIÓN DE EXPLANADA	
330.0045	m3	Suelo tolerable procedente de yacimiento granular o cantera para formación de explanada en coronación de terraplén y en fondo de desmonte i/ canon de préstamo, excavación del material, carga y transporte al lugar de empleo hasta una distancia de 5 km, extendido, humectación, compactación, terminación y refino de la superficie de la coronación y refino de taludes.	

4 SUELOS			
ESTABILIZADOS			
4.1		SUELO ESTABILIZADO "IN SITU" CON CEMENTO O CAL, TIPO S-EST1 O S-EST2 O CON TIERRAS DE LA PROPIA OBRA	4,90
5.120.100	m3	Suelo estabilizado "in situ" con cemento o cal, tipo s-est1 o s-est2 con tierras de la propia obra, formación de la explanada, extendido y compactado, humectación o secado y preparación de la superficie de asiento, totalmente Terminado, sin incluir conglomerante.	4,90
5 FIRMES			
5.1		ZAHORRA	26,78
5.100.010	m3	Zahorra i/ transporte, extensión y compactación, medida sobre perfil teórico.	
5.2		EMULSIÓN C60BF4 IMP EN RIEGO DE IMPRIMACIÓN	526,42
5.300.030	t	Emulsión c60bf4 imp en riego de imprimación, barrido y preparación de la superficie, totalmente terminado.	526,42
5.3		EMULSIÓN C60BP3 ADH, MODIFICADA CON POLÍMEROS, EN RIEGO DE ADHERENCIA	657,46
5.310.040	t	Emulsión c60bp3 adh, modificada con polímeros, en riego de adherencia i/ barrido y preparación de la superficie, totalmente terminado.	657,46
5.4		MBC TIPO BBTM 11B EN CAPA DE RODADURA, EXCEPTO BETÚN Y POLVO MINERAL	2,68
5.430.020	m2	Mezcla bituminosa en caliente tipo bbtm 11b en capa de rodadura, extendida y compactada, excepto betún y polvo mineral de aportación, con un espesor de 3 cm	2,68
5.5		MBC TIPO AC32 BIN S, EXCEPTO BETÚN Y POLVO MINERAL	29,36
5.420.080	t	Mezcla bituminosa en caliente tipo ac32 bin s, extendida y compactada, excepto betún y polvo mineral de aportación.	29,36
5.6		MBC TIPO AC32 BASE G, EXCEPTO BETÚN Y POLVO MINERAL	29,38
5.420.100	t	Mezcla bituminosa en caliente tipo ac32 base g, extendida y compactada, excepto betún y polvo mineral de aportación.	29,38
5.7		BETÚN ASFÁLTICO CONVENCIONAL TIPO 50/70	
2.110.020	t	Betún asfáltico convencional en mezclas bituminosas tipo 50/70,	689,00
6 MURO			
6.1		MURO DE CONTENCIÓN	180,00
6.000.000	m3	Muro de contención compuesto de hormigón armado, ejecutado mediante encofrado, vertido y compactado. El precio incluye la cimentación del muro y la elaboración y el montaje de la ferralla en el lugar definitivo de su colocación en obra, pero no incluye el encofrado.	180,00
7 GESTIÓN DE RESIDUOS			
7.1		GESTIÓN DE RESÍDUOS	44.078,73
9.500.010	Ud	Incluye todas las actividades relacionadas con la recolección, clasificación, transporte, tratamiento y disposición final de los residuos generados durante la ejecución de la obra.	44.078,73
8 SEGURIDAD Y SALUD			
8.1		SEGURIDAD Y SALUD	88.157,46
1.211,000	Ud	Comprende todas las acciones y medidas implementadas para asegurar la seguridad y protección de los trabajadores, así como prevenir accidentes y riesgos durante la ejecución de la obra en todo su periodo.	88.157,46

3. Relación valorada

Código	Ud	Resumen	CanPres	Pres	ImpPres
1 ACTUACIONES PREVIAS					145.367,81
1.1		DEMOLICIÓN DE FIRME O PAVIMENTO EXISTENTE	33.368,57	3,90	130.137,44
301.0040	m2	Fresado de pavimento bituminoso o de hormigón existente i/ carga, barrido, retirada y transporte de residuos a lugar de acopio en obra.	33.368,57	3,90	130.137,44
1,2		DESPEJE Y DESBROCE DEL TERRENO POR MEDIOS MECÁNICOS	26.719,94	0,57	15.230,37
300.0010	m2	Despeje y desbroce del terreno por medios mecánicos i/ destoconado, arranque, carga y transporte a vertedero o gestor autorizado de aquellos restos que sea necesario, hasta una distancia de 60 km o al lugar de utilización dentro de la obra sea cual sea la distancia.	26.719,94	0,57	15.230,37
2 EXCAVACIONES					149.235,37
2.1		EXCAVACIÓN EN DESMONTE EN TIERRA CON MEDIOS MECÁNICOS SIN EXPLOSIVOS	61.936,89	2,37	146.790,43
320.0020	m3	Excavación en desmonte en tierra con medios mecánicos (tipo excavadora o similar) sin explosivos i/ agotamiento y drenaje durante la ejecución, santo de desprendimientos, formación, y perfilado de cunetas, refino de taludes, carga y transporte a vertedero hasta una distancia de 5 km o al lugar de utilización dentro de la obra sea cual sea la distancia.	61.936,89	2,37	146.790,43
2.2		EXCAVACIÓN MECÁNICA DE ZANJAS, POZOS O CIMIENTOS EN TIERRA O TRÁNSITO	51,00	47,94	2.444,94
321.0010	m3	Excavación mecánica de zanjas, pozos o cimientos en tierra o tránsito, considerándose zanjas y cimientos aquellos que tengan una anchura < 3 m y una profundidad< 6 m, y pozos los que tengan una profundidad < 2 veces el diámetro o ancho i/ entibación, agotamiento y drenaje durante la ejecución, saneo de desprendimientos, carga y transporte a lugar de empleo o a vertedero hasta una distancia de 5 km o al lugar de utilización dentro de la obra sea cual sea la distancia.	51,00	47,94	2.444,94
3 RELLENOS					685.990,64
3.1		TERRAPLÉN O RELLENO TODO-UNO CON MATERIAL PROCEDENTE DE CANTERA	71.629,03	7,99	572.315,95
330.0035	m3	Terraplén o relleno todo-uno con material procedente de cantera, extendido, humectado, nivelado y compactado, incluso p.P. De sobreanchos s/pg-3, completamente terminado i/ material, canon de préstamo y transporte hasta una distancia de 5 km, terminación y refino de la superficie de coronación y refino de taludes.	71.629,03	7,99	572.315,95
3.2		SUELO TOLERABLE PROCEDENTE DE YACIMIENTO GRANULAR O CANTERA PARA FORMACIÓN DE EXPLANADA	24.604,91	4,62	113.674,69
330.0045	m3	Suelo tolerable procedente de yacimiento granular o cantera para formación de explanada en coronación de terraplén y en fondo de desmonte i/ canon de préstamo, excavación del material, carga y transporte al lugar de empleo hasta una distancia de 5 km, extendido, humectación, compactación, terminación y refino de la superficie de la coronación y refino de taludes.	24.604,91	4,62	113.674,69
4 SUELOS ESTABILIZADOS					51.670,31
4.1		SUELO ESTABILIZADO "IN SITU" CON CEMENTO O CAL, TIPO S-EST1 O S-EST2 O CON TIERRAS DE LA PROPIA OBRA	10.544,96	4,90	51.670,31

5.120.100	m3	Suelo estabilizado "in situ" con cemento o cal, tipo s-est1 o s-est2 con tierras de la propia obra, formación de la explanada, extendido y compactado, humectación o secado y preparación de la superficie de asiento, totalmente Terminado, sin incluir conglomerante.	10.544,96	4,90	51.670,31
5 FIRMES					1.040.272.36
5.1		ZAHORRA	12.302,46	26,78	329.459,75
5.100.010	m3	Zahorra i/ transporte, extensión y compactación, medida sobre perfil teórico.	12.302,46	26,78	329.459,75
5.2		EMULSIÓN C60BF4 IMP EN RIEGO DE IMPRIMACIÓN	49,06	526,42	25.824,29
5.300.030	t	Emulsión c60bf4 imp en riego de imprimación, barrido y preparación de la superficie, totalmente terminado.	49,06	526,42	25.824,29
5.3		EMULSIÓN C60BP3 ADH, MODIFICADA CON POLÍMEROS, EN RIEGO DE ADHERENCIA	19,62	657,46	12.901,06
5.310.040	t	Emulsión c60bp3 adh, modificada con polímeros, en riego de adherencia i/ barrido y preparación de la superficie, totalmente terminado.	19,62	657,46	12.901,06
5.4		MBC TIPO BBTM 11B EN CAPA DE RODADURA, EXCEPTO BETÚN Y POLVO MINERAL	38.930,00	2,68	104.332,41
5.430.020	0.020 Mezcla bituminosa en caliente tipo bbtm 11b en capa de rodadura, extendio y compactada, excepto betún y polvo mineral de aportación, con un espeso de 3 cm		38.930,00	2,68	104.332,41
5.5		MBC TIPO AC32 BIN S, EXCEPTO BETÚN Y POLVO MINERAL	3.403,02	29,36	99.912,55
5.420.080	t	Mezcla bituminosa en caliente tipo ac32 bin s, extendida y compactada, excepto betún y polvo mineral de aportación.	3.403,02	29,36	99.912,55
5.6		MBC TIPO AC32 BASE G, EXCEPTO BETÚN Y POLVO MINERAL	4.971,36	29,38	146.058,63
5.420.100	t	Mezcla bituminosa en caliente tipo ac32 base g, extendida y compactada, excepto betún y polvo mineral de aportación.	4.971,36	29,38	146.058,63
5.7		BETÚN ASFÁLTICO CONVENCIONAL TIPO 50/70	467,03	689,00	321.783,67
2.110.020	t	Betún asfáltico convencional en mezclas bituminosas tipo 50/70.	467,03	689,00	321.783,67
6 MURO					131.400,00
6.1		MURO DE CONTENCIÓN	730,00	180,00	131.400,00
6.000.000	m3	Muro de contención compuesto de hormigón armado, ejecutado mediante encofrado, vertido y compactado. El precio incluye la cimentación del muro y la elaboración y el montaje de la ferralla en el lugar definitivo de su colocación en obra, pero no incluye el encofrado.	730,00	180,00	131.400,00
7 GESTIÓN DE RESIDUOS					44.078,73
6.1		GESTIÓN DE RESÍDUOS	1,00	44.078,73	44.078,73
9.500.010		Incluye todas las actividades relacionadas con la recolección, clasificación, transporte, tratamiento y disposición final de los residuos generados durante la ejecución de la obra.	1	44.078,73	44.078,73
8 SEGURIDAD Y SALUD					88.157,46
7.1		SEGURIDAD Y SALIUD	1,00	88.157,46	88.157,46
1.211,000		Comprende todas las acciones y medidas implementadas para asegurar la seguridad y protección de los trabajadores, así como prevenir accidentes y riesgos durante la ejecución de la obra en todo su periodo.	1	88.157,46	88.157,46

4. Resumen de relación valorada

Total de ejecución material	PEM	2.338.617,62 €
Beneficio industrial (13%)	B. I	304.020,29 €
Gastos generales (6%)	G. G	140.317,06 €
Impuesto sobre el valor agregado (21%)	IVA	491.109,70 €
Presupuesto	TOTAL	3.274.064,67 €

5. Fuentes de referencia

Base de precios de referencia de la Dirección General de Carreteras (2022). Ministerio de Transporte, Movilidad y Agencia Urbana. Consultado en Julio de 2023 de:

https://cdn.mitma.gob.es/portal-web-drupal/carreteras/normativa/oc 2-2022 actualizacion base de precios dgc.pdf

ANEJO Nº 11: PLAN DE OBRA

<u>Curso</u>: 2022/2023

Fecha:

septiembre 2023

Autor:

Jorge Naranjo Martínez

Tutor:

Javier Camacho Torregrosa

INDICE

1. In	troducción	3
2. M	edidas para el tráfico vial	3
3. P	rocedimiento constructivo	3
3.	1. Actuaciones previas	3
3.	2. Movimiento de tierras	4
3.	3. Drenaje	4
3.	4. Firmes	4
	3.4.1 Trazado nuevo	4
	3.4.1 Trazado existente	5
3.	5. Muro de contención	5
3.	6. Gestión de residuos y seguridad y salud	5
5. D	uración de las actividades	5
6. D	iagrama de Gantt	5
Apé	ndice 1: Diagrama de Gantt	6

1. Introducción

En el presente anejo se proporciona una descripción detallada de los trabajos a realizar, los plazos de ejecución y los diversos aspectos a considerar para la elaboración del plan de obra en los estudios destinados al acondicionamiento de la carretera CV-445.

2. Medidas para el tráfico vial

La ejecución de la obra implicará la interrupción del tráfico en la CV-445, la cual es la única carretera que conecta el municipio de Zarra con los pueblos vecinos y los servicios necesarios. Con el objetivo de minimizar las molestias para los usuarios y garantizar el acceso necesario, se ha diseñado un plan de obra que divide la ejecución de los trabajos en dos etapas (**Figura 1**). En la primera etapa, se realizarán todos los trabajos necesarios para la ejecución del primer tramo. Una vez que este tramo esté completamente finalizado, se le dará servicio y se comenzarán las obras en el segundo tramo. Este enfoque por etapas permitirá que los usuarios tengan la posibilidad de desplazarse al menos en una parte de la vía durante el desarrollo de las obras, reduciendo al máximo las molestias ocasionadas por la interrupción del tráfico.

Por otro lado, se debe considerar la accesibilidad a las casas colindantes durante la ejecución de los trabajos en cada tramo. Para facilitar el acceso a las viviendas en las áreas donde se modificará el trazado, se crearán accesos temporales mediante el movimiento de tierra. No obstante, en las zonas donde solo se realizarán operaciones de reasfaltado, se procurará realizar todas las tareas en un solo día para minimizar el tiempo de interrupción del tráfico y evitar inconvenientes para los usuarios.

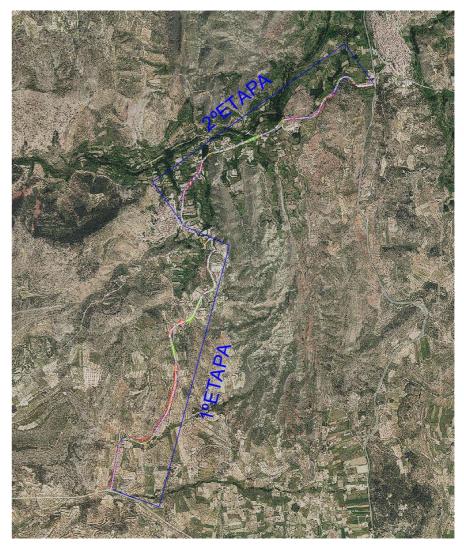


Figura 1. Etapas de construcción. Fuente: Elaboración propia

3. Procedimiento constructivo

Se ha establecido un proceso constructivo basado en los trabajos necesarios para la realización de la obra y las unidades de obra definidas en el anejo N.º 10 "Relación Valorada". De esta forma se detallarán los aspectos necesarios para la ejecución de cada unidad de obra, incluyendo su plazo de ejecución. Dicho plazo se ha calculado considerando una jornada laboral de 8 horas y un promedio de 20 días hábiles, descontando los fines de semana y posibles días afectados por condiciones climatológicas adversas. A continuación, se definen los trabajos y unidades de obra más relevantes.

3.1. Actuaciones previas

Las actividades previas programadas para llevar a cabo son las siguientes:

- -Implantación de la obra (Instalaciones de obra, señalización y balizamiento de la obra)
- -Corte y desvío del tráfico
- -Replanteo general de la obra
- -Desbroce del terreno
- -Demolición del firme existente

Las actividades mencionadas se llevarán a cabo durante la jornada laboral, comenzando primero en el primer tramo. Dado que los tramos se realizarán de forma separada, ciertas actividades, como la implantación de la obra, no serán necesarias para el segundo tramo. En la **Tabla 1** se detallan las actividades descritas y el tiempo estimado de ejecución.

	ACTUACIONES PREVIAS											
Unidad	Actividades	Medición		Rendir	miento	Но	ras	Días				
Ulliudu	Actividades	Tramo I	Tramo II	Tramo I	Tramo II	Tramo I	Tramo II	Tramo I	Tramo II			
u	Implantación de la obra	1,00	1,00	4,000	4,000	4,0	0,0	0,50	0,00			
u	Corte y desvio del trafico	1,00	1,00	2,000	1,500	2,0	1,5	0,25	0,19			
m2	Replanteo general de la obra	1,00	1,00	4,000	3,500	4,0	3,5	0,50	0,44			
m2	Desbroce del terreno	16929,94	9790,00	0,005	0,005	84,6	49,0	10,58	6,12			
m2	Demolición del firme existente	18801,24	14567,37	0,017	0,017	319,6	247,6	39,95	30,96			

Tabla 1. Duración de las actividades en la fase "Actuaciones previas". Fuente: Elaboración propia

De esta forma podemos definir que para el Tramo 1 se estima una duración de **2 meses y 12 días** laborables y para el Tramo II de **1 mes y 18 días** laborables

3.2. Movimiento de tierras

Las actuaciones de movimiento de tierras se dividen en la realización del desmonte y el terraplén. A medida que se vayan realizando estas actividades, se procederá de forma continua al extendido de la explanada. En la **Tabla 2** se detallan las cantidades necesarias a ejecutar en cada tramo y su duración. Observamos que el conjunto total de días para estas actuaciones es de **4 meses** y **16 días** en el Tramo I, y **3 meses** y **11 días** en el Tramo II.

	MOVIMIENTO DE TIERRAS									
Unidad	Actividades	Medición		Rendimiento		Horas		Días		
Ulliuau	Actividades	Tramo I	Tramo II	Tramo I	Tramo II	Tramo I	Tramo II	Tramo I	Tramo II	
m3	Desmonte	16704,96	45231,93	0,004	0,004	66,8	180,9	8,35	22,62	
m3	Terraplén	61577,59	10051,44	0,004	0,004	246,3	40,2	30,79	5,03	
m3	Extendido del suelo tolerable para la explanada	14060,05	10544,86	0,005	0,005	70,3	52,7	8,79	6,59	
m2	Compactación del suelo tolerable	25068,27	19423,16	0,007	0,007	175,5	136,0	21,93	17,00	
m3	Extendido de suelo estabilizado tipo S-EST2 para la explanada	6025,73	4519,23	0,005	0,005	30,1	22,6	3,77	2,82	
m2	Compactación del suelo estabilizado tipo S-EST2	25068,27	19423,16	0,007	0,007	175,5	136,0	21,93	17,00	

Tabla 2. Duración de las actividades en la fase "Movimiento de tierras". Fuente: Elaboración propia

3.3. Drenaje

Una vez finalicen los trabajos para la colocación de la explanada en el proceso de movimiento de tierras, se iniciarán las obras de drenaje longitudinal y transversal. Estas acciones se llevarán a cabo

una vez que se hayan completado los trabajos de movimiento de tierras. Se estima que el tiempo total de ejecución para estas obras será de aproximadamente 3 meses y 12 días en el Tramo I y de 2 meses y 13 días en el Tramo II (Tabla 3).

	DRENAJE									
Unidad Actividades		Medición		Rendimiento		Но	ras	Días		
Officac	Actividades	Tramo I	Tramo II	Tramo I	Tramo II	Tramo I	Tramo II	Tramo I	Tramo II	
ml	Drenaje longitudinal	2712,00	2012,00	0,200	0,200	542,4	402,4	67,80	50,30	
ml	Drenaje transversal	160,00	80,00	0,200	0,200	32,0	16,0	4,00	2,00	

Tabla 3. Duración de las actividades en la fase "Drenaje". Fuente: Elaboración propia

3.4. Firmes

Una vez finalizadas las obras de drenaje, se iniciarán los trabajos para la colocación del firme. Estos trabajos varían en función de si se realizan en zonas en las que se ha modificado el trazado existente o simplemente se requiere de un reasfaltado.

3.4.1 Trazado nuevo

En las zonas en las que se ha llevado a cabo un cambio completo de sección, se desarrollarán tres actividades secuenciales: la colocación de la zahorra artificial, el extendido de los riegos de adherencia e imprimación, y finalmente, la disposición de las mezclas bituminosas. Por otro lado, en el anejo nº Firmes se ha establecido que en las zonas donde solo se llevarán a cabo modificaciones en el firme, se llevarán a cabo operaciones para construir el arcén, manteniendo la uniformidad en el trazado. Este arcén seguirá la misma configuración que el resto del nuevo trazado, conforme se ha definido en la sección previa. Para facilitar las labores de las maquinarias, se implementará un arcén de 1 metro de ancho en el lado izquierdo de la calzada. Posteriormente, se reubicarán las marcas viales para asegurar la continuidad vial.

En el primer tramo de la obra, se estima que el tiempo requerido para llevar a cabo estas actividades será de 5 meses y 9 días, mientras que en el segundo tramo se prevé una duración de 4 meses y 4 días. (Tabla 4)

	FIRMES-TRAZADO NUEVO									
Unidad	Actividades	Med	Medición		Rendimiento		ras	Días		
Omuau	Actividades	Tramo I	Tramo II	Tramo I	Tramo II	Tramo I	Tramo II	Tramo I	Tramo II	
m3	Extendido de la Zahorra para la explanada	7030,02	5272,43	0,005	0,005	35,2	26,4	4,39	3,30	
m2	Extendido de un riego de imprimación	25068,27	19423,16	0,004	0,004	100,3	77,7	12,53	9,71	
m2	Extendido de la capa base	17664,03	11927,41	0,005	0,005	88,3	59,6	11,04	7,45	
m2	Compactación de la capa base	17664,03	11927,41	0,007	0,007	123,6	83,5	15,46	10,44	
m2	Extendido de un riego de adherencia	17664,03	11927,41	0,004	0,004	70,7	47,7	8,83	5,96	
m2	Extendido de la capa intermedia	17664,03	11927,41	0,005	0,005	88,3	59,6	11,04	7,45	
m2	Extendido de un riego de adherencia	17664,03	11927,41	0,004	0,004	70,7	47,7	8,83	5,96	
m2	Extendido de la capa de rodadura	17664,06	18200,94	0,010	0,010	176,6	182,0	22,08	22,75	
m2	Compactación de la capa de rodadura	16952,28	17578,64	0,007	0,007	118,7	123,1	14,83	15,38	

Tabla 4. Duración de las actividades en la fase "Firmes-Trazado nuevo". Fuente: Elaboración propia

3.4.1 Trazado existente

En las zonas donde se realizará el reasfaltado de la carretera, únicamente será necesaria la colocación de la capa de rodadura, lo que permitirá completar los trabajos en 10 días para el primer tramo y 8 días para el segundo (**Tabla 5**).

	FIRMES-TRAZADO EXISTENTE									
Unidad	Actividades	Medición		Rendir	Rendimiento		Horas		Días	
		Tramo I	Tramo II	Tramo I	Tramo II	Tramo I	Tramo II	Tramo I	Tramo II	
m2	Extendido de la capa de rodadura	4270,68	3733,80	0,010	0,010	42,7	37,3	5,34	4,67	
m2	Compactación de la capa de rodadura	4982,46	4356,10	0,007	0,007	34,9	30,5	4,36	3,81	

Tabla 5. Duración de las actividades en la fase "Firmes-Trazado existente". Fuente: Elaboración propia

3.5. Muro de contención

La construcción del muro de contención tendrá lugar en el segundo tramo, después de completar las labores de movimiento de tierras. Se calcula que su ejecución llevará aproximadamente 2 meses y 8 días (**Tabla 6**).

