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a b s t r a c t 

Searching for information in printed scientific documents is a challenging problem that has recently re- 

ceived special attention from the Pattern Recognition research community. Mathematical expressions are 

complex elements that appear in scientific documents, and developing techniques for locating and rec- 

ognizing them requires the preparation of datasets that can be used as benchmarks. Most current tech- 

niques for dealing with mathematical expressions are based on Machine Learning techniques which re- 

quire a large amount of annotated data. These datasets must be prepared with ground-truth information 

for automatic training and testing. However, preparing large datasets with ground-truth is a very expen- 

sive and time-consuming task. This paper introduces the IBEM dataset, consisting of scientific documents 

that have been prepared for mathematical expression recognition and searching. This dataset consists 

of 600 documents, more than 8 200 page images with more than 160 0 0 0 mathematical expressions. It 

has been automatically generated from the version of the documents and can be enlarged eas- 

ily. The ground-truth includes the position at the page level and the transcript for mathematical 

expressions both embedded in the text and displayed. This paper also reports a baseline classification 

experiment with mathematical symbols and a baseline experiment of Mathematical Expression Recogni- 

tion performed on the IBEM dataset. These experiments aim to provide some benchmarks for comparison 

purposes so that future users of the IBEM dataset can have a baseline framework. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

One of the most usual activities researchers, scientists, and 

cholars engage in worldwide is searching through the ever- 

ncreasing volume of science, technology, engineering, and math- 

matics (STEM) documents that online digital libraries constantly 

ublish. The search for Mathematical Expressions (MEs) in a 

rinted text has received recent attention, showing interest in 

ntegrating mathematical notation with textual information for 

he problem of Information Retrieval, as some competitions have 

emonstrated [1] . 1 Plain text searching in large digital libraries 

f STEM documents does not constitute a challenge anymore, 

owever searching for chemical formulas, maps, mathematical 

xpressions, or other complex structures remains scarcely ex- 

lored [2,3] . Searching for these complex structures in STEM doc- 
∗ Corresponding author. 

E-mail addresses: danitei@prhlt.upv.es (D. Anitei), jandreu@prhlt.upv.es (J.A. 

ánchez), jmbenedi@prhlt.upv.es (J.M. Benedí), noya.ernesto@prhlt.upv.es (E. Noya) . 
1 https://www.ntcir-math.nii.ac.jp/introduction/ . 
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ments cannot be approached like searching for plain text given 

he 2-dimensional structural information they convey. This 2- 

imensional structural information involves semantic information 

hat can not be simply solved with string-matching algorithms, re- 

uiring powerful Pattern Recognition and Machine Learning tech- 

iques that can provide a correct interpretation. This paper re- 

earches the construction of a large dataset for advancing in the 

roblem of indexing and searching for ME in massive collections 

f digital STEM documents [4] . 

Two important problems arise when searching for MEs in dig- 

tal documents. First, locating MEs and classifying them: embed- 

ed expressions are referred to as inline MEs, while isolated ones 

re referred to as displayed MEs. Since displayed MEs are separated 

rom surrounding text, they can be easily located with profile pro- 

ection methods. However, these expressions can be confused with 

ther graphical elements found in STEM documents, such as plots, 

ables, or figures. Inline MEs are significantly more difficult to iden- 

ify since they are easily confused with running text. The second 

roblem is related to the interpretation process of the MEs through 

 parsing process. 
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Table 1 

Existing datasets statistics vs. IBEM dataset. Some figures are 

not applicable (n/a) or not specified (n/s). 

Dataset #Doc. #Pages #ME #Symb. 

Im2Latex n/a n/a 103 556 n/s 

UW-III n/s 1 600 ≈ 100 n/s 

InftyCDB 30 467 21 056 157 058 

InftyMCCDB 30 467 19 381 142 063 

GTDB-I 31 544 n/s 162 406 

GTDB-II 16 343 n/s 115 433 

IBEM 600 8 272 166 692 1 109 926 
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Machine Learning methods are the state-of-the-art technology 

or detection [3,5,6] and recognition [5,7,8] of MEs in STEM doc- 

ment images. However, these methods require large amounts 

f annotated data. Considering that the ground-truth (GT) data 

s manually prepared and/or validated, the creation of annotated 

atasets incurs high costs and is a commonly recognized bottle- 

eck in Machine Learning research. Preparing large freely available 

atasets with GT is a real need. Thus, the main motivation of this 

aper is to introduce a GT-rich dataset for ME recognition and, ulti- 

ately, for ME indexing and searching. The dataset contains GT for 

E detection, mathematical symbol classification, and ME recogni- 

ion. 

