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Decoupling inequalities with exponential constants

Daniel Carando * Felipe Marceca† Pablo Sevilla-Peris‡

Abstract

Decoupling inequalities disentangle complex dependence structures of random ob-
jects so that they can be analyzed by means of standard tools from the theory of inde-
pendent random variables. We study decoupling inequalities for vector-valued homo-
geneous polynomials evaluated at random variables. We focus on providing geometric
conditions ensuring decoupling inequalities with good constants depending only expo-
nentially on the degree of the polynomial. Assuming the Banach space has finite cotype
we achieve this for classical decoupling inequalities that compare the polynomials with
their associated multilinear operators. Under stronger geometric assumptions on the
involved Banach spaces, we also obtain decoupling inequalities between random poly-
nomials and fully independent random sums of their coefficients. Finally, we present
decoupling inequalities where in the multilinear operator just two independent copies
of the random vector are involved.

Introduction

The decoupling principle consists in introducing enough independence to make a complex
problem more manageable. More precisely, decoupling inequalities compare objects involv-
ing heavily dependent random variables to simpler ones where the dependence structure is
weaker.
In this work we present several decoupling inequalities for random homogeneous polynomi-
als (precise definitions are given below). Multivariate polynomials evaluated at random vari-
ables have at first glance a highly dependent structure, since each random variable appears
in several monomials. Decoupling inequalities disentangle this complex structure introduc-
ing enough independence to use tools from the theory of independent random variables (see
[8]).
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Notice that if P : Cn → X is a vector-valued m-homogeneous polynomial and M is its
associated symmetricm-linear operator, we can write

P (z) = M(z, . . . , z).

When ξ is a random vector and ξ(1), . . . , ξ(m) are independent identically distributed (‘iid’
from now on) copies of ξ, the random variable M(ξ(1), . . . , ξ(m)) is, from a probabilistic
point of view, a decoupled alternative to P (ξ). Heuristically, the variables appearing in the
monomials of M are less intertwined, which leads to a weaker interdependence.
Decoupling inequalities in this context were first introduced by McConnell and Taqqu in
[25, 26] and further studied by de Acosta in [7] and Kwapień in [20] among others. These
works established inequalities comparing the moments of M(ξ(1), . . . , ξ(m)) to those of
P (ξ) with constants depending on the degree m but not on the number of variables n of
the polynomial. The dependence on m of these constants improves considerably when re-
stricting ourselves to α-stable random variables and are in some sense optimal for gaussian
random variables (see (6)). Our main objective is to provide geometric conditions on the
Banach space to ensure good constants (of the form Cm) for arbitrary symmetric random
variables.
In Theorem 2.1 we give a decoupling inequality for p-moments of tetrahedral polynomi-
als. This gives, for Banach spaces of finite cotype, better constants than those derived from
Kwapien’s general result [20, Theorem 2]. We obtain Theorem 2.1 as a consequence of The-
orem 2.2 and Remark 2.3, which essentially show that for spaces of finite cotype the ran-
dom vector ξ of a random polynomial can be changed without losing control of its norm.
Since polynomials in gaussian random variables satisfy good classical decoupling inequali-
ties, Theorem 2.1 follows. The key points for Theorem 2.2 are (17), where we introduce a
novel decomposition for homogeneous tetrahedral polynomials in terms of an average of
multilinear operators, and the decoupling inequality presented in Proposition 2.7. This last
proposition is also applied to present a simpler proof of a crucial step of the equivalence
between type/cotype and their polynomial counterparts, a result originally proved in [5].
As it was just mentioned, the monomials in a random multilinear operator show much less
dependence than those of the corresponding random polynomial. However, some depen-
dence remains. Under stronger geometric conditions on the involved Banach space, in Sec-
tion 3 we show decoupling inequalities between arbitrary polynomials and fully independent
sums of their coefficients. A result in this direction was obtained in [4] for Steinhaus random
variables assuming type or cotype 2 of the Banach space X . Regrettably, if one needs esti-
mates both from above and below, one must assumeX has type and cotype 2, which means
thatX must be isomorphic to a Hilbert space where all these estimates hold trivially. How-
ever, the result from [4] holds for absolute constants. Allowing for some dependence on the
degree of the polynomial (constants of the formCm), we can relax the geometric restrictions
on the Banach space. We work with the Gaussian average property (GAP) introduced in [6]
and in Theorems 3.5 and 3.6 we get decoupling inequalities relating (not necessarily tetrahe-
dral) X -valued random polynomials and sums of independent random variables related to
the polynomials’ coefficients. In particular, two-sided estimates hold for spaces including Ba-
nach lattices of finite cotype. We also show analogous estimates for tetrahedral polynomials
in symmetric random variables.
Finally, in Section 4 we study one-variable decoupling inequalities that compare P (ξ) =
M(ξ, . . . , ξ) to M(ξ′, ξ, . . . , ξ), where we replace ξ with an iid copy ξ′ in only one entry.
In some sense, one-variable decoupling can be seen as an averaged version of the so called
Markov type inequalities for homogeneous polynomials studied by Harris in [15]. In this
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context, gaussian variables also satisfy optimal one-variable decoupling inequalities. In The-
orem 4.2 we show that forK-convex Banach spaces, Steinhaus variables behave in the same
way.
Let us point out that the Bohr radius and the Bohnenblust-Hille inequality were recently
studied in the context of functions on the Boolean cube {−1, 1}n in [11, 12], showing an
intriguing link between the Bohnenblust-Hille inequality and quantum query complexity.
Since functions on the boolean cube can be thought of as random functions on Rademacher
variables, we believe that this decoupling approach could have further applications in this
setting (see [28]).

1 Preliminaries

A polynomial of n variables with values in some Banach spaceX is a functionP : Cn → X
given by a finite sum

P (z) =
∑

α∈Λ⊆Nn0

xαz
α1
1 . . . zαnn ,

where xα ∈ X for every α ∈ Λ. We purposely write vector times scalar rather than scalar
times vector to emphasize the polynomial structure. Also, we write zα = zα1

1 . . . zαnn for
short.
The degree of a polynomial is the maximum of |α| = α1 + · · ·+ αn over every α ∈ Λ such
that xα 6= 0. We say that P is m-homogeneous if |α| = m for every α ∈ Λ with xα 6= 0.
Whenever the number of variables n is implicit we writem-homogeneous polynomials as

P (z) =
∑
|α|=m

xαz
α,

allowing for some coefficients xα to vanish.
A polynomial is said to be tetrahedral whenever each variable appears with exponent at most
1. In other words, monomials of a tetrahedral polynomial of n variables can be indexed by
α ∈ {0, 1}n and therefore we write

P (z) =
∑

α∈{0,1}n
xαz

α.

Next, we introduce the Walsh notation for tetrahedral polynomials that we frequently use.
We can identify α ∈ {0, 1}n with the set A ⊆ {1, . . . , n} that indicates which elements
1 ≤ k ≤ n satisfy that αk = 1. More precisely we have that α = χ

A. This one-to-
one correspondence allows us to index tetrahedral polynomials using subsets of {1, . . . , n}.
By a slight abuse of notation, writing xA for xα whenever α = χ

A (and denoting [n] =
{1, . . . , n}), we get

P (z) =
∑

α∈{0,1}n
xαz

α =
∑

α∈{0,1}n
xα

∏
1≤k≤n
αk=1

zk =
∑
A⊆[n]

xA
∏
k∈A

zk.

Letting zA =
∏

k∈A zk leads to the new notation for tetrahedral polynomials:

P (z) =
∑
A⊆[n]

xAzA.

3



Form-homogeneous tetrahedral polynomials we write

P (z) =
∑
|A|=m

xAzA,

where |A| stands for the cardinal of A.
For an m-homogeneous polynomial P : Cn → X there exists unique symmetric m-linear
operatorM : (Cn)m → X such thatM(z, . . . , z) = P (z) for every z ∈ C (see e.g. [14, Sec-
tion 1.1]), we call it the symmetricm-linear operator associated toP . The operatorM can be
retrieved from the polynomial P through the polarization formula (see [14, Corollary 1.6]):
for every z(1), . . . , z(m) ∈ C, we have

M
(
z(1), . . . , z(m)

)
=

1

m!
Eε
[
ε1 . . . εmP

(
ε1z

(1) + . . .+ εmz
(m)
)]
,

where ε1, . . . , εm are independent Rademacher variables (random variables that take the
values ±1 with probability 1/2). This identity allows us to relate the norm of a homoge-
neous polynomial with the norm of its associated multilinear operator. A straightforward
argument shows that for every norm ‖ r‖ on Cn and every m-homogeneous polynomial
P : Cn → X we have

sup
‖z‖≤1

‖P (z)‖X ≤ sup
‖z(k)‖≤1

∥∥M(z(1), . . . , z(m))
∥∥
X
≤ em sup

‖z‖≤1

‖P (z)‖X .