	MURO DE CONTENCIÓN								
Unidad	Actividades	Medición	Rendimiento	Horas	Días				
		Tramo II	Tramo II	Tramo II	Tramo II				
m3	Elaboración del muro de contención	730	0,520	379,6	47,45				

Tabla 6. Duración de las actividades en la fase "Muro de contención ". Fuente: Elaboración propia

3.6. Gestión de residuos y seguridad y salud

Tanto la gestión de residuos como la seguridad y salud se llevan a cabo en todas las fases del estudio, estando presente desde el inicio hasta la finalización de la obra.

5. Duración de las actividades

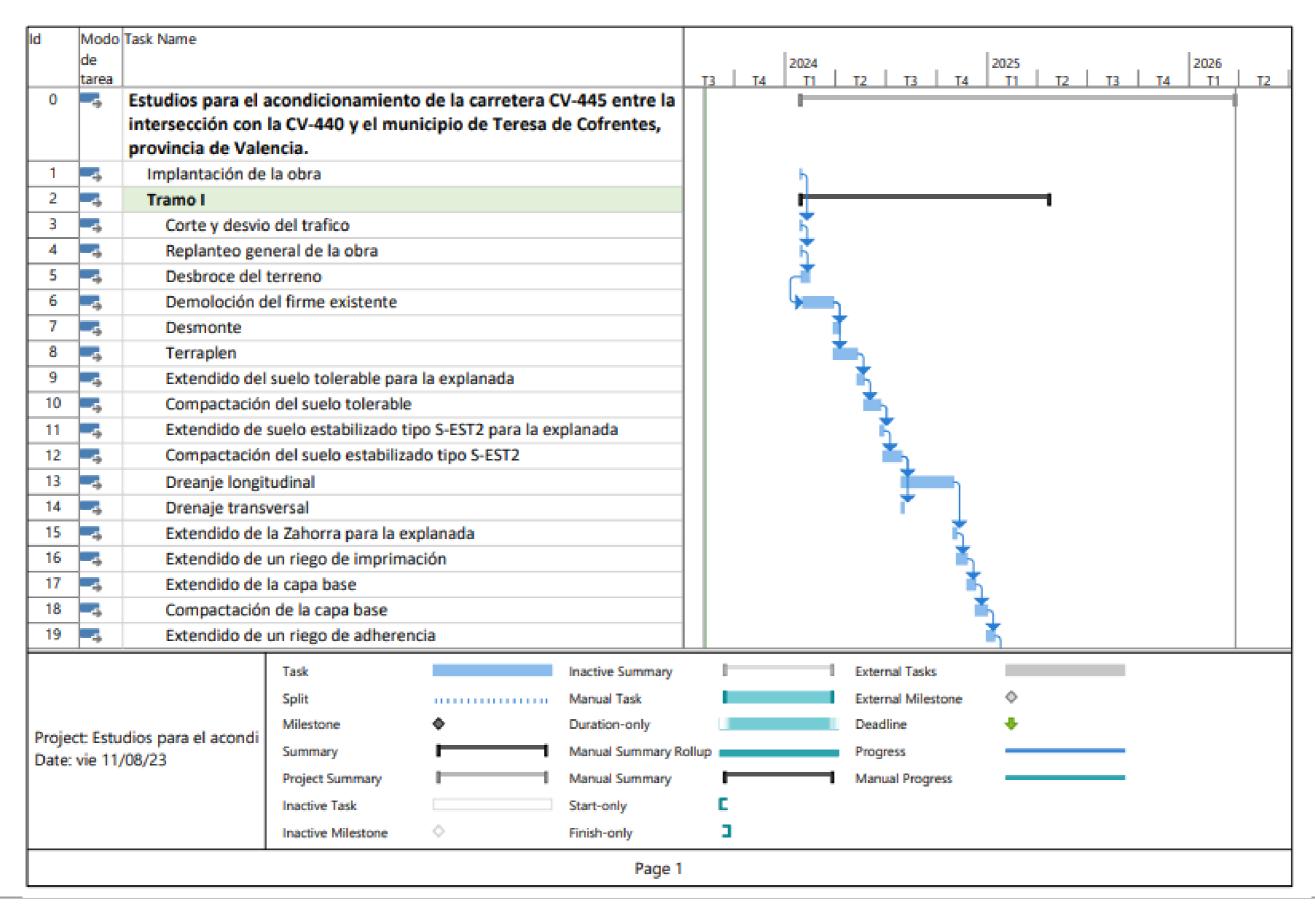
En la **Tabla 7** se muestran la recopilación total de activades que se van a realizar a lo largo de la obra. Al dividir la ejecución en dos etapas, en el primer tramo se prevé una duración de **17 meses** y **3 días**, mientras que el segundo tramo requerirá de **14 meses** y **20 días**. En consecuencia, se estima la duración individual de las activades de la obra sería de **32 meses** y **3 días**.

Unidad	Actividades	Med	lición	Rendi	miento	Ho	ras	Di	ías
Unidad	Actividades	Tramo I	Tramo II	Tramo I	Tramo II	Tramo I	Tramo II	Tramo I	Tramo II
u	Implantación de la obra	1,00	1,00	4,000	4,000	4,0	0,0	0,5	0,0
u	Corte y desvio del trafico	1,00	1,00	2,000	1,500	2,0	1,5	0,3	0,2
m2	Replanteo general de la obra	1,00	1,00	4,000	3,500	4,0	3,5	0,5	0,4
m2	Desbroce del terreno	16929,94	9790,00	0,005	0,005	84,6	49,0	10,6	6,1
m2	Demolición del firme existente	18801,24	14567,37	0,017	0,017	319,6	247,6	40,0	31,0
m3	Desmonte	16704,96	45231,93	0,004	0,004	66,8	180,9	8,4	22,6
m3	Terraplén	61577,59	10051,44	0,004	0,004	246,3	40,2	30,8	5,0
m3	Extendido del suelo tolerable para la explanada	14060,05	10544,86	0,005	0,005	70,3	52,7	8,8	6,6
m2	Compactación del suelo tolerable	25068,27	19423,16	0,007	0,007	175,5	136,0	21,9	17,0
m3	Extendido de suelo estabilizado tipo S-EST2 para la explanada	6025,73	4519,23	0,005	0,005	30,1	22,6	3,8	2,8
m2	Compactación del suelo estabilizado tipo S-EST2	25068,27	19423,16	0,007	0,007	175,5	136,0	21,9	17,0
ml	Drenaje longitudinal	2712,00	2012,00	0,200	0,200	542,4	402,4	67,8	50,3
ml	Drenaje transversal	160,00	80,00	0,200	0,200	32,0	16,0	4,0	2,0
m3	Elaboración del muro de contención	0,00	730,00	0,000	0,520	0,0	379,6	0,0	47,5
m3	Extendido de la Zahorra para la explanada	7030,02	5272,43	0,005	0,005	35,2	26,4	4,4	3,3
m2	Extendido de un riego de imprimación	25068,27	19423,16	0,004	0,004	100,3	77,7	12,5	9,7
m2	Extendido de la capa base	17664,03	11927,41	0,005	0,005	88,3	59,6	11,0	7,5
m2	Compactación de la capa base	17664,03	11927,41	0,007	0,007	123,6	83,5	15,5	10,4
m2	Extendido de un riego de adherencia	17664,03	11927,41	0,004	0,004	70,7	47,7	8,8	6,0
m2	Extendido de la capa intermedia	17664,03	11927,41	0,005	0,005	88,3	59,6	11,0	7,5
m2	Extendido de un riego de adherencia	17664,03	11927,41	0,004	0,004	70,7	47,7	8,8	6,0
m2	Extendido de la capa de rodadura	21934,74	16995,27	0,010	0,010	219,3	170,0	27,4	21,2
m2	Compactación de la capa de rodadura	21934,74	16995,27	0,007	0,007	153,5	119,0	19,2	14,9
u	Señalización y balizamiento	1,00	1,00	24,000	24,000	24,0	24,0	3,0	3,0
u	Limpieza y acabados	1,00	1,00	16,000	16,000	16,0	16,0	2,0	2,0

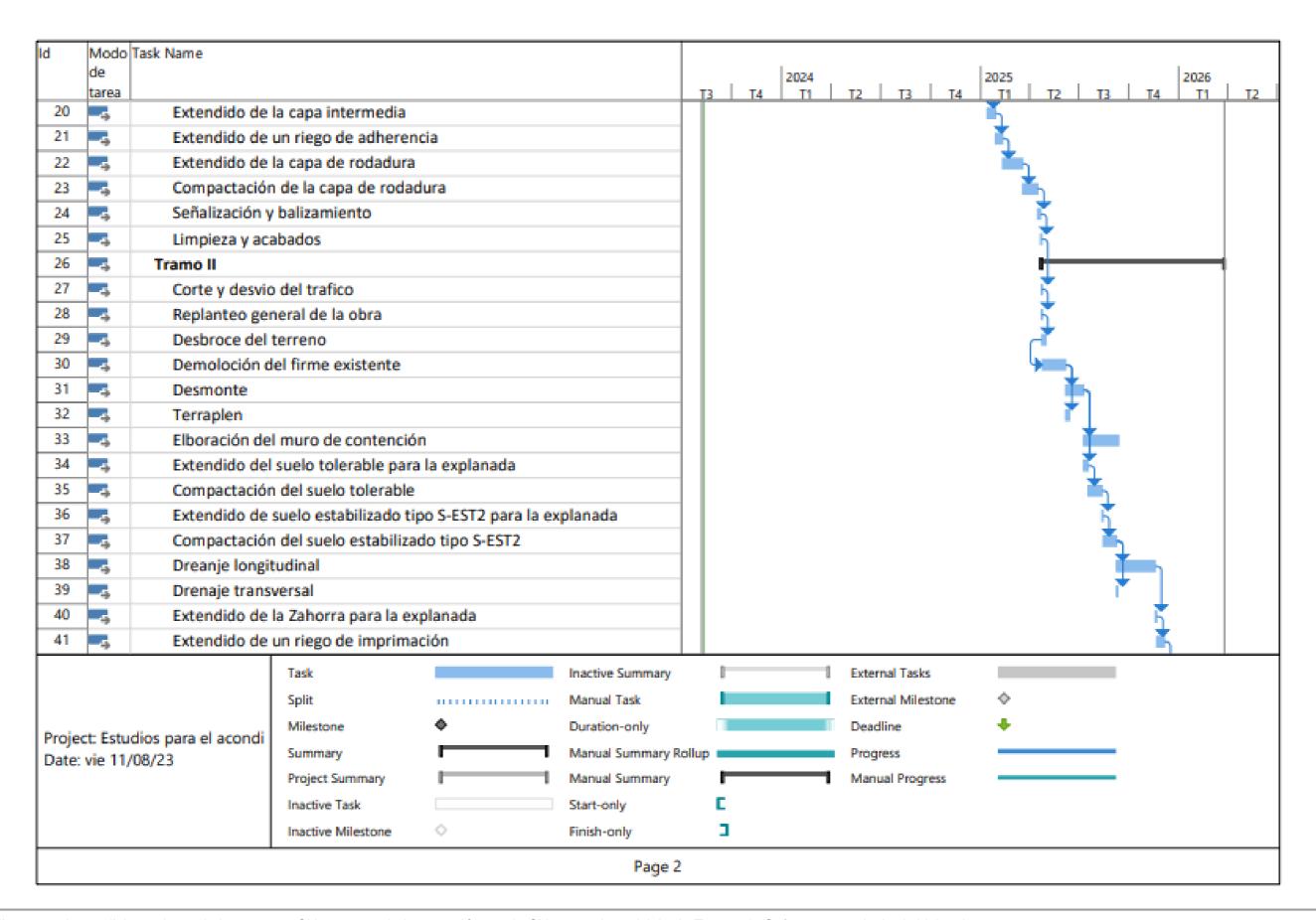
Tabla 7. Duración total de las activades. Fuente: Elaboración propia

6. Diagrama de Gantt

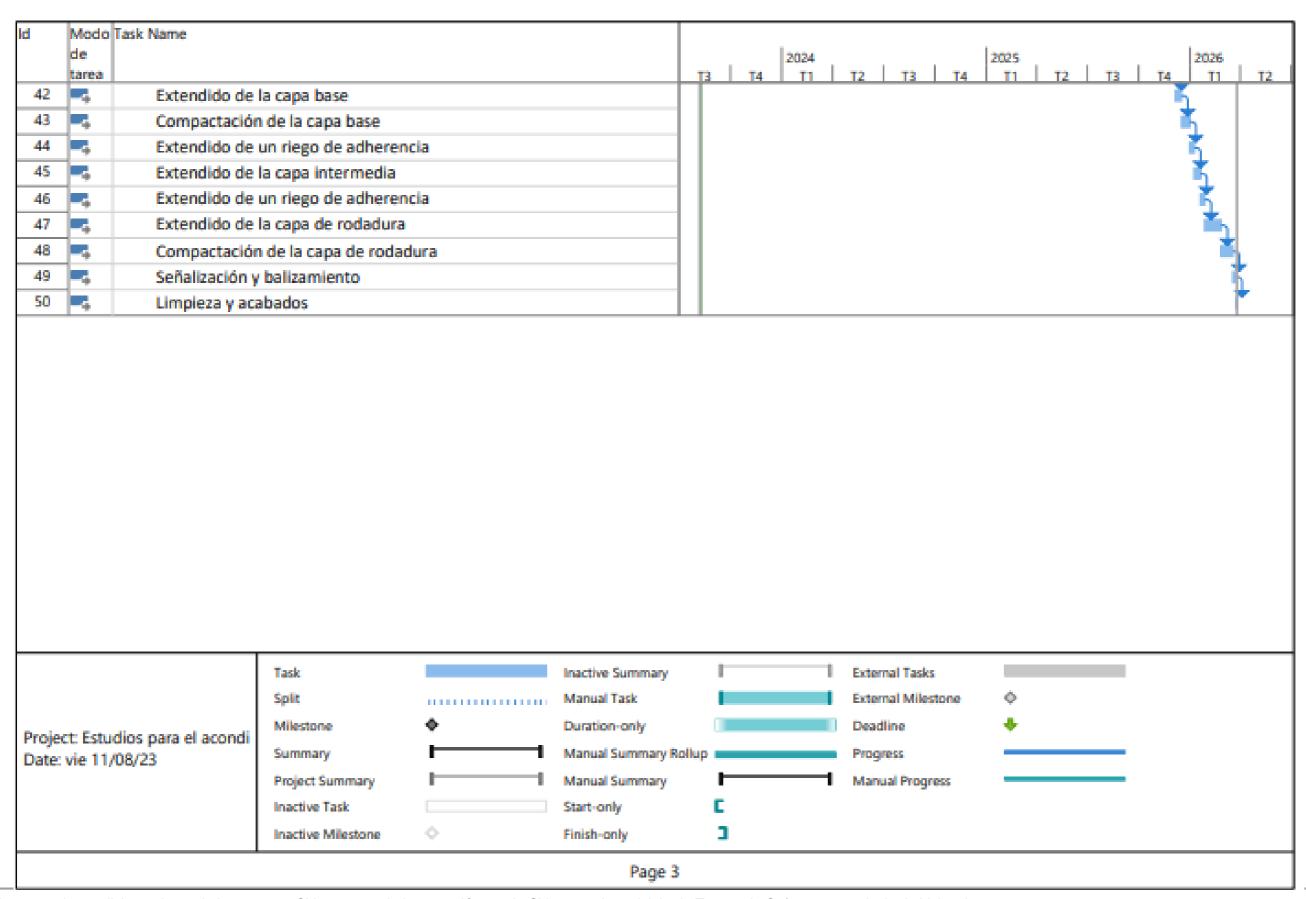
Mediante las actividades previamente detalladas y considerando la factibilidad de superponer algunas de ellas, se ha elaborado un diagrama de Gantt (ver **Apéndice 1**). Este diagrama representa el plan propuesto para llevar a cabo la obra, estableciendo un período de ejecución de **10 meses** y **17 días** en el Tramo I y de **7 meses** y **28 días** en el Tramo II. Por lo que la duración total de la obra será de **28 meses** y **3 días**



Apéndice 1: Diagrama de Gantt



Estudios para el acondicionamiento de la carretera CV-445 entre la intersección con la CV-440 y el municipio de Teresa de Cofrentes, provincia de Valencia.



Estudios para el acondicionamiento de la carretera CV-445 entre la intersección con la CV-440 y el municipio de Teresa de Cofrentes, provincia de Valencia.

ANEJO Nº 12: OBJETIVOS DE DESARROLLO SOSTENIBLE (ODS)

Curso:

2022/2023

Fecha:

septiembre 2023

Autor:

Jorge Naranjo Martínez

Tutor:

Javier Camacho Torregrosa

INDICE

l. Introducción	3
2. Objetivos del desarrollo sostenible (ODS)	3
Relación de los ODS mas relevantes con el TFG	3

1. Introducción

Los Objetivos de Desarrollo Sostenible (ODS) fueron promovidos por las Naciones Unidas en 2015 y representan un llamado global a la acción con el propósito de erradicar la pobreza, proteger el medio ambiente y mejorar la calidad de vida y el bienestar de las personas a nivel mundial. En este anejo, se establecerá la conexión entre los estudios realizados para mejorar la carretera CV-445 y los diversos ODS.

2. Objetivos del desarrollo sostenible (ODS)

Los Objetivos de Desarrollo Sostenible (ODS) fueron creados por la ONU, en colaboración con organizaciones no gubernamentales y ciudadanos de todo el mundo, con una agenda proyectada hasta 2030. Estos objetivos incluyen:

- 1. Fin de la pobreza.
- 2. Hambre cero.
- 3. Salud y bienestar.
- 4. Educación de calidad.
- 5. Igualdad de género.
- 6. Agua limpia y saneamiento.
- 7. Energía asequible y no contaminante.
- 8. Trabajo decente y crecimiento económico.
- 9. Industria, innovación e infraestructuras.
- 10. Reducción de las desigualdades.
- 11. Ciudades y comunidades sostenibles.
- 12. Producción y consumo responsables.
- 13. Acción por el clima.
- 14. Vida submarina.
- Vida de ecosistemas terrestres.
- 16. Paz, justicia e instituciones sólidas.
- 17. Alianzas para lograr los objetivos.

De estos, los más relevantes para este estudio son aquellos relacionados con la salud y el bienestar (ODS 3), la industria, la innovación y las infraestructuras (ODS 9) y las ciudades y comunidades sostenibles (ODS 11).

3. Relación de los ODS mas relevantes con el TFG

Los Objetivos de Desarrollo Sostenible (ODS) mencionados anteriormente, establecidos por las Naciones Unidas (ONU), tienen una relación significativa con el proyecto de acondicionamiento de la carretera CV-445. Específicamente, se pueden destacar las siguientes conexiones:

- ODS 3. Salud y bienestar: A busca reducir el número de muertes y lesiones por accidentes de tráfico, contribuyendo a la meta 3.6 de reducir a la mitad las muertes por accidentes viales para 2030. Esto se logra mediante mejoras en la seguridad vial, como la consistencia del trazado y el cumplimiento de normativas.
- ODS 9. Industria, innovación e infraestructuras: Este objetivo se enfoca en el desarrollo de infraestructuras sólidas, sostenibles y de alta calidad. Los estudios para el acondicionamiento de la CV-445 está relacionado con la meta 9.1 de los ODS, que busca el desarrollo de infraestructuras confiables para impulsar el crecimiento económico y el bienestar humano. A través de las mejoras en las infraestructuras viales, se promueve un transporte más eficiente y seguro, lo que contribuye al desarrollo económico local y al bienestar de la comunidad. Además, la innovación en la planificación y diseño de la carretera también se relaciona con este ODS.
- ODS 11. Ciudades y comunidades sostenibles: Este objetivo apunta a lograr ciudades y comunidades inclusivas, seguras y sostenibles. Los estudios para el de la CV-445 se relaciona con la meta 11.2, que busca proporcionar acceso a sistemas de transporte seguros y sostenibles para todos. Las mejoras en la seguridad vial y la accesibilidad contribuyen a hacer que las comunidades sean más seguras y accesibles para todos los ciudadanos. Además, el proyecto también guarda relación con la meta 11.4 al proteger paisajes naturales y culturales a lo largo del trazado de la carretera.

Estos estudios de acondicionamiento cumplen con múltiples ODS al promover la seguridad vial, el desarrollo económico y la sostenibilidad, y al mejorar la calidad de vida de las comunidades locales.

