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Abstract: In this work, we combine some of the most relevant artificial intelligence (AI) techniques
with a range-resolved interferometry (RRI) instrument applied to the maintenance of a wind turbine.
This method of automatic and autonomous learning can identify, monitor, and detect the electrical
and mechanical components of wind turbines to predict, detect, and anticipate their degeneration. A
scanner laser is used to detect vibrations in two different failure states. Following each working cycle,
RRI in-process measurements agree with in-process hand measurements of on-machine micrometers,
as well as laser scanning in-process measurements. As a result, the proposed method should be very
useful for supervising and diagnosing wind turbine faults in harsh environments. In addition, it will
be able to perform in-process measurements at low costs.

Keywords: deep learning; interferometry; fault diagnosis; RRI; machine learning; condition monitoring

1. Introduction

Researchers have developed new techniques to maintain wind power infrastructure
that have increased wind production by about 60% in the past few years [1]. A wind
turbine’s reliability, safety, and profitability can be enhanced through advanced monitoring
and fault diagnosis. The maintenance of wind turbines has traditionally relied on fault tree
analysis and spectral analysis.

Artificial intelligence (AI) is becoming more popular because of advances in digital
and mobile technology. The impact of machine learning has grown even more in these areas
because of new hardware and cloud-based solutions [2]. Mechanical or electrical failures are
usually the cause of vibration. Gear and bearing failure can also be signaled by vibrations.
Bearing wear is primarily due to their rolling elements since their surface position adjusts
continuously along with the load. These areas have been impacted even more by machine
learning since the introduction of new hardware and cloud-based solutions. Vibrations can
also be caused by component failure, cage failure, imbalance, and misalignment in addition
to geometric imperfections [3].

It is easier to integrate interferometric techniques (including range-resolved interfer-
ometry) into mounting structures since they provide illumination and detection from one
point. In monitoring, optical coherence tomography (OCT), an interferometric technique
such as range-resolved interferometry (RRI) [4–6], is widely used. The maximum working
range for OCT can achieve a few millimeters (compared to up to 10 cm for RRI), but can in
principle achieve 0.01 mm. OCT systems’ limited operating range prevents self-referencing
3D scanners from being determined, as shown in this study. Besides, typical swept-source
OCT systems for monitoring processing applications cost approximately USD 150,000,
compromising the low-capital cost-advantage of surveillance and fault detection. With its
use of a monolithic laser diode in the telecommunications industry and other less expensive
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fiber components, RRI’s OCT system compares very favorably with traditional systems,
where complex laser sources account for a significant portion of component costs.

Based on AI, machine learning continues to work perfectly [7]. Although this kind of
methodology has some limitations, it does have some drawbacks as well. Automatically
detecting and categorizing the malfunctioning function of a component is possible using
maintenance methodologies. As a result of machine learning, response times are reduced
and errors are virtually eliminated, while data management and analysis lead for flexible
offshore implementation as well as feedback learning. An AI method must be validated
before it can be implemented on a real system without causing costly errors [8]. You can
monitor all kinds of failures with AI methodologies by analyzing and preventing them. It is
helpful to validate fault diagnosis techniques using prototypes or test benches, in addition
to understanding how these systems work, whenever you are developing new techniques,
conducting studies, etc. Due to the cost of replacing a broken wind turbine, as well as
the loss of energy because they cannot produce energy during peak times, a broken wind
turbine can cause considerable losses.

Detecting and diagnosing faults in offshore wind farms is crucial if the machine is to be
stopped early if it has a problem, especially in those that have high repair and maintenance
costs [9]. Furthermore, maintenance activities must be managed efficiently to decrease
downtime and defective product costs. By applying algorithms designed to anticipate
and prevent problems, we developed a prototype that detects, supervises, and anticipates
failures in contrast to existing systems.

Using vibration analysis and RRI techniques in conjunction with vibration analysis,
this paper presents an algorithm for monitoring and diagnosing faults in a prototype wind
turbine. The algorithm presented here can detect different types of bearing failures au-
tonomously. Following the literature review, an analysis of the data set and data collection
was conducted, followed by a comparison of the results. Several conclusions are drawn at
the end of the study.