To facilitate progress in ME recognition, in this paper, we also 

resent baseline experiment results, obtained with open-source 

reely-available ME recognition systems [7,9,10] . These results are 

nalyzed separately for inline and displayed MEs, emphasizing the 

ifferent characteristics of each expression type. In addition, results 

f ME recognition with automatic ME detection methods are also 

resented. 

The preparation of a dataset like the one presented in this pa- 

er has to overcome several difficulties and/or requirements: 1) 

opyright issues since many scientific documents are under some 

ype of license; 2) the dataset has to be large since the variabil- 

ty in the ME is expected to be significant as it depends on the 

opic, field and area, on the author, on the type of documents (e.g. 

rticles or slides), on the publisher requirements, etc.; 3) the scal- 

bility of the dataset in time, with the possibility of enriching the 

T with as much information as possible would be desired; and 4) 

he dataset should be able to be processed automatically although 

uman inspection of the final GT is mandatory. Due to these prob- 

ems, we consider the first one as the most stringent, since all the 

thers cannot be tackled without solving the first. 

Having said that, this paper introduces the IBEM dataset 2 of 

rinted scientific documents for ME searching and recognition re- 

earch, currently consisting of 600 STEM papers, with more than 

 0 0 0 page images, containing more than 160 0 0 0 ME. The dataset

as prepared automatically from a public set of documents. The 

reparation of the GT for each document was carried out from the 

version. This makes this dataset scalable to include thou- 

ands of documents that can be used for researching and devel- 

ping efficient recognition and searching techniques. Our goal was 

o create a large enough dataset to be used for training algorithms 

or recognition and searching ME in documents for which only the 

igital image is available. 

This paper is organized as follows: In Section 2 , existing ME 

atasets are reviewed. Then, Section 3 describes the design of the 

BEM corpus, detailing the acquisition and post-processing of the 

ata. In Section 4 , an analysis of the results of the symbol clas-

ification and ME recognition experiments are presented. Finally, 

ection 5 summarizes the work presented. 

. Related work 

The im2latex-100k dataset [7] , is a ME collection comprising of 

03 556 different MEs, for which the rendered images are 

rovided. The corpus was built based on regular expressions, in 

hich mathematical formulas were extracted by parsing the 

ources of documents from the 2003 KDD cup [11] . The MEs ex- 

racted were then filtered by removing expressions that did not 

ompile due to unmet dependencies or custom macros. MEs with 

ess than 40 symbols were also removed. Although useful for in- 
2 http://ibem.prhlt.upv.es/en/ . 

30 
estigating ME recognition, the im2latex-100k GT does not include 

nformation enabling ME detection or searching experiments. 

The UW-III collection [12] , with GT that contains ME infor- 

ation, comprises of 1 600 scanned images of English documents 

ith manually edited GT, for which the version is also avail- 

ble. For each image, various bounding boxes have been included 

nd marked based on the content (e.g. text, math, table, etc.). 

hile the noise introduced into the dataset by including scanned 

opies of the original documents can be addressed [13] , the limited 

ize of the collection would make it less suited for research on ME 

etection and recognition. 

The InftyCDB dataset [14] , contains 21 056 MEs. Multiple ver- 

ions of this dataset exist (InftyCDB-{1-3} and InftyMCCDB-{1-2}), 

n which GT is provided at symbol level, with the relationship 

mong mathematical symbols having been defined manually. The 

ataset has been greatly explored for offline math symbol recog- 

ition experiments [15–17] . However, the GT was sourced from ar- 

icles that weren’t copyright-free, and therefore are not provided 

ith the dataset. 

The copyright limitation, which also affects the UW-III dataset, 

inders the use of these collections for researching ME detection, 

s pointed out in [3] . The authors proposed a new GTDB dataset 3 ,

hich comprised of two versions, contains 47 articles of 887 pages. 

hese articles include diverse font faces and mathematical notation 

tyles, without providing the total number of ME. Finally, it is im- 

ortant to note that this dataset was utilized in a ME detection 

ompetition [4] . 

As a result, it is necessary to create a dataset that includes a 

arge number of images of scientific article pages with localized 

nd annotated MEs, as well as the associated mark-up language. 

haracteristics of the existing datasets in comparison to the IBEM 

ataset are shown in Table 1 . 

It is important to remark that the GT regarding the ME loca- 

ion of the IBEM dataset 4 presented in this paper has been suc- 

essfully employed in the ICDAR 2021 Competition on Mathematical 

ormula Detection [18] . While excellent results were obtained in the 

etection of displayed ME, the results of this competition showed 

hat there is still a margin for improvement, especially for inline 

Es [19] . 