Remark 1.1. At first glance the bound em from the previous proposition may seem quite big.
However, estimates of the form Cm appear naturally while working with m-homogeneous
polynomials. Moreover, these estimates can be compensated by contracting the polynomials
since for anm-homogeneous polynomialP we have thatP (rz) = rmP (z). Having this type
of control is usually sufficient to carry results from the polynomial setting to vector-valued
holomorphic functions or Fourier and Dirichlet series (see [9, Chapters 23–26]). Intuitively,
contracting a function by some factor r shrinks its homogeneous parts by a factor of rm
leaving room for constants Cm to appear. As a naive example of this phenomenon, notice
that if (am)m∈N ⊆ C and |am| ≤ Cm for everym ∈ N then the series∑

m∈N

amz
m,

converges in a neighbourhood of 0. A growth of the coefficients greater than Cm such as
mm would have meant that the series diverges at every z 6= 0. With this in mind we usually
look for Cm-type bounds. We write a 'Cm b whenever C−ma ≤ b ≤ Cma and say a and
b are equivalent up to a constant Cm. If such an equivalence does not hold we will specify
which inequality fails, if not both.

We work with polynomials on random variables. Let’s write T = {z ∈ C : |z| = 1} for the
torus. From a probabilistic point of view, polynomials restricted to Tn can be interpreted as
being evaluated at independent Steinhaus variables (random variables uniformly distributed
in the torus), so we call them Steinhaus polynomials. For random vectors whose coordinates
are independent Steinhaus variables we use the notationw = (w1, . . . , wn).
The following polynomial Kahane-Khinchin inequality was established in [2, Theorem 9] for
the scalar case and in [3, Lemma 1.3] for the general case (see also [9, Theorems 8.10 and 25.9]).
A remarkable characterization of random variables satisfying a similar result was obtained
in [22, Theorem 2.2].
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Theorem 1.2. For every Banach space X , every 1 ≤ p ≤ q < ∞ and every polynomial
P : Cn → X we have (

E
∥∥∥P(√p

q
w
)∥∥∥q)1/q

≤ (E‖P (w)‖p)1/p.

A Walsh polynomial is a random variable P (ε) where P : Cn → X is a polynomial and
ε1, . . . , εn are independent Rademacher variables. Since for a Rademacher variable ε0 we
have that ε2

0 = 1, Walsh polynomials can always be written as P (ε) where P is a tetrahedral
polynomial. Therefore, we can use the tetrahedral notation introduced at the beginning of
this section and write

P (ε) =
∑
A⊆[n]

xAεA.

We recall now the geometric notions of type and cotype. A Banach space X is said to have
cotype 2 ≤ q < ∞ if there is a constant C ≥ 1 such that for every n ∈ N and every
x1, . . . , xn ∈ X we have( n∑

i=1

‖xi‖q
)1/q

≤ C
(
E
∥∥∥ n∑
i=1

xiεi

∥∥∥q)1/q

, (1)

and type 1 ≤ p ≤ 2 if there is a constant C ≥ 1 such that for every N ∈ N and every
x1, . . . , xN ∈ X we have(

E
∥∥∥ N∑
n=1

xnεn

∥∥∥p)1/p

≤ C
( N∑
n=1

‖xn‖p
)1/p

.

We write cot(X) for the infimum over all q such thatX has cotype q.
The Rademacher variables in the previous definitions can be replaced by Steinhaus random
variables (changing the constant). This is a consequence of the the well known contraction
principle (see [13, Theorem 12.2] or [32, Corollary 4]), which will also be helpful for us here.
Theorem 1.3 (Contraction principle). Let X be a Banach space and fix 1 ≤ p < ∞. For
every λ ∈ Rn and every choice of vectors x1, . . . , xn ∈ X we have(

E
∥∥∥ n∑
j=1

εjλjxj

∥∥∥p)1/p

≤ ‖λ‖∞
(
E
∥∥∥ n∑
j=1

εjxj

∥∥∥p)1/p

.

Similarly, if λ ∈ Cn (andX is a complex Banach space) we get(
E
∥∥∥ n∑
j=1

εjλjxj

∥∥∥p)1/p

≤ π

2
‖λ‖∞

(
E
∥∥∥ n∑
j=1

εjxj

∥∥∥p)1/p

.

In particular, for every (complex) Banach space X , every 1 ≤ p < ∞ and every choice of
vectors x1, . . . , xn ∈ X we have

2

π

(
E
∥∥∥ n∑
j=1

εjxj

∥∥∥p)1/p

≤
(
E
∥∥∥ n∑
j=1

wjxj

∥∥∥p)1/p

≤ π

2

(
E
∥∥∥ n∑
j=1

εjxj

∥∥∥p)1/p

, (2)

so Rademacher and Steinhaus random sums have comparable moments.
We end this section setting some notation that will be used throughout. As we have already
mentioned, we write [n] = {1, . . . , n}. We also write

Pm[n] = {A ⊆ [n] : |A| = m}. (3)
Finally, given two vectors x, y we write xy for the pointwise product.
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2 General decoupling

Our starting point is a remarkable result due to Kwapień [20, Theorem 2 and Remark 1] (see
also [21, Theorem 6.4.1 and Remark 6.4.1]), originally stated only for real polynomials, but
whose proof is easily adapted to the complex case. It shows that if P : Cn → X is an m-
homogeneous tetrahedral polynomial with associated symmetric m-linear operator M and
Φ : X → R≥0 is a convex function such that Φ(x) = Φ(−x) for every x ∈ X , then

EΦ
(

1
mm

P (ξ)
)
≤ EΦ(M(ξ(1), . . . , ξ(m))) ≤ EΦ

(
mm

m!
P (ξ)

)
, (4)

for every vector ξ = (ξ1, . . . , ξn) of independent symmetric entries, where ξ(1), . . . , ξ(m) are
iid copies of ξ. For gaussian random vectors (which we always assume to have standard com-
plex gaussian coordinates, and denote γ, γ(1), . . . , γ(m)), the inequalities can be improved to

EΦ
(

1
mm/2

P (γ)
)
≤ EΦ(M(γ(1), . . . , γ(m))) ≤ EΦ

(
mm/2

m!
P (γ)

)
. (5)

We are particularly interested on the p-norm of random polynomials, that is taking Φ =
‖ r‖p for some 1 ≤ p <∞. A straightforward computation using Stirling’s formula yields

mm/2

m!
≤ em

mm/2
.

Using this and rearranging (5) in order to put P in a central role we get

mm/2

em
(
E‖M(γ(1), . . . , γ(m))‖p

)1/p≤
(
E‖P (γ)‖p

)1/p≤ mm/2
(
E‖M(γ(1), . . . , γ(m))‖p

)1/p

or, to put it in other terms,

(E‖P (γ)‖p)1/p 'Cm mm/2(E‖M(γ(1), . . . , γ(m))‖p)1/p. (6)

In other words, the p-norm of a gaussian polynomial can be estimated up to a constant Cm

computing the p-norm of its associatedm-linear operator. As mentioned in Remark 1.1, cir-
cumstances where constantsCm are tolerated are commonplace when working with polyno-
mials of degree m. However, starting with (4) and doing the same for arbitrary symmetric
random vectors ξ we deduce

1

em
(
E‖M(ξ(1), . . . , ξ(m))‖p

)1/p ≤
(
E‖P (ξ)‖p

)1/p ≤ mm
(
E‖M(ξ(1), . . . , ξ(m))‖p

)1/p

and a gap of ordermm remains, which can be too big for some applications.