2. Research Methodology

Different methods can be used to diagnose and monitor vibrations in turbine bearings,
and each bearing can have different characteristics. Consequently, the bearing character-
istics may not always match the fault characteristics. In this study, we demonstrate how
machine learning and laser scanning can improve accuracy and predict failure based on
vibration measurements taken from another bearing.

2.1. Machine Learning

Detecting anomalous behavior and classifying faults are the two main tasks of machine
learning techniques for wind turbine fault detection. Furthermore, this technique allows
for quick corrective measures in case of a failure or anticipated problem, which improves
the system’s performance and security. A supervised machine learning method is the
most common, followed by an unsupervised one [10]. When you use supervised learning,
you already know the output. The outcome of unsupervised learning is unknown. The
process is the same on the way in and out. The only input data required for unsupervised
learning are the binary logic that is present in every system, unlike supervised learning. No
references are used at all. To apply any type of learning, the data must first be classified. A
variety of classification algorithms can be used to solve this problem. The K-Nearest Neigh-
bour (KNN) and Support Vector Machine (SVM) algorithms are two of the most relevant
classifiers used in machine learning for supervision, monitoring, and fault diagnosis in a
wind turbine [11].

These algorithms combine the functionality of an object with various categories or
classes based on the information it provides.

This leads to a two-phase classification process:
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• During training, the data must be properly classified, and then the parameters are
adjusted to achieve the optimal performance.

• Following training, the algorithm provides an output based on the input data.

2.2. Deep Learning

The AI algorithms may have difficulty extracting the features of many tasks [12]. Deep
learning methods can help overcome these weaknesses in current intelligent fault-diagnosis
methods [13] by learning feature hierarchies composed of features from higher levels of the
hierarchy [14]. The Venn diagram of the relationship between different AI disciplines is
shown in Figure 1. Using deep learning methods, the system can learn complex functions
directly by mapping inputs to outputs through automatic learning at multiple levels of
abstraction. Deep architectures, composed of multiple nonlinear levels, are required to
learn these complicated functions. Deep learning-based methods utilize deep architectures
to capture the representation information from natural input signals through nonlinear
transformations, and to approximate complex nonlinear functions well. Table 1 shows the
main advantages and limitations of some AI classifiers. Table 2 compares the performance
of each of the AI classifiers.
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Table 1. Artificial intelligence: advantages and limitations.

Algorithm Advantages Limitations

k-NN
Easy to implement.

Can be used for both classification
and regression.

Big reckoning.
It needs a lot of storage space.
The selection of k influences

the classification.

SVM High sorting accuracy.
Can deal with high dimensional features.

Low efficiency for big data.
No physical meaning.

Deep learning
Automatic fault recognition and

learning features.
It does not need the function extractor.

Large sample needs.
No physical meaning.

A lot of training.

Table 2. Performance Comparison.

SVM k-NN Deep Learning

Sorting speed **** * **

Overall accuracy **** ** ****

Noise robustness ** * ****

Overfitting ** *** ***

Robustness to parameters * *** **

Physical explanation * *** *
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Computer vision, audio recognition, natural language processing, as well as fault
diagnosis are among the many tasks based on deep learning that have demonstrated
state-of-the-art performance in recent years [15,16]. Rotating machinery fault diagnosis
has also been carried out using deep learning approaches such as autoencoders, restricted
Boltzmann machines (RBMs), and deep belief networks (DBNs).

A backpropagation-based autoencoder sets the target values to equal the input values,
which is an unsupervised learning algorithm, as depicted in Figure 2. Autoencoder NNs
are composed of two parts: encoder and decoder. A low-dimensional space is generated
from the input data by the encoder, and the input data are reconstructed from the code by
the decoder.
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Figure 2. An autoencoder is represented graphically.

A function hW,b ≈ x is learned by the autoencoder, W is the parameter (or weight),
and b is the bias associated with the connection between two layers. A low-dimensional
representation of the original data can be learned since the autoencoder can detect corre-
lations between the data if there are any. A stacked autoencoder is composed of multiple
layers of sparse autoencoders, whose outputs are interconnected.