. The IBEM dataset 

.1. Design of IBEM dataset 

The IBEM corpus has been created considering the following 

esign criteria: 1) it should be a massive collection of digital STEM 

ocument images, 2) it should be publicly available, and 3) it 

hould be available in a format that allows automatic processing 

or preparing the GT. 
3 https://www.github.com/uchidalab/GTDB-Dataset . 
4 https://www.zenodo.org/record/4757865 . 

http://ibem.prhlt.upv.es/en/
https://www.github.com/uchidalab/GTDB-Dataset
https://www.zenodo.org/record/4757865
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Table 2 

Statistics about the dataset. 

Total no. of documents 600 

Total no. of pages 8 272 

No. of displayed MEs 29 603 

No. of inline MEs 137 089 
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5 Zref package: https://www.ctan.org/pkg/zref?lang=en . 
6 Tikz package: https://www.tikz.dev/ . 
7 SED: https://www.gnu.org/software/sed/manual/sed.html . 
8 OpenCV: https://www.opencv.org/ . 
As a result, we chose the KDD Cup collection [11] , which is pub-

icly available, with the sources of all documents provided. 

he KDD Cup collection has a large number of research papers (ap- 

roximately 29 0 0 0 ) ranging from 1992 to 2003. Of these papers

e selected 2 791 , filtering out documents that did not compile 

nd keeping documents from 20 0 0 onwards to avoid compatibil- 

ty issues with older versions of libraries potentially used 

y authors. 

allows defining macros to abbreviate the formal notation 

nd simplify typesetting. However, having standard delim- 

ters renamed increased the complexity of detecting MEs in the 

source. Out of a total of 2 791 documents, 957 documents 

id not rename these delimiters, of which we manually selected 

00 documents that required minimal correction. Table 2 summa- 

izes the characteristics of the resulting dataset. 

The GT of the IBEM dataset consists of: 

• The transcript of inline and displayed MEs. 

• Coordinates of the bounding boxes enclosing the definition of 

ME in the rendered images. 
• Images of individual pages contained in the documents that 

were processed. 

An example of the previous output described can be seen in 

ig. 1 . Note that standalone images of MEs can be easily obtained 

y rendering the transcripts. 

.2. Ground-Truth preparation 

This section presents the process of extracting the GT from 

documents, with the challenges that arose during imple- 

entation and the respective adopted solutions. 

To obtain the GT and the result shown in Fig. 1 , the extrac- 

ion process was divided into two parts. The first part focused on 

he design of macros to highlight the MEs. The second part 

onsisted of automating the extraction and generation of the ME 

GT. In this second phase, regular expressions were designed 

o detect the delimiters used to define mathematical envi- 

onments. Through these regular expressions, the macros defined 

n the first phase were embedded into the mark-up language of 

Es. For this reason, we decided to focus only on documents that 

id not rename these delimiters. 

Most of the challenges we faced were due to the flexibility of 

typesetting and the high variability in the definition of MEs 

xpected when working with extensive collections of documents, 

aking the use of regular expressions more difficult. More specifi- 

ally, we had to tackle the following problems: 

1. There are two types of MEs, inline and displayed. The formulae 

are rendered accordingly to the surrounding elements, increas- 

ing the difficulty of detecting their location. 
31 
2. ME mark-up language can run on more than one line, mak- 

ing the correct detection of the definition of these expressions 

more complex. 

3. Parts of the GT, could not be extracted from within , due 

to the page ship-out routine of that could cause changes 

after the extraction phase. 

4. The documents in the dataset included a large number of de- 

limiters for mathematical environments that would most 

likely increase when processing new documents, considering 

that is constantly evolving. 

.2.1. ME Bounding box detection 

As mentioned, the first challenge we faced was related to the 

eometric position of MEs. This required dealing with certain spe- 

ial cases, such as: 1) a ME can run on more than one single line,

n different pages, and/or on different columns; 2) an inline ME 

an appear in a caption, in a footnote, in a drawing, or in a plot;

) a displayed ME can include a numbering. All these situations 

ere considered in the processing of the dataset. 

To determine the location of the bounding boxes of MEs, coor- 

inate measurements 5 were taken at the first and last mathemati- 

al symbol of each formula. MEs were then highlighted 

6 for future 

xtraction. 