Our aim now is to show that, under not too demanding assumptions on the space and on the
random variables, we can get a ‘good’ estimation (in the sense that constants likeCm appear)
as in (6). This is the main result of this section.

Theorem 2.1. Let X be a Banach space of finite cotype, let ξ0 be a non-trivial symmetric
random variable with finite s-norm for some s > cot(X) and fix 1 ≤ p < s. There is a
constant C ≥ 1 such that for every m-homogeneous tetrahedral polynomial P : Cn → X
we have

(E‖P (ξ)‖p)1/p 'Cm mm/2(E‖M(ξ(1), . . . , ξ(m))‖p)1/p, (7)
where ξ, ξ(1), . . . , ξ(m) are independent random vectors whose coordinates are iid copies
of ξ0.
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Theorem 2.1 follows from the following polynomial version of [30, Proposition 3.2] that
compares the p-norms of a tetrahedral polynomial evaluated in different random vectors.
We show that under certain mild conditions on the space and on the random vectors, these
(the random vectors) are essentially interchangeable.

Theorem 2.2. Let X be a Banach space, ξ0 a non-trivial symmetric random variable and ξ a
random vector of iid copies of ξ0.

(a) There is a constantC ≥ 1 such that(
E‖P (w)‖p

)1/p ≤ Cm
(
E‖P (ξ)‖p

)1/p (8)

for every tetrahedral polynomial P : Cn → X of degreem and every 1 ≤ p <∞.

(b) IfX has finite cotype, ξ0 has finite s-norm for some s > cot(X) and 1 ≤ p < s, then
there is a constantC ≥ 1 such that(

E‖P (ξ)‖p
)1/p ≤ Cm

(
E‖P (w)‖p

)1/p (9)

for every tetrahedral polynomial P : Cn → X of degreem.

Remark 2.3. The linear result [30, Proposition 3.2] is stated for Rademacher rather than
Steinhaus variables. However, these are interchangeable by virtue of [5, Lemma 4.2] (see
Lemma 2.10 below). We can also replace the Steinhaus variables with gaussian random vari-
ables for spaces with finite cotype using the theorem twice. Indeed, letX be a Banach space
of finite cotype, let P : Cn → X of degree m be a tetrahedral polynomial and fix 1 ≤ p <
∞. Since gaussian random variables have finite s-norm for every s, using Theorem 2.2 twice
gives (

E‖P (γ)‖p
)1/p ≤ Cm

1

(
E‖P (w)‖p

)1/p ≤ (C1C2)m
(
E‖P (ξ)‖p

)1/p

for every ξ consisting of iid copies of some symmetric random variable regardless that it has
finite s-norm or not (note that in the first inequality we are using that X has finite cotype,
so that we can apply (9) to gaussian variables, while in the second one we just use (8) for the
variables ξ).
If ξ0 has finite s-norm for some s > max(cot(X), p) we can use the same argument to
obtain the converse inequality.

Remark 2.4. We observe that using the reformulation of [30, Proposition 3.2] given in [23,
Proposition 9.14] it is possible to show that Theorem 2.2(b) (and then also Theorem 2.1)
holds if the space X has cotype s and the random variable ξ0 has finite (s, 1) norm. We
thank the referee for pointing this out to us.

Before we go any further, let us show how Theorem 2.1 follows from all this.

Proof of Theorem 2.1. Note that ifP is a tetrahedralm-homogeneous polynomial ofn vari-
ables, then its associated m-linear operator M can also be regarded as an m-homogeneous
tetrahedral polynomial of nm variables. Then the result follows from the previous remark,
since it allows us to reduce (7) to (6) by replacingP (ξ) withP (γ), as well asM(ξ(1), . . . , ξ(m))
with M(γ(1), . . . , γ(m)), where γ, γ(1), . . . , γ(m) are independent gaussian random vectors.

7



Next we discuss the necessity of the hypotheses in Theorems 2.1 and 2.2. A simple compu-
tation shows that the hypothesis of P being tetrahedral is needed in both theorems. Just
taking P (z) = zm, we haveM(z(1), . . . , z(m)) = z(1) · · · z(m) and

E|M(w(1), . . . , w(m))|p = E|w(1) · · ·w(m)|p = 1 = E|P (w)|p.

This shows that the inequality

mm/2(E‖M(w(1), . . . , w(m))‖p)1/p ≤ Cm(E‖P (w)‖p)1/p

does not hold in general. Regarding Theorem 2.2, notice that

E|P (w)|p = E|wm|p = 1.

On the other hand, since 2|γ|2 has a chi-squared distribution with two degrees of freedom,
a straightforward computation shows that for every q > 0 we have

E|γ|q = Γ
(q

2
+ 1
)
.

Using Stirling’s formula we get

E|P (γ)|p = E|γ|pm = Γ
(pm

2
+ 1
)
'Cm mpm/2,

so (9) also fails.
The hypothesis of X having finite cotype is also necessary in Theorem 2.2. In [23, page 253]
it is shown that (9) may fail for spaces with trivial cotype even form = 1. The same is true
for Theorem 2.1, but this requires some extra work. A careful look at the proof of [20, Theo-
rem 2] shows that for everym-homogeneous tetrahedral polynomialP and every symmetric
convex function Φ : X → R≥0 we have

EΦ
(
m−mP

( m∑
l=1

ξ(l)
))
≤ EΦ(M(ξ(1), . . . , ξ(m))).

In particular, letting Φ = ‖ r‖p, we get

(
E
∥∥∥P( m∑

l=1

ξ(l)
)∥∥∥p)1/p

≤ mm
(
E‖M(ξ(1), . . . , ξ(m))‖p

)1/p
. (10)

This allows to show that for Rademacher variables, Theorem 2.1 fails for every space X of
trivial cotype.

Remark 2.5. LetX be a Banach space with trivial cotype and suppose that we can find some
C ≥ 1 so that

mm/2
(
E‖M(ε(1), . . . , ε(m))‖pX

)1/p ≤ Cm
(
E‖P (ε)‖pX

)1/p (11)

for every tetrahedral m-homogeneous polynomial P : Cn → X . With the notation from
(3)), form,n ∈ N let `∞(Pm[n]) be the normed space (C(nm), ‖ r‖∞) where coordinates are
indexed by the setsA ∈ Pm[n] rather than natural numbers. Recall that a Banach space has
trivial cotype if and only if the finite dimensional `k∞ spaces can be included in X for every
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k ∈ N with uniform distortion (see for example [13, Theorem 14.1]). So, there is a constant
C̃ ≥ 1 such that

mm/2
(
E‖M(ε(1), . . . , ε(m))‖p`∞(Pm[n])

)1/p ≤ C̃Cm
(
E‖P (ε)‖p`∞(Pm[n])

)1/p (12)

for everym,n ∈ N and every tetrahedralm-homogenous polynomialP : Cn → `∞(Pm[n]).
Denote the canonical basis of `∞(Pm[n]) by {eA}|A|=m and consider the m-homogeneous
polynomial P : Cn → `∞(Pm[n]) given by

P (z) =
∑
|A|=m

eAzA.

This simply allocates each monomial in a separate coordinate. Notice that for every ε ∈
{−1, 1}n we have

‖P (ε)‖`∞(Pm[n]) = sup
|A|=m

|εA| = 1 ,

So that (
E‖P (ε)‖p

)1/p
= 1 .

We estimate the norm of the m-linear form through (10), taking a sum of m independent
copies of ε. Observe that, for a fixed set A, the product

∏
i∈A

∣∣∣∑m
l=1 ε

(l)
i

∣∣∣ is the biggest

possible for ε(l) ∈ {−1, 1}n if ε(l)
i = 1 for every i ∈ A and l = 1, . . . ,m. Therefore(

E
∥∥∥P( m∑

l=1

ε(l)
)∥∥∥p)1/p

=
(
E sup
|A|=m

∏
i∈A

∣∣∣ m∑
l=1

ε
(l)
i

∣∣∣p)1/p

≤ mm .

We obtain a lower estimate by an infinite-monkey-theorem type of argument: arrange the
Rademacher variables in an n×mmatrix (ε

(l)
i )i,l. Now if there are (at least)m rows where

every entry is 1, we can chooseA to index those rows to get

sup
|A|=m

∏
i∈A

∣∣∣ m∑
l=1

ε
(l)
i

∣∣∣ = mm.