In addition to fault diagnosis, DBN is also a useful tool, which is a series of multiple
layers of restricted Boltzmann machines (RBMs); this is a particular type of log-linear
Markov Random Field (MRF) called a Boltzmann machine (BM). As a result, its free
parameters are linear. Several hidden variables are considered to make it powerful enough
to represent complicated relationships. To improve the modulation capacity of the BM,
the number of hidden variables (or hidden units) can be increased, such that the deep
belief network (DBM) restricts bipartite graphs to those without visible–visible and hidden–
hidden connections.

The energy function E (v,h) of an RBM is defined as:

E (v, h) = −b′ − c′h− h′Wv (1)
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A hidden unit is connected to a visible unit by a weight W. The offsets of the visible
layer and the hidden layer are b and c, respectively. Equation (1) can be translated to the
free energy formula:

F(v) = −b′v−∑
i

log ∑
hi

ehi(ci+wiv) (2)

RBM has a conditionally independent structure between visible and hidden units.
Therefore, we can obtain:

p(h|v) = ∏
i

p(hi|v) (3)

p(v|h) = ∏
j

p(vj|h) (4)

A deep Boltzmann machine (DBM) can be obtained by increasing the number of
hidden layers. To obtain DBN, the Bayes belief network is used at the part closest to the
visible layer, while RBM is used at the part away from the visible layer. A deep belief
network (DBN) consists of three main principles:

• Unsupervised learning of representations for pre-training;
• Supervised training of each layer on top of previously trained layers;
• Fine-tuning of each layer by supervised training.

2.3. Range-Resolved Interferometry (RRI)

By utilizing different processing algorithms, RRI can be tailored to use monolithic laser
diodes, a more cost-effective alternative to OCT. In [17,18], RRI’s underlying principles
are described. Simple switching techniques are used in this technique, which involve
modulating a diode laser with a sinusoidal optical frequency, delivering reflected light
from a target (layer surface), and interfering it with the light reflected from a fiber tip used
as a reference. An interference signal that is demodulated with a smooth window function
gives a sinusoidal signal, in which the frequency indicates how far away the target was
from the fiber tip, and the amplitude indicates how bright the reflection was. The center
position of sinusoids along the laser beam, relative to the fiber tip position, is recorded for
sinusoids whose amplitudes exceed a particular limit.

2.4. Implementation of Scanned RRI

A data rate of 3.2 kHz is provided by the RRI instrument. As shown in Figure 3,
the data output is the amplitude of the signal and the angle θ of the galvanometer scan
(corresponding to the distance along the laser beam from the fiber tip at each instance).
Based on the distance between the galvanometer mirror and the reflection and the gal-
vanometer angle, the RRI head unit can be used to convert the polar coordinates into
Cartesian coordinates using the geometrical relations given in Equations (5)–(7):

XR = (d− dm) cos θ (5)

ZR = (d− dm) sin θ (6)

yR = 0 (7)

Galvanometer angle θ is the distance from the galvanometer to reflection d; the distance
between the galvanometer and fiber tip dm determines the galvanometer angle. By turning
the galvanometer mirror directly back towards the fiber tip, the length dm can be calibrated
accurately using the RRI instrument. If the galvanometer mirror angle θ is zero, and
the beam is angled vertically, then the equation describes a two-dimensional case (x-axis
and z-axis, across a wall, vertically) in which components on the y-axis (along the wall)
are absent (i.e., the 2D diagram shown in Figure 3). Thus, the RRI instrument outputs a
point-cloud that describes the reflections occurring at specific spatial locations and times
xR, yR, zR, tR, each given by an array of values.
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3. Case Study

The report describes the industrial environment, the components, and the distribution
of the laser within the system. A data acquisition method is also explored.

3.1. Prototype and Laser Distribution

Figure 4 shows a small wind turbine prototype showing deterioration and wear on
the parts, along with its effects, which can be used to diagnose problems [19]. It allows an
easy exchange of parts without having to wait for deterioration to occur, allowing diag-
nostic techniques to be tested before defects arise. Vibrations are measured in generators,
gearboxes, and bearings.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 4. Wind turbine workbench. 