In the case of inline MEs, two coordinates proved sufficient for 

etermining the shape of the bounding boxes. By measuring the 

istance in the x and y axis of these two points, we could estab-

ish whether these expressions have been rendered on one line or 

ore, or even if they were split over two pages, each case being 

reated accordingly. For displayed MEs, the first and last symbols 

f the expression were not always rendered in the upper left and 

ower right corners of the bounding box. Fig. 2 provides an exam- 

le of such a situation. To account for such situations, macros were 

mbedded to take coordinate measurements before and after new- 

ine symbols and between symbols of superscript and subscript el- 

ments, which, when rendered, are vertically shifted relative to the 

aseline. As in the case of inline ME, the problem of displayed ME 

plit over two pages or columns was addressed by detecting large 

aps between consecutive coordinate points pertaining to the same 

E. 

.2.2. Automating the construction of the ME GT 

To automate the construction of the GT, we defined regular ex- 

ressions 7 to extract the mark-up language of MEs and to embed 

he highlighting macros into the source files of the 

ocuments. To address the problem of mark-up language detecting 

or MEs typeset over multiple lines, pattern matching was done 

t the paragraph level. The source files were compiled and 

plit into images of the corresponding pages. Each page was passed 

hrough a yellow and green color filter 8 to extract the coordinates 

f bounding boxes of MEs. At this point, ground-truth correction 

as done by manually inserting highlighting macros where regu- 

ar expressions failed to detect a mathematical environment. Also, 

ounding boxes were manually adjusted where partial clipping of 

ymbols was detected. 

https://www.ctan.org/pkg/zref?lang=en
https://www.tikz.dev/
https://www.gnu.org/software/sed/manual/sed.html
https://www.opencv.org/
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Fig. 1. An example of processing a page of the IBEM dataset. Inline ME are highlighted in green, while displayed ME are highlighted in yellow. 

Fig. 2. Example of a displayed ME for which detecting the first and last symbol is 

not sufficient for correctly computing the bounding box of the ME. The incorrectly 

computed bounding box is highlighted in yellow. 

3

a

m

a

t

t

n

fi

p

m

t

t

m

m

s

m

t

p

w

i

r

p

.3. transcript normalization 

Considering that the purpose of creating the IBEM dataset is to 

id in ME recognition and retrieval research, having user-defined 

acros in the GT would hinder the accuracy of these systems. To 

ddress this issue, each ME was converted into an abstract syn- 

ax tree (AST), based on the Lua nodetree 9 package. At 

his level, the mark-up language has been transformed into 

ode lists, containing the glyphs to be printed. Through a depth- 

rst traversal of the AST, the MEs were reconstructed by map- 
9 https://www.ctan.org/pkg/nodetree?lang=en . 

p

i

I

32 
ing the Unicode code points of the glyphs to the com- 

ands that could render them. This mapping was done through 

he unicode-math Lua package, which keeps track of more 

han 2 400 mathematical symbols. 

In addition, the special symbols "{" and "}" were re- 

oved when not enclosing arguments passed to com- 

ands or not defining sub/super script groups. Although these 

ymbols can optionally be used to improve the readability of the 

ark-up language, unnecessary symbols can introduce inconsis- 

encies and noise into the GT. Fig. 3 shows an example of this 

rocess. 

As a final normalization step, all horizontal spacing commands 

ere mapped to the \ hspace command. This reduced the variabil- 

ty of the transcriptions while maintaining the same visual 

epresentation of the MEs. 

Validation of the reconstructed code was done by com- 

aring the original rendered ME with the rendering of the AST out- 

ut, just before normalization. Error detection was done automat- 

cally by evaluating each pair of renderings with the Exact Match 

mage metric presented in Section 4.2.1 . Approximately 5% of the 

https://www.ctan.org/pkg/nodetree?lang=en
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Fig. 3. Simplification of the normalization process, in which a ME contain- 

ing a user-defined macro is first converted to an AST, and then normalized. Nor- 

malization includes removing font information such as slant, style, and thickness 

(colored red), sub/super-script fixed order (colored blue and green), and flattening 

unnecessary groups (colored magenta). 

Fig. 4. A graph of the symbol rank versus frequency for the IBEM mathematical 

symbols. 
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Table 3 

IBEM mathematical symbol recognition results for the 

Model-C system [20] . Experiments were performed under 

three scenarios, showing the effects of data-agumentation 

(Data Aug.) and minority class upsampling (Up-sample) on 

absolute error rate (AbsErr) and absolute class error rate 

(AbsClErr) metrics. The test comprises of 221 988 symbols 

in 332 different classes. 

Exp. Data Aug. Up-sample AbsErr AbsClErr 

1 No No 25 17 

2 Yes No 27 3 

3 No Yes 1 1 
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econstructed MEs had to be manually corrected to match the orig- 

nal rendering exactly. 