4. Bibliografía

Naciones Unidas. (2015). Objetivos y metas de desarrollo sostenible. Consultado en julio de 2023: https://www.un.org/sustainabledevelopment/es/development-agenda/

DOCUMENTO Nº2: PLANOS

Curso:

2022/2023

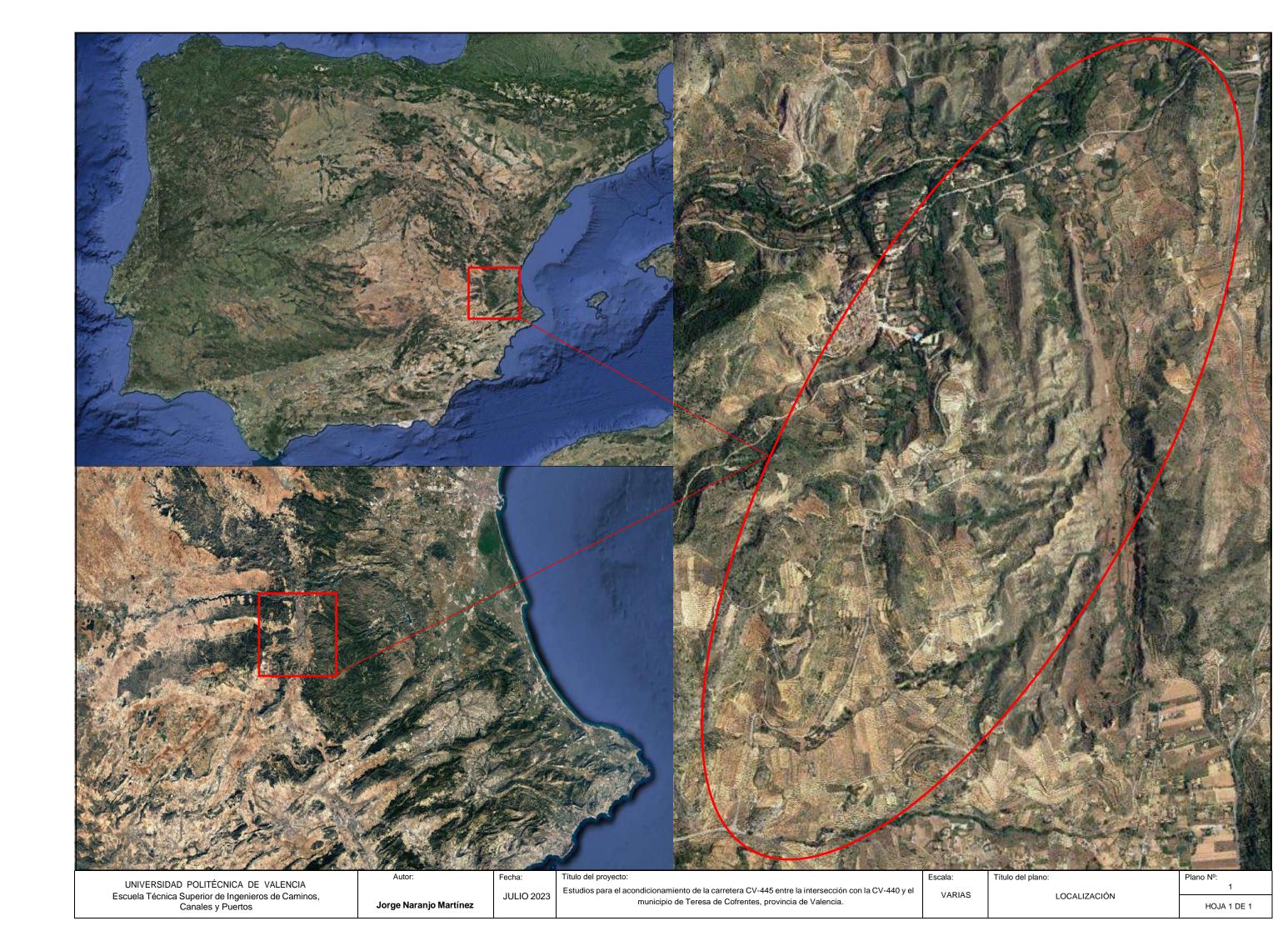
Fecha:

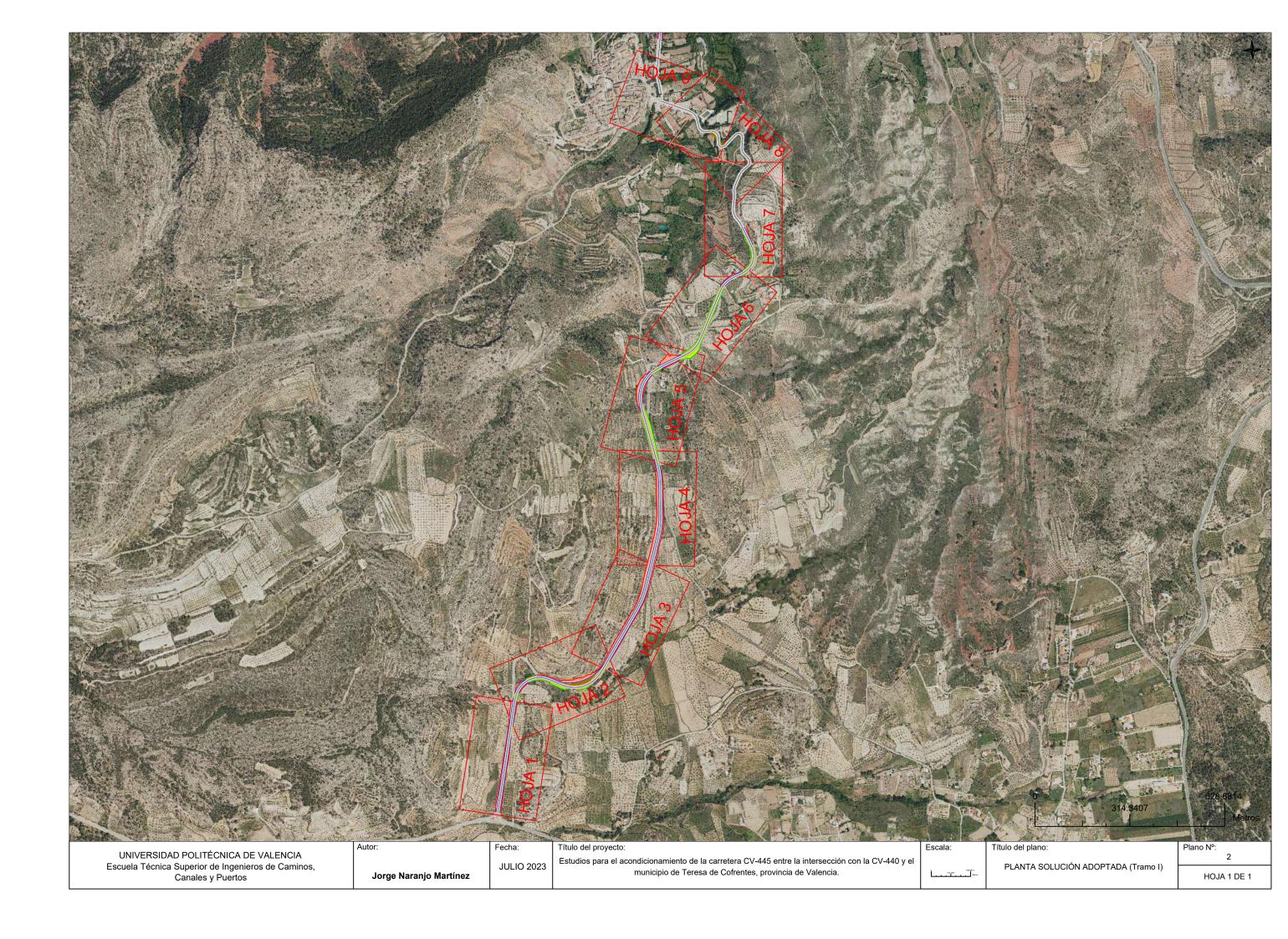
septiembre 2023

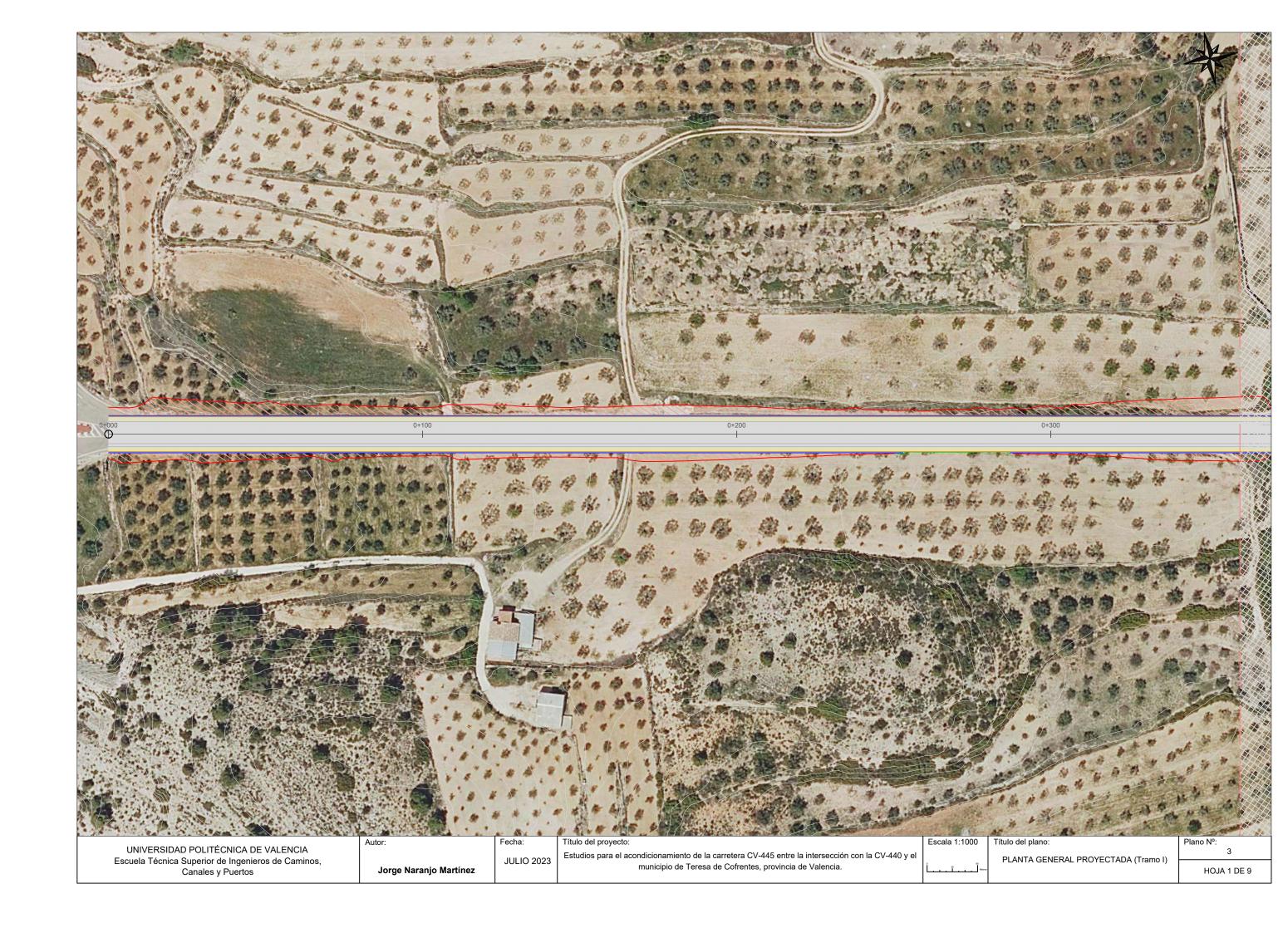
Autor:

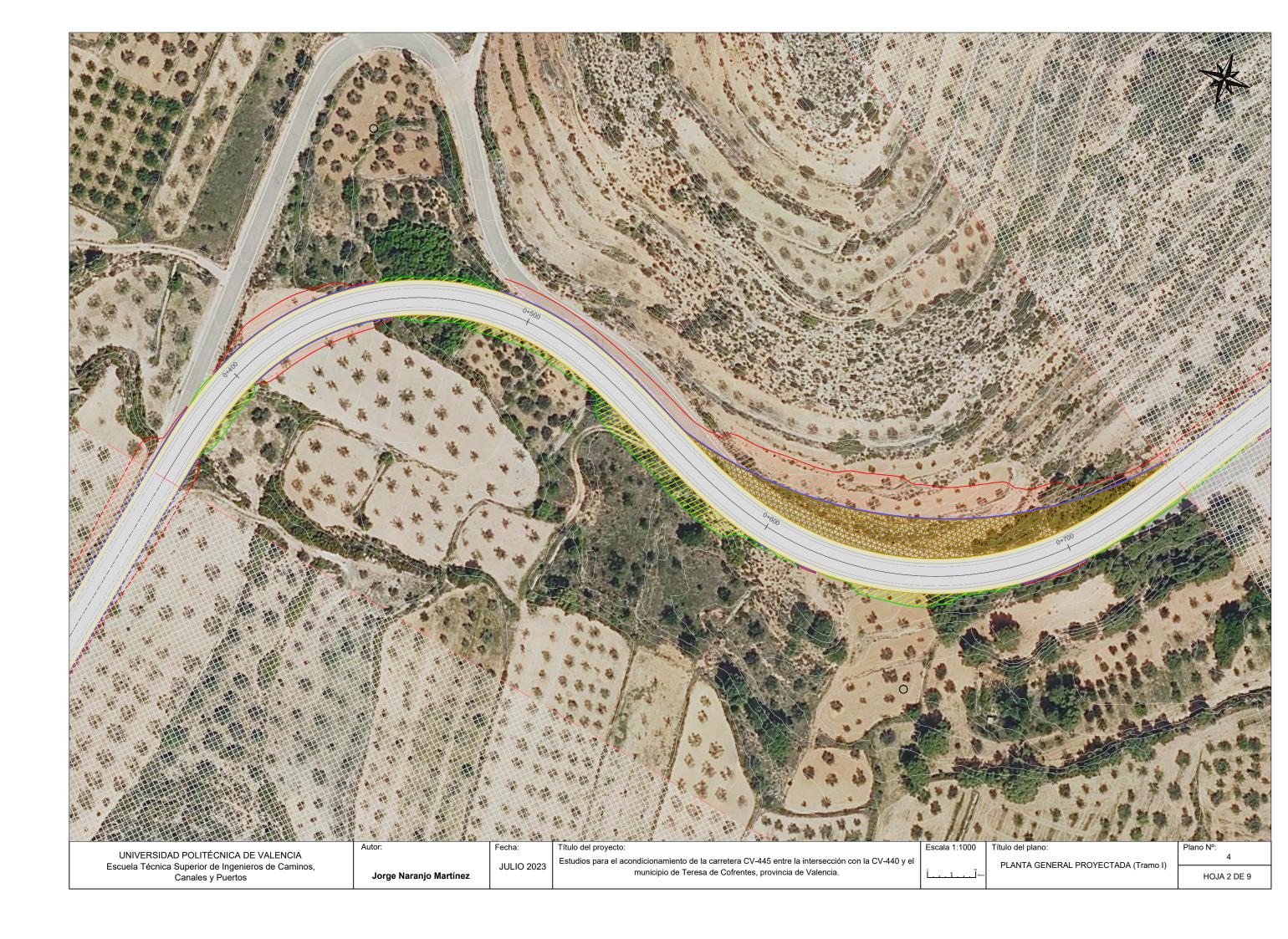
Jorge Naranjo Martínez

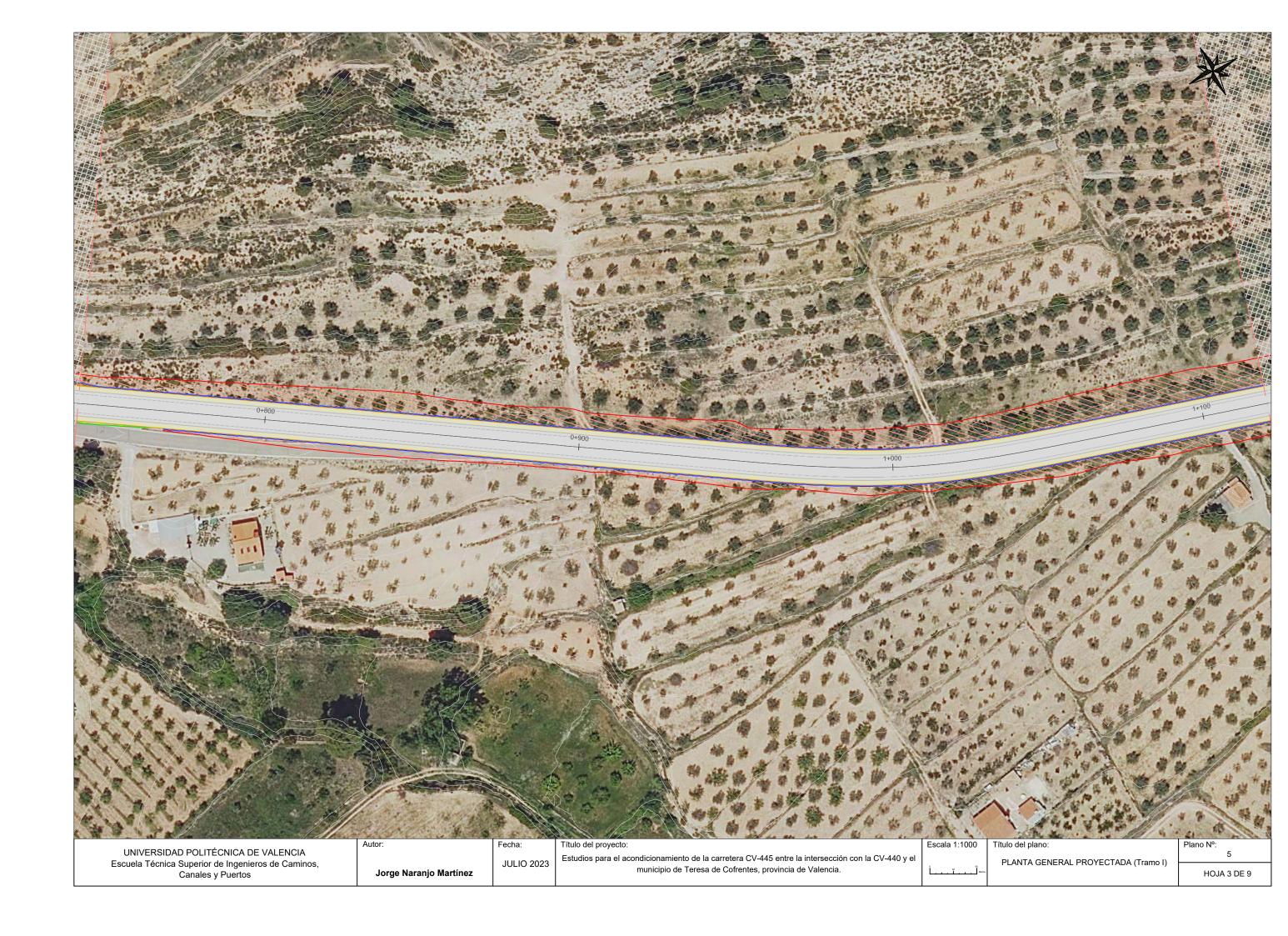
Tutor:

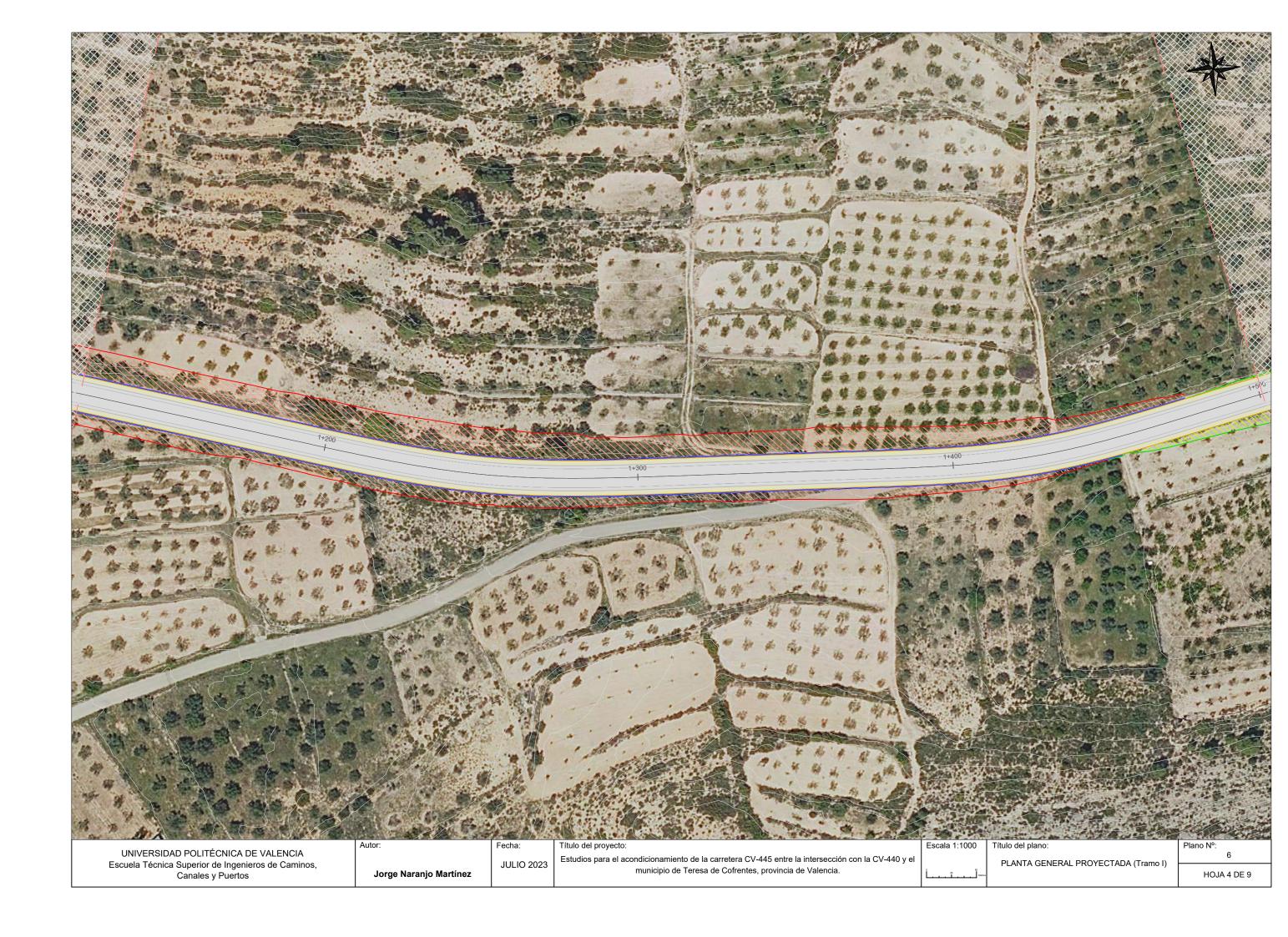

Javier Camacho Torregrosa

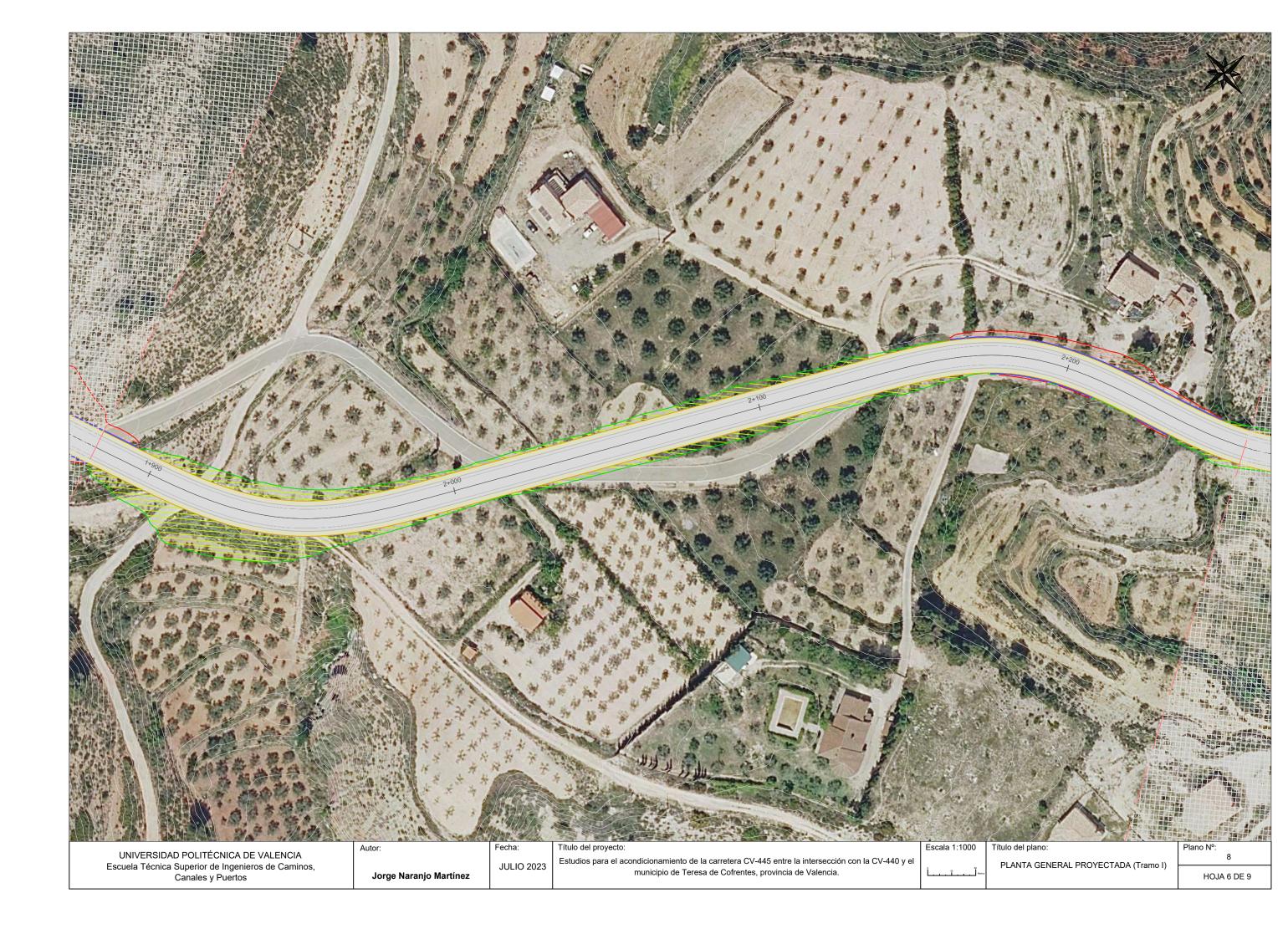


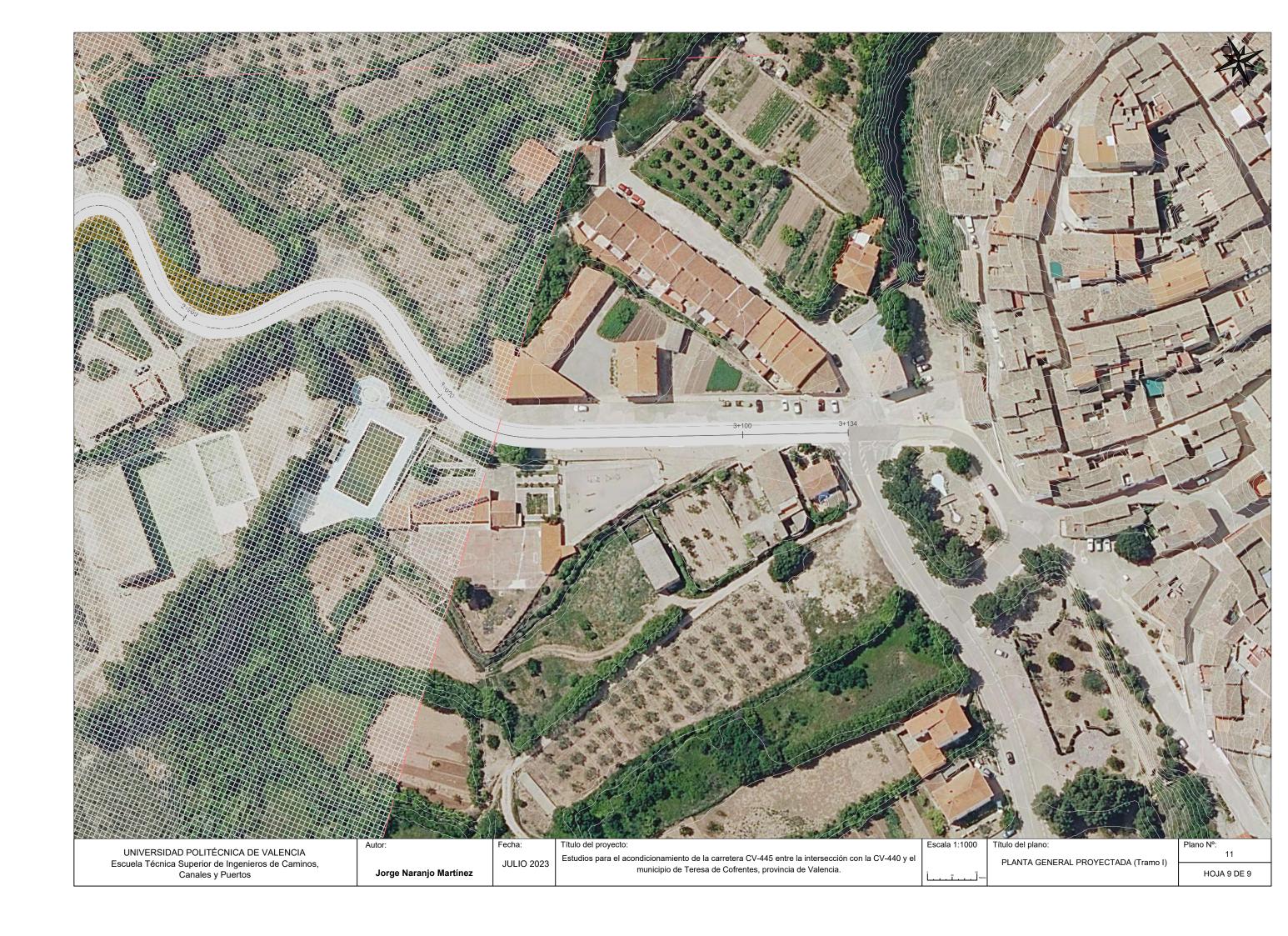


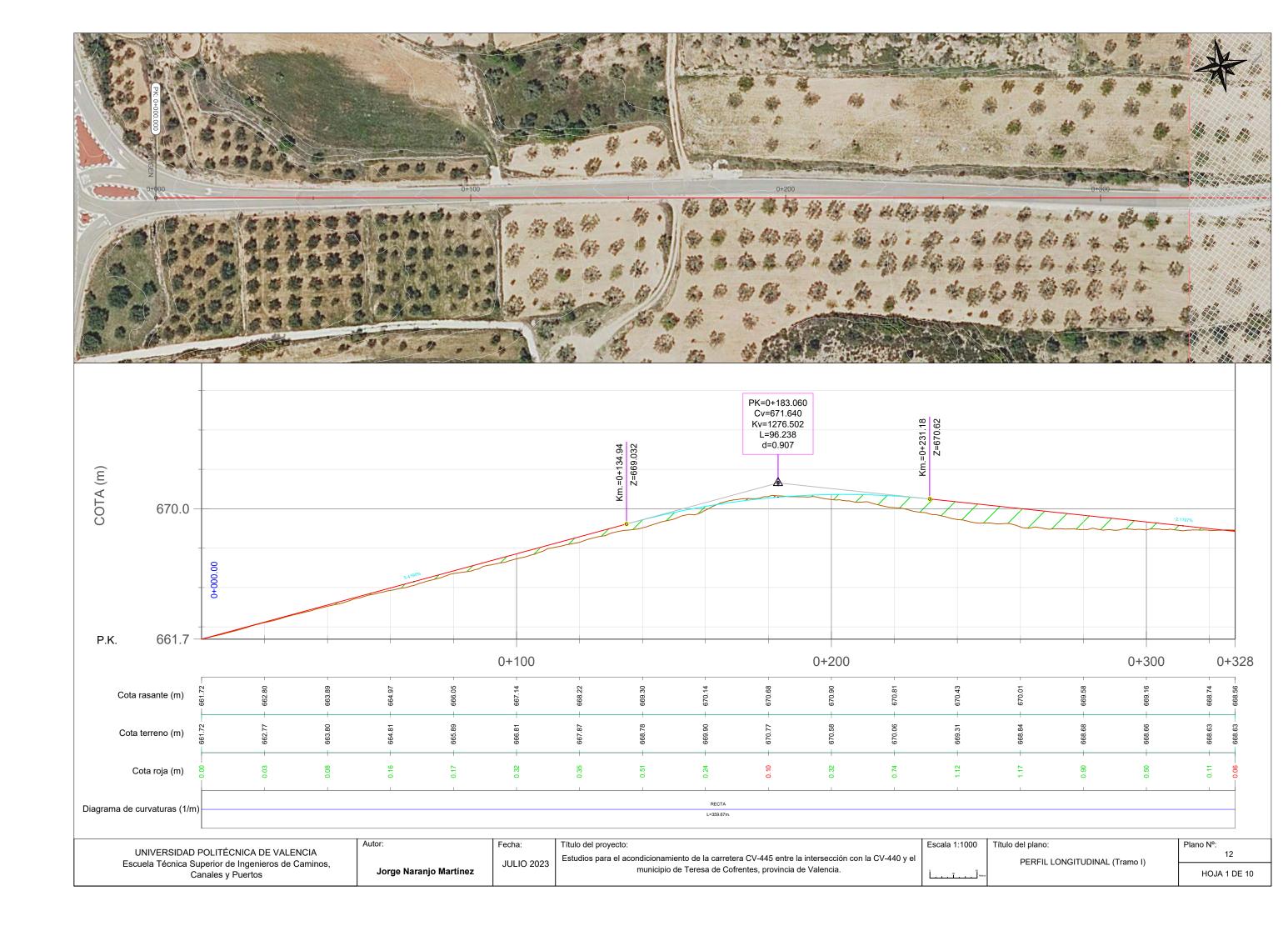

INDICE

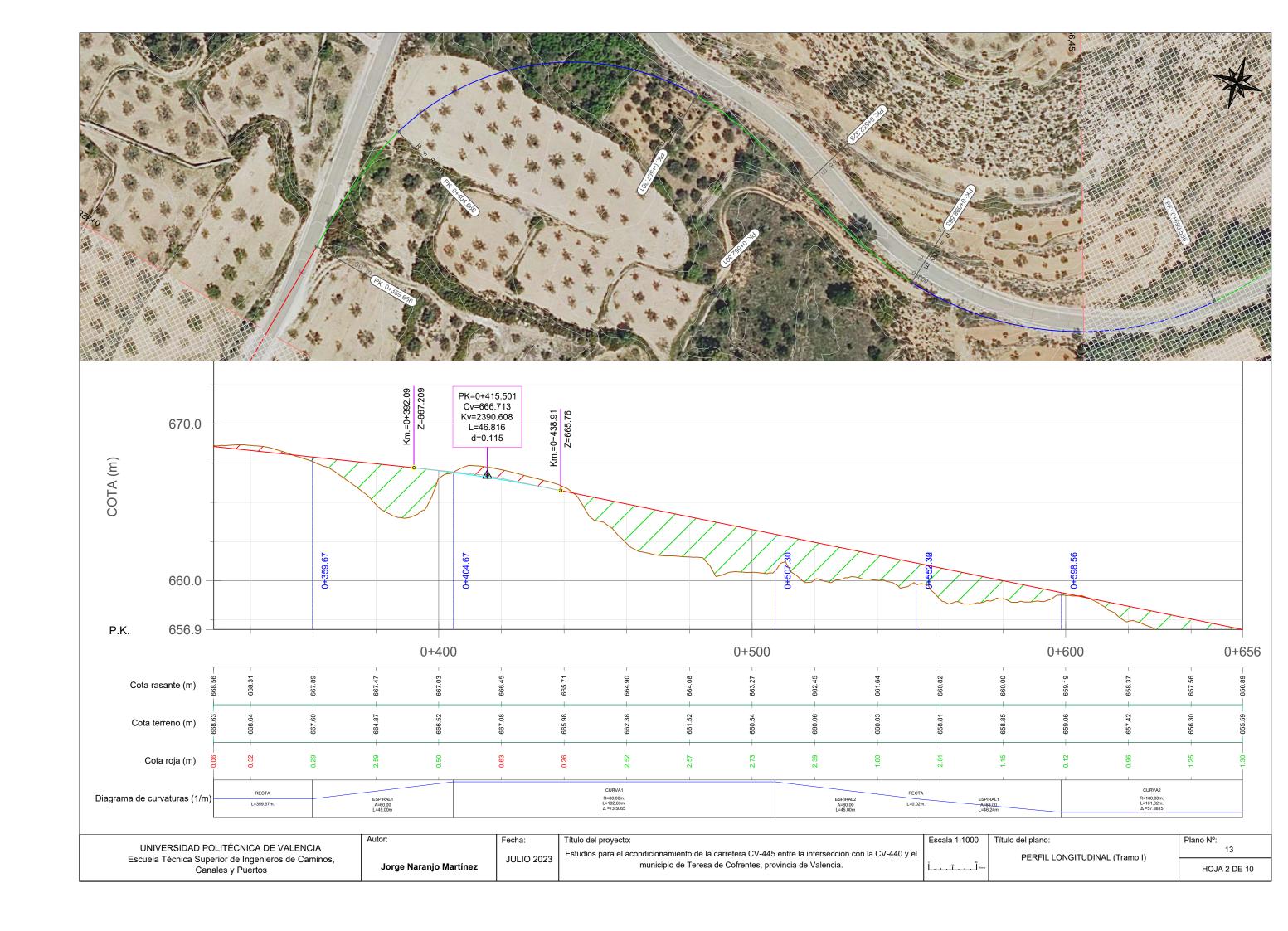

- 1. Localización
- 2. Planta solución adoptada (Tramo I)
- 3. Planta general proyectada (Tramo I)
- 4. Perfil longitudinal (Tramo I)
- 5. Planta solución adoptada (Tramo II)
- 6. Planta general proyectada (Tramo II)
- 7. Perfil longitudinal (Tramo II)
- 8. Drenaje
- 9. Sección tipo
- 10. Secciones constructivas (Tramo I)
- 11. Secciones constructivas (Tramo II)