Letting n tend to infinity, the probability of finding m rows of ones tends to 1. Explicitly,
the probability that a given row has only ones is 2−m, so the number of rows of ones follows
a binomial distribution B(n, 2−m). Since the probability of having at least a fixed number
of successes (m successes in our case) tends to 1 as n goes to infinity, for a sufficiently large
n we have

P
(

sup
|A|=m

∏
i∈A

∣∣∣ m∑
l=1

ε
(l)
i

∣∣∣ = mm
)
≥ 1

2
.

So, from Chebyshev’s inequality we get

1

2
mm ≤

(
E sup
|A|=m

∏
i∈A

∣∣∣ m∑
l=1

ε
(l)
i

∣∣∣p)1/p

=
(
E
∥∥∥P( m∑

l=1

ε(l)
)∥∥∥p)1/p

.

Finally, if (12) holds, using all these and (10) we deduce

1

2
mm/2 ≤ m−m/2

(
E
∥∥∥P( m∑

l=1

ε(l)
)∥∥∥p)1/p

≤ mm/2
(
E‖M(ε(1), . . . , ε(m))‖p

)1/p ≤ C̃Cm ,

and this leads to a contradiction, showing that there is noC ≥ 1 so that (11) holds.

We proceed now with the proof of Theorem 2.2. It requires to establish first what we call
decoupling on partitions (a particular sort of decoupling inequalities).
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2.1 Decoupling in partitions

One of the main ideas for the proof of Theorem 2.2 is to device an alternative decoupling
method, associating to each m-homogeneous tetrahedral polynomial a family of m-linear
operators. This is inspired by a combinatorial identity proved in [31] which is presented in
Lemma 2.6.
Given anym-homogeneous tetrahedral polynomial ofn-variablesP (z) =

∑
xAzA, without

loss of generality (making n bigger if necessary) we may assume that n = km for some
k ∈ N. For each ordered partition π = (B1, . . . , Bm) of [n] in m sets of k elements each,
we define the followingm-linear mapping:

Lπ(z(1), . . . , z(m)) =
∑
i1∈B1

. . .
∑

im∈Bm

x{i1,...,im}z
(1)
i1
. . . z

(m)
im
. (13)

Observe thatLπ(z, . . . , z) can be obtained fromP (z) by keeping only the monomials whose
index A has exactly one element in each set Bl of the partition. Let us make this statement
more precise. Consider the linear transformation Tπ : Cm → Cn given by

Tπ(el) =
∑
j∈Bl

ej.

Take some Rademacher random vector ε = (ε1, . . . , εm) and note that, for each fixed A,
the expectation

Eε
[
ε1 · · · εm

∏
i∈A

Tπ(ε)i

]
is 1 if A has exactly one element in each set of the partition and 0 otherwise. Then

Eε[ε1 · · · εmP (Tπ(ε)z)] =
∑
|A|=m

xAEε
[
ε1 · · · εm

∏
i∈A

Tπ(ε)i

]
zA ,

and (recall that Tπ(ε)z denotes the pointwise product)

Lπ(z, . . . , z) = Eε[ε1 · · · εmP (Tπ(ε)z)] . (14)

We want to see now how can we recoverP (z) by using theLπs. Loosely speaking, if we sum
over all possible partitions, eventually all monomials in P (z) appear in the sum, and they do
it the same amount of times. Let us expose this more systematically. Let

Πk,m =
{
π = (B1, . . . , Bm) ∈ Pk([n])m :

m⋃
l=1

Bl = [n]
}

(15)

be the familiy of all ordered partitions π of [n] in m sets of k-elements (note that the dis-
jointness of the setsBl is automatic, since they have k elements and n = km). A symmetry
argument shows that there is someN(k,m) ∈ N so that∑

π∈Πk,m

Lπ(z, . . . , z) = N(k,m)P (z),

since each monomial appears the same number N(k,m) of times. So, the polynomial P
can be written as (almost) an average of this family of multilinear operators Lπ evaluated
at (z, . . . , z). The key point for us now is to estimate the growth of this number N(k,m),
showing that it is (up to a constant Cm) like |Πk,m| (see (17)). This relies in the following
combinatorial equality.
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Lemma 2.6. Let V be a vector space and take n = km where k,m ∈ N. Given a family
{vA : A ⊆ [n], |A| = m} ⊆ V we have∑

|A|=m

vA =
1

km

(
km

m

)
1

|Πk,m|
∑

π∈Πk,m

∑
i1∈B1

. . .
∑

im∈Bm

v{i1,...,im}. (16)

Before we proceed to the proof, let us note that, just taking vA = xAzA in the previous
combinatorial identity and using (13) we immediately get

P (z) =
1

km

(
km

m

)
1

|Πk,m|
∑

π∈Πk,m

Lπ(z, . . . , z). (17)

Proof of Lemma 2.6. First notice that∑
π∈Πk,m

∑
i1∈B1

. . .
∑

im∈Bm

v{i1,...,im} =
∑
|A|=m

( ∑
π∈Πk,m

|A∩Bl|=1, ∀l

1
)
vA

=
∑
|A|=m

m

︸︷︷︸
choose
A∩B1

(
(k − 1)m

k − 1

)
︸ ︷︷ ︸

choose
Ac∩B1

(m− 1)

︸ ︷︷ ︸
choose
A∩B2

(
(k − 1)(m− 1)

k − 1

)
︸ ︷︷ ︸

choose
Ac∩B2

. . . 1

(
k − 1

k − 1

)
vA

= m!
m∏
l=1

(
(k − 1)l

k − 1

) ∑
|A|=m

vA. (18)

On the other hand, we have

|Πk,m| =
m∏
l=1

(
kl

k

)
=

1

km

m∏
l=1

(
(k − 1)l

k − 1

)
(k − 1)(l − 1)!

(k − 1)l!

kl!

k(l − 1)!

=
1

km

m∏
l=1

(k − 1)(l − 1)!

(k − 1)l!

m∏
l=1

kl!

k(l − 1)!

m∏
l=1

(
(k − 1)l

k − 1

)
=

1

km
km!

(k − 1)m!

m∏
l=1

(
(k − 1)l

k − 1

)
=

1

km

(
km

m

)
m!

m∏
l=1

(
(k − 1)l

k − 1

)
.

Joining this with (18) gives the conclusion.

Let us note that, by definition, we have
(
km
m

)
≥ km for every k and m. On the other hand,

using Stirling’s formula yields(
km

m

)
≤ e

2π
√
m

√
k

k − 1
km
( k

k − 1

)(k−1)m

≤ e

2π
√
m

√
2kmem ≤ emkm,

for k ≥ 2 (the inequality holds trivially for k = 1). Then,

1 ≤ 1

km

(
km

m

)
≤ em (19)

for every k andm. With all this at hand we can give the following decoupling inequality.
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Proposition 2.7. Let P : Cn → X be an m-homogeneous tetrahedral polynomial. If ξ =

(ξ1, . . . , ξn) is a vector of independent symmetric random variables and ξ(1), . . . , ξ(m) are iid
copies of ξ, then

1

|Πk,m|
∑

π∈Πk,m

(E‖Lπ(ξ(1), . . . , ξ(m))‖p)1/p

≤ (E‖P (ξ)‖p)1/p

≤ em

|Πk,m|
∑

π∈Πk,m

(E‖Lπ(ξ(1), . . . , ξ(m))‖p)1/p

for every 1 ≤ p <∞.

Proof. First of all, let us note that, in a way, Lπ(ξ, . . . , ξ) is already decoupled due to its al-
gebraic structure since the index setsB1, . . . , Bl never overlap. In fact, notice that replacing
each coordinate ξi with ξ(l)

i whenever i ∈ Bl we deduce

E‖Lπ(ξ, . . . , ξ)‖p = E‖Lπ(ξ(1), . . . , ξ(m))‖p . (20)

On the one hand, from (17) and (19) we have

(E‖P (ξ)‖p)1/p ≤ em

|Πk,m|

(
E
∥∥∥ ∑
π∈Πk,m

Lπ(ξ, . . . , ξ)
∥∥∥p)1/p

≤ em

|Πk,m|
∑

π∈Πk,m

(E‖Lπ(ξ, . . . , ξ)‖p)1/p .