.4. Complementary dataset 

As a by-product of the normalization process, a secondary 

ataset of isolated mathematical symbols was created. All individ- 

al images of the mathematical symbols were scaled and padded 

o a 28 × 28 pixels dimension, in grayscale, making abstraction of 

he font size. To group the different representations of the same 

ymbol, the Unicode code points of the glyphs were mapped to a 

ormalized command, where font-specific information such 

s slant, style, and thickness was discarded. Each resulting class 

as then validated manually. 

By processing the expressions found in the 600 documents pre- 

ented in this paper, we obtained 1 109 926 glyphs, representing a 

otal number of 332 different symbols. The classes include Latin 

nd Greek letters, both upper and lower case, Arabic numerals, 

arentheses and brackets, and mathematical operators. These sym- 

ols are distributed as shown in Fig. 4 . Classes with only one in-

tance have been removed from the dataset as outliers. The fre- 

uency of the symbol “( ” made up for 6 , 64% of the total number

f glyphs, closely followed by the symbol “) ” with 6 . 54% (as ex-

ected). The next most frequent character was the digit “1” with a 

ercentage of 4 . 89% . 
33
. Experiments and results 

Several experiments can be carried out with the IBEM dataset 

T: ME detection and extraction, symbol classification, ME recogni- 

ion, etc. The dataset has already been used in an ICDAR 2021 ME 

etection competition [18] . The experiments reported in this pa- 

er focus on symbol classification and ME recognition, steps that 

ake place once the MEs have been detected and extracted. These 

xperiments aim to provide some benchmarks for comparison pur- 

oses so that future users of the IBEM dataset can have a baseline 

ramework. 

.1. Symbol classification 

This section presents benchmark experiments on classifying 

rinted IBEM mathematical symbols. The prevalent technology for 

ptical character recognition is based on Convolutional Neural Net- 

orks (CNN) to extract high-level features from images. Therefore, 

or this experiment, we chose a state-of-the-art classification sys- 

em, Model-C [20] . This system is composed of 4 Convolutional 

locks, followed by Batch Normalization, ReLU activation function 

nd a 2 × 2 Max-Pooling layer. The authors also include Dropout 

ayers for better generalization and a 1 × 1 Convolutional layer fol- 

owed by a Global Average Pool layer to prune the parameters of 

he network. The classification of the symbols is done by using a 

oftmax layer. 

As mentioned before, there are a total number of 1 109 926 

lyphs in the IBEM dataset, grouped into 332 classes. We parti- 

ioned this data, assigning 80% for training and 20% for testing. Out 

f those training images, we chose a 20% subset for validation. The 

ata was sampled in a stratified way to guarantee that the test set 

ncluded all classes. The performance of the system was evaluated 

aking into account the absolute number of misclassified test sam- 

les ( AbsErr ) and the absolute number of classes completely mis- 

lassified ( AbsClErr ). 

Table 3 shows the results of the classification system un- 

er three different scenarios that aim to address class imbalance 

hrough the use of data augmentation and minority class upsam- 

ling. The results of the first baseline experiment show that the 

ystem achieved very good classification results, with only 25 clas- 

ification errors ( AbsErr ) out of a test set of 221 988 symbols. Con-

idering that there are 38 classes with less than 5 instances, the 

ystems misclassified only 17 classes ( AbsClErr ). 

In the second experiment of Table 3 , random rotations were ap- 

lied in the range of [ −25 , 25] degrees and zoom in the range of

0.9,1.1] to mimic slant and bold style glyphs and create more ar- 

ificial data. When data augmentation was applied to generate 25% 

ore training samples, the number of classes completely misclas- 

ified diminished significantly. 

Lastly, the results of the third experiment show that through 

inority class upsampling the classification system achieved near- 

erfect results, even though no further data augmentation was 

sed. In this last experiment, underrepresented classes were ran- 
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Table 4 

Number of MEs in the training and test partitioning of the 

IBEM dataset, showing the difference between the original 

data and the data that could be parsed by the 2D-PCFG. 

Filter ME type Training Test Total 

Displayed 21 867 7 736 29 603 

Original Inline 100 442 36 647 137 089 

Total 122 309 44 383 166 692 

2D- 

PCFG 

Filter 

Displayed 17 791 7 736 25 527 

Inline 97 677 36 647 134 324 

Total 115 468 44 383 159 851 
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omly re-sampled from the training set to ensure that all classes 

ave at least 5 instances (38 classes have less). 

The results indicate that a CNN-based approach is suitable for 

xtracting features from images of typeset mathematical symbols, 

nd that, by data augmentation or upsampling of underrepresented 

lasses, a feature extractor module could potentially be pre-trained 

s a precursor to a ME recognition system. 

