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A B S T R A C T   

Agricultural land abandonment (ALA) is becoming a growing phenomenon around the world that needs to be 
monitored and quantified. A massive abandonment of citrus orchards has been experienced in the last years in 
the Comunitat Valenciana (CV) region (Spain) driven by different socio-economic factors. Therefore, developing 
time and cost-efficient methods for monitoring ALA is a priority. Citrus are a perennial crop trees which make 
orchards have low spectral variation during the year. In the CV region, they are planted in relatively small 
parcels, thus creating a highly fragmented and heterogeneous landscape. This study proposes a machine learning- 
based classification framework that uses annual time series of spectral indices extracted from Sentinel-2 images 
to identify crop status at parcel level. The method is based on features extracted from the reconstructed OSAVI 
and NDMI time series used to train a Random Forest classifier. Then, a parcel-based classification is performed 
using the parcel boundaries and the probabilities of belonging to each category for the full pixels inside the 
boundaries. The research assessed the potential to identify three statuses of crops (non-productive, productive, 
and abandoned). Results on three different temporal and spatial datasets provided an overall accuracy ranging 
from 89 to 92 %, demonstrating the importance of multi-temporal data to identify the abandonment of perennial 
crops. Furthermore, we studied the ability of the model to be spatially and temporally transferred. Limitations to 
recall the abandoned parcels when using models trained in other areas or time periods are exposed, opening the 
way to model improvements.   

1. Introduction 

Agricultural land abandonment (ALA) is a growing phenomenon 
around the world that has received attention since the early 1990s. 
However, around 95 % of the papers were published in the last 15 years 
(Subedi et al., 2022). This indicates a growing concern in the scientific 
community. Agriculture represents more than half of the territory of the 
European Union (EU). Agriculture guarantees food supply, manages 
important natural resources, and supports the socio-economic devel
opment of rural areas (Terres et al., 2015). However, it has been esti
mated around 11 % of the agricultural area is at high risk of 
abandonment for the period 2015–2030 (Perpiña Castillo et al., 2018). 
ALA is a major obstacle to the sustainable development of many Euro
pean regions (Leal Filho et al., 2016). Nevertheless, it will increase in 

Europe over the next decades (Terres et al., 2015). In this context, new 
time and cost-efficient methods to identify ALA are required to update 
inventories of land use, a first step to improve land management stra
tegies. Temporal and spatial explicit information about ALA can help to 
support policy instruments to counteract or reverse the process and can 
also help implement adequate landscape management measures (Volpi 
et al., 2023). 

The development of the Copernicus program by the European Space 
Agency (ESA) and the European Commission has contributed to great 
advances in remote sensing systems that have significantly improved 
agricultural monitoring (Phiri et al., 2020). ALA is particularly frequent 
in both mountainous areas and in highly fragmented landscapes (Czesak 
et al., 2021). In such areas, the spatial resolution of other commonly 
used sensors, such as MODIS (Moderate Resolution Imaging 
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(E. Moltó).  
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Spectroradiometer) (500 m) or Landsat (30 m) is not enough to precisely 
monitor the small-sized parcels. The higher spatial resolution of 
Sentinel-2 (10–20 m) may improve these capabilities, which is partic
ularly interesting in the Comunitat Valenciana (CV), where most citrus 
orchards are between 0.25 and 0.50 ha, especially in coastal areas. 
Morell-Monzó et al. (2020) used Sentinel-2 spectral single scene data in 
the first experience to identify the abandonment status of citrus crops in 
this region, obtaining an overall accuracy of around 77 %. 

The information in the spectral domain of the Sentinel-2 data pro
vides great opportunities to discriminate between types of crops with 
different spectral signatures (Asgarian et al., 2016). In parallel, infor
mation in the temporal domain is also important because it allows 
tracking the evolution of a crop along the seasons. The high temporal 
resolution of Sentinel-2 has been an opportunity to improve the iden
tification and mapping of crop types and crop rotations (Vuolo et al., 
2018). The inherently dynamic nature of crops and their spectral- 
temporal signatures make time series approaches particularly conve
nient (Gómez et al., 2016). However, the benefits of multi-temporal data 
for detecting the status of permanent evergreen crops, such as citrus, 
may be not so obvious. Unlike seasonal crops, the growth of citrus to 
productive age lasts about 5 years, and reaching maximum growth may 
last 15 years. In consequence, there is normally a single plantation event 
in each orchard that is repeated after more than fifteen years. The 
growth of trees is relatively slow until it reaches a mature state, when 
the vegetative growth is controlled by pruning. Harvesting usually does 
not produce important reflectance changes as in annual or bi-annual 
crops. It is important to remark that citrus cultivated in Europe are 
irrigated and most farmers remove weeds. When a productive parcel is 
abandoned, the evolution of the trees and the growth of spontaneous 
vegetation will be totally conditioned by the soil, temperature and 
rainfall regimes since irrigation is cut and no weeding practices are 
made. For all these reasons orchard spectral signatures of abandoned 
orchards change little and gradually in time, which makes detecting the 
abandonment status of citrus parcels especially challenging. 

Spain is the largest citrus producer in Europe, the fourth in the world, 
and the first exporter of citrus for fresh consumption. Comunitat 
Valenciana region accounts for more than 50 % of the Spanish citrus 
production. A massive abandonment of citrus orchards has been expe
rienced from 2000 to 2020, representing a 20 % decrease of the culti
vated surface (MAPA, 2021). In this region the current estimated area 
dedicated to citrus 160,088 ha (MAPA, 2022). In this context, it is of 
priority interest to develop time and cost-efficient methods to identify 
and quantify citrus crop abandonment. Abandonment of citrus crops in 
the CV region is attributed to the small size of the exploitation units, 
which hinders mechanization and subsequent reduction of costs, while 
prices do not increase because supply and demand are unbalanced 
(Garcia Álvarez-Coque and Moltó, 2020). Furthermore, the emergence 
of more profitable land uses (e.g. urban uses) which means that many 
owners keep their parcels without any agricultural interest in the hope 
of future capital gains from urban development processes (Morell- 
Monzó and Garófano-Gómez, 2022). Finally, there are weaknesses in the 
structure, organization and commercial quality of the Valencian supply 
chain which are aggravated by unfavorable policies for the Valencian 
citrus sector and institutional failures both in the negotiation phase of 
the agreements and in controls at the points of entry into the EU 
(Compés et al., 2019). 

The main objective of this study is to propose a method to auto
matically identify the status of citrus crops using Sentinel-2 data. For this 
purpose, a machine learning-based classification framework was 
developed using time series of spectral indices derived from Sentinel-2 
to identify the crop status at parcel level. A comprehensive evaluation 
of the model’s performance and the transferability of spectral-temporal 
signatures across regions and years inside the Comunitat Valenciana 
region (Spain) was assessed. 