On the other hand, for each fixed partition π we can use (14) to have

(Eξ‖Lπ(ξ, . . . ,ξ)‖p)1/p =
(
Eξ
∥∥Eε[ε1 · · · εmP (Tπ(ε)ξ)]

∥∥p)1/p

≤ Eε
(
Eξ‖ε1 · · · εmP (Tπ(ε)ξ)‖p

)1/p
= Eε

(
Eξ‖P (Tπ(ε)ξ)‖p

)1/p
(21)

Now, since ξ is symmetric, changing its sign does not affect its distribution, so thatTπ(ε)ξ ∼
ξ and, then

1

|Πk,m|
∑

π∈Πk,m

(E‖Lπ(ξ, . . . , ξ)‖p)1/p

≤ 1

|Πk,m|
∑

π∈Πk,m

Eε
(
Eξ‖P (ξ)‖p

)1/p
= (Eξ‖P (ξ)‖p)1/p .

This, in view of (20), completes the proof.

With the same idea we can get a decoupling inequality involving convex functions, very
much in the spirit of Kwapień’s result presented in (4).

Proposition 2.8. Let P : Cn → X be an m-homogeneous tetrahedral polynomial and Φ :
X → R≥0 a convex function such that Φ(x) = Φ(−x) for every x ∈ X . If ξ = (ξ1, . . . , ξn)
is a vector of independent symmetric random variables and ξ(1), . . . , ξ(m) are iid copies of ξ
we have

EΦ
( km(

km
m

)P (ξ)
)
≤ 1

|Πk,m|
∑

π∈Πk,m

EΦ(Lπ(ξ(1), . . . , ξ(m))) ≤ EΦ(P (ξ)).

12



Proof. First of all the same argument as in (20) shows that it is enough to check the inequal-
ities forEΦ(Lπ(ξ, . . . , ξ)). Now, using the same argument as in (21), this time with Jensen’s
inequality and the fact that Φ(x) = Φ(−x), we get

EξΦ(Lπ(ξ, . . . , ξ)) ≤ Eε,ξΦ(ε1 . . . εmP (Tπ(ε)ξ)) = EξΦ(P (ξ)),

for each π ∈ Πk,m. This gives one inequality. For the other one, note that, using again
Jensen’s inequality in (17) yields

Φ
( km(

km
m

)P (ξ)
)
≤ 1

|Πk,m|
∑

π∈Πk,m

Φ(Lπ(ξ(1), . . . , ξ(m))) .

The linearity of E completes the proof.

Note that Proposition 2.7 cannot be deduced from Proposition 2.8, since the exponents 1/p
would remain outside the average over π ∈ Πk,m. In other words, the inequalities for p-
norms are better than those for general convex functions.

Remark 2.9. In [5] it was shown that cotype and type imply (and then are equivalent to) their
polynomial counterparts (we state only the result related to cotype, the translation to type
being clear): if X is a Banach space of cotype 2 ≤ q <∞ then there is a constantC ≥ 1 so
that for every finite family (xα)|α|≤m ⊆ X we have∑

α

‖xα‖q ≤ CmE
∥∥∥∑

α

xαw
α
∥∥∥q . (22)

The proof is basically done in two steps: to show that the inequality holds for tetrahedral
polynomials and then that this implies that (22) holds for arbitrary polynomials. The multi-
linear decomposition that we have just obtained allows to give a shorter (and perhaps nicer)
proof of the tetrahedral case [5, Lemma 4.1].
To be more precise, we want so see that for a Banach space X of cotype 2 ≤ q < ∞, there
is a constant C ≥ 1 such that for every m,n ∈ N and every family {xA : A ⊆ [n], |A| =
m} ⊆ X we have ∑

|A|=m

‖xA‖q ≤ CmE
∥∥∥ ∑
|A|=m

xAwA

∥∥∥q .
Applying Lemma 2.6 and using its notation, by taking vA = ‖xA‖q we get∑

A

‖xA‖q ≤ em
1

|Πk,m|
∑

π∈Πk,m

∑
i1∈B1

. . .
∑

im∈Bm

‖x{i1,...,im}‖q .

Notice that {x{i1,...,im} : il ∈ Bl for 1 ≤ l ≤ m} are the coefficients of the multilinear
operator Lπ defined in (13). So applying the cotype inequality m-times (see for example [9,
Lemma 25.3]) we get∑

i1∈B1

· · ·
∑

im∈Bm

‖x{i1,...,im}‖q ≤ CmE‖Lπ(w(1), . . . , w(m))‖q .

Joining this two inequalities and applying Proposition 2.7 we obtain∑
A

‖xA‖q ≤ emCm 1

|Πk,m|
∑

π∈Πk,m

E‖Lπ(w(1), . . . , w(m))‖q ≤ emCmE ‖P (w)‖q ,

and this is our claim. An analogous argument can be applied for type to recover [5, Lemma 4.5],
and then show that type implies polynomial type.
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2.2 Comparison of random polynomials

Having our new decomposition at hand, we are almost in position to prove Theorem 2.2.
Let us state two results we use. The following lemma was proven in [5, Lemma 4.2] and
shows that Walsh and Steinhaus tetrahedral polynomials have equivalent p-norms (i.e. we
may replace Steinhaus by Rademacher random variables) without assuming homogeneity
or geometrical conditions on the Banach space. Besides the argument given there, this can
also be proven using [21, Proposition 6.3.1] and checking the hypothesis by hand.

Lemma 2.10. Let X be a Banach space and 1 ≤ p < ∞. For every tetrahedral polynomial
P : Cn → X of degreem we have

(1 +
√

2)−m (E‖P (ε)‖p)1/p ≤ (E‖P (w)‖p)1/p ≤ (1 +
√

2)m (E‖P (ε)‖p)1/p . (23)

The second result relates the norms of a polynomial and its homogeneous projection. Given
a polynomial P (z) =

∑
|α|≤m xαz

α, for each 1 ≤ k ≤ m we consider the corresponding
k-homogeneous projection given by

Pk(z) =
∑
|α|=k

xαz
α.

The following proposition can be found in [20, Lemma 2] (see also [8, Lemma 3.2.4]). We
also refer to [5] where the exponential growth of the constant on the degree of the polynomial
(i.e., to be of the formCm for someC ≥ 1) is explicitly derived.

Proposition 2.11. LetX be a Banach space. There existsC ≥ 1 so that for every 1 ≤ p <∞,
every non-trivial symmetric random variable ξ0 and every tetrahedral polynomial P : Cn →
X of degreem we have

(E‖Pk(ξ)‖p)1/p ≤ Cm(E‖P (ξ)‖p)1/p ,

where ξ is a random vector of iid copies of ξ0.

We finally have come to the point where we can prove Theorem 2.2. We see that Steinhaus
(or Walsh) polynomials always have the smallest p-norms (up to a constant Cm) compared
to polynomials on other symmetric random variables and that, under certain assumptions,
they are even equivalent (again up toCm constant).

Proof of Theorem 2.2. The proof of (a) is essentially an adaptation of [13, Proposition 12.11].
Note that ξ = (ξ1, . . . , ξn) consists of independent copies of ξ0. Then, givenA ⊆ [n] with
|A| = m and z ∈ Cn, we have

(Eξ|ξ0|)mzA =
∏
i∈A

Eξ|ξi|zi = Eξ
∏
i∈A

|ξi|zi = Eξ(|ξ|z)A .

As a consequence, if P (z) =
∑
|A|=m xAzA ism-homogeneous, we have

(Eξ|ξ0|)pmEw‖P (w)‖p = Ew
∥∥∥ ∑
|A|=m

xA(Eξ|ξ0|)mwA
∥∥∥p

= Ew
∥∥∥ ∑
|A|=m

xAEξ(|ξ|w)A

∥∥∥p = Ew‖EξP (|ξ|w)‖p

≤ EξEw‖P (|ξ|w)‖p = EξEw‖P (ξw)‖p,
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for 1 ≤ p < ∞ (where in the last step we used the rotation invariance of w). We can now
use Lemma 2.10 to replace Steinhaus with Rademacher variables, obtaining

(Eξ|ξ1|)pmEw‖P (w)‖p ≤ (1 +
√

2)pmEξEε‖P (ξε)‖p .