.2. Mathematical expression recognition 

.2.1. ME Recognition systems and evaluation metrics 

We provide benchmark results of ME recognition with the IBEM 

atasets using standard approaches. To facilitate the reproducibil- 

ty of the experimental work, three open-source systems were 

sed. The first one is based on structural and grammatical mod- 

ls ( Seshat 10 ) [9] , while the second and third ones are based

n deep neural networks with attention models ( Im2Latex 11 ) [7] , 

nd ( WAP 12 ) [10] . 

The Seshat ME recognition system is based on two- 

imensional probabilistic context-free grammars (2D-PCFG). In this 

ystem, the connected components of the image pixels are com- 

uted, which are then structurally merged using productions of 

he 2D-PCFG. This process is recursively applied with the Viterbi 

lgorithm that allows to structural combine large portions of the 

E and accounts for long-term dependencies. The spatial and ge- 

metric information is used to constrain the search space to make 

he search feasible [9] . The hyperparameters of the model have 

een fitted on a subset of the training set (validation set) with the 

ownhill simplex algorithm [21] , minimizing the token error 

ate. A noticeable feature of this system is that it is known how to 

et not only the 1-best interpretation but a hypergraph with thou- 

ands of possible interpretations [22] . Another important charac- 

eristic of syntax-based systems is that it is well-known how to 

efine syntactic relations among different parts of the ME. 

The Im2Latex ME recognition system is based on deep neu- 

al networks, in which the sequence-to-sequence attention-based 

ncoder-decoder architecture is employed to tackle the image-to- 

ark-up conversion problem. In this system, the image features of 

he MEs are encoded through a multilayer CNN and a bidirectional 

ong Short-Term Memory (LSTM). The mark-up language of 

he MEs is generated through an LSTM attention-based decoder. 

Lastly, the WAP ME recognition system, similar to the 

m2Latex system, is based on deep neural networks. Although 

his system also employs an attention-based encoder-decoder 

ramework, it features a deep fully convolutional architecture as 

n encoder. For the recognition experiments of this paper, we em- 

loyed the system presented in [10] , which is an improved version 

f the original [23] system, with changes to both the encoder and 

he attention mechanism. 

The Seshat system is based on a handcrafted 2D-PCFG that 

as not adapted to the IBEM dataset, and therefore not all IBEM 

Es could be parsed. Although Table 4 also reports the data un- 

er the constraints of the Seshat system, note that all results are 

eported without considering this restriction. 

To better understand the difficulty of the ME recognition task, 

ig. 5 shows the ME distribution as a function of the number of 

ark-up words. As can be seen, the inline MEs are much 

horter than the displayed MEs and have significantly more sharp- 

ned distributions. In addition, approximately 20% of displayed 
10 https://www.github.com/falvaro/seshat . 
11 https://www.github.com/shchae7/im2latex . 
12 https://www.github.com/jmwang66/WAP- implemented- by-Pytorch . 
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34 
Es are multi-line, as opposed to less than 2% of inline ME. More 

han 19% of displayed MEs contain alignment symbols (denot- 

ng arrays, matrices, or vertically aligned mathematical subexpres- 

ions), as opposed to less than 0 . 1% for inline MEs. Furthermore, 

pproximately 45% of displayed ME contain fractions (complex 

wo-dimensional elements), as opposed to approximately 2% of in- 

ine MEs. Finally, it is important to mention that, although near- 

erfect results are obtained for symbol classification, ME recogni- 

ion also requires symbol segmentation (as a prerequisite or com- 

uted on the fly) and structure analysis. These characteristics are 

undamental for interpreting the results obtained by the recogni- 

ion systems. 

The evaluation of the ME recognition systems was performed 

ith the following metrics: 

• Exact Match Mark-up ( ExM ≤ ε): mark-up language 

level metric that measures the percentage of 1-best hypothe- 

ses that match the associated ground truth ME when up to and 

including ε structural or symbol errors can be tolerated, where 

ε ∈ { 0 , 1 , 2 } (See expression recognition rate [24] ). Note that if

ε = 0 a perfect symbol and structure recognition is required. 

Thus, this metric is sensitive to the length of the MEs and tends 

to be overly pessimistic in the case of larger MEs. 
• Exact Match Image ( ExIm ): image level metric that measures 

the percentage of rendered hypotheses that match the corre- 

sponding rendered references. Both references and hypotheses 

were rendered as standalone MEs to eliminate unwanted noise 

caused by the surrounding context. Image pairs are considered 

to match exactly if they display a misalignment of less than 5 

pixels [25] . 
• Bleu : ( Bleu ) score [26] measures the similarity between the 

model’s best prediction and the associated ME reference in ac- 

cordance with n-gram accuracy. Scores up to 4-grams were 

considered for this metric, taking into account the size of the 

MEs. 