2. Data and methods 

2.1. Study area 

Our study area is in La Safor, a coastal region of 43,000 ha, 
approximately centered at (34◦56′14′′N, 0◦8′42′′E) in CV region. It was 
selected due to its large tradition of citrus production. Its landscape is 
characterized by two clearly differentiated structural elements. On the 
west, a mountainous forest area. On the east a plain alluvial zone and the 
coastline, which is highly populated and where most of the irrigated 
agricultural production is located. This plain was generated by succes
sive sedimentary systems of Quaternary origin. It stands out for its flat 
relief, soils with high agronomic potential and high availability of water 
that have made it a historically agricultural area. The major crops in this 
region are citrus representing 95 % of cultivated area (Generalitat 
Valenciana, 2020). However, in recent years a large part of the farms has 
been abandoned. The agrarian structure is characterized by the small 
size of the farms (between 0.25 and 0.5 ha) resulting in a highly frag
mented landscape. 

This region has a typical Mediterranean climate with two distinct 
seasons, wet and dry (Gasith and Resh, 1999; González-Hidalgo et al., 
2005). The characteristic rainfall is scarce and torrential and has an 
extremely high spatial and temporal variability being the raining sea
sons autumn and spring. In contrast, summer (June to August) is the dry 
period in this Mediterranean zone. 

2.2. Map classes and reference data 

This work proposes a classification based on three orchard status: 
non-productive (NP), productive (PR), and abandoned (AB) (Morell- 
Monzó et al., 2021 for exhaustive details). NP class includes bare soil 
orchards before tree planting and recently planted trees that have not 
reached productive age and are predominantly occupied by bare or low 
vegetated soil. Citrus trees reach productive age around 5 years after 
planting. Therefore, this category contains trees less than 5 years old. PR 
class includes orchards at productive age (>5 years). Finally, class AB 
includes abandoned orchards with physically evident signs of 
abandonment. 

Major changes that occur in an abandoned orchard are the growth of 
spontaneous vegetation, loss of vigor of the trees, and, therefore, pro
gressive loss of the typical planting patterns of fruit crops. However, 
growers may carry out management practices that generate different 
evolutions on abandoned orchards. In some cases, owners cut the tree 
canopies, then sprouts and small branches may appear. In other cases, 
owners carry out periodic pruning or weeding, limiting the height and 
density of spontaneous vegetation. In general, the lack of water leads to 
the progressive death of the trees at different rates. 

Identifying AB parcels is essential for monitoring citrus land aban
donment and differentiating PR from NP parcels is interesting to 
improve citrus yield estimations. Declared citrus parcels are georefer
enced in the Land Parcel Identification System of Spain known as Sistema 
de Información Geográfica de Parcelas Agrícolas (SIGPAC). However, this 
database has no up-to-date information on crop status. The proposed 
classification framework was designed to complement the SIGPAC in
formation and be applied to previously identified citrus parcels (see 
Fig. 1). 

Seven ground truth datasets were obtained through: a) field in
spection campaigns, b) images captured by unmanned aerial vehicles 
(UAV), and c) very-high resolution orthophoto photointerpretation. 
Field campaigns and UAV data were obtained in previous published 
studies (Morell-Monzó et al., 2020; Morell-Monzó et al., 2021), and for 
this research we enlarged the dataset with parcels classified by photo
interpretation of very-high resolution orthophotos. Table 1 summarizes 
these ground truth sources. 

The first dataset (OLV-19) consists of 240 parcels classified during a 
field campaign carried out between July 11 and 14, 2019 in the 
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municipality of Oliva (Fig. 2b). Parcels have an average size of 0.41 ha, 
summing up 100.5 ha representing a sampling effort of 0.85 % of the 
total area dedicated to citrus in the region of La Safor. They were 
selected through stratified random sampling with equal proportion for 
each category. This dataset contains 80 NP, 80 PR, and 80 AB parcels. 

The second dataset (LSF-20) consists of 280 parcels classified by 
visual interpretation of 12 UAV photogrammetric flights carried out in 
February 2021 (Fig. 2c). Parcels were selected through a systematic and 
intensive sampling of the area covered by the UAV. Therefore, these 
samples were obtained through cluster sampling from the 12 areas 
overflown by the UAV. This dataset contains 60 NP (21.4 %), 120 PR 
(42.9 %), and 100 AB parcels (35.7 %). The parcels have an average size 
of 0.48 ha, summing up 136.7 ha representing a sampling effort of 1.15 
% of the total area dedicated to citrus in the region of La Safor. 

The third dataset (LSF-21) consists of 836 parcels classified during 
field campaigns carried out from March 9 to May 28, 2021 in the coastal 
area between Gandia and Oliva (Fig. 2d). Parcels have an average size of 
0.44 ha, summing up 368.2 ha representing a sampling effort of 3.10 % 
of the total area dedicated to citrus in the region of La Safor. They were 
selected through a simple random sampling. This dataset contains 188 
NP (22.5 %), 368 PR (44 %), and 280 AB parcels (33.5 %). 

All three datasets were in the coastal area of La Safor, which is about 
20 km long and 6 km wide, hereafter named the training area. To avoid 
possible errors caused by changes in land use between field campaigns 
and the acquisition date of the images, abandonment status was verified 
using high-resolution airborne images from the Valencian Cartographic 
Institute (ICV) https://idev.gva.es/va/, taken annually in May. 

Additionally, 4 datasets were generated outside the training area 
(Fig. 2a). These datasets are located in the municipalities of Potries and 
Villalonga (PV-21), Tavernes de la Valldigna (TV-21), Benicull and 
Polinyà del Xuquer (BP-21), and Nules (NL-21). Datasets PV-1 and TV- 

21 are located in La Safor region, close to the training area, while 
datasets BP-21 and NL-21 are located far from the study area. Each of 
these datasets contains 80 parcels selected by simple random sampling 
and classified by photointerpretation of the 2021 orthophoto offered by 
ICV. Orthophotos from previous years and Street View images from 
Google Maps were also used for verification. 