Since ξ0 is symmetric we have that ξε ∼ ξ, which yields( E|ξ0|
1 +
√

2

)m(
E‖P (w)‖p

)1/p ≤
(
E‖P (ξ)‖p

)1/p
, (24)

and (8) holds for homogeneous tetrahedral polynomials (note that, being ξ0 non-trivial,
E|ξ0| 6= 0).
Given an arbitrary tetrahedral polynomial P , we split it on its homogeneous components
and apply Proposition 2.11 to get

(E‖P (w)‖p)1/p ≤
m∑
k=0

(E‖Pk(w)‖p)1/p ≤
m∑
k=0

Ck(E‖Pk(ξ)‖p)1/p

≤ C̃m

m∑
k=0

Ck(E‖P (ξ)‖p)1/p ≤ (2CC̃)m(E‖P (ξ)‖p)1/p.

(25)

To show (b) we again start with the homogeneous case. Let us observe first that by Lemma 2.10
it is enough to see that (

E‖P (ξ)‖p
)1/p ≤ Cm

(
E‖P (ε)‖p

)1/p
. (26)

A simple computation from Proposition 2.7 shows that if(
E‖L(ξ(1), . . . , ξ(m))‖p

)1/p ≤ Cm
(
E‖L(ε(1), . . . , ε(m))‖p

)1/p (27)

holds for everym-linearL : Cn×· · ·×Cn → X , then (26) holds true. It suffices, therefore,
to show that (27) holds, and we do this by induction. For the case m = 1, from [30, Propo-
sition 3.2] (see also [23, Proposition 9.14] we know that, if ξ0 is real and has finite s-norm for
s > cot(X), we have (

E
∥∥∥ n∑
j=1

xjξj

∥∥∥p)1/p

≤ C
(
E
∥∥∥ n∑
j=1

xjεj

∥∥∥p)1/p

for every choice of vectors {xj}nj=1 ⊆ X . This immediately generalizes to complex random
vectors by splitting ξ in its real and imaginary parts and using the triangle inequality, so the
case m = 1 holds. The rest follows easily by induction on m, showing that (9) holds for
homogeneous tetrahedral polynomials. The inequality for arbitrary tetrahedral polynomials
follows as in (25).

We end this section with one further result for Rademacher and Steinhaus random vari-
ables. Remark 2.5 shows that there is no hope to obtain a decoupling inequality as (7) for
polynomials taking values in some space with trivial cotype, not even for random variables as
nice as Rademacher (or Steinhaus). More precisely, there is no hope to obtain an inequality
as (11) on such spaces. However, using the idea in (10), obtaining a decoupling inequality
betweenP andM is essentially the same as comparing the moments of the polynomial eval-
uated in ξ and

∑m
l=1 ξ

(l). For Rademacher and Steinhaus variables this allows us to show
that the left-hand side of (7) (i.e. the reverse inequality to that in (11)) holds even for spaces
with trivial cotype.
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Proposition 2.12. LetX be a Banach space. There is a constantC ≥ 1 such that

(E‖P (ε)‖p)1/p ≤ Cmmm/2(E‖M(ε(1), . . . , ε(m))‖p)1/p

and
(E‖P (w)‖p)1/p ≤ Cmmm/2(E‖M(w(1), . . . , w(m))‖p)1/p

for every 1 ≤ p <∞ and everym-homogeneous tetrahedral polynomial P : Cn → X .

Proof. Let us fix some 1 ≤ p < ∞ and note that, in view of Lemma 2.10, it is enough to
check that the inequality holds for Steinhaus random variables. LetP be anm-homogeneous
tetrahedral polynomial. Applying (24) to the random variable

∑m
l=1w

(l) and (10) we getE
∣∣∣∑m

l=1w
(l)
1

∣∣∣
1 +
√

2

m

(E‖P (w)‖p)1/p ≤
(
E
∥∥∥P( m∑

l=1

w(l)
)∥∥∥p)1/p

≤ mm(E‖M(w(1), . . . , w(m))‖p)1/p.

Now by Khinchin inequality (or Theorem 1.2) we have

√
m =

(
E
∣∣∣ m∑
l=1

w
(l)
1

∣∣∣2)1/2

≤
√

2E
∣∣∣ m∑
l=1

w
(l)
1

∣∣∣.
Joining both inequalities we conclude

(E‖P (w)‖p)1/p ≤ (
√

2 + 2)mmm/2(E‖M(w(1), . . . , w(m))‖p)1/p.

3 Geometric conditions for full independence

So far we have been able to compare the norm of polynomials with different random vari-
ables for tetrahedral polynomials (see Theorem 2.2 or Lemma 2.10) and then to compare a
tetrahedral random polynomial with its multilinear counterpart. A question one might ask
is if we can do better: can we compare the random polynomial with a fully independent sum
(and not just the less dependent sum given by the multilinear operator)? A second question
raises naturally: what can be said for non-tetrahedral polynomials?. We show that under
stronger geometric conditions that include Banach lattices of finite cotype we can compare
random polynomials with independent randoms sums. In addition, for Steinhaus variables
our estimates hold for arbitrary (not necessarily tetrahedral) polynomials.
We begin with two results that are essentially a consequence of [33, Theorem 12.2] and were
shown in [4, Theorem 4.1] for specific random variables. The proofs for general random
variables are analogous. We include them for the sake of completeness and to lay the ground
for Theorems 3.5 and 3.6.

Proposition 3.1. LetX be a Banach space of type 2. There is a constantC > 0 such that for
every orthonormal sequence of (not necessarily independent) random variables (ξi)i∈N ⊆
L2(µ) and every choice of finitely many x1, . . . , xn ∈ X we have

(
E
∥∥∥ n∑
i=1

εixi

∥∥∥2)1/2

≤ C
(
E
∥∥∥ n∑
i=1

ξixi

∥∥∥2)1/2

.
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To prove this we need the concept of p-summing operator. For 1 ≤ p ≤ ∞ an operator
T : X → Y is said to be p-summing if there is a constantC ≥ 1 such that for every choice
of vectors x1, . . . xn ∈ X we have( n∑

i=1

‖T (xi)‖pY
)1/p

≤ C sup
x∗∈BX∗

( n∑
i=1

|x∗(xi)|p
)1/p

.

We denote by πp(T ) the smallest possibleC . We refer the reader to [13, Chapter 2] and [33,
Chapter 2] for a detailed exposition.

Proof of Proposition 3.1. Let T : `n2 → X be the operator defined by T (ei) = xi. Notice
that combining Lemma 2.10 and (8) we get

(
E
∥∥∥ n∑
i=1

εixi

∥∥∥2)1/2

≤ C
(
E
∥∥∥ n∑
i=1

γixi

∥∥∥2)1/2

.

On the other hand, we know from [33, Theorem 12.2] that if X has type 2, then

(
E
∥∥∥ n∑
i=1

γixi

∥∥∥2)1/2

≤ C̃π2(T ∗). (28)

So, to complete the proof it is only left to find a convenient bound for π2(T ∗). To find it let
us observe that the orthogonality of (ξi)i yields

∥∥∥ n∑
i=1

ξix
∗(xi)

∥∥∥
L2(µ)

=
( n∑
i=1

|x∗(xi)|2
)1/2

= ‖(x∗(xi))ni=1‖`n2 = ‖T ∗(x∗)‖`n2

for every x∗ ∈ X∗. Therefore, given a finite collection of vectors x∗k ∈ X∗ we have

∑
k

‖T ∗(x∗k)‖2
`m2

=
∑
k

∥∥∥ n∑
i=1

ξix
∗
k(xi)

∥∥∥2

L2(µ)
= E

[∑
k

∣∣∣x∗k( n∑
i=1

ξixi

)∣∣∣2]
≤ E

∥∥∥ n∑
i=1

ξixi

∥∥∥2

sup
x∗∗∈BX∗∗

∑
k

|x∗∗(x∗k)|2.

This gives

π2(T ∗) ≤
(
E
∥∥∥ n∑
i=1

ξixi

∥∥∥2)1/2

,

which completes the proof.

With a similar argument we have the following dual statement for spaces with cotype 2.