The scanning laser can be installed in different places of the wind turbine prototype. 
As the state monitoring techniques and machine design dictate, the scanning laser can be 
positioned in each stage of the multiplier. To monitor the vibrations caused by the fast 
shaft coupling to a generator, the laser can be placed in the input bearing. The signal will 
propagate between the stages and the vibrations will be affected by various failures. On 
the slow axis, there is also an interesting bearing for measuring the prototype. For some 
of the damaged bearings, this element can be replaced to determine how the signal be-
haves after failure, as well as how the signal performs during a normal operation and how 
the bearing itself deteriorates over time. In Figure 5, we present the galvo laser we used 
for this study. 

 

 

 

Figure 5. GVS001 Galvo scanner (Thorlabs Inc, USA) and the associated drive circuit are shown on 
the left. An armored fiber cable and an adjustable CFC5-C collimator (Thorlabs Inc, USA) are shown 
on the right. 

 

 

Figure 4. Wind turbine workbench.



Sensors 2022, 22, 7649 7 of 11

The scanning laser can be installed in different places of the wind turbine prototype.
As the state monitoring techniques and machine design dictate, the scanning laser can be
positioned in each stage of the multiplier. To monitor the vibrations caused by the fast
shaft coupling to a generator, the laser can be placed in the input bearing. The signal will
propagate between the stages and the vibrations will be affected by various failures. On the
slow axis, there is also an interesting bearing for measuring the prototype. For some of the
damaged bearings, this element can be replaced to determine how the signal behaves after
failure, as well as how the signal performs during a normal operation and how the bearing
itself deteriorates over time. In Figure 5, we present the galvo laser we used for this study.
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are shown on the left. An armored fiber cable and an adjustable CFC5-C collimator (Thorlabs Inc.,
Newton, NJ, USA) are shown on the right.

3.2. Data Collection and Description

Once calibrated using the procedure discussed below, the galvo scan occurred 50 s into
the measurement, which corresponds to a 136 mm y-axis position along the bearing. An
angular amplitude of 5.8 θ was measured with an angular frequency of 25 Hz and a data
rate of 3.2 kHz. On steeper sides, too much light is reflected away from the instrument and
the RRI instrument falls below the detected noise level. (For materials with less specular
reflection, such as titanium, the RRI instrument will have greatly improved the coverage of
the sidewalls because there will be less specular reflection and more scattered light from the
angled sidewalls). The RRI instrument measurements are controlled by Python scripts that
are started manually and do not automatically sync from measurement to measurement.

4. Results and Discussion

Based on the laser scanning data provided in the previous section, the simulation
is successfully run. From 0 to 1000 rpm, the prototype is capable of rotating at four
different speeds. The medium speed in this case was 200 rpm. Wind turbine failures can be
tracked, diagnosed, and prevented with automated learning systems. A 3.2 kHz graphical
presentation was generated from an average of 5000 samples generated by a selected
scanning laser. Furthermore, automated learning systems can predict wind turbine failures
in addition to tracking, preventing, and diagnosing them. A properly trained algorithm
can analyze and categorize the data independently after receiving feedback, which allows
the algorithm to make a correct prediction. During the simulation, we simulated two states
of analysis: good stage and imbalance. A galvo laser scanner was used to acquire the data,
followed by filtration and processing, resulting in four phases of analysis.
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Due to some external factors found during this experiment, this first stage of fil-
tration and processing the data was crucial. For the filtration, we have set specific
ranges/parameters that allow us to pass from the “raw” data to a “clean” data base
that we will use in the next steps of the algorithm. Analyzing a signal that is randomly
generated will not be stable. To extract patterns from signals of this type, machine learning
algorithms must be conditioned appropriately and processed efficiently. In addition to its
time variations, the signal is difficult to analyze and learn from. To ensure that the algo-
rithm works correctly, it must first go through this first stage of filtering and conditioning.
The invariant characteristics of a signal are read in time by a signal-processing algorithm.
The extraction of features is required to determine if a fault or condition is present. Using
the number of tests and the number of examples of each problem, the arithmetic mean is
calculated. The data set is then reduced to the minimum number of variables necessary to
represent the original variables using principal component analysis.