2.3. Sentinel-2 time series processing and feature extraction 

Three annual collections of Sentinel-2A/B L2A bottom-of- 
atmosphere (BOA) reflectance images were acquired from the Google 
Earth Engine platform (Gorelick et al., 2017) generating annual data 
time series: a) from September 1st, 2018 to September 30th, 2019, 
representing the 2019 season, b) from September 1st, 2019 to September 
30th, 2020, representing the 2020 season and c) from September 1st, 
2020 to September 30th, 2021, representing the 2021 season. The time 
series consist of 65, 57 and 54 images, respectively. In our study area the 
revisit time of the Sentinel-2 constellation is 5 days. Images were pro
jected in UTM/WGS84 30N and they were filtered to include only those 
with less than 75 % cloud percentage. The L2A product provides a scene 
classification band (SC). Pixels classified as no data, saturated or 
defective, cast shadows, cloud shadows, unclassified, cloud medium and 
high probability, and thin cirrus in the SC band were masked in all 
reflectance bands. These bands were resampled to 10 m resolution by 
pixel disaggregation of the lower resolution bands. Finally, two spectral 
indices were calculated using the bands B4, B8, and B11: the Optimized 
Soil Adjusted Vegetation Index (OSAVI) (Rondeaux et al., 1996) and the 
Normalized Difference Moisture Index (NDMI) (Gao, 1996). These 
spectral indices were selected based on our previous work (Morell- 
Monzó et al., 2022) where they obtained the best discriminating results 
among a total of 15 indices. 

Fig. 1. Examples of the three types of crop status: non-productive (left), productive (center), and abandoned (right) parcels. The grey grid corresponds to the 10- 
meter Sentinel-2 pixels. 

Table 1 
Summary and characteristics of the ground truth data used.  

Dataset Number of 
parcels 

Sampling method Acquisition date 
(verification) 

Sampled 
area (ha) 

Average 
parcel size 
(ha) 

Parcel size 
range (ha) 

NP parcels 
ratio 

PR parcels 
ratio 

AB parcels 
ratio 

OLV-19 240 Field campaigns July 11–14, 2019 
(May 14, 2019)  

100.5  0.41 0.10–2.70  33.3 %  33.3 %  33.3 % 

LSF-20 280 UAV photointerpretation February 1–29, 
2020 
(May 6, 2020)  

136.7  0.48 0.08–3.23  21.4 %  42.9 %  35.7 % 

LSF-21 836 Field campaigns March 9, 2021 
(May 16, 2021)  

368.2  0.44 0.07–7.32  22.5 %  44.0 %  33.5 % 

PV-21 80 Photointerpretation May 16, 2021  34.3  0.36 0.09–2.66  21.3 %  45.0 %  33.7 % 
TV-21 80 Photointerpretation May 15, 2021  36.6  0.46 0.07–1.90  12.6 %  63.7 %  23.7 % 
BP-21 80 Photointerpretation May 13, 2021  65.9  0.86 0.89–3.87  16.3 %  55.7 %  25.0 % 
NL-21 80 Photointerpretation July 22, 2021  39.5  0.49 0.12–1.84  20.0 %  55.1 %  24.9 %  
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For Sentinel-2 images, OSAVI is calculated from the near-infrared 
band (B8 ~ 0.83 µm) and red band (B4 ~ 0.66 µm) as shown in Equa
tion (1). The OSAVI is an optimization of the Soil Adjusted Vegetation 
Index (SAVI) proposed by Huete (1988). OSAVI is a soil-adjusted 
vegetation index optimized for agricultural monitoring which uses a 
soil adjustment coefficient (L), to minimize variation produced by soil 
background (Steven, 1998). OSAVI uses a value L = 0.16 proposed by 
Rondeaux et al. (1996). This index was used because in citrus parcels a 
significant part of the area is not covered by the tree canopy and the soil 
is exposed, so the influence of the soil on the spectral response may be 
important. 

OSAVI = (1+L)
(B8 − B4)

(B8 + B4 + L)
(1) 

For the Sentinel-2 images, NDMI is calculated from the near-infrared 
band (B8 ~ 0.83 µm) and short-wave infrared band (B11 ~ 1.61 µm) as 
shown in Equation (2). The near-infrared spectral channel collects the 
reflectance of the internal structure of the leaf and the dry matter con
tent of the leaf. At this wavelength the absorption produced by liquid 

water in the soil and vegetation is insignificant. In contrast, the short- 
wave infrared spectral (SWIR) channel is sensitive to soil and vegeta
tion water content and to the internal mesophyll structure of the leaf. As 
a result, the NDMI is an indicator of the moisture content of soil and 
vegetation. This index was chosen because it can provide differential 
information between the PR and AB parcels due to the differences in 
vegetation and soil moisture because of the absence of irrigation in the 
abandoned parcels (Morell-Monzó et al., 2023). Furthermore, the NDMI 
is less sensitive to atmospheric effects than other spectral indices such as 
the Normalized Difference Vegetation Index (NDVI) (Gao, 1996). 

NDMI =
(B8 − B11)
(B8 + B11)

(2) 

Both OSAVI and NDMI time series contained temporal gaps due to 
the removal of images (those having more than 75 % cloud coverage) 
and spatial gaps due to masked pixels. In order to create continuous time 
series with non-empty values every 5 days, those gaps were filled by 
linear interpolation expressed in Equation (3). 

Fig. 2. Study area and ground truth datasets. (A) Study area in La Safor, Comunitat Valenciana region (Spain) and ground truth datasets. (B) OLV-19 dataset. (C) LSF- 
20 dataset. (D) LSF-21 dataset. 
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Yi = Yi− 1 +(Yi+1 − Yi− 1)*
(

ti − ti− 1

ti+1 − ti− 1

)

(3) 

where Yi is the interpolated pixel value, Yi− 1 is the pixel value of the 
previous image, Yi+1 is the pixel value of the next image, ti is the time 
value of the image containing the pixel to interpolate, and ti− 1 and ti+1 

are the time values of the previous and next images. 
To reduce noise in the time series introduced by the undetected 

clouds, partial cloud shading or unfavorable atmospheric conditions, the 
original OSAVI and NDMI signals were smoothed using the Savitzky- 
Golay filter (Savitzky and Golay, 1964; Chen et al., 2004). This is a 
moving window filter in the time domain that removes outliers and 
smoothes data in the time series while preserving the trends. It is based 
on a simplified least square fitting convolution to smooth and compute 
derivatives of a set of consecutive values. The convolution can be un
derstood as a weighted moving average filter, which uses weights given 
by a polynomial of a user-defined degree. When these weights are 
applied to the signal, they perform a least squares polynomial fit within 
the filter window (Chen et al., 2004). In this study, a moving window of 
50 days and a third-order polynomial were used. 

Features were extracted from the smoothed signals to be used as 
inputs to train a supervised classifier. They can be categorized as: a) 
central tendency statistics: mean (12 per year); b) dispersion statistics: 
range (2 per year) and standard deviation (2 per year); c) distribution 
shape statistics: skewness (1 per year) and kurtosis (1 per year) of each 
spectral index, providing a total of 36 features per pixel of the smoothed 
time series. The length of the intervals used for feature extraction was 
optimized through a search grid with values of 12, 6, 4, 3, 2, and 1 
month. Finally, monthly intervals were used for the central tendency 
statistics, semi-annual intervals for the dispersion statistics, and annual 
intervals for the distribution shape statistics (Fig. 3). 