Proposition 3.2. LetX be a Banach space of cotype 2. There is a constant C > 0 such that
for every orthonormal sequence of (not necessarily independent) random variables (ξi)i∈N ⊆
L2(µ) and every choice of finitely many x1, . . . , xn ∈ X we have

(
E
∥∥∥ n∑
i=1

ξixi

∥∥∥2)1/2

≤ CE
(∥∥∥ n∑

i=1

εixi

∥∥∥2)1/2

.
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Proof. As before let T : `n2 → X be the operator defined by T (ei) = xi. Since X has
cotype 2, using again [33, Theorem 12.2] as well as [13, Theorem 12.27] (which is the linear
case of Theorem 2.2 above), we deduce

π2(T ) ≤ C
(
E
∥∥∥ n∑
i=1

γixi

∥∥∥2)1/2

≤ C̃
(
E
∥∥∥ n∑
i=1

εixi

∥∥∥2)1/2

.

To finish the proof we just have to find a convenient lower bound for π2(T ). To this aim, we
consider the operator S : X∗ → L2(µ) given by

S(x∗) =
n∑
i=1

ξix
∗(xi).

We have the following commutative diagram

L2(µ) X∗∗

`n2 X

S∗

q

T

i

where q : L2(µ) → `n2 is the projection given by q(f) = (〈f, ξi〉)ni=1 for every f ∈ L2(µ)
and i : X ↪→ X∗∗ is the natural inclusion. Since clearly ‖i‖ = ‖q‖ = 1, the ideal property
of 2-summing operators [13, 2.4] gives π2(S∗) ≤ π2(T ). Finally, [18, Theorem 2] (see also
[29, Proposition 1.1] and [13, Corollary 5.21]) give(

E
∥∥∥ n∑
i=1

ξixi

∥∥∥2)1/2

≤ π2(S∗).

This completes the proof.

The Steinhaus monomials (wα)α∈Nn0 ⊆ L2(Tn) form an orthonormal system, and we may
apply the previous results to compare polynomials to sums of independent Rademacher vari-
ables. Let us note that, for each α, on the side of the Rademacher random variables we get a
different (independent) random variable. Since we have already used εα and εA for the prod-
uct of components of a random vector of copies of ε (and this is not what we get here) we use
εiα (with some injectionα 7→ iα ∈ N, stressing the fact that for eachαwe have an individual
random variable). In other words, for the (finite) set {α ∈ Nn

0 : |α| ≤ m} we consider the
family of independent identically distributed Rademacher random variables {εiα}α. With
this notation at hand, we recover the following from [4, Theorem 4.1].

Corollary 3.3. LetX be a Banach space.

(a) If X has type 2, then there is a constant C ≥ 1 such that, for every finite choice of
vectors {xα}|α|≤m we have(

E
∥∥∥ ∑
|α|≤m

εiαxα

∥∥∥2)1/2

≤ C
(
E
∥∥∥ ∑
|α|≤m

xαw
α
∥∥∥2)1/2

.

(b) If X has cotype 2, then there is a constantC ≥ 1 such that, for every finite choice of
vectors {xα}|α|≤m we have(

E
∥∥∥ ∑
|α|≤m

xαw
α
∥∥∥2)1/2

≤ C
(
E
∥∥∥ ∑
|α|≤m

εiαxα

∥∥∥2)1/2

.

18



Let us note that an analogous result holds for any sequence of characters in the context of
Fourier analysis on groups.
We also mention that if ξ0 ∈ L2(µ) and ξ is a random vector consisting of n independent
copies of ξ0, then the family {ξA : A ⊆ [n], |A| ≤ m} is orthogonal. Then orthonormality
is achieved just by normalising, and we can apply Propositions 3.1 and 3.2. Again, for eachA
we write εiA for an independent copy of a Rademacher random variable (not to be confused
with the Walsh monomial εA). Noting that

‖ξA‖2 =
(
E
∣∣∣∏
i∈A

ξi

∣∣∣2)1/2

= ‖ξ0‖|A|2 ,

we deduce the following.

Corollary 3.4. LetX be a Banach space.

(a) If X has type 2, then there is a constant C ≥ 1 such that for every non-trivial sym-
metric random variable ξ0 ∈ L2(µ) and every choice of vectors {xA}|A|≤m we have(

E
∥∥∥ ∑
|A|≤m

εiA‖ξ0‖|A|2 xA

∥∥∥2)1/2

≤ C
(
E
∥∥∥ ∑
|A|≤m

xAξA

∥∥∥2)1/2

.

(b) If X has cotype 2, then there is a constant C ≥ 1 such that for every symmetric
random variable ξ0 ∈ L2(µ) and every choice of vectors {xA}|A|≤m we have(

E
∥∥∥ ∑
|A|≤m

xAξA

∥∥∥2)1/2

≤ C
(
E
∥∥∥ ∑
|A|≤m

εiA‖ξ0‖|A|2 xA

∥∥∥2)1/2

.

Let us observe that using the contraction principle in the previous inequalities immediately
gives (

E
∥∥∥ ∑
|A|≤m

εiAxA

∥∥∥2)1/2

≤ C max{1, ‖ξ0‖−m2 }
(
E
∥∥∥ ∑
|A|≤m

xAξA

∥∥∥2)1/2

,

and (
E
∥∥∥ ∑
|A|≤m

xAξA

∥∥∥2)1/2

≤ C max{1, ‖ξ0‖m2 }
(
E
∥∥∥ ∑
|A|≤m

εiAxA

∥∥∥2)1/2

.

Having type or cotype 2 are quite restrictive geometric conditions for a Banach space. What
is more, if one is looking for a decoupling inequality that estimates the norm of a polynomial
from above and below one needs that the Banach spaceX enjoys both type and cotype 2. In
other words, by a fundamental result of Kwapień proved in [19], X must be isomorphic to
a Hilbert space where these estimates hold trivially. We try now to find a weaker condition
on the space that (allowing exponential dependence on m) still provides an analogue result
to Corollary 3.3. We find it in the Gaussian Average Property (GAP) introduced in [6]. A
Banach spaceX has GAP if there existsC ≥ 1 such that for every finite choicex1, . . . , xn ∈
X , the operator T : `n2 → X∗ defined by T (ei) = xi satisfies(

E
∥∥∥ n∑
i=1

xiγi

∥∥∥2)1/2

≤ Cπ1(T ∗). (29)
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By [6, Theorem 1.4] Banach spaces with type 2 and Banach lattices with finite cotype have
GAP. In turn, spaces with GAP have finite cotype (see [6, Theorem 1.3]). Finally, we mention
that GAP is closely related to the Gordon-Lewis property and the concept of local uncon-
ditional structure (see [13, Chapter 17] for the definitions and basic properties).

The key step in the proof of Proposition 3.1 was (28), which is very similar to (29). This is,
then, our main tool now. However, since (29) involves the 1-summing norm instead of the
2-summing norm in (28) we need a Khinchin type inequality to hold. Fortunately we have
it in Theorem 1.2. With this we can now get the inequalities we were aiming at. We follow
the lines of [29, Theorem 1.1] (see also [3, Lemma 2.2]).

Theorem 3.5. If a Banach space X has GAP, then there is a constant C ≥ 1 such that for
every choice of vectors {xα}|α|≤m we have(

E
∥∥∥ ∑
|α|≤m

εiαxα

∥∥∥2)1/2

≤ C E
∥∥∥ ∑
|α|≤m

√
2
|α|
xαw

α
∥∥∥ . (30)

Proof. The proof is very similar to that of Proposition 3.1. Let Λ = {α ∈ Nn
0 : |α| ≤ m}

and, as before, define the operatorT : `2(Λ)→ X byT (eα) = xα. Combining Lemma 2.10,
(8) and (29) we have(

E
∥∥∥ ∑
|α|≤m

εiαxα

∥∥∥2)1/2

≤ C
(
E
∥∥∥ ∑
|α|≤m

γiαxα

∥∥∥2)1/2

≤ C̃π1(T ∗).

We look now for a good upper bound for π1(T ∗). First of all observe that, for each x∗ ∈ X∗
we have (

E
∣∣∣ ∑
|α|≤m

x∗(xα)wα
∣∣∣2)1/2

= ‖(x∗(xα))|α|≤m‖`2(Λ) = ‖T ∗(x∗)‖`2(Λ).