We can also make future decisions based on an understanding of the current state
and what is happening, in addition to determining the standard deviation for each of the
stipulated failure conditions, such as all machine learning classifiers which are based on
mathematical and statistics. There are many states that are dispersed in the data, indicating
that most points are close to the average, which is why the model should work.

Let us define and explain each one-off simulation. First, the two simulated states start
from the mathematical processes explained above. In Figure 6a, an imbalance is presented.
We can see that the machine learning algorithm implemented presents a few interesting
aspects to define. The plot obtained from Python scrips perfectly represents an imbalance
in the wind turbine prototype. We can see that there are some points that the 3D laser
scanner post-processor has confused as possible noise. Due to the limits, we have found in
this case that the imbalance algorithm is a bit out of date regarding their feedback. Let us
explain the results with more detail. The data analyzed have the same shape of a sinusoid
wave, which is due to the imbalance. This graph represents a perpendicular plane section
of the bearing.

In Figure 6b, a good bearing stage is presented. We can see that the data predicted by
the scanning laser are always very stable. In total, 5000 different points are presented. It is
true that there are a few wrong predictions where the algorithm confuses the good stage
with something unknown. The data analyzed are completely flat because the scanner is not
recording any anomalies in the bearing, which means that the bearing works as expected.
Such as before, this graph represents a perpendicular plane section of the bearing.

Using the right combination of the AI algorithm and laser scanning software, the
data are grouped well in both cases. The stages are classified and analyzed correctly. The
algorithm is highly accurate and produces the predicted output with a high degree of
similarity regardless of the two failure conditions (imbalance and good stage).

If we compare with the previous studies presented in the introduction, the methodol-
ogy implemented provides a very good result with the combination of the 3D scanning
laser. The simulations and predictions of the two conditions stipulated show that it can be
implemented in a real wind turbine. Until now, all studies implemented for supervision and
fault diagnoses are using the traditional methods, such as frequency analysis or vibration
analysis. These results are stuck and are very limited by the parameters that can monitor,
predict, and anticipate future breakdowns; the methodologies presented (3D scanner and
machine learning) are the best combination for monitoring in real time.

AI methodologies combined with 3D scanner lasers are, therefore, considered to have
a lot of potential for future development in the maintenance sector, as the variables, simula-
tions, and results we considered work well with our wind turbine prototype, enabling us
to predict the failures of the prototype with a high degree of accuracy.



Sensors 2022, 22, 7649 9 of 11Sensors 2022, 22, x FOR PEER REVIEW 9 of 11 
 

 

(a) 

 
(b) 

Figure 6. (a). Imbalance. Predicted output algorithm; (b). Good stage. Predicted output algorithm. Figure 6. (a). Imbalance. Predicted output algorithm; (b). Good stage. Predicted output algorithm.

5. Conclusions

Acquiring and classifying data play critical roles in AI’s success and proper operation.
Wind turbine faults are easier to detect, monitor, and diagnose due to the combination of
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scanning lasers and machine learning systems. Here, both technologies are investigated
and combined to diagnose and prevent bearing failures in wind turbines through vibration
analysis. In-process supervision and failure diagnosis can be made easier with the RRI
instrument. The results obtained during and after processing did not differ significantly in
quality. RRI measurements using a galvanometer provide good coverage of the bearing up
to a scanning angle of 4 degrees.

A combination of AI and scanning lasers can diagnose bearing faults, which is very
suitable for this type of study because of its robustness, high accuracy, and high processing
speed. As a result, the methodology identifies and prevents the possible breakdown of
other mechanical components of wind turbine prototypes, allowing it to be applied to other
mechanical components of wind turbine prototypes. With this prototype, fault diagnosis
and supervision techniques can be studied, developed, and validated with the possibility
of replacing defective or worn parts with other components. The prototype wind turbines
are used to test the diagnostic algorithms that are to be installed in high performance wind
turbines. This allows for cost and time savings, as well as the ability to verify, adjust, and
correct the algorithms.
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