2.4. Parcel-based classification 

A parcel-based classification method was developed since this 
approach allows spatial indexing with agricultural databases (e.g., 
SIGPAC). The proposed method is described below:  

1. Using the extracted features, a supervised classification model is 
trained using pixels as training samples. Only pixels completely 
covered by the parcels are used for training.  

2. Then, the fitted model is used to predict the probability of each pixel 
being in each class (Fig. 4). Therefore, for each pixel of the image, a 
probability vector with length C is predicted, being C the number of 
classes. In this study the number of classes is 3.  

3. Finally, parcel-based classification is performed. For each parcel, the 
average probability of each class is calculated using the full pixels 
inside the parcel boundaries (Fig. 4). Full pixels are those that have a 
coverage threshold of 100 %, however, the method iteratively re
duces this threshold to 75 % and 50 % in case there are no full pixels 
inside the parcel boundaries. Coverage percentages were measured 
using the exactextractr R package. Finally, each parcel is assigned the 
class with the maximum average probability. 

This novel approach was designed to deal with the characteristics of 

a highly fragmented agricultural landscape and differs from the tradi
tional parcel-based classification strategy by applying majority voting. It 
should be outlined that in majority voting, a classification value is 
predicted for each pixel and then parcel is classified by applying the 
mode operator using the pixels whose centroid is inside the parcel. In the 
proposed method, the class probability is predicted for each pixel. Then, 
the probability values for each class are averaged using the pixels 
completely inside the parcel. Finally, each parcel is classified according 
to the class with the maximum probability, thus applying the argument 
of the maxima (argmax). In practice, the outcome of the proposed 
method is similar to the majority voting method. However, the use of full 
pixels is especially interesting in highly fragmented agricultural struc
tures since it allows for avoiding edge effects. Additionally, this method 
returns the average probability of each class per parcel. This data, 
combined with the number of complete pixels in the parcel, can be 
employed to automatically filter parcels for manual class re-assignment, 
removal, or further specific processing. 

The Random Forest (RF) method (Breiman, 2001) was used to build 
the pixel classifier. Although there is a growing trend toward the use of 
deep learning algorithms, RF remains as a benchmark algorithm for 
many remote sensing classification problems (Sheykhmousa et al., 
2020). This is due to its good performance with small amounts of 
training data and its robustness against overfitting. RF requires tuning 
two key hyperparameters: the number of trees (ntree) that make up the 
forest and the number of randomly selected variables at each node split 
(mtry). RF models was trained with an increasing ntree up to 150 trees 
and the hyperparameter mtry was set to 6, corresponding to the square 
root of the number of variables. The out-of-bag samples were used to 
measure model convergence. To perform the inference, the RF must 
predict the probability of belonging to each class. This is achieved by 
calculating the proportion of trees voting for each class. In this work, the 
RF algorithm was applied from the randomForest R package (Liaw and 
Wiener, 2002). 

2.5. Accuracy assessment 

One of the greatest challenges in many machine learning applica
tions is to build accurate and robust models that reduce recalibration 
efforts and ensure model transferability to never seen data distributions 
(Dimov, 2022). Three models for citrus crop status identification were 
trained using the OLV-19, LSF-20, and LSF-21 datasets. These models 
were validated using two cross-validation strategies. First, 4-fold cross- 
validation was performed using random splits without replacement. In 
each iteration, 3/4 of the parcels were used for training and 1/4 of the 
parcels were used for validation, ensuring balanced data sets with the 
same number of parcels in each class. Second, 4-fold spatial cross- 
validation was performed. This strategy was used to avoid an underes
timation of the model error due to spatial autocorrelation of the samples, 
which is inherent in remote sensing data (Karasiak et al., 2021). 

Random cross-validation is suitable when the data is randomly 
distributed. However, when the data is strongly aggregated, this strategy 
may underestimate the model error (Wadoux et al., 2021; Stock and 
Subramaniam, 2022). In our case, the LSF-20 dataset is clustered due to 
the sampling method through UAV flights. The other datasets were 
obtained through random sampling. However, the agricultural areas are 

Fig. 3. Feature extraction by time intervals from Sentinel-2 OSAVI and NDMI smoothed time series.  
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not randomly distributed in the area, which causes a given degree of 
samples aggregation. These circumstances motivated the use of spatial 
cross-validation. Spatial partitions were generated using the k-Means 
method on the XY coordinates of the parcels. This procedure allows for 
generating data partitions with the maximum distance between groups, 
although in this case it cannot be ensured that the data is balanced. 

To assess the model performance the following accuracy metrics 
were calculated: overall accuracy (OA) and its 95 % confidence in
tervals, precision (producer’s accuracy by class), recall (user’s accuracy 
by class) (Olofsson et al., 2014) and Cohen’s kappa index (Cohen, 1960). 
Due to the small size of the agricultural parcels, relationships between 
model accuracy and parcel size were explored using the Kruskall-Wallis 
non-parametric test. 

One of the biggest challenges for the operational implementation of a 
remote sensing-based monitoring system is to obtain robust spatial and 
temporal transferability. For this reason, the spatial and temporal 
transferability of the models was additionally evaluated with the aim of 
knowing the generalization capacity outside the training area and in 
years different from the training one. To assess spatial transferability, 
data from separate areas (PV-21, TV-21, BP-21 and, NL-21) were used. 
The model trained in the study area with LSF-21 data was used to 
evaluate its performance outside the study area without using additional 
data to calibrate the model. To evaluate the temporal transferability of 
the models, cross-validation of the models trained in the years 2019, 
2020, and 2021 was carried out. Each model was evaluated in the two 
years other than the training year without using additional training 
samples. 

2.6. Influence of features on class separability 

The Jeffries-Matusita (JM) distance measures the separability be
tween a pair of probability distributions. This method does not inform 
about the influence of a descriptor on the model performance, but rather 
collects the intrinsic structure of the variables. Unlike methods based on 
permutation or impurity (such as measures of the importance of RF 
features), this statistical method is not biased by collinearity or cardi
nality. The JM distance is widely used as a separability criterion for 
evaluation of classification results. In this study the JM distance defined 
in Richards and Jia (2006) was used, so it takes the range [0,2]. Class 
separability of features based on JM distances can be illustrated in radar 
charts. 