With this, given a finite collection of vectors x∗i ∈ X∗ and using Theorem 1.2 we get

N∑
i=1

‖T ∗(x∗i )‖`2(Λ) =
N∑
i=1

(
E
∣∣∣ ∑
|α|≤m

x∗i (xα)wα
∣∣∣2)1/2

≤
N∑
i=1

E
∣∣∣ ∑
|α|≤m

√
2
|α|
x∗i (xα)wα

∣∣∣
= E

N∑
i=1

∣∣∣ ∑
|α|≤m

√
2
|α|
x∗i (xα)wα

∣∣∣ ≤ E
∥∥∥ ∑
|α|≤m

√
2
|α|
xαw

α
∥∥∥ sup
x∗∗∈BX∗∗

N∑
i=1

|x∗∗(x∗i )|.

The definition of the 1-summing norm gives

π1(T ∗) ≤ E
∥∥∥ ∑
|α|≤m

√
2
|α|
xαw

α
∥∥∥ ,

and completes the proof.

We can use a similar argument to get a dual result. First let us recall the notion of factorable
operators. An operator T : X → Y is said to be factorable if there is a measure space
(Ω,Σ, µ) and operators A : L∞(µ) → Y ∗∗ and B : X → L∞(µ) such that iT = AB
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where i : Y ↪→ Y ∗∗ is the natural inclusion. In other words, iT factors throughL∞(µ), and
we have the following commutative diagram

X Y Y ∗∗

L∞(µ)

T

B

i

A
(31)

We write
γ∞(T ) = inf ‖A‖‖B‖,

where the infimum is taken over all the possible factorizations. We refer the reader to [13,
Chapters 7 and 9] for a detailed exposition.

Theorem 3.6. Let X be a Banach space of finite cotype. Fix q > cot(X) and suppose there
is a constant c ≥ 1 such that for every T : `n2 → X we have

γ∞(T ) ≤ c
(
E
∥∥∥ n∑
i=1

T (ei)γi

∥∥∥2)1/2

. (32)

Then, there is a constant C ≥ 1 such that for every finite choice of vectors {xα}|α|≤m we
have (

E
∥∥∥ ∑
|α|≤m

xαw
α
∥∥∥q)1/q

≤ C
(
E
∥∥∥ ∑
|α|≤m

εiα

√
q

2

|α|

xα

∥∥∥2)1/2

. (33)

Remark 3.7. We know from [6, Theorem 1.7] that Banach spaces of finite cotype whose dual
has GAP satisfy the hypotheses of the previous theorem. Moreover, a careful look at the
proof of [29, Theorem 1.1 (i)] combined with [29, Proposition 1.1] shows that spaces with
local unconditional structure (or even the weaker GL2 property from [6]) satisfy (32). In
particular, since Banach lattices have local unconditional structure (see [13, Theorem 17.1]),
the theorem holds for Banach lattices of finite cotype.

Proof of Theorem 3.6. Similarly as in Proposition 3.2, we define the operator S : X∗ →
Lq(Tn) by

S(x∗) =
∑
|α|≤m

x∗(xα)wα.

From [18, Theorem 2] (see also [29, Proposition 1.1] and [13, Corollary 5.21]) we have(
E
∥∥∥ ∑
|α|≤m

xαw
α
∥∥∥q)1/q

≤ πq(S
∗) ,

and the challenge is to bound properly πq(S∗). We do this in several stages, the first one
being to bound it by γ∞(S∗). There are two things to be observed first. One, that we can
restrict the codomain ofS∗ toX since the image ofS∗ actually lies onX and its easy to check
that theπq-norm remains the same. The second one, that we know from [24, Proposition 1.4]
(see also [13, Theorem 11.14]) that there is a constantC ≥ 1 such that

πq(U) ≤ C‖U‖
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for every U : L∞(µ) → X∗∗ (here we are using that, by the principle of local reflexivity,
X and X∗∗ share the same cotype; see [1, Theorem 11.2.4]). Then, if we factor iS∗ = AB
through some L∞(µ) as in (31), this and the ideal property of q-summing operators give

πq(S
∗) = πq(iS

∗) = πq(AB) ≤ πq(A)‖B‖ ≤ C‖A‖‖B‖ ,

hence
πq(S

∗) ≤ Cγ∞(S∗).

The second stage is to bound γ∞(S∗). Let R : Lq
∗
(Tn) → `2(Λ) and T : `2(Λ) → X be

the operators defined by R(f) = (
√

2/q
|α|
f̂(α))α and T (eα) =

√
q/2

|α|
xα respectively.

We have the following commutative diagram

Lq
∗
(µ) X∗∗

`2(Λ) X

S∗

R

T

i

By the ideal property of factorable operators [13, Theorem 7.1] we get

γ∞(S∗) = γ∞(iTR) ≤ γ∞(T )‖R‖.

So, it only remains to bound these two factors. We begin by showing thatR is a contraction.
Given f ∈ Lq∗(Tn) we can use Theorem 1.2 to get

‖R(f)‖2
`2(Λ) =

∑
|α|≤m

(2

q

)|α|
|f̂(α)|2 = E

[
f(w)

∑
|α|≤m

(2

q

)|α|
f̂(α)wα

]

≤ ‖f‖Lq∗
∥∥∥ ∑
|α|≤m

(2

q

)|α|
f̂(α)wα

∥∥∥
Lq
≤ ‖f‖Lq∗

∥∥∥ ∑
|α|≤m

√
2

q

|α|

f̂(α)wα
∥∥∥
L2

= ‖f‖Lq∗‖R(f)‖`2(Λ).

And, since f was arbitrary, this gives ‖R‖ ≤ 1.
Finally, applying (32) and [13, Theorem 12.27] (which is the linear case of Theorem 2.2 above)
we obtain

γ∞(T ) ≤ c
(
E
∥∥∥ ∑
|α|≤m

γiα

√
q

2

|α|

xα

∥∥∥2)1/2

≤ c̃
(
E
∥∥∥ ∑
|α|≤m

εiα

√
q

2

|α|

xα

∥∥∥2)1/2

,

and this completes the proof.

We finish this section with two inequalities in this context for tetrahedral polynomials.

Corollary 3.8.

(a) LetX be a Banach space with GAP. Then there is a constantC ≥ 1 such that for every
finite choice of vectors {xA}|A|≤m and every symmetric non-trivial random variable ξ0

we have (
E
∥∥∥ ∑
|A|≤m

εiAxA

∥∥∥2)1/2

≤ CmE
∥∥∥ ∑
|A|≤m

xAξA

∥∥∥.
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(b) LetX be a Banach space of finite cotype satisfying (32), let ξ0 be a symmetric random
variable with finite s-norm for some s > cot(X) and fix 1 ≤ p < s. There is a
constantC ≥ 1 such that for every finite choice of vectors {xA}|A|≤m we have(

E
∥∥∥ ∑
|A|≤m

xAξA

∥∥∥p)1/p

≤ Cm
(
E
∥∥∥ ∑
|A|≤m

εiAxA

∥∥∥2)1/2

.

Proof. For the first statement just observe that using the contraction principle (see Theo-
rem 1.3) and (30) we get(

E
∥∥∥ ∑
|α|≤m

εiαxα

∥∥∥2)1/2

≤ C
√

2
m
(
E
∥∥∥ ∑
|α|≤m

εiα
√

2
−|α|

xα

∥∥∥2)1/2

≤ C
√

2
m
E
∥∥∥ ∑
|α|≤m

xαw
α
∥∥∥.

Combining this with Theorem 2.2 (a) proves the claim. On the other hand, choosing a suit-
able q (for example q = s) and applying the contraction principle to (33) we deduce(

E
∥∥∥ ∑
|α|≤m

xαw
α
∥∥∥q)1/q

≤ C

√
q

2

m(
E
∥∥∥ ∑
|α|≤m

εiαxα

∥∥∥2)1/2

.

Joining this with (9) and Jensen’s inequality proves the second statement.

Notice that we can join Theorems 3.5 and 3.6 as well as both inequalities from Corollary 3.8
to get estimates from above and below comparing the norm of a random polynomial with
the norm of an independent random sum of its coefficients. In particular, this holds for
Banach lattices of finite cotype