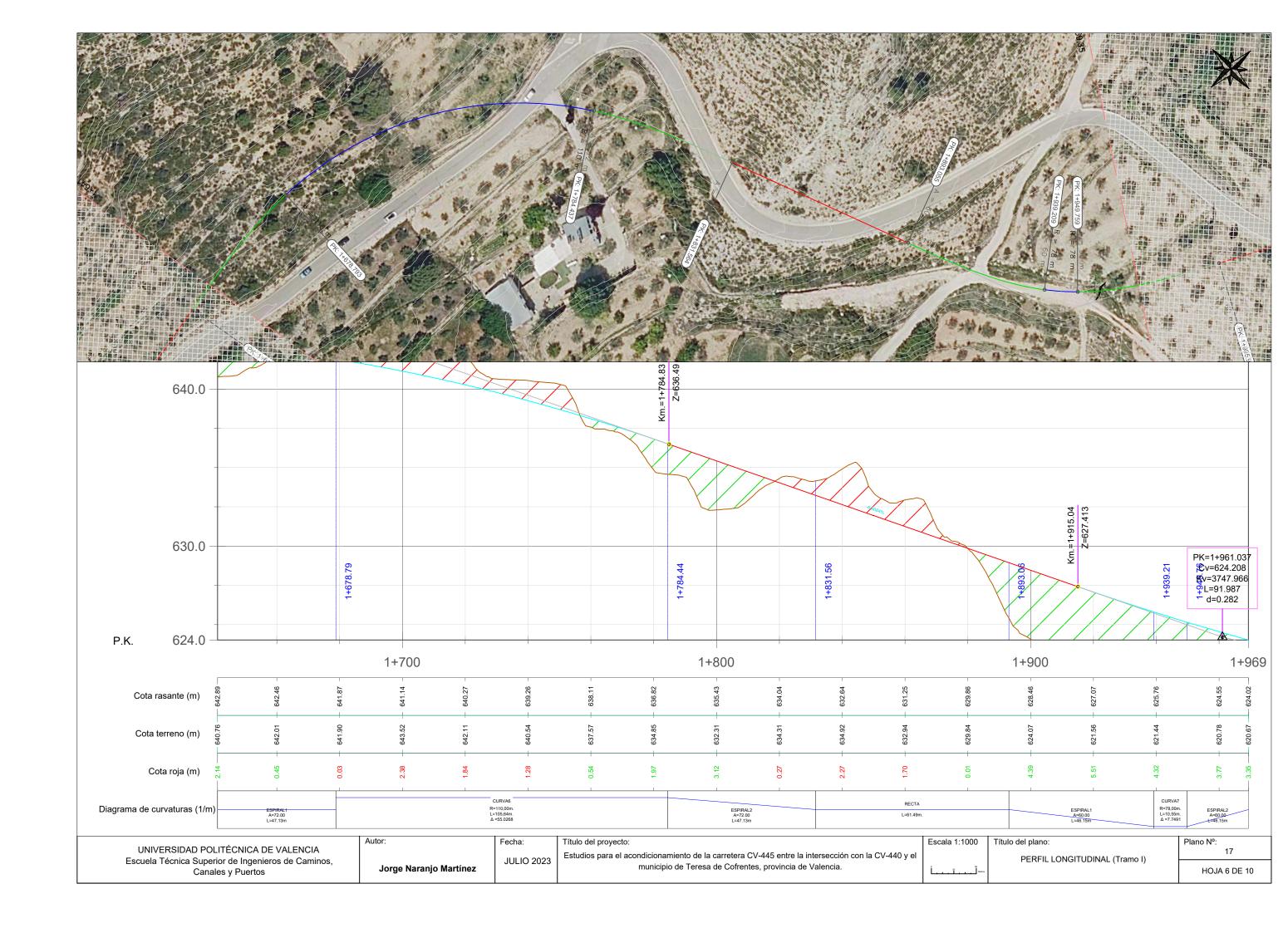


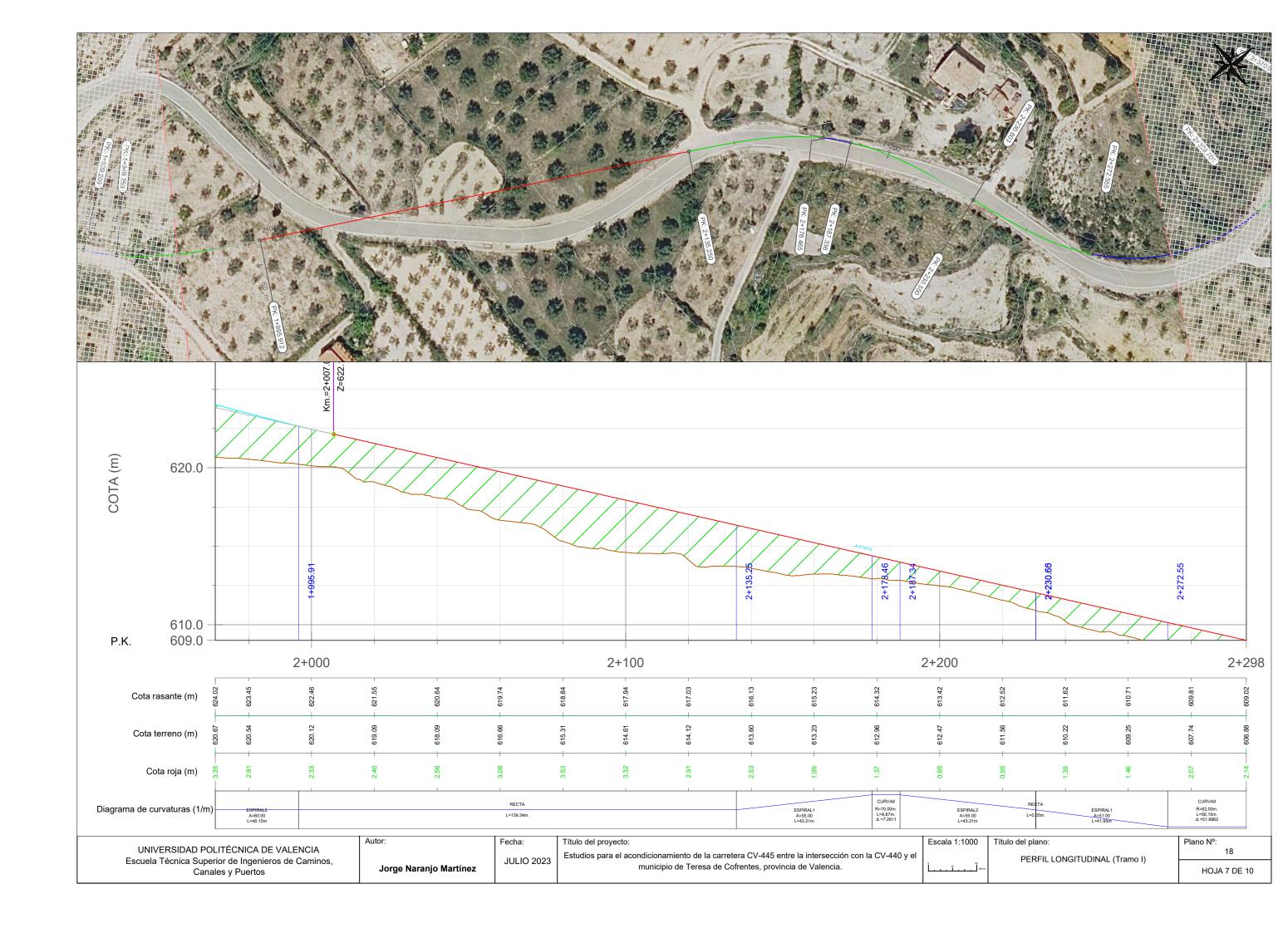


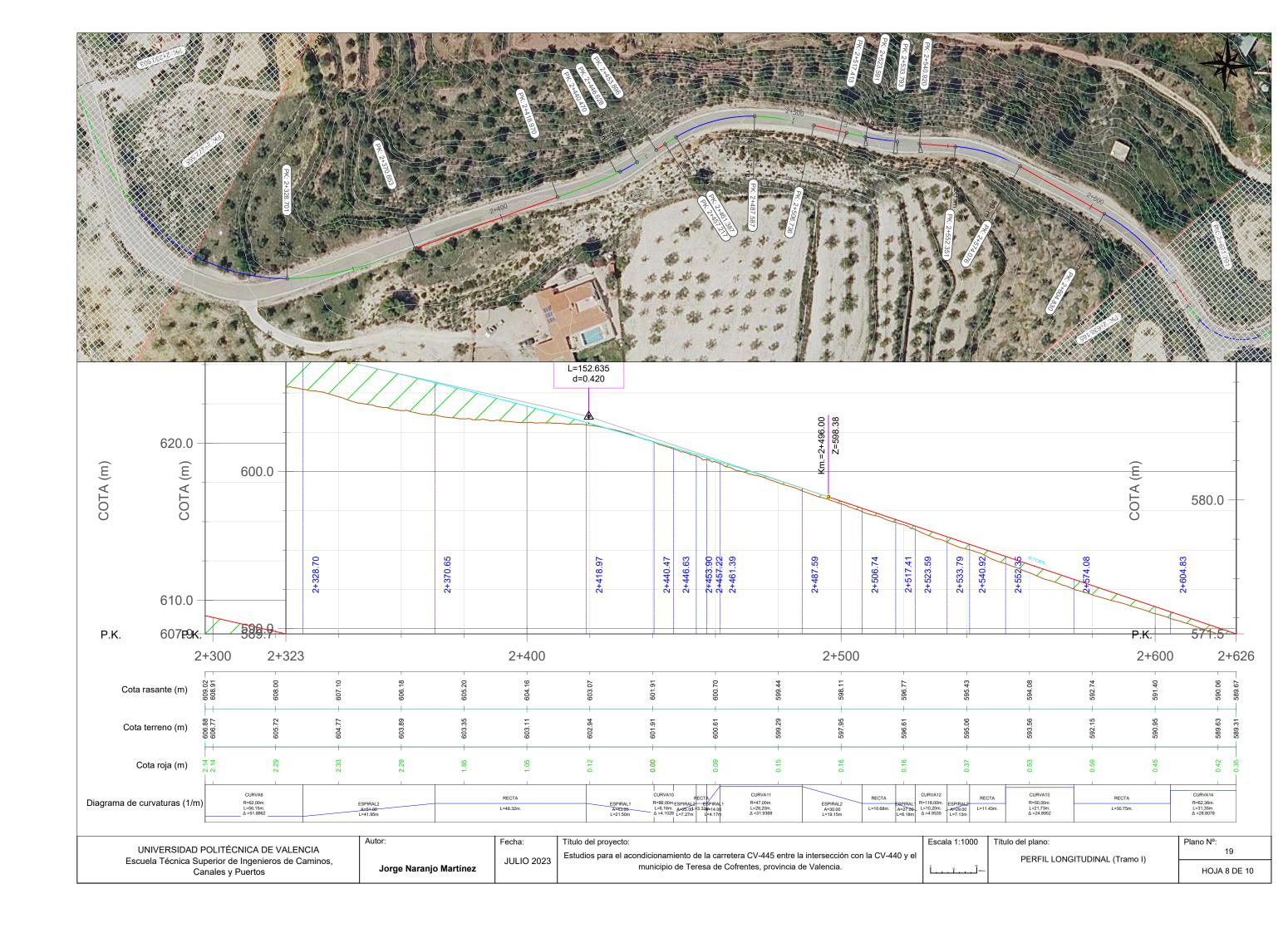


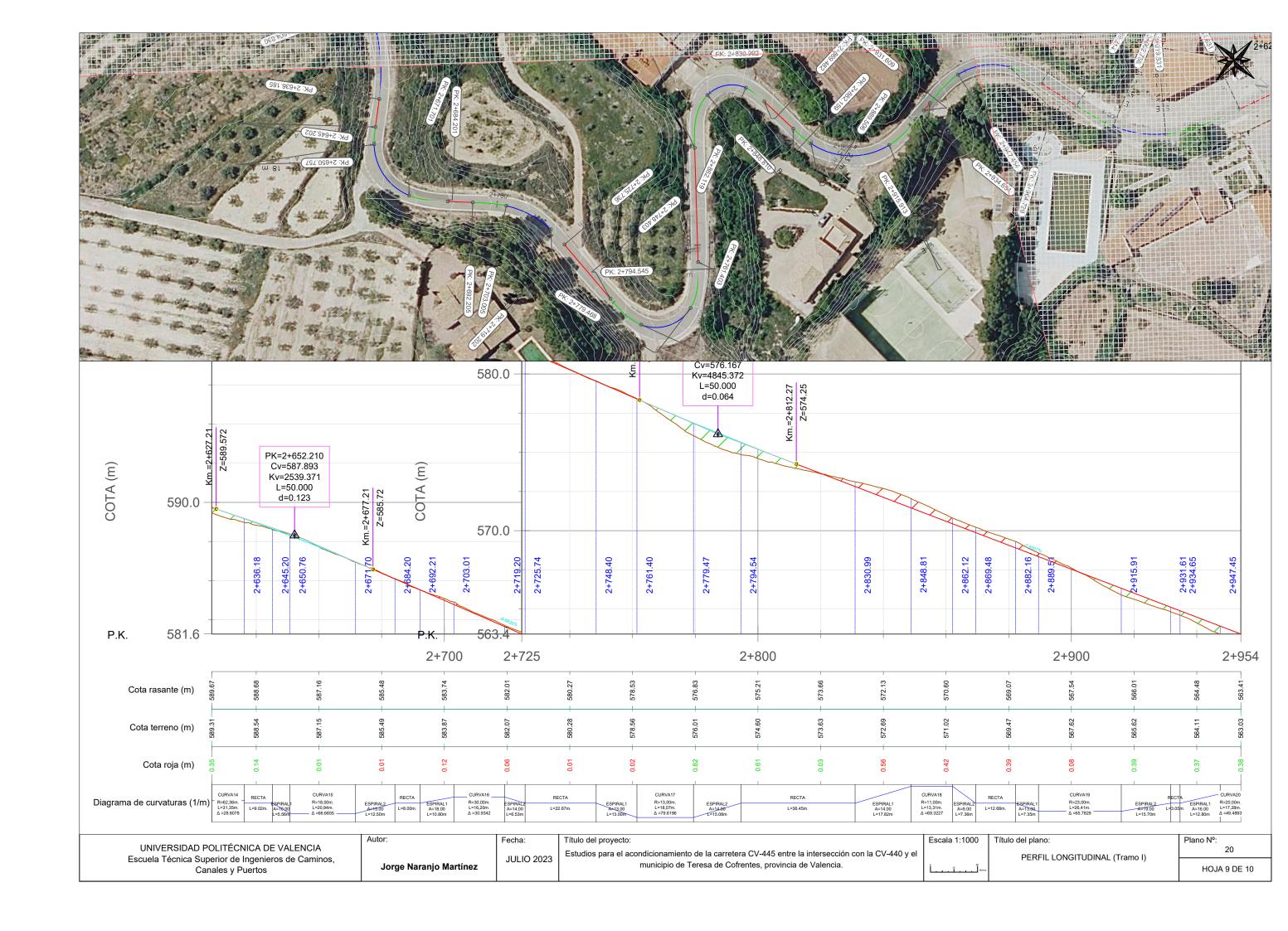


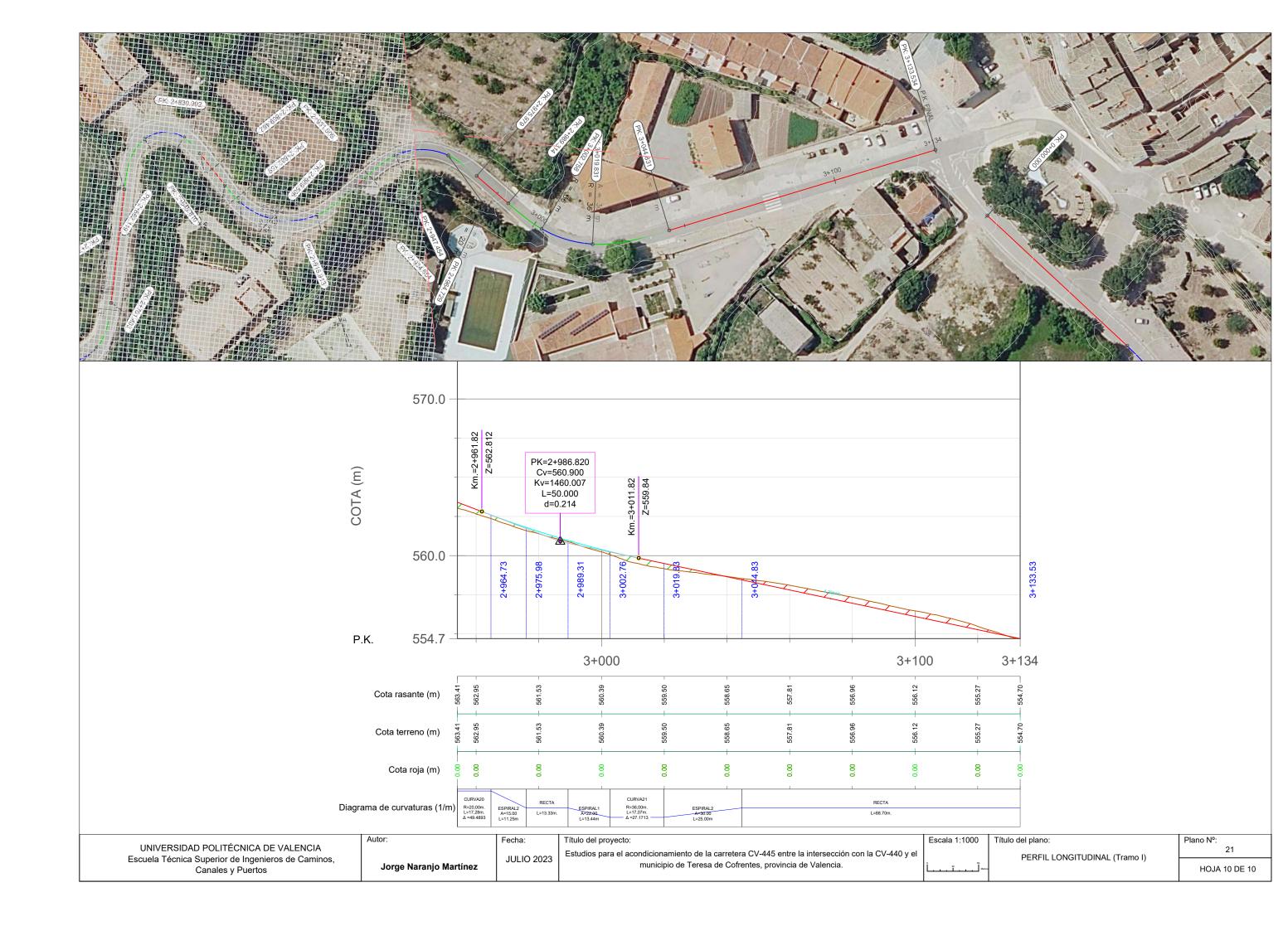


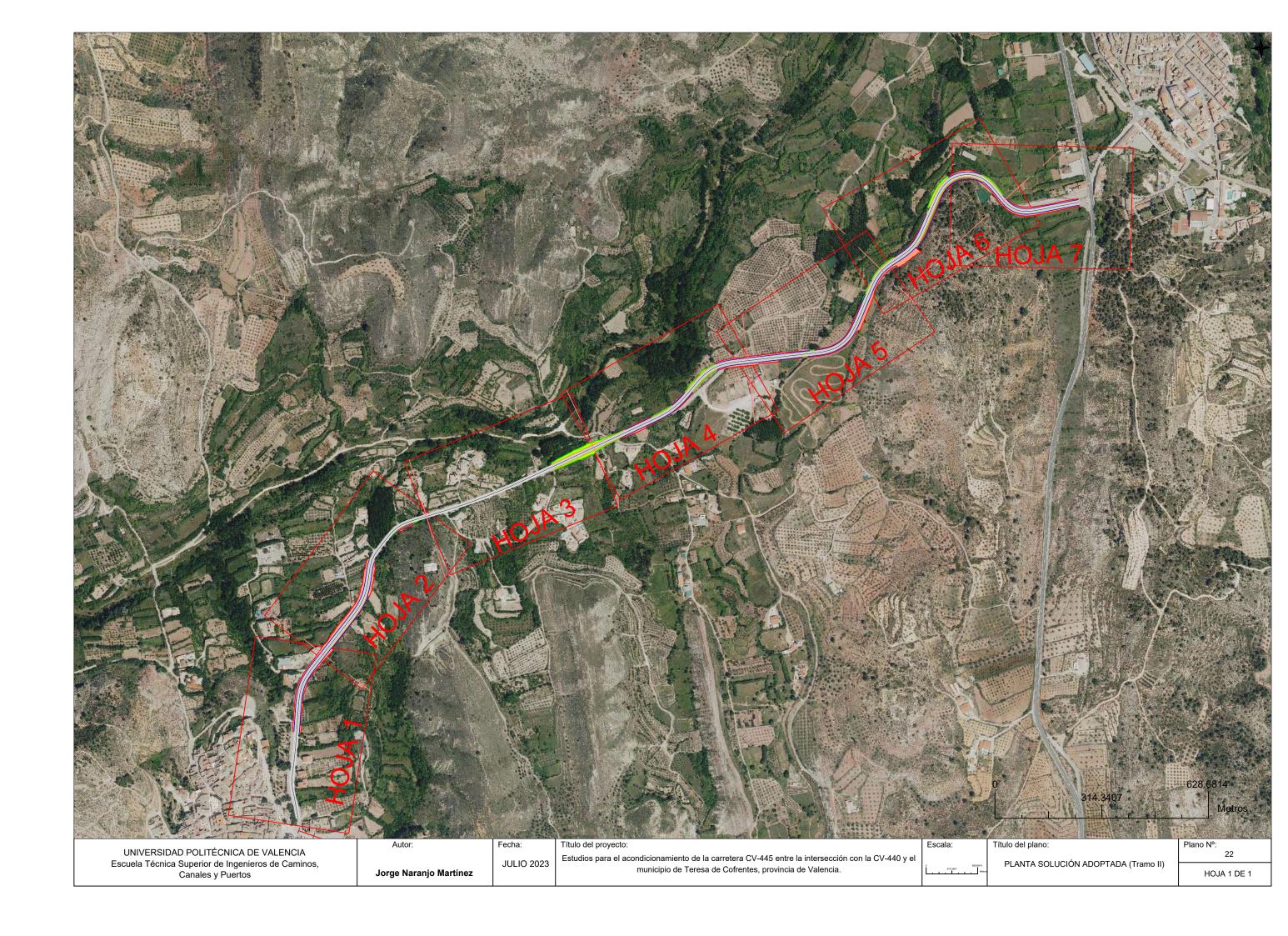




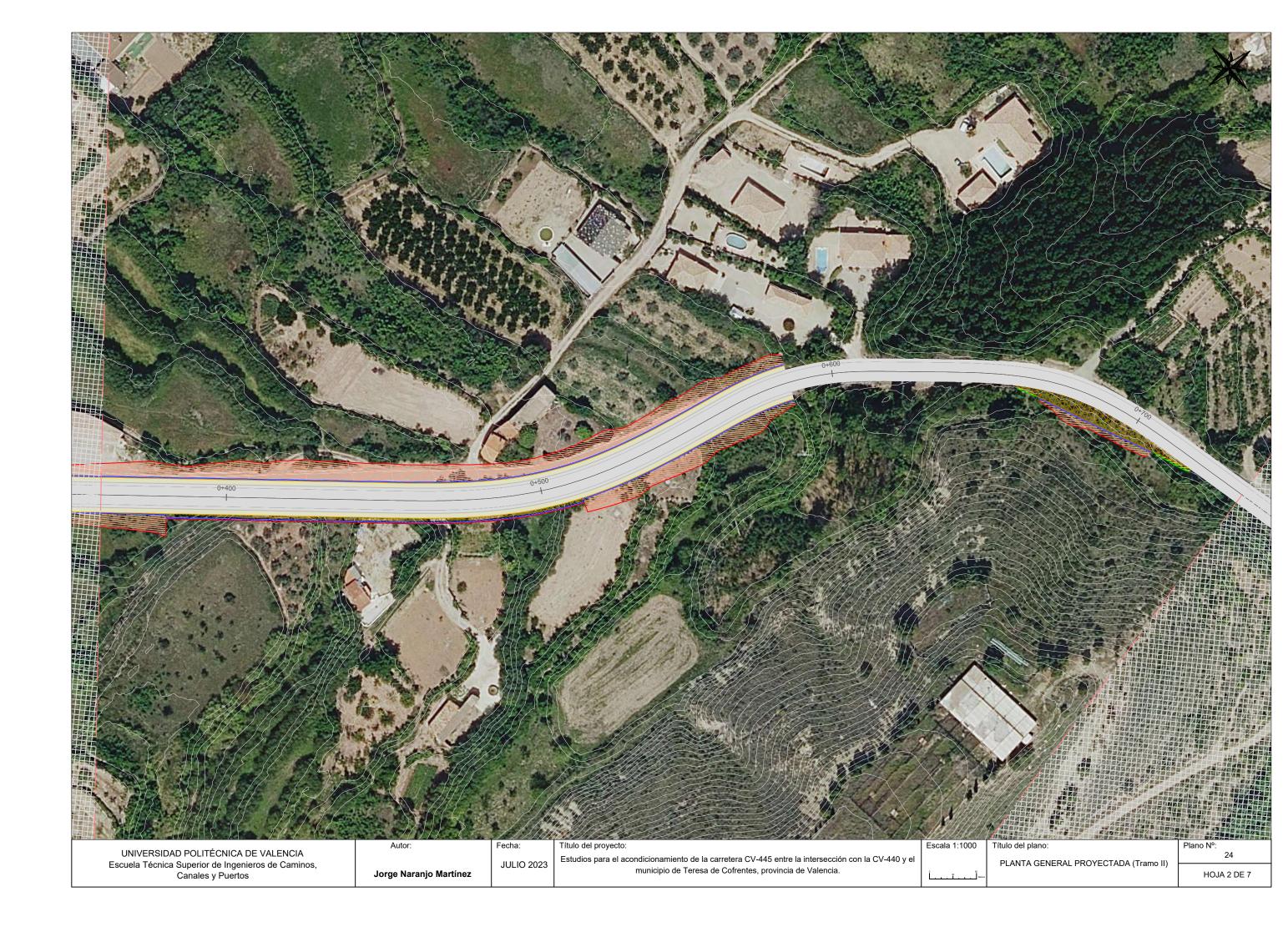


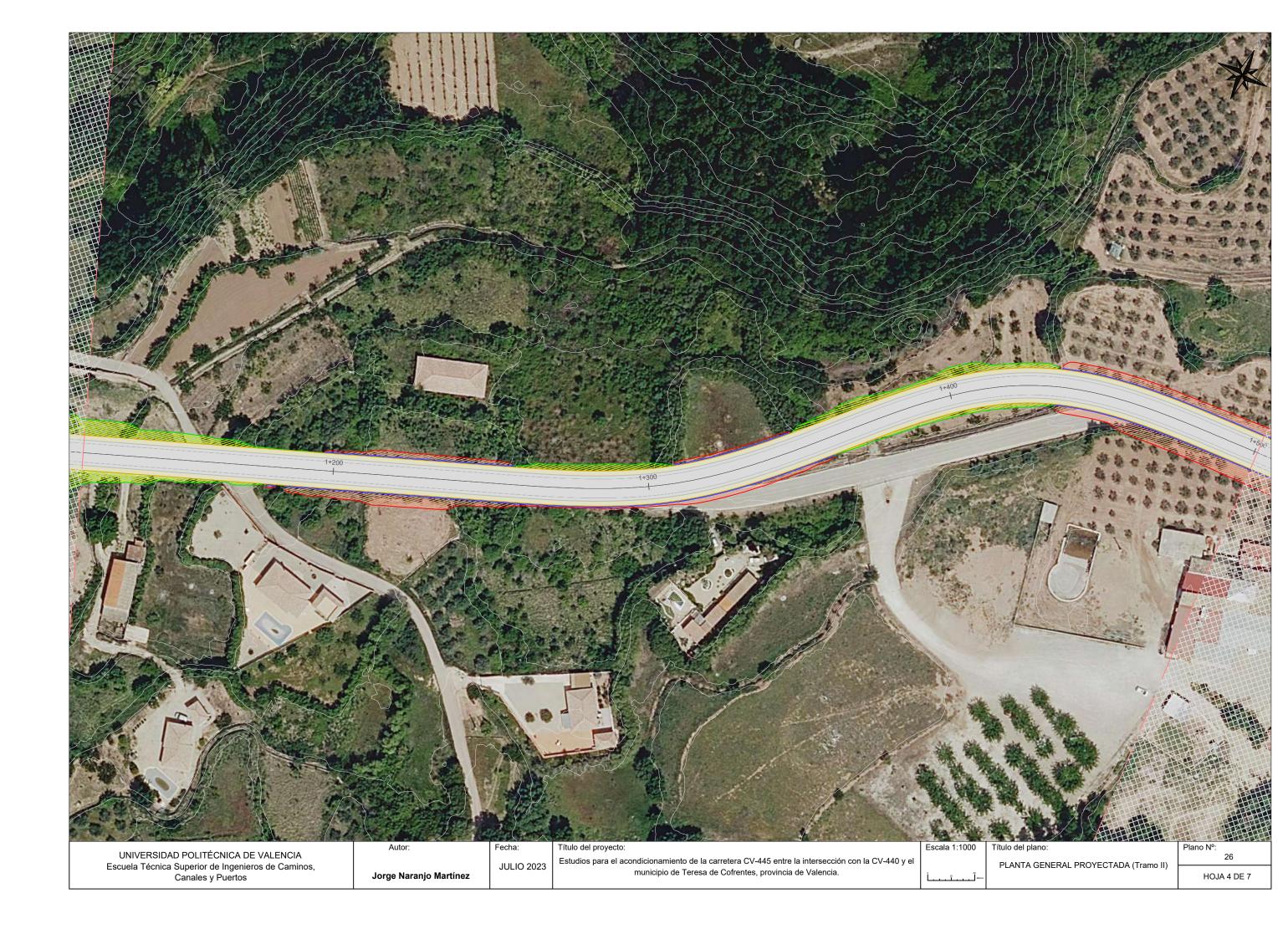


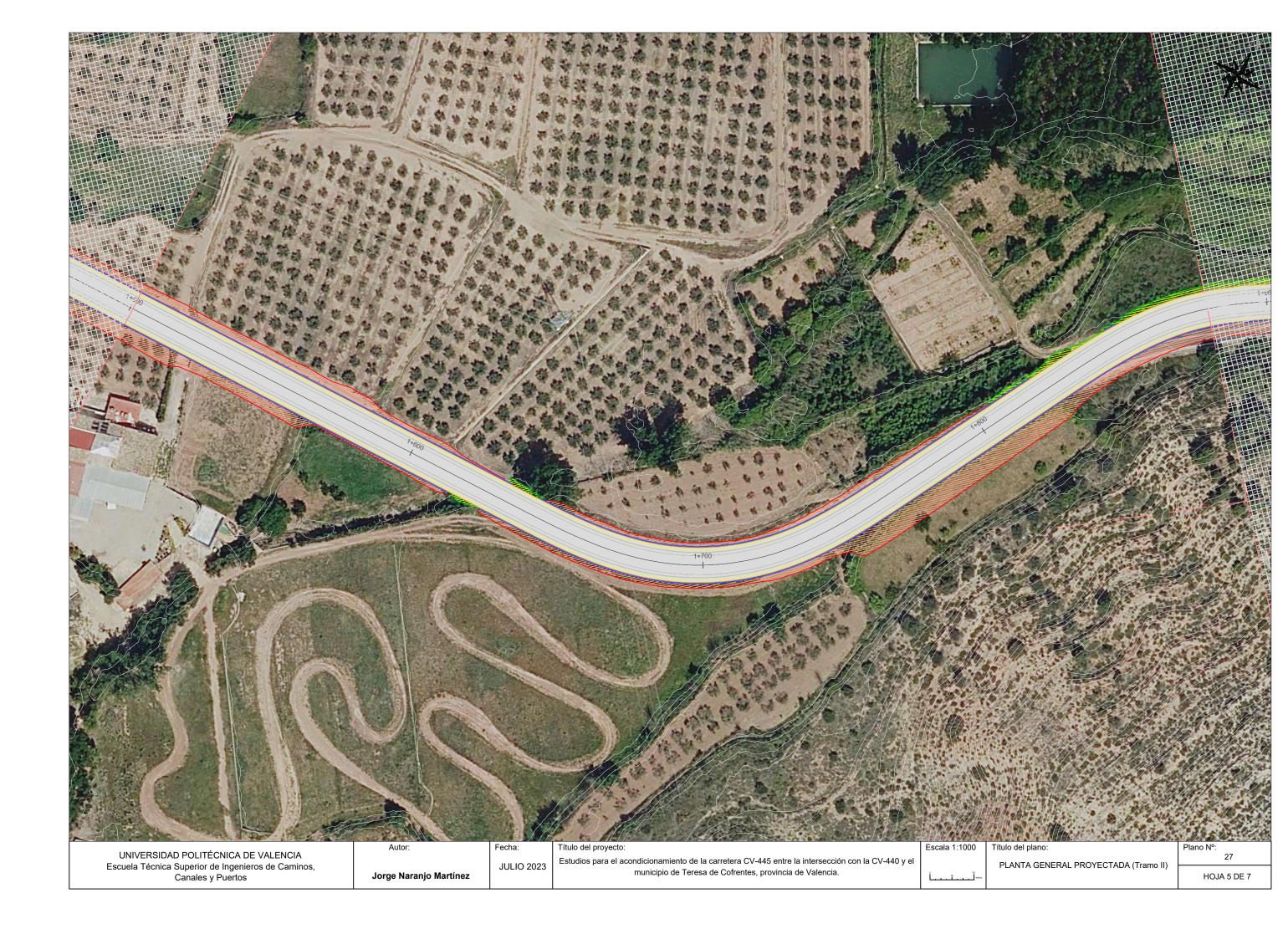


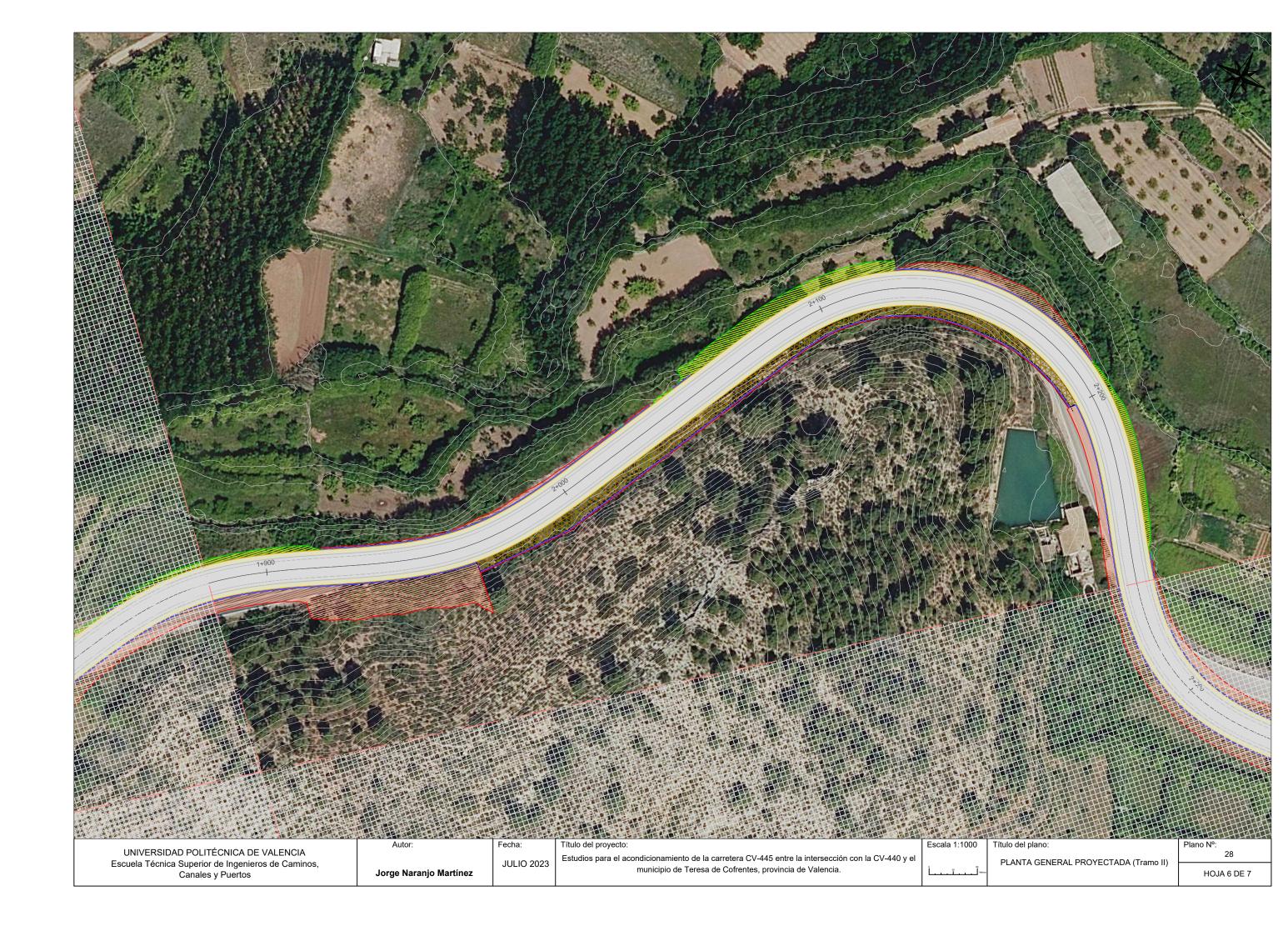


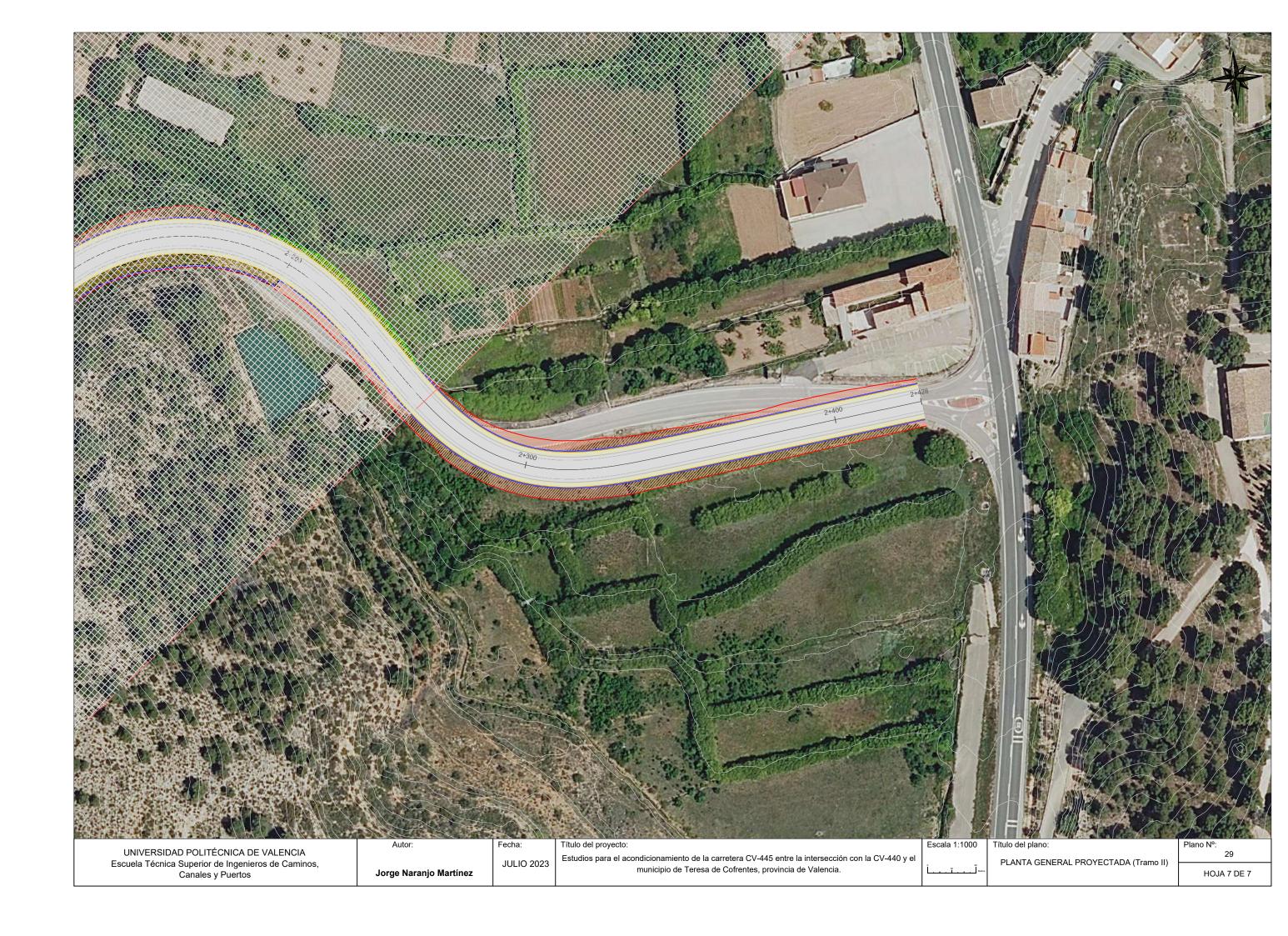


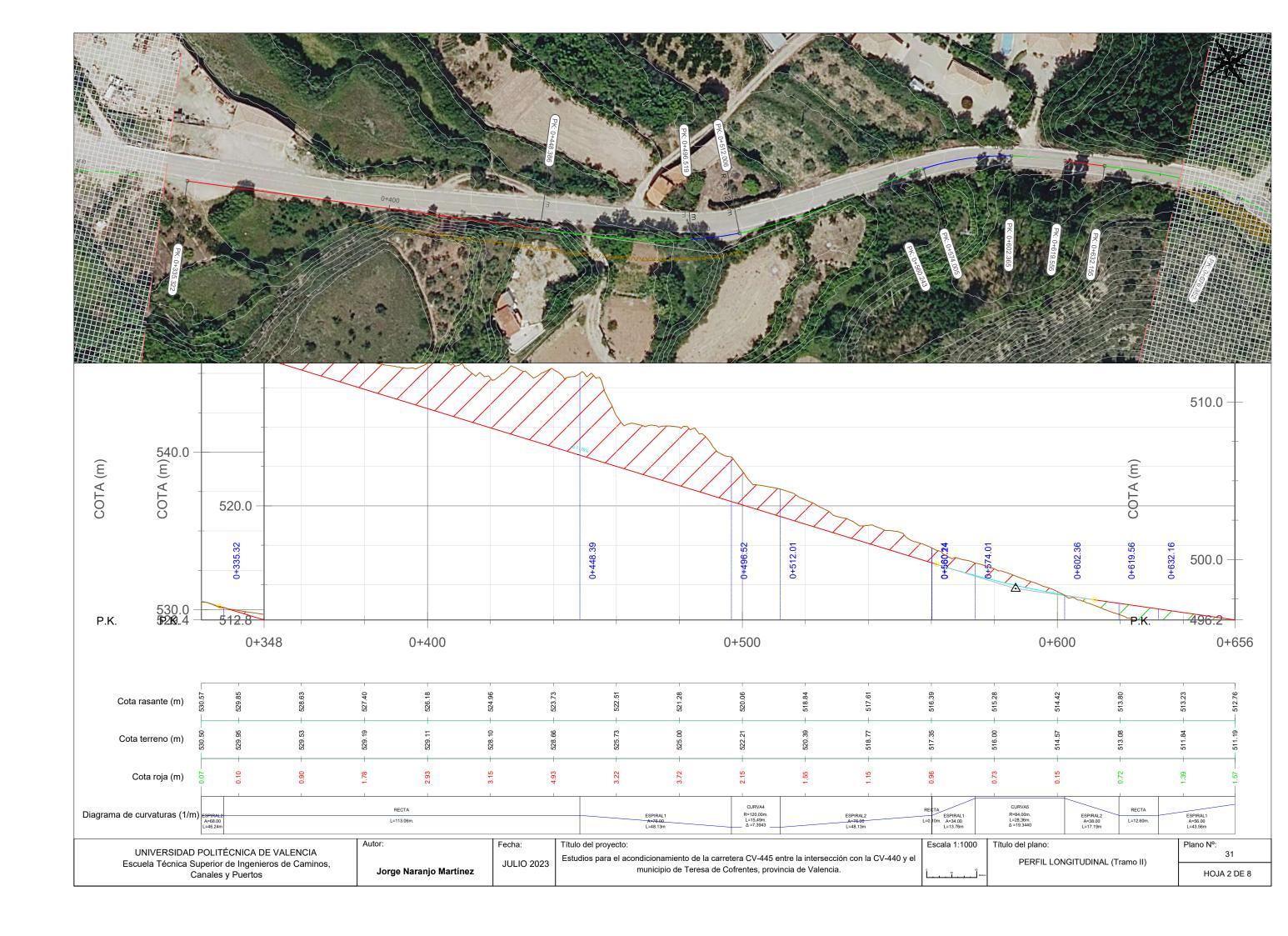




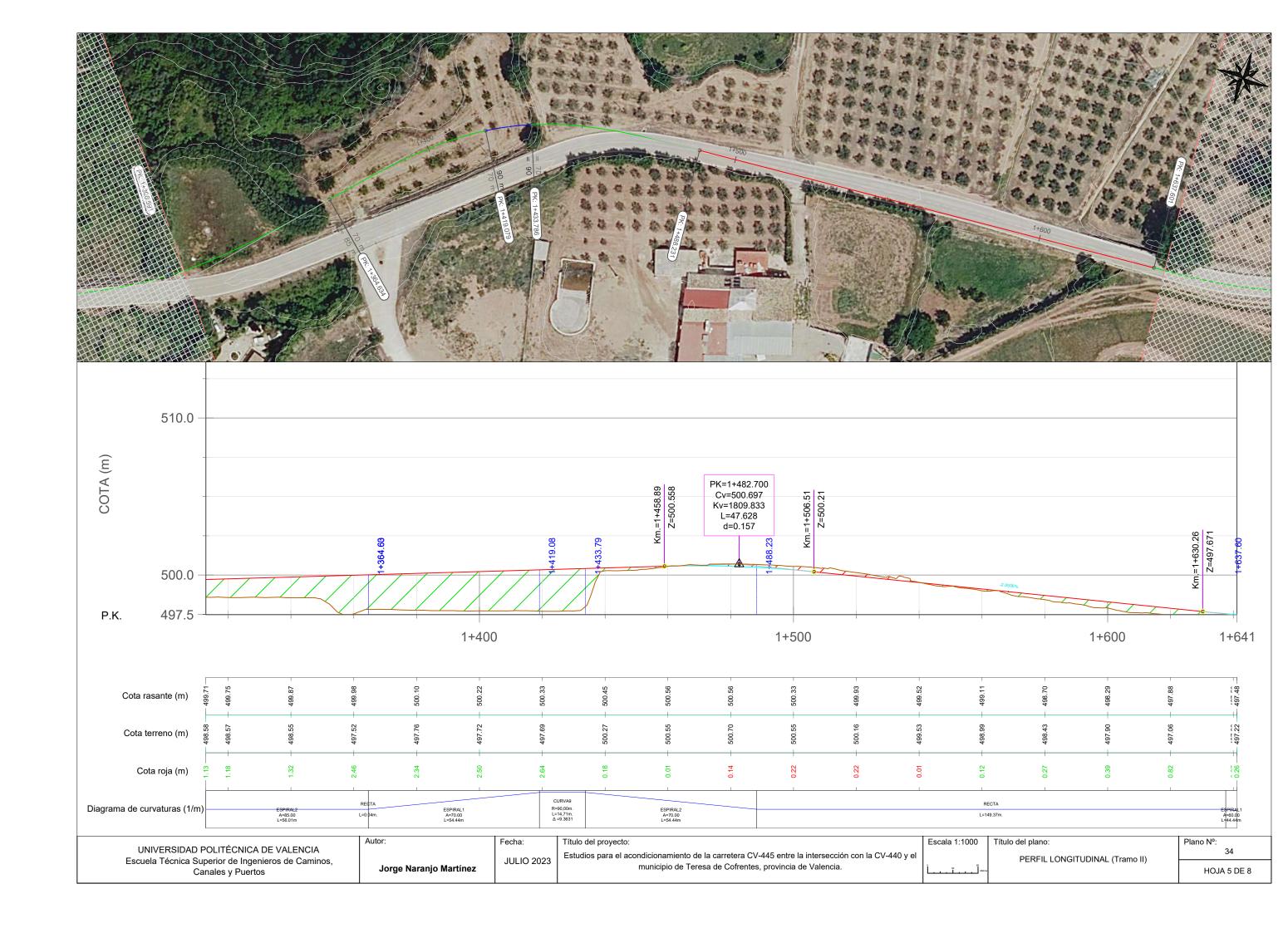


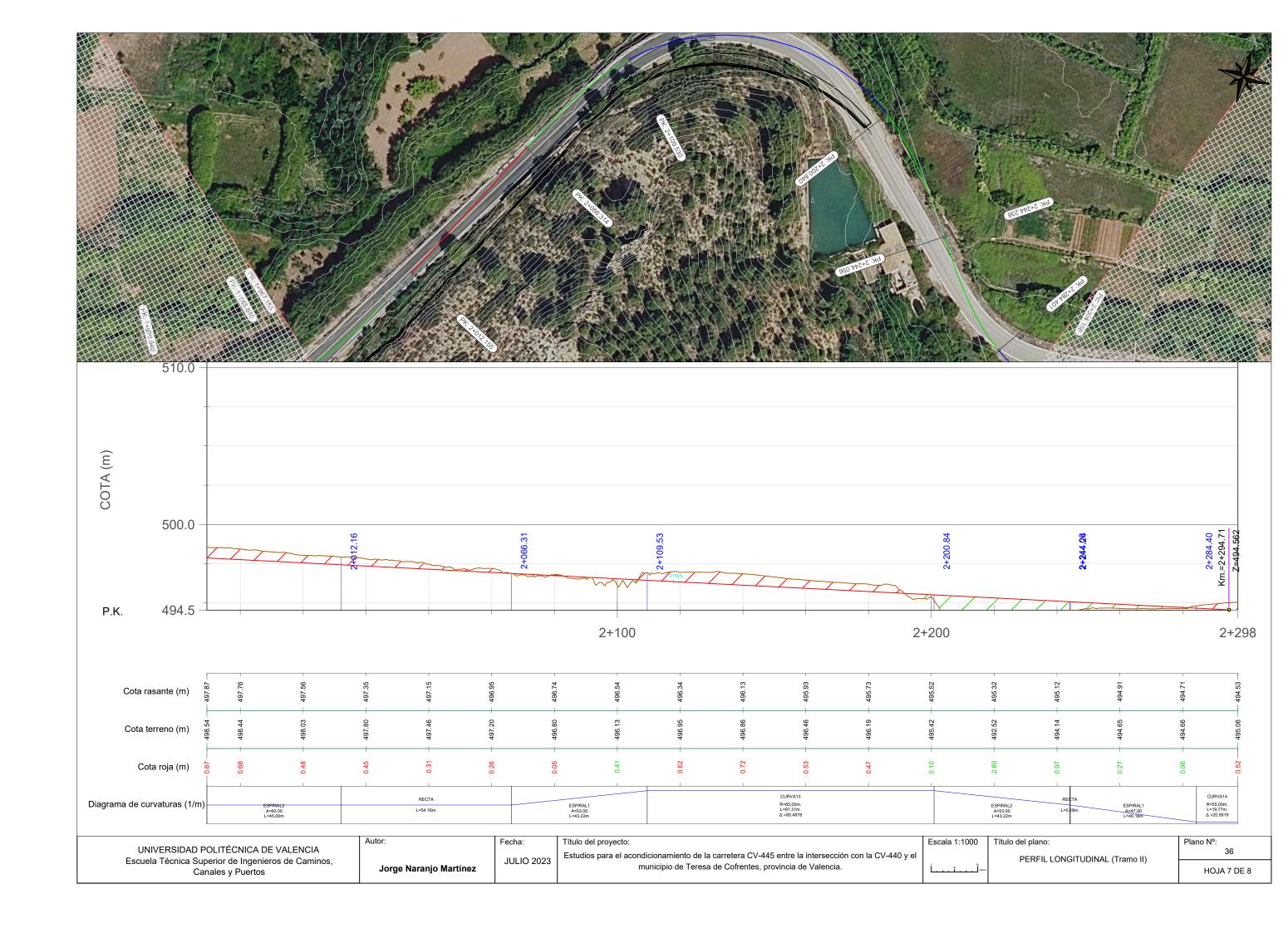




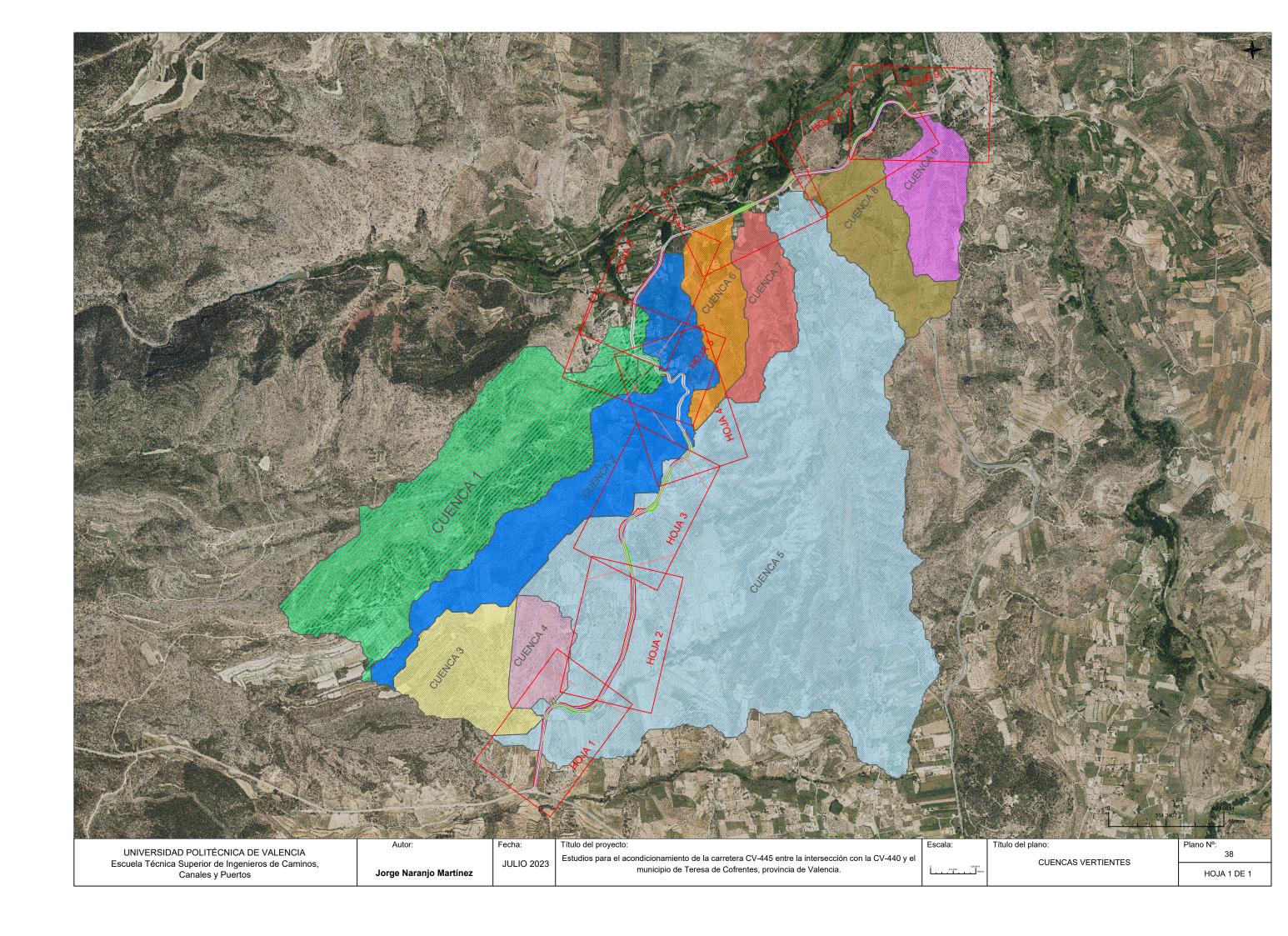


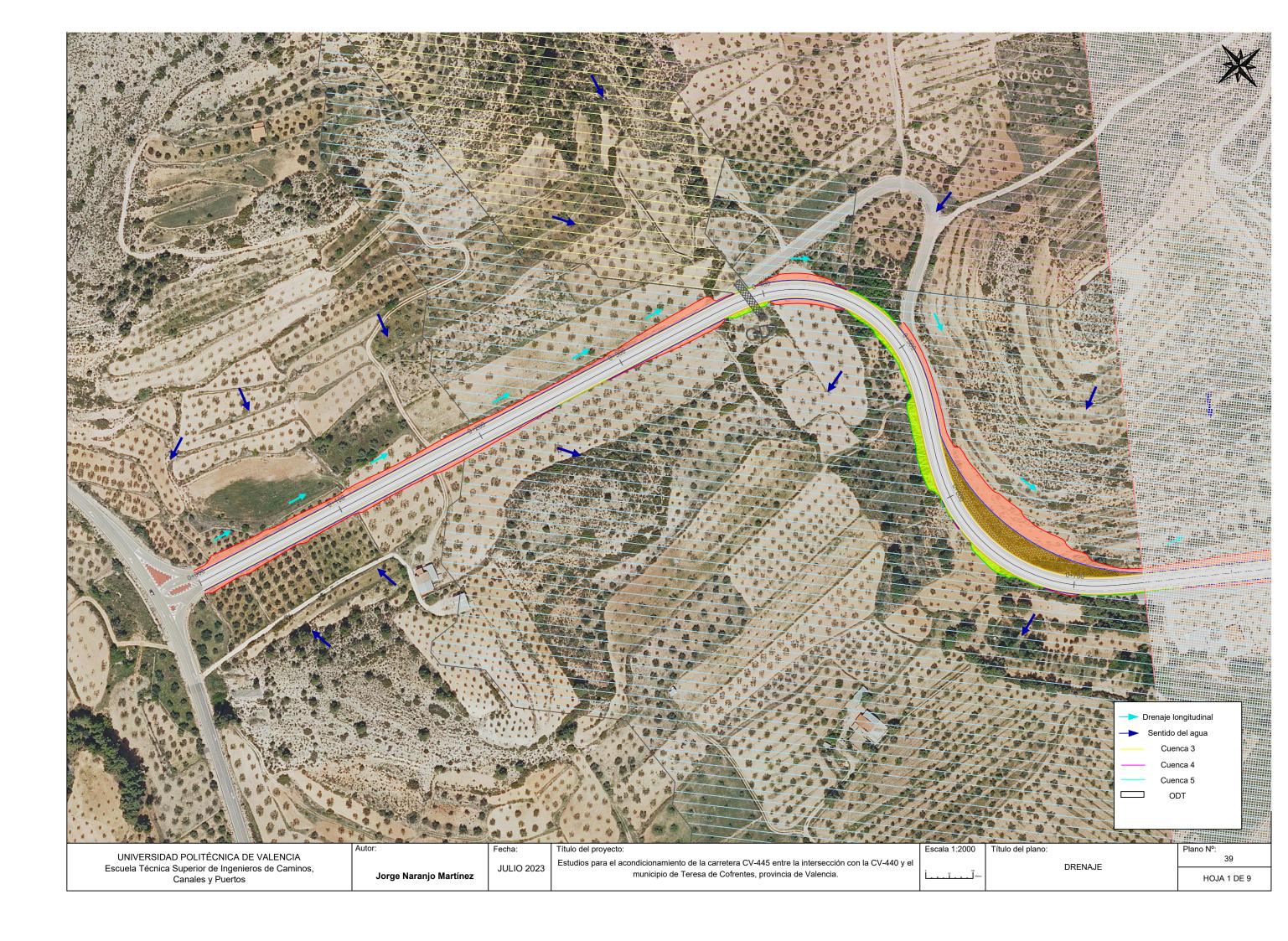