3. Results 

3.1. Spectral-temporal signature 

This section shows the temporal behavior of the spectral indices for 
the three types of parcels studied. Fig. 5 shows the average time series of 
OSAVI and NDMI for each crop status. Regarding OSAVI, in average, NP 
parcels had lower values than PR and AB parcels along the three years of 
study, being easily separated. A periodical behavior is observed in the 
NP profile with a maximum between December–February and a mini
mum between June–August. This cyclical behavior corresponds to the 
growth of spontaneous vegetation in the cold and wet winter and its wilt 
in the hot and dry summer. The effect of spontaneous vegetation cycles 
is more evident in the NP parcels than in the others, since planted tree 
canopies represent only a small part of the surface. In contrast, PR and 

Fig. 4. Differences between traditional classification based on majority voting (left) and the proposed method based on maximum averaged probability (right).  
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AB parcels had higher OSAVI values along the whole period of study and 
showed much lower separability. The OSAVI profile of the PR and AB 
classes also showed periodic but less defined behavior. Major differences 
between PR and AB were found in the three summers (June–August). In 
these seasons, AB parcels reduced OSAVI levels more than PR parcels. 

Similar patterns are observed from NDMI signals, with maximum 
values in winter and lower values in summer. NP parcels have lower 
NDMI values than PR and AB parcels, showing a higher separability with 
PR and AB classes. NDMI differences between PR and AB parcels are 
greater than OSAVI. Based on these results, the major challenge is to 
separate the PR and AB classes. In this sense, NDMI produces greater 
differences between these classes. However, NDMI differences are 
severely reduced in May–June. 

Fig. 6 shows OSAVI evolution of three sample parcels from 2018 to 
2022. PR and AB parcels have higher OSAVI values (between 0.65 and 
0.30). In contrast, the NP parcel, having a limited tree canopy and large 
areas of bare soil during most of the year, had lower values (between 
0.25 and 0.05). The PR parcel has higher OSAVI values than the AB 
parcel. In addition, the PR parcel is more stable over time. Moreover, the 
effect of changing the status from AB to NP can be observed at Fig. 6a. 
Figure also shows the effect of the Savitzky-Golay filter. The filter 
smooths the original signal and reduces noise (sudden lower/higher 
OSAVI values), mainly caused by cloudy pixels not detected by the SC 
band of the Sentinel-2 L2A product. 

3.2. Random Forest model 

All RF models built during cross-validation converged before 150 
decision trees (between 50 and 100 trees). A larger number of trees did 
not result in a reduction of OOB-error. The average OOB-error was 
reduced to 2.0, 2.1  and 3.7 % for the OLV-19, LSF-20 and LSF-21 
datasets, respectively. Therefore, a higher OOB-error was obtained as 
the number of parcels in the dataset increased. In all three datasets, the 
NP class produced the lowest error (0.8–3.2 %), followed by the PR class 
(1.4–2.3 %), and the AB class (2.9–7.0 %). 

Fig. 5. Average temporal profile of OSAVI and NDMI for the three classes: non-productive, productive and abandoned. Dots joined by light color lines represent 
original values, dark color lines are the smoothed time series after applying the Savitzky-Golay filter. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 6. OSAVI from 2018 to 2022 of three sample parcels: (A) non-productive 
parcel replanted at the beginning of 2019, (B) productive parcel, (C) aban
doned parcel. 
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3.3. Accuracy assessment 

This section evaluates the performance of the classification models. 
Fig. 7 shows a summary of the OA obtained with each dataset and each 
validation strategy. Considering all the experiments, the average OA 
ranged from 0.89 to 0.96, with an average of 0.92. For the OLV-19 
dataset, the OA obtained through random cross-validation was 0.92 ±
0.03 while through spatial cross-validation was 0.89 ± 0.04. For the 
LSF-20 dataset, the OA obtained through random cross-validation was 
0.96 ± 0.02 while through spatial cross-validation was 0.94 ± 0.03. 
Finally, for the LSF-21 dataset, the OA obtained through random cross- 
validation was 0.90 ± 0.02 while through spatial cross-validation was 
0.89 ± 0.02. All the above errors expressing a 95 % confidence interval. 

OA was higher for the LSF-20 dataset. This fact agrees with our 
previous experiences (Morell-Monzó et al., 2023) and suggest that this 
dataset is less demanding than the rest. It can be attributed to the fact 
orchards were selected systematically, thus being types of abandonment 
more evident types of abandonment or a more advanced process of 

abandonment that made them easily detectable. Consequently, we 
propose the more conservative OA values (0.89–0.92). Additionally, 
small (up to 3 %) OA differences between random cross-validation and 
spatial cross-validation, were found. These differences were smaller in 
the larger dataset (LSF-21). 

Below, the model performance by classes is studied. Table 2 shows 
precision and recall by classes of random and spatial cross-validation on 
the 3 datasets. The following average class accuracy was obtained: NP =
0.935 > PR = 0.921 > AB = 0.899. NP class was the class detected with 
more accuracy, while AB was the most difficult to detect. On the other 
hand, recall values were in general higher than 0.900, except for the AB 
class both in the OLV-19 and LSF-21 datasets. This last dataset produced 
an omission error of around 18 % for the AB class, which was mostly 
misclassified as PR. These results suggest a limitation of the model to 
detect some AB parcels. 

Regarding the effect of parcel size in the results, Fig. 8 shows the size 
of correctly classified and misclassified parcels. In all datasets, the model 
showed higher accuracy on larger parcels. However, Kruskal-Wallis’s 
analysis of variance showed no significant differences between the size 
of correctly classified and misclassified parcels. 

3.4. Spatial and temporal transferability 

To assess spatial transferability, the model trained with the LSF-21 
dataset was used to classify citrus crop status in parcels of the four 
separate areas (PV-21, TV-21, BP-21, and NL-21) without using addi
tional training. Table 3 shows the classification results. OA ranged from 
0.87 to 0.92. Highest accuracies were obtained in the NL-21 (0.92 ±
0.06) and PV-21 (0.92 ± 0.06) datasets, while TV-21 and BP-21 had the 
lowest (0.88 ± 0.07 and 0.87 ± 0.07 respectively). Average OA outside 
the study area was 0.898, which is only 1 % below the classification 
within the training area. These results show a good transferability of the 
model within the studied territory. However, the recall of the AB class 
was highly compromised when transferring the model out of the study 
area (0.700 and 0.579 for BP-21 and TV-2,1 respectively). This indicates 
that the model is not able to recall a large part of the abandoned parcels 
in these areas, suggesting some inability of the model to detect new 
abandonment patterns that are not well represented in the training 
dataset. 

Temporal transferability of the trained models was cross-evaluated 
on models trained with the OLV-19, LSF-20, and LSF-21. The perfor
mance of each model was tested with data from years other than the 
training year. Table 4 shows the results of time transferability. 