.2.2. Results 

Table 5 shows the main experimental results on the IBEM ME 

ecognition task. It can be seen that the WAP and Im2Latex sys- 

ems significantly outperform the Seshat system. In the case of 

nline MEs, all systems demonstrate significantly improved recog- 

ition results compared to displayed MEs. This can be attributed 

o the shorter length and generally less complex structure of inline 

Es. 

While all systems generally perform well when evaluated with 

xIm and Bleu , with ExM , the results are considerably worse. ExM 

s a very strict metric since it requires both a perfect symbol and 

tructure recognition. By softening this restriction and allowing up 

o two structural or symbol recognition errors (ExM ≤ ε, ε ∈ { 1 , 2 } ),
t becomes apparent that all systems generate a substantial propor- 

ion of hypotheses that closely align with their corresponding ref- 

rences. However, it is crucial to consider that, for displayed MEs, 

llowing a recognition tolerance of up to two symbol or structural 

https://www.github.com/falvaro/seshat
https://www.github.com/shchae7/im2latex
https://www.github.com/jmwang66/WAP-implemented-by-Pytorch
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Fig. 5. Histogram representing the distribution of the ME based on the number of mark-up words/symbols defined in the MEs. 

Fig. 6. Precision of Bleu interpolated score, up to 4-grams, based on ME size. The 

MEs are grouped in consecutive intervals of size 10. Due to low representation, MEs 

with more than 150 symbols have been excluded from this chart, although they are 

included in the results of Table 5 . 
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Table 5 

ME baseline recognition results obtained on the IBEM test set. The Se- 

shat [9] , Im2Latex [7] and WAP [10] systems are evaluated on the ExM ≤ ε, 

ExIm and Bleu metrics with scores between 0 and 100. 

ME Model ExM = 0 ExM ≤1 ExM ≤2 ExIm Bleu 

Seshat 6.0 6.7 7.7 17.1 52.9 

Disp. Im2Latex 25.4 32.2 36.7 42.8 73.9 

WAP 42.8 53.0 61.6 64.0 86.0 

Seshat 70.4 72.1 74.9 81.8 81.0 

Inline Im2Latex 93.7 95.8 96.7 99.3 97.4 

WAP 95.7 97.9 98.6 99.1 98.3 

Seshat 59.2 61.3 63.8 70.5 76.1 

All Im2Latex 81.8 84.6 86.1 89.5 93.3 

WAP 86 . 5 90 . 0 92 . 1 93 . 0 96 . 2 

Table 6 

ME baseline recognition results based on the type of components con- 

tained in the MEs. Please note that results are reported at ME level and 

not at component level, as the latter would require using a ME 

parser. In the case of Seshat , multiline or MEs containing alignment sym- 

bols could not be parsed by the system. 

ME Model ExM = 0 ExM ≤1 ExM ≤2 ExIm Bleu 

Seshat - - - - - 

Mult. Im2Latex 0.4 0.9 1.4 1.0 47.2 

WAP 5.2 7.8 12.9 8.6 55.8 

Seshat - - - - - 

Align. Im2Latex 1.0 1.5 1.9 3.5 49.3 

WAP 6.2 8.8 14.2 11.9 57.1 

Seshat 6.5 7.7 10.4 16.0 14.6 

Frac. Im2Latex 31.1 38.4 43.6 47.7 81.3 

WAP 54 . 4 65 . 9 75 . 4 75 . 8 94 . 9 

Seshat 65.0 66.4 69.0 76.2 74.1 

Rest Im2Latex 89.6 92.1 93.3 95.1 96.2 

WAP 92 . 7 95 . 6 96 . 9 97 . 6 97 . 9 
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rrors is justifiable. In contrast, for inline MEs, which are signifi- 

antly shorter, applying this adjustment could profoundly alter the 

emantics of the recognized expressions. This factor must be con- 

idered when analyzing the performance of recognition models for 

nline MEs. 

To highlight the potential semantic ambiguity of the IBEM 

ataset, all systems are also evaluated with the ExIm metric. As 

een in Table 5 , all recognition systems achieve a much better vi- 

ual match when compared to the more restrictive textual match. 

his implies that the language models of all systems have learned 

lternative ways of transcribing a ME while keeping the same vi- 

ual representation. This feature could prove beneficial for ME re- 

rieval approaches that are image-based, given that different tex- 

ual representations of the same rendered ME could be more 

ikely paired. However, please note that symbols such as \ sum and 

 Sigma have the same visual representation, with the semantic 

onsequences it implies. 