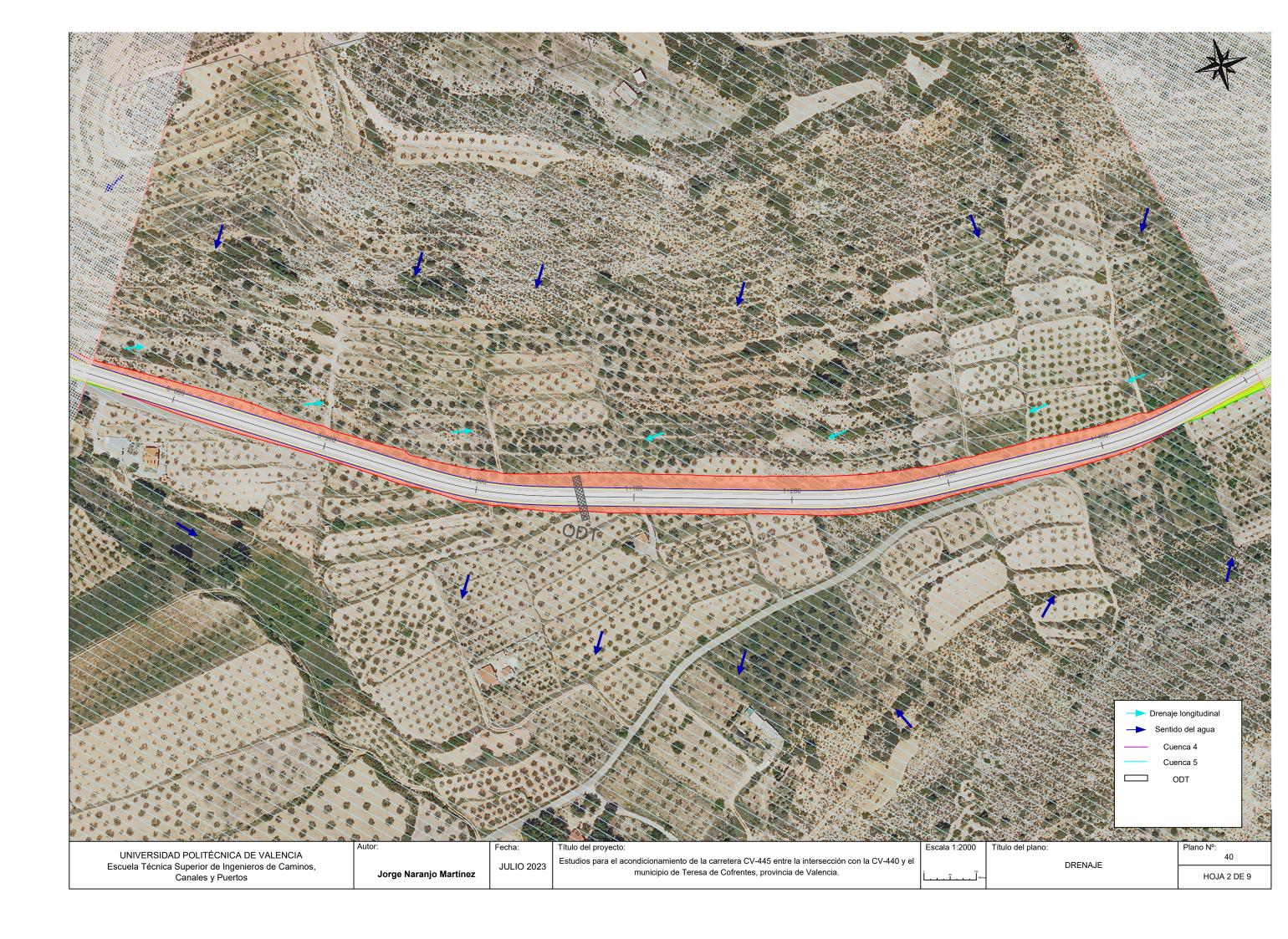


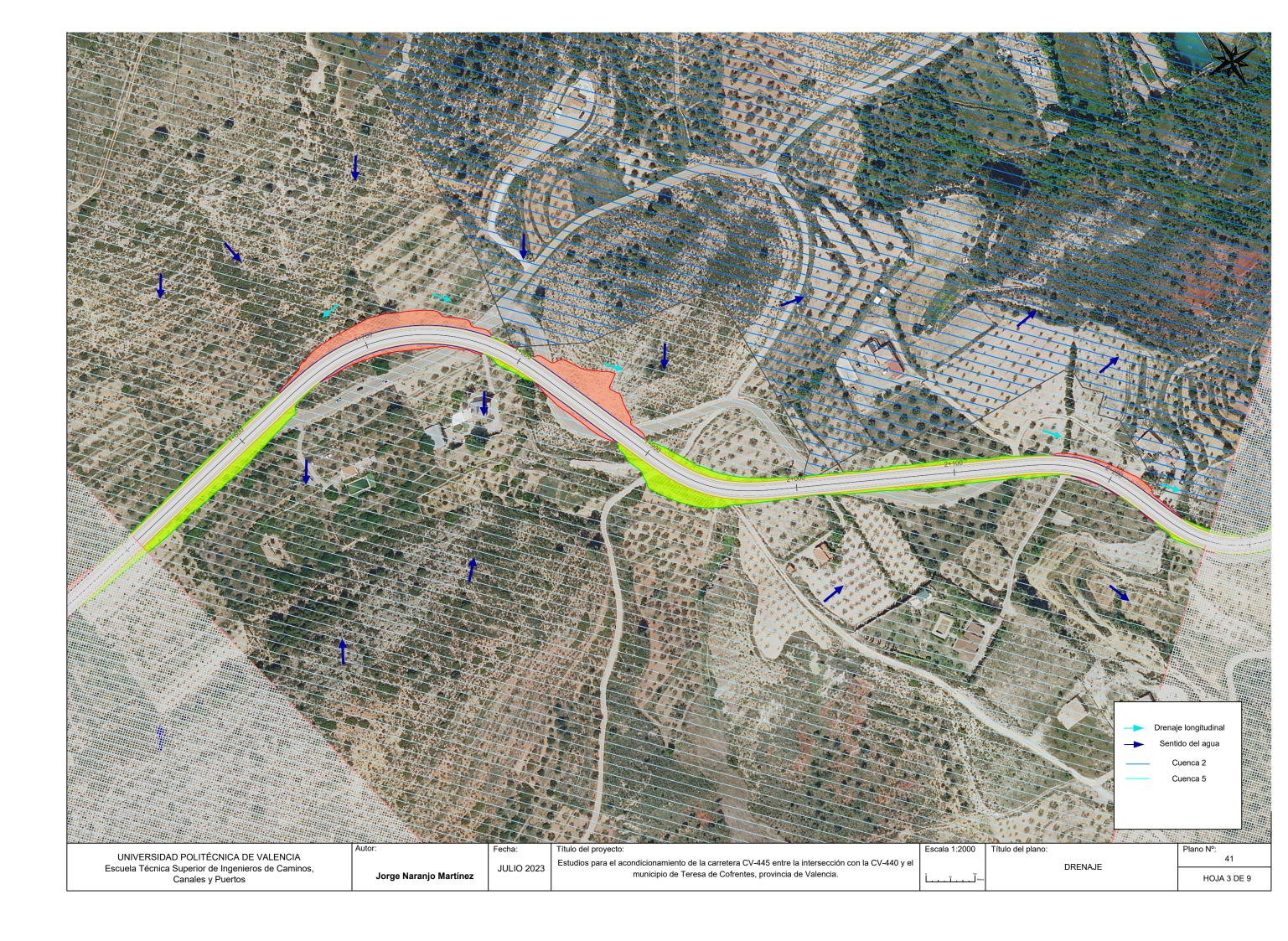


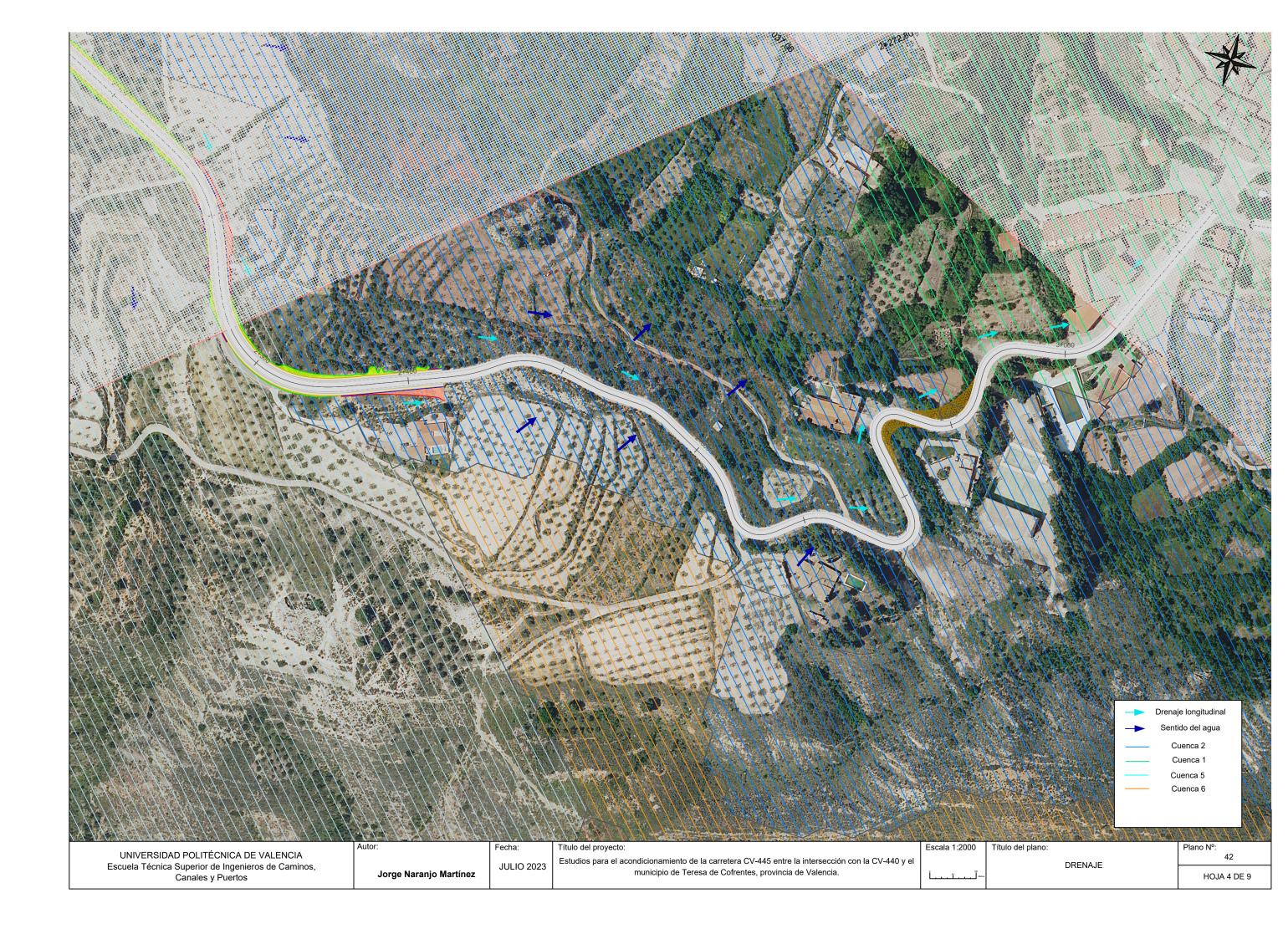


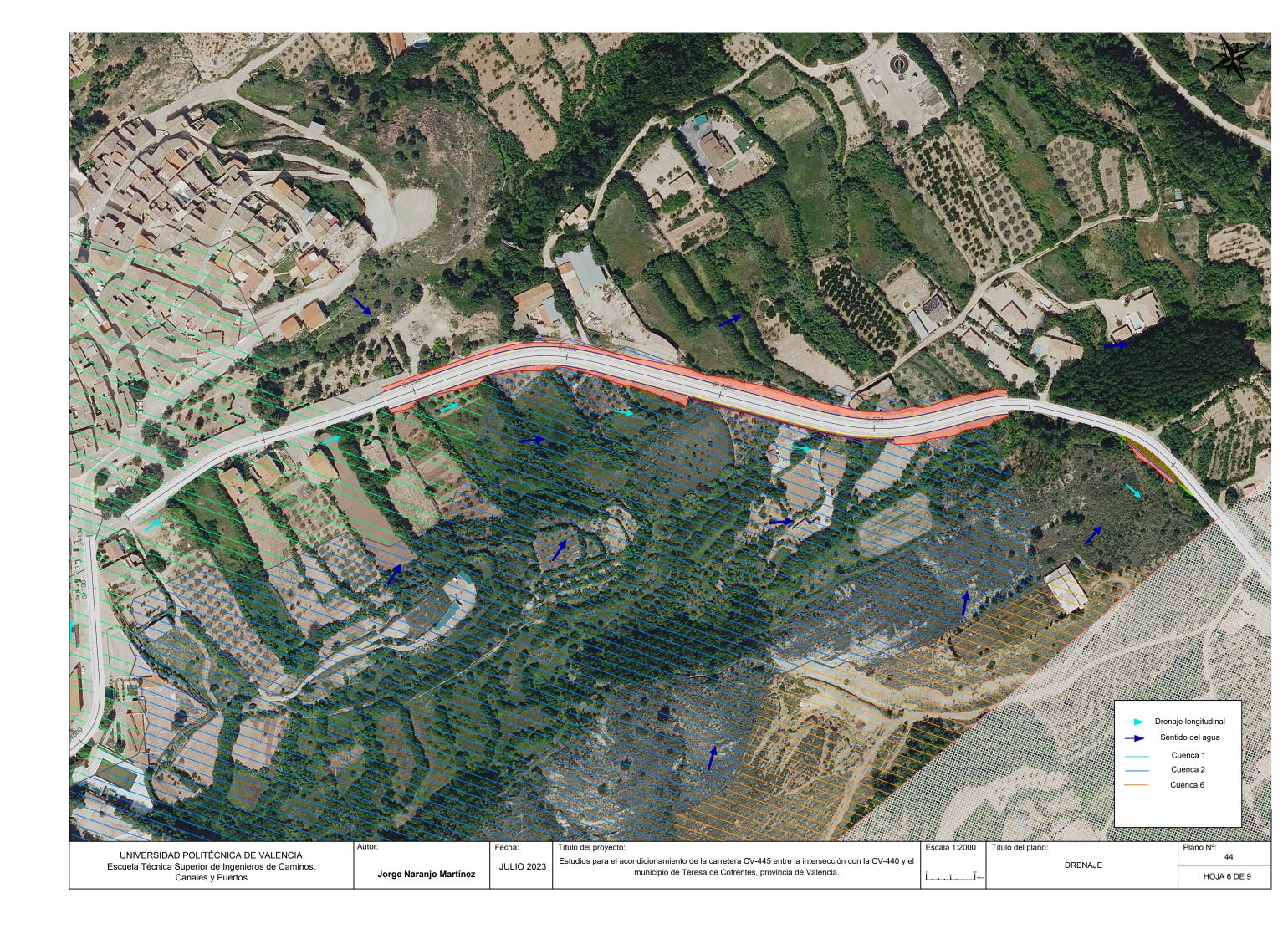


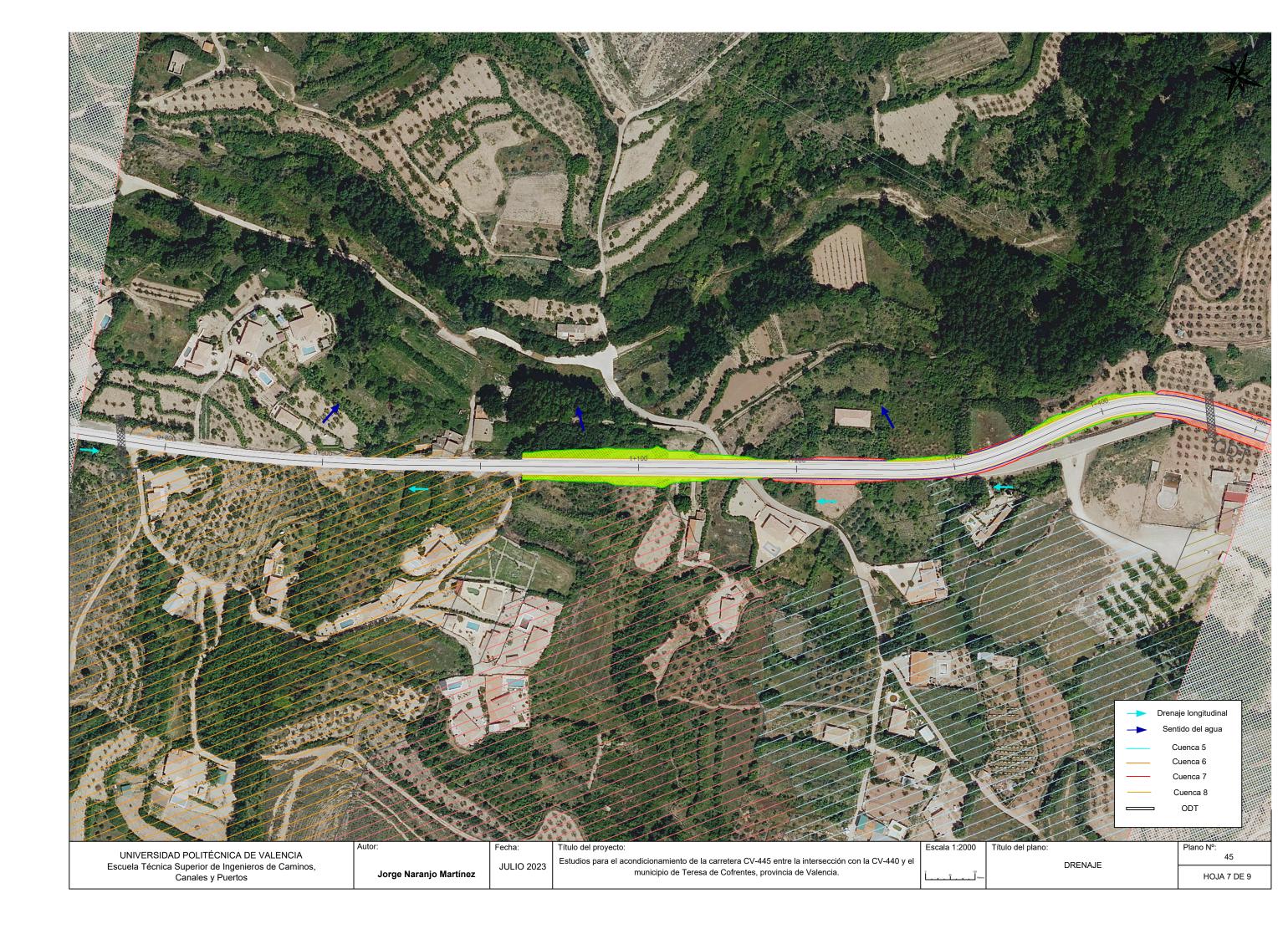


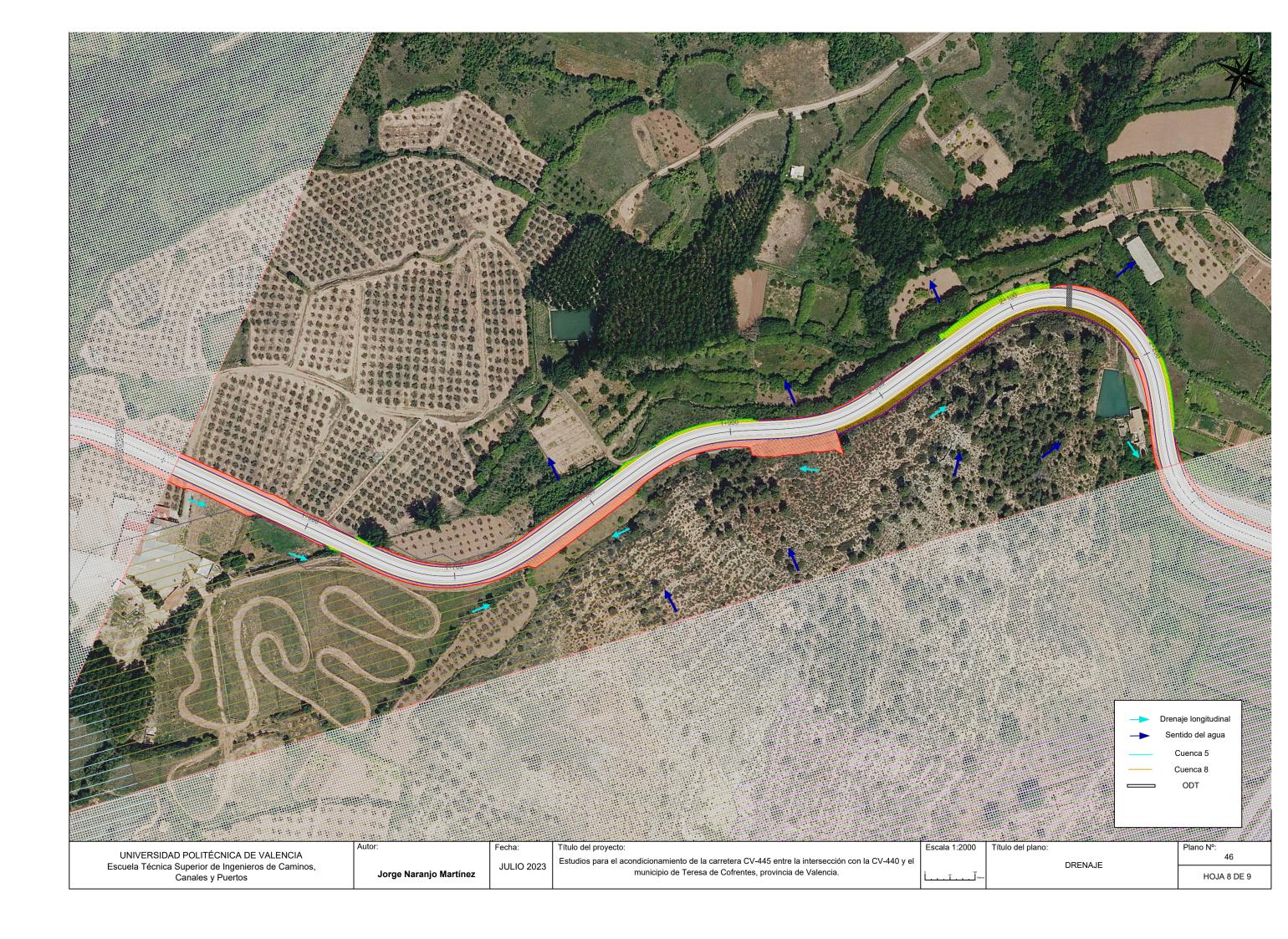


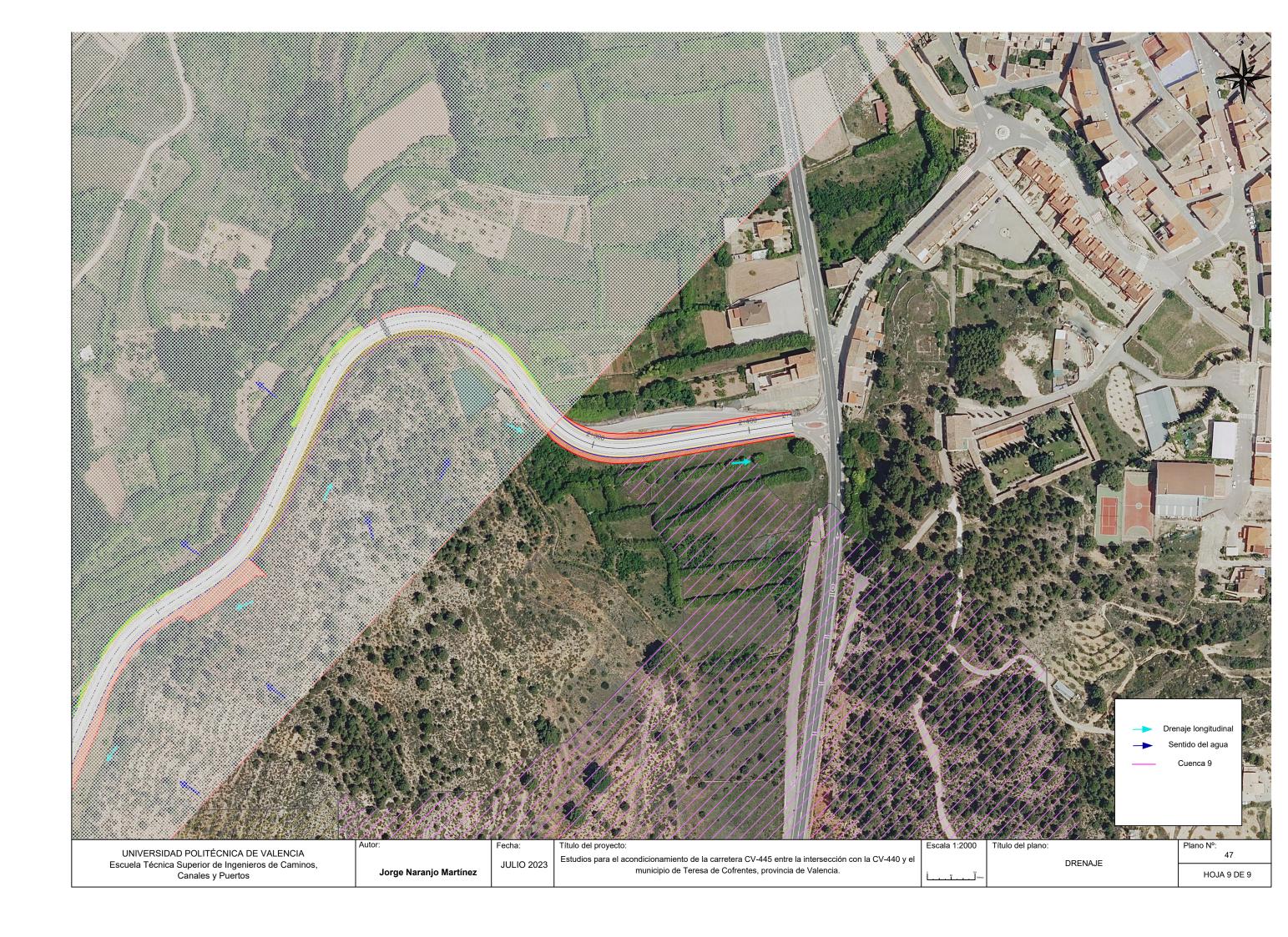


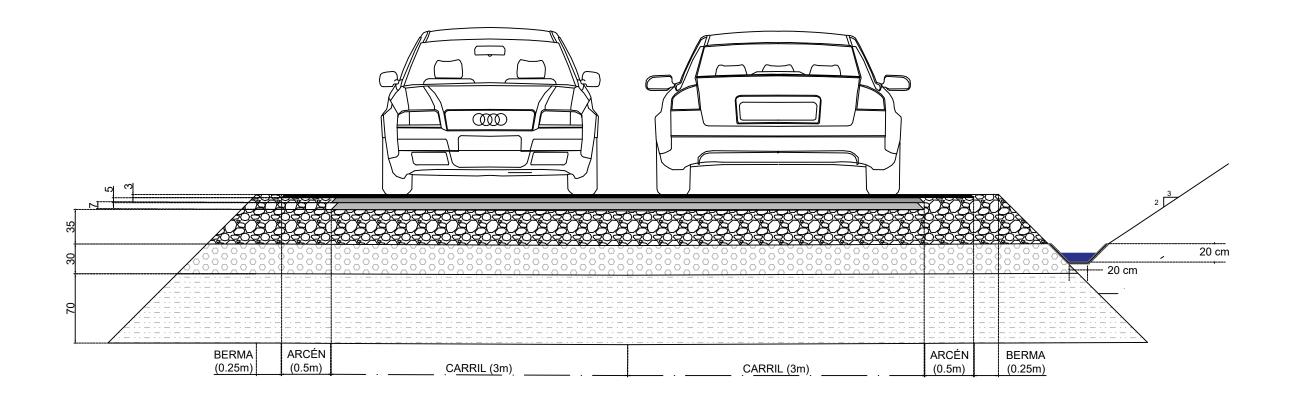


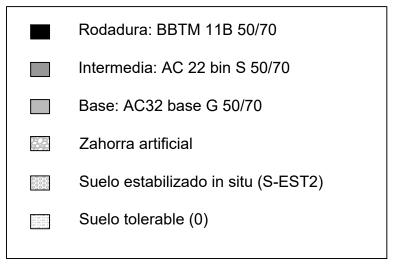












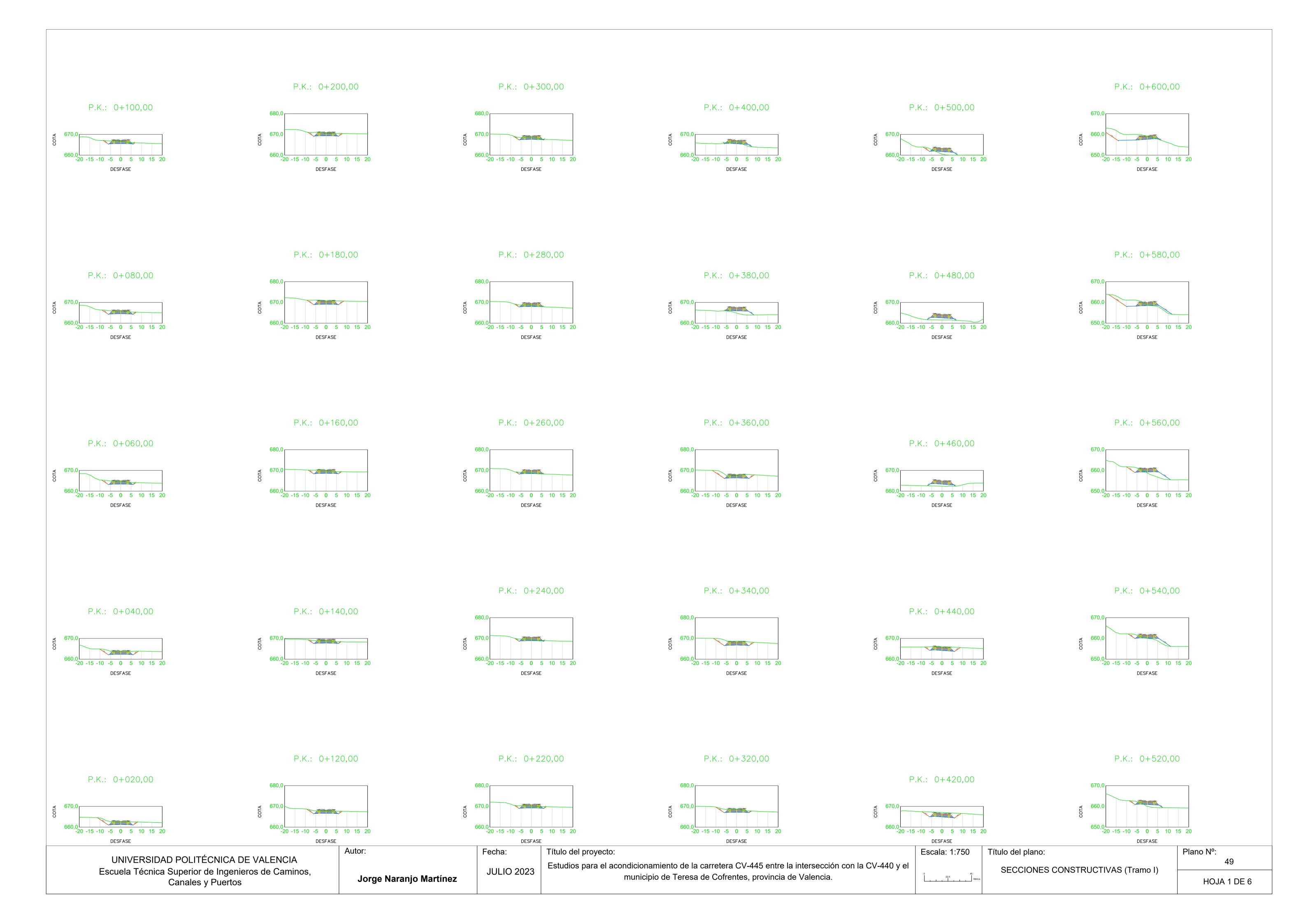
UNIVERSIDAD POLITÉCNICA DE VALENCIA Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos Autor

Jorge Naranjo Martínez

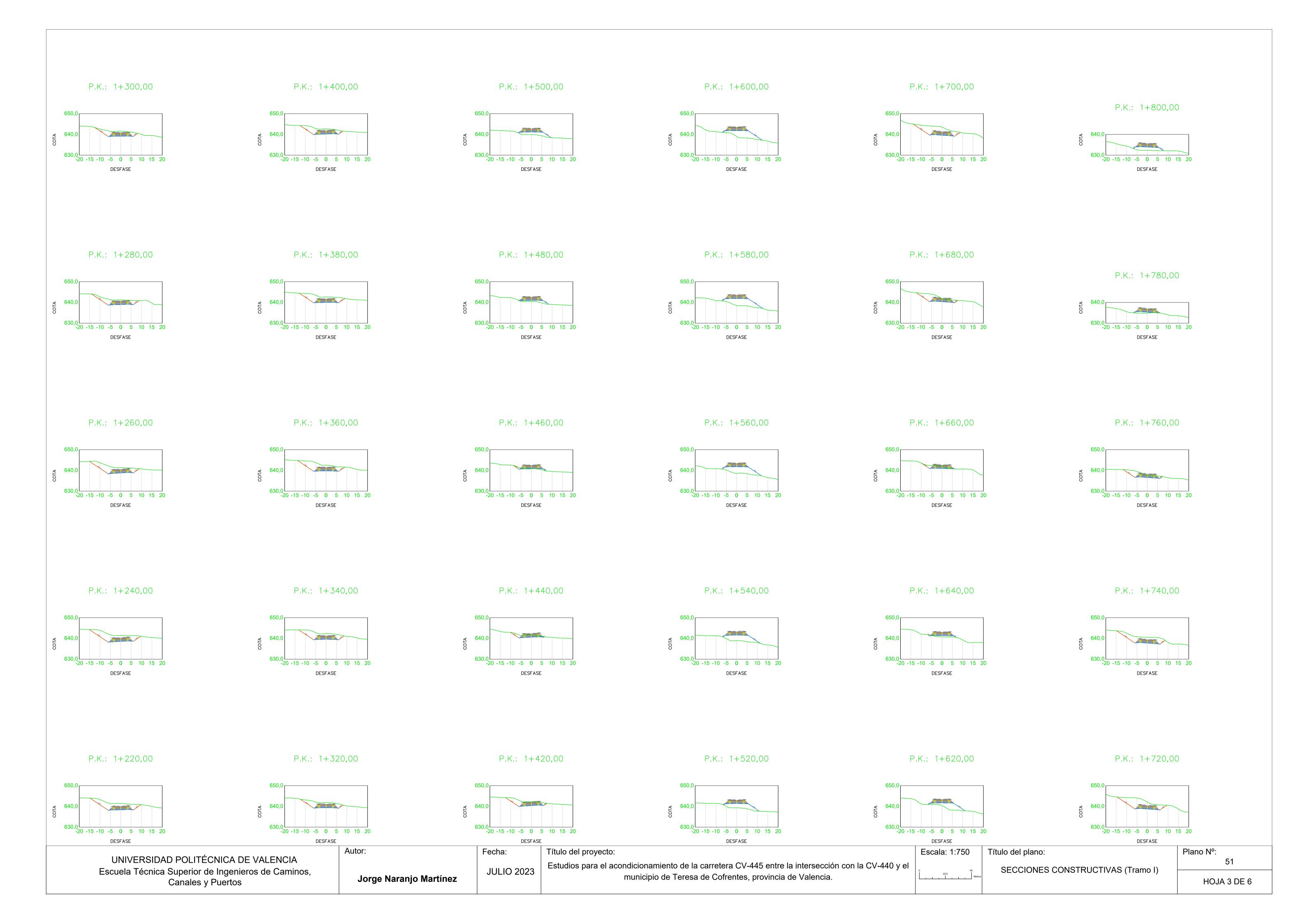
Fecha:

JULIO 2023

Título del proyecto:

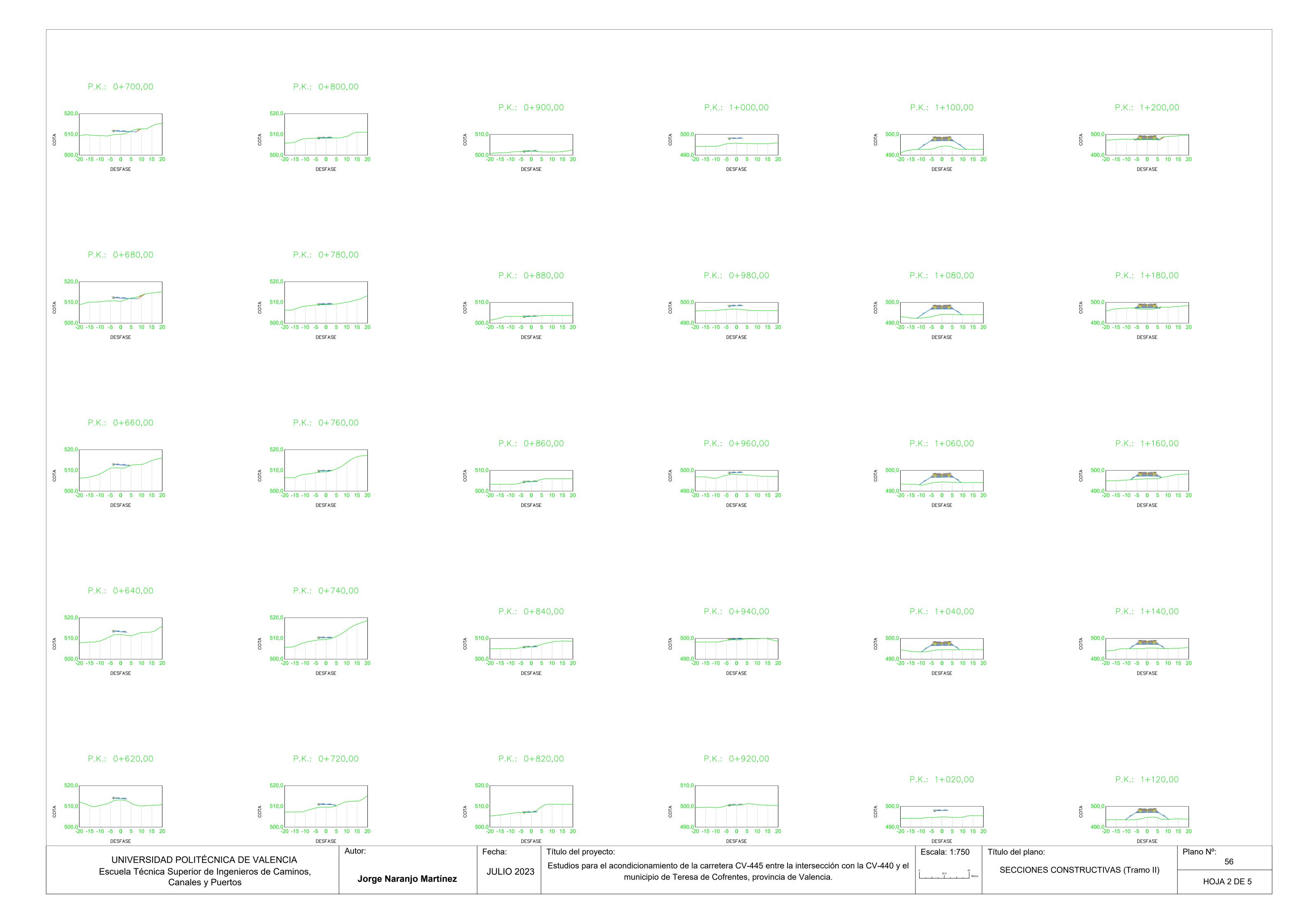

Estudios para el acondicionamiento de la carretera CV-445 entre la intersección con la CV-440 y el municipio de Teresa de Cofrentes, provincia de Valencia.

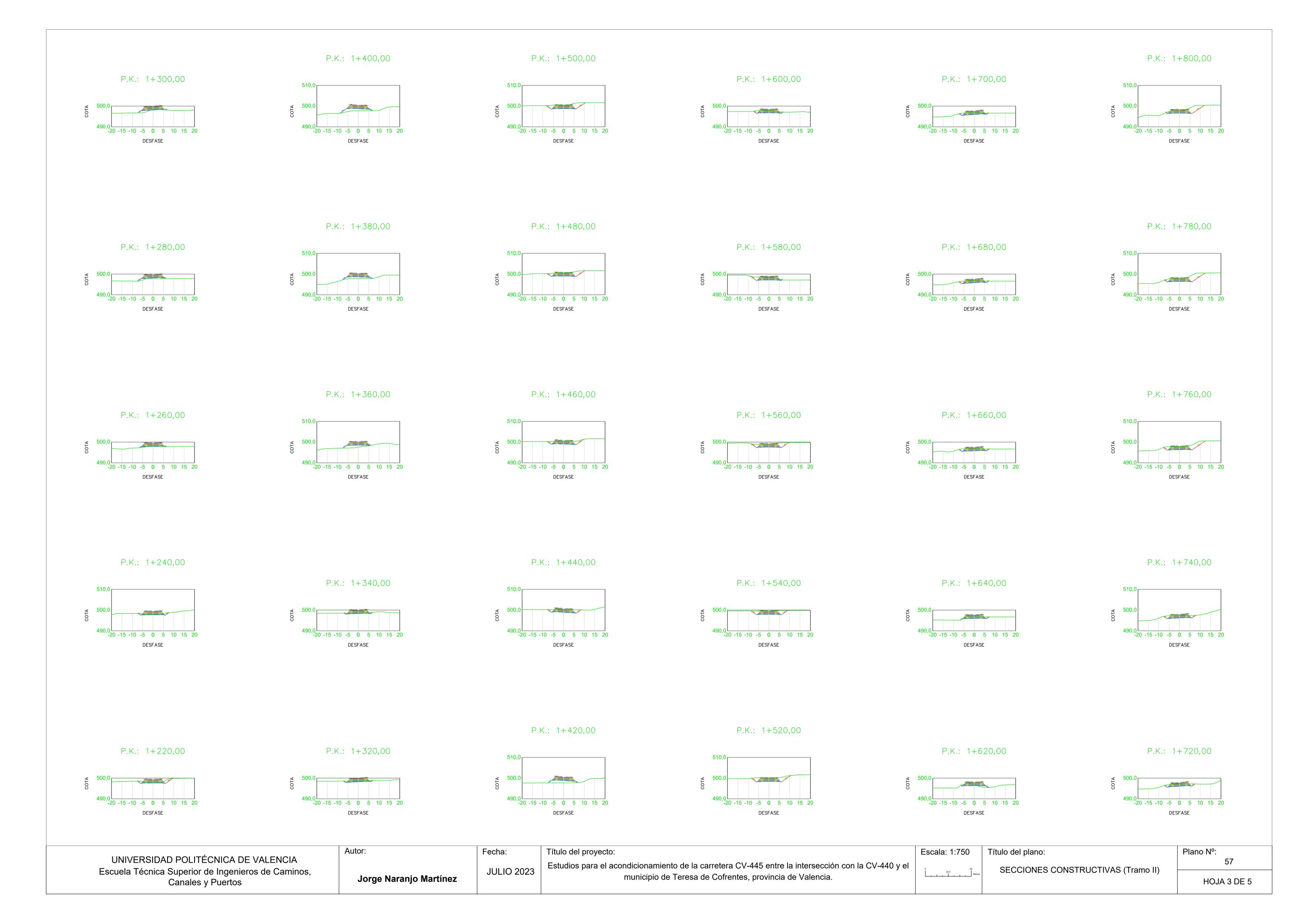
Escala: 1:50


Título del plano:


Plano №: SECCIÓN TIPO

HOJA 1 DE 1







P.K.: 2+980,00 P.K.: 3+080,00 DESFASE DESFASE P.K.: 2+960,00 P.K.: 3+060,00 560,0 -20 -15 -10 -5 0 5 10 15 20 DESFASE DESFASE P.K.: 2+940,00 P.K.: 3+040,00 P.K.: 2+920,00 P.K.: 3+020,00 P.K.: 3+120,00 DESFASE DESFASE DESFASE P.K.: 3+000,00 P.K.: 3+100,00 P.K.: 2+900,00 ,-20 -15 -10 -5 **0** 5 10 15 20 DESFASE DESFASE DESFASE Título del plano: Autor: Fecha: Escala: 1:750 Plano Nº: Título del proyecto: UNIVERSIDAD POLITÉCNICA DE VALENCIA 54 Estudios para el acondicionamiento de la carretera CV-445 entre la intersección con la CV-440 y el SECCIONES CONSTRUCTIVAS (Tramo I) Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos **JULIO 2023** municipio de Teresa de Cofrentes, provincia de Valencia. Jorge Naranjo Martínez HOJA 6 DE 6

P.K.: 2+420,00

490,0
490,0
DESFASE

UNIVERSIDAD POLITÉCNICA DE VALENCIA
Escuela Técnica Superior de Ingenieros de Caminos,
Canales y Puertos

Autor:

Fecha:

JULIO 2023

Fitulo del proyecto:

Escala: 1:750

Título del plano:

SECCIONES CONSTRUCTIVAS (Tramo II)

Martínez

Plano Nº:

59

HOJA 5 DE 5