In the different cross-experiments OA ranged from 0.850 to 0.946, 
with an average of 0.884. This represents about 3.5 % reduction in 
performance when using the model out of the training year, which can 
be considered as acceptable. However, we should highlight that a 
reduction of the precision and recall of the PR and AB classes, leading to 
more confusion between the two categories can be observed. Fig. 9 
shows a summary of the OA obtained by classifying each dataset. It 
compares the performance obtained using models trained in years other 
than the prediction year versus the cross-validation performance in the 
same year. 

3.5. Feature importance on class separability 

Fig. 10 shows 4 radar charts of JM distances, which are related to 
feature separability assessment. The upper part of the figure displays 
calculated pairwise JM distances of the 3 classes generated by the fea
tures previously categorized as central tendency statistics (12 average 
monthly values of OSAVI and NDMI). The lower part refers to JM values 
of the 6 features previously categorized as dispersion-related (range 
October–March, range April–September, standard deviation Octo
ber–March, standard deviation April–September, annual kurtosis annual 
skewness of OSAVI an NDMI) for the 3 classes of abandonment status. 

All JM values were in the range 0.1–1.6. Despite this apparently low 

Fig. 7. Overall accuracy of the models obtained using 4-fold cross-validation 
for the OLV-19, LSF-20 and LSF-21 datasets. In red are shown the results ob
tained using the random cross-validation strategy and in blue those obtained 
using the spatial cross-validation strategy. Dots show the average overall ac
curacy. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Table 2 
Cross-validation results of the Random Forest model trained on the OLV-19, LSF- 
20, and LSF-21 datasets.  

Dataset Performance Random cross- 
validation 

Spatial cross- 
validation 

OLV-19 Overall accuracy (95 
% C.I.) 

0.916 ± 0.034 0.888 ± 0.039 

Cohen’s Kappa 0.875 0.827 
NP precision 0.942 0.932 
PR precision 0.878 0.857 
AB precision 0.932 0.883 
NP recall 0.962 0.942 
PR recall 0.912 0.916 
AB recall 0.875 0.805 

LSF-20 Overall accuracy (95 
% C.I.) 

0.964 ± 0.022 0.944 ± 0.027 

Cohen’s Kappa 0.944 0.909 
NP precision 0.983 0.985 
PR precision 0.945 0.918 
AB precision 0.980 0.956 
NP recall 0.900 0.897 
PR recall 0.991 0.972 
AB recall 0.970 0.926 

LSF-21 Overall accuracy (95 
% C.I.) 

0.901 ± 0.020 0.899 ± 0.020 

Cohen’s Kappa 0.846 0.841 
NP precision 0.915 0.915 
PR precision 0.883 0.890 
AB precision 0.919 0.915 
NP recall 0.919 0.934 
PR recall 0.953 0.941 
AB recall 0.820 0.818  
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separability, the Random Forest classifier produced high classification 
accuracy, which reveals the importance of using a multitemporal 
approach and combined with a powerful machine learning classifier. 
Monthly averages of both OSAVI and NDMI showed the highest JM 

values. In fact, removing the rest of variables resulted only in a ~2 % 
decrease in model performance (data not shown). 

Comparison NP-PR produced the highest JM distances for both 
OSAVI and NDMI features, and PR-AB the lowest. OSAVI derived fea
tures induced greater NP–PR and NP–AB separability. However, NDMI 
derived features produced greater PR–AB separability, being these the 
most difficult to separate, as observed in Fig. 10. 

OSAVI derived features showed higher separability for NP–PR and 
NP–AB classes in April–August when spontaneous vegetation grows. 
PR–AB presented higher separability in July–August, which are the 
warmest and driest months, when spontaneous vegetation wilts. This is 
the typical lifecycle of Oxallis pes-caprae, one of the most extended weeds 
in the study area. The pattern particularly affects NP orchards, where 
tree canopies occupy a very small proportion of land. In any case, JM 
values remained lower than 0.5, which are commonly considered as very 
low. 

Regarding NDMI derived features, separation of NP–PR classes 
showed a relatively stable pattern throughout the year, with JM values 
around 1. Separability of NP–AB classes increased in May–June and 
decreased in December–October. PR–AB separability was higher in 
September–November. This may be attributed to differences in humidity 
due to the absence of irrigation in the abandoned orchards. However, 
JM values of PR–AB remained low (less than 0.7). 

Fig. 8. Size of correctly classified and misclassified parcels in each data set.  

Table 3 
Spatial transferability results of the model trained with the LSF-21 dataset.  

Dataset Overall accuracy (95 % C.I.) Cohen’s Kappa NP precision PR precision AB precision NP recall PR recall AB recall 

PV-21 0.924 ± 0.058  0.879  0.933  0.900  0.958  0.875  1.000  0.852 
TV-21 0.875 ± 0.072  0.742  1.000  0.862  0.846  0.900  0.980  0.579 
BP-21 0.870 ± 0.074  0.773  0.733  0.913  0.875  0.846  0.955  0.700 
NL-21 0.922 ± 0.058  0.858  1.000  0.968  0.700  0.833  0.968  0.875 
Average 0.899  0.813  0.916  0.910  0.845  0.863  0.975  0.752  

Table 4 
Temporal transferability. Cross-evaluation of models trained with the OLV-19, LSF20 and LSF-21 datasets.  

Training dataset 
(year) 

Tested with 
year: 

Overall accuracy (95 % C. 
I.) 

Cohen’s 
Kappa 

NP 
precision 

PR 
precision 

AB 
precision 

NP 
recall 

PR 
recall 

AB 
recall 

OLV-19 (2019) 2020 0.889 ± 0.037  0.829  0.983  0.979  0.776  0.983  0.775  0.970 
2021 0.851 ± 0.021  0.769  0.922  0.914  0.751  0.819  0.838  0.888 

LSF-20 (2020) 2019 0.883 ± 0.040  0.825  0.962  0.772  0.966  0.950  0.975  0.725 
2021 0.883 ± 0.022  0.826  0.950  0.975  0.725  0.981  0.856  0.987 

LSF-21 (2021) 2019 0.850 ± 0.045  0.775  0.917  0.733  0.980  0.926  0.962  0.625 
2020 0.946 ± 0.026  0.916  0.936  0.923  0.988  0.983  1.000  0.860  

Fig. 9. Performance obtained in each dataset as a function of the model used. 
The gray bars show the overall accuracy obtained using models trained on data 
sets from other years and the boxplots show the overall accuracy obtained by 
cross-validation. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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4. Discussion 