In light of these results, Fig. 6 shows the Bleu score preci- 

ion of these systems as a function of the number of mark-ups 

words/symbols make up the MEs. It can be seen that the 

ttention mechanisms of the neural-based systems learn to miti- 

ate the effect of having to recognize long MEs well. 

Table 6 shows results based on the structure of the MEs. The 

erformance of all systems drops significantly for multiline ( Mult. ) 

Es or for MEs that contain alignment symbols ( Align. ). These two 

lements are highly connected, as aligned components such as ma- 

rices are always multiline, and multiline MEs feature subexpres- 
35 
ions that are usually vertically aligned. The task of correctly rec- 

gnizing MEs of these characteristics is particularly difficult as the 

elationship between symbols is greatly extended. 

In the case of MEs containing fractions ( Frac. ), for which multi- 

ine or aligned MEs were not considered, the WAP system performs 

xceptionally well, showing that this system is better suited for 

ecognizing complex structures, as is also evident in Fig. 6 . Lastly, 

able 6 shows that for the rest of MEs that are not multiline or 

o not contain alignment symbols or fractions, all systems achieve 

ery high scores for all metrics, indicating that the main recogni- 

ion challenges of the IBEM corpus are the correct interpretation 

f multiline, matrices and vertically aligned MEs, and to a lesser 

egree, MEs containing fractions. 

Finally, the recognition systems are evaluated on test images 

utomatically detected and extracted. These images result from the 

CDAR 2021 Competition on Mathematical Formula Detection [18] , 

n which participants were asked to automatically detect MEs on 
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Table 7 

Results of ME recognition with automatic ME detection methods, based 

on the coordinates submitted by the winner [19] of the Mathematical For- 

mula Detection Competition [18] . 

ME Model ExM = 0 ExM ≤1 ExM ≤2 ExIm Bleu 

Seshat 4.0 4.9 6.6 16.8 45.9 

Disp. Im2Latex 14.5 19.8 25.2 26.7 63.6 

WAP 28.5 39.1 48.4 52.7 80.5 

Seshat 58.8 61.5 64.1 70.7 69.2 

Inline Im2Latex 65.5 77.9 81.4 78.8 78.2 

WAP 74.1 81.5 86.8 87.7 85.1 

Seshat 49.2 51.6 53.9 61.3 65.1 

All Im2Latex 56.6 67.8 71.7 69.7 75.6 

WAP 66 . 2 73 . 9 79 . 9 81 . 6 84 . 3 
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wo subsets of the test set. An image was considered as correctly 

etected if the predicted and ground-truth expressions overlapped 

ith an Intersection-over-Union (IoU) threshold of ≥ 0 . 7 . Table 7 

hows the evaluation of the recognition systems, on the basis of 

he test images coordinates submitted by the winner [19] of the 

ompetition. It is important to mention that the ME recall of this 

etection system was of 95 , 47% . As can be observed, all recogni-

ion systems are affected by automatic ME detection, where sym- 

ol clipping introduces never-before-seen glyph samples. This par- 

icularly affects inline MEs, as they generally have fewer symbols, 

nd a 70% IoU overlap leads to a higher loss of information. 

The end objective of the IBEM dataset is to facilitate the in- 

exing and searching of MEs in massive collections of STEM doc- 

ments. For ME retrieval tasks, it is reasonable to assume that 

ser-defined queries are mathematical sub-expressions of reduced 

ize. While, overall, the neural-based systems outperformed the 

eshat system, it is essential to remark that structural and gram- 

atical models provide not only the recognition results but also 

he parse tree, actually the n-best parse trees. Therefore, these 

odels are more suitable for ME retrieval, as MEs are broken down 

nto sub-expressions providing the relationship between them [8] . 

his is an important problem for which grammatical models offer 

omplete solutions. 

. Conclusion 

This paper introduces the IBEM dataset for researching printed 

athematical expression recognition and searching. The dataset in- 

ludes a rich GT that consists of the transcript and the 

osition of each ME in the rendered images. The IBEM dataset 

as been prepared automatically, and it currently has 600 publicly 

vailable documents, with more than 8 200 page images and more 

han 160 0 0 0 mathematical expressions. The proposed method is 

calable, and we expect to scale up the dataset significantly. 

Along with the IBEM dataset, we provide baseline experiments 

or both symbol classification and ME recognition. These experi- 

ents aim to provide some benchmarks that may be useful to fu- 

ure users of the IBEM dataset. The corpus presented in this paper 

s available on the ZENODO platform. 13 
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