This work studied the use of Sentinel-2 time series to identify the 
status of citrus crops in a highly fragmented agricultural land. The study 
develops a classification framework for processing OSAVI and NDMI 
time series extracted from Sentinel-2 L2A data to identify three types of 
parcels (non-productive, productive, and abandoned). Therefore, it is 
necessary to have a database of citrus parcels previously identified. In 
this work we used the Land Parcel Identification System of Spain. This 
database is updated on the basis of farmers’ declarations, review of 
orthophotos by specialized technicians and field visits and automatic 
support procedures Amorós López et al., (2011). In other contexts, it 
would be necessary to have an updated map to identify citrus parcels. 
The proposed approach involves a supervised classification using the 
Random Forest algorithm and a novel strategy for classification at parcel 
level. Results on three different temporal and spatial datasets provided 
OA ranging from 89 to 92 %, which represents significant improvements 
of about 13 % over previous classification methods based on single 
image (Morell-Monzó et al., 2020). We attribute these improvements to 

the greater availability of images registered in a higher temporal period 
in which some spectral differences among AB and PR parcels can be 
amplified. Thus, the Random Forest algorithm can establish more cut-off 
points that are able to differentiate the two types of parcels. In this 
context, the presence of dry periods (summers) generates a greater 
impact on the vegetation abandoned due to lack of irrigation. Overall, 
the work demonstrates the potential of Sentinel-2 time series for 
monitoring abandonment of citrus parcels and highlights the impor
tance of the time domain information to separate parcels with similar 
spectral responses. Despite the low spectral separability between the 
studied parcel types, Random Forest algorithm allowed to obtain the 
following average class accuracy: NP = 0.935 > PR = 0.921 > AB =
0.899. The use of powerful machine learning algorithms together with a 
representative set of training samples allows detecting land use/land 
cover classes without significant differences between them (Chaves 
et al., 2020). 

To date there are some classes that have been little studied in land 
use and land cover mapping, such as abandoned perennial crops. With 
recent advances in sensor technologies, data management and data 

Fig. 10. Jeffries-Matusita separability for each variable studied and each pair of categories. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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analysis, several remote sensing options are available to the scientific 
community. However, the agricultural sector has yet to fully benefit 
from remote sensing technologies due to lack of knowledge on their 
sufficiency, appropriateness and techno-economic feasibility (Khanal 
et al., 2020). Several research studies highlight the importance of time 
series data for monitoring seasonal crops (Vuolo et al., 2018; Roumenina 
et al., 2015; Palchowdhuri et al., 2018), reporting on increasing accu
racy when including additional multi-temporal information to Random 
Forest models. Our work confirms that this importance also extends to 
permanent, perennial crops. Today, with more advanced technologies, it 
is possible to explore the time sequence beyond the Red–NIR relation
ships to determine crop status. Researchers can explore different stra
tegies and multi-source data relationships to analyze landscapes in a 
more detailed level. New remote sensing technologies enable us to 
investigate some classes that were not possible in the past. This study 
demonstrates the feasibility of identifying citrus crop abandonment 
using Sentinel-2 data. 

To our knowledge there are few studies on the identification of 
abandoned perennial crops. Although a direct comparison of accuracy 
estimates is not possible, our results support those obtained in detecting 
abandonment in other perennial crops, like olives (Volpi et al., 2023) or 
in forest perennial tree species identification (Hemmerling et al., 2021). 
In contrast to these studies, our methodological approach uses two 
spectral indices related to two characteristics of the crop. These indices 
provide complementary information about vegetation vigor and mois
ture content. Both are key features to differentiate non-productive, 
productive and abandoned crops. In addition, our approach focuses on 
the feature extraction from the OSAVI and NDMI time series. This allows 
to reduce the dimensionality of the problem compared to classification 
approaches based on dense time series (e.g., Lambert et al., 2018; Vuolo 
et al., 2018) where all available images are used as model input vari
ables. Finally, our approach uses the agricultural Land Parcel Identifi
cation System (LPIS) to produce a parcel-level classification using a 
strategy that minimizes edge effects. The method reports a single clas
sification value per parcel and the probability of membership, which can 
be used as a measure of confidence in the assignment (Mitchell et al., 
2008). The proposed approach could be used in other agricultural 
classification contexts (e.g. crop type classification) and other study 
areas where sufficient cloud-free Sentinel-2 imagery and an updated 
agricultural LPIS are available. 

Since the launch of the Sentinel-2 constellation, less-used vegetation 
indices have been applied. In particular, the use of spectral indices 
involving red-edge and SWIR bands has increased as they can improve 
the classification performance of a wide range of land use/land cover 
classes. In addition, these bands enable the retrieval of biophysical pa
rameters and vegetation monitoring (Chaves et al., 2020). Our approach 
used OSAVI and NDMI time series together. For the calculation of these 
indexes, we selected the bands with the maximum spatial resolution 
possible considering that this aspect can play an important role in our 
study area due to the reduced size of the parcels. In this context, we did 
not use the Sentinel-2 red-edge bands for OSAVI index, selecting the red 
and near-infrared bands with 10 m of spatial resolution. In contrast, we 
used SWIR (B11) for calculating NDMI index with a spatial resolution of 
20 m as it is the best available alternative for studying the behavior of 
vegetation and soil. We assume that a higher spatial resolution in the 
SWIR for NDMI calculation could improve the classification 
performance. 

Overall, this study provides promising results for monitoring the 
abandonment of citrus orchards in the Comunitat Valenciana region. 
Accuracies obtained allow the possibility of identifying general trends of 
land abandonment at medium to large scales, which may help to support 
policies for adequate landscape management. However, the results also 
showed limitations in recall of the AB parcels. This fact suggests that 
some types of abandonment are unidentifiable through our approach. 
Statistical analysis could not confirm significant differences between the 
size of correctly classified and misclassified parcels. However, Vajsová 

et al. (2020) pointed out other characteristics of the parcels not linked to 
size but shape (for instance, the ratio between the number of full pixels 
and the number of incomplete pixels within the parcel). More research is 
needed to associate the characteristics of the parcels and the types of 
abandonment that can be identified due to the particular resolution of 
Sentinel-2 images. 

Agricultural management practices and environmental conditions 
influence landscape dynamics and could affect the classification accu
racy. Crop management practices are similar throughout the CV region, 
since citrus are cultivated there for more than 70 years and farmers rely 
on the same sources of technical information (public advisors or private 
advisors from cooperatives or unions, information released by the 
regional authorities) and legislation. The two major differences are that 
some parcels are irrigated by drip irrigation and others by flood irriga
tion, and that some farmers allow a weed cover to maintain soil moisture 
and others are not. In some cases, drip irrigation may be accompanied by 
fertilization. This variability is represented in our study area. In the 
coastal areas of the CV, where most of the citrus crops are located, soil 
variability is high due to the geomorphology of these coastal systems 
(Viñals, 1995). In the coastal barrier the soils are sandy and less pro
ductive, while the alluvial plain is made up of sedimentary materials and 
the soils are more productive. There are also differences in soil charac
teristics in areas close to coastal wetlands with vegetation unique to 
these areas. In addition, the particular soil characteristics of each parcel 
may be different, as they can often be classified as technosols. It is 
common for farmers to have added material to the soil to improve its 
characteristics. Climatically, the south of the Iberian Southeast is 
included within the dry variant of the semi-arid Mediterranean climates 
with dry summer (Bs Köppen climate classification) with a gradation of 
rainfall from 300 mm in the northern coastal sector, to less than 150 mm 
in the southern zone (Gil-Guirado and Pérez-Morales, 2019). The rest of 
the Mediterranean coastal area is included in the warm temperate 
climate with dry and hot summers: typical Mediterranean climate (Csa 
Köppen climate classification). In this region, we can find areas such as 
the south of the Valencia province (this study area) with average annual 
precipitation above 800 mm. In Fig. 5, we can observe the difference in 
the NDMI between PR and AB class in an area with typically high annual 
precipitation. It is expected that in semi-arid areas the difference would 
be higher, and then better separation results could be obtained. 

The model showed acceptable spatial and temporal transferability. 
When transferred the model outside the training area, an average OA of 
0.89 was obtained, which represents around a 1 % reduction. However, 
transferring the model to other areas notably reduced the capacity to 
recall the AB parcels. Omission errors for the AB class raised to 42.1 % 
and 30.0 % in some cases. Volpi et al. (2023) studied the abandonment 
of olive groves in Tuscany (Italy) and obtained a poor recall of AB class. 
These results highlight the importance of having a database with a well- 
represented AB class. Abandonment is a process, not a status, that de
pends on management practices and environmental conditions that 
affect soil and vegetation. This makes AB a very heterogeneous land use 
across space whose characteristics depend on time elapsed since the 
start of abandonment, management practices, local weather conditions 
affecting growth rates, further modulated by site-specific soil conditions. 
These conditions affect the crop remaining in the orchard and the 
vegetative patterns of spontaneous species. This causes variations in the 
spectral-temporal profile of the AB crops across space. This may cause 
that intra-class variability is not well represented in the training dataset. 
From an operational perspective an annual monitoring system requires 
field data that are representative of the variability present in the study 
area. Therefore, it is necessary to better understand the influence of the 
spatial distribution and size of the training data set on model 
performance. 

When transferring the model out of the training year, an average OA 
of 0.88 was achieved, which represents a 3.5 % reduction. A decrease in 
recall metric of the AB class was observed. When the model was trans
ferred out of the training year the confusion between AB and PR classes 
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increased. The phenological profile of the AB parcels, which do not 
receive irrigation, is more sensitive to the weather of each particular 
year. The high variability of rainfall between years makes it difficult to 
obtain a good recall of the AB class when a model trained with data from 
a single year is transferred to other years. Such performance reductions 
may be attributed to a lack of correlation between the index values along 
the different years, which depend on agrometeorological conditions like 
soil fertility, temperature, and precipitation. This leads to variations in 
spectral-temporal profiles, which fluctuate on a yearly basis, and in
troduces uncertainties (Vuolo et al., 2018). Temporal transferability 
could be a limiting factor for annual monitoring of citrus crop aban
donment, since it is impractical to collect consistent, timely, and high- 
quality reference samples to produce annual maps Therefore, it is 
necessary to develop efficient methods for generating high-quality 
reference samples from the year when ground truth data were 
collected (i.e., reference year) to another year (i.e., target year) (Ghor
banian et al., 2020). A good alternative to overcome the limitations of 
time transferability is the migration of training samples, which has been 
successfully used in several previous studies (e.g. Huang et al., 2020; 
Ghorbanian et al., 2020; Fekri et al., 2021). 

Further research is required to improve accuracy and the recall of AB 
class. We suggest adding texture features able to detect planting patterns 
(also called planting frames) as these can be a key feature in identifying 
abandoned crops. However, this would require higher spatial resolution 
images, as we showed in past studies (Morell-Monzó et al., 2021). 
Texture information can be extracted from Very High-Resolution (VHR) 
airborne and satellite images. But airborne images may show limitations 
to transfer the model spatially and temporally due to differences in 
acquisition conditions (sensor, date, sun angle, atmospheric conditions, 
etc.). Image fusion techniques can optimally merge information from 
image sources of different time and spatial resolutions (Moltó, 2022). 
Future research should focus on developing methods to combine 
Sentinel-2 time series and VHR images in a transferable way. Further
more, it is possible to add new information from synthetic aperture radar 
(i.e. form Sentinel-1 mission). Moreover, using longer time series or 
algorithms able to model sequential information (e.g. Long Short-Therm 
Memory or 1D Convolutional Neural Networks) could also improve 
model performance (Campos-Taberner et al., 2023; Mohammadi et al., 
2023). Future research should also focus on improving spatial and 
temporal transferability. With respect to spatial transferability, it would 
be interesting to evaluate the impact of the spatial distribution of 
training samples on model performance, to develop an analysis of agro- 
climatic conditions and farm management practices affecting the model. 
To improve temporal transferability, a possible alternative would be the 
use of migrated samples to improve the temporal transferability of the 
model. 

5. Conclusions 

This work studied the use of Sentinel-2 time series to identify the 
status of citrus crops in a highly fragmented agricultural landscape in the 
Comunitat Valenciana region (Spain). A classification framework was 
developed to identify three types of parcels (non-productive, productive, 
and abandoned) using features extracted from the OSAVI and NDMI 
time series. The proposed approach involves a supervised classification 
using the Random Forest algorithm and a novel strategy for classifica
tion at parcel level. Results show the potential of the method to identify 
citrus crop status. Differences were found between the three types of 
parcels in the temporal profiles of OSAVI and NDMI associated with 
vegetation vigor and moisture content that allow the identification of 
the crop status. Results on three different temporal and spatial datasets 
provided overall accuracies ranging from 0.89 to 0.92. The model 
showed acceptable spatial and temporal transferability with an overall 
accuracy reduction of 1.0 % and 3.5 %, respectively. However, trans
ferring the model to other areas notably reduced the capacity to recall 
the abandoned parcels. When transferring the model out of the training 

year there was more confusion between the productive and abandoned 
parcels. Overall, this study provides promising results for monitoring the 
abandonment of citrus orchards in the Comunitat Valenciana region. 
More research is needed to improve identification, generate more 
transferable models, and understand the abandonment patterns or par
cel types that cannot be identified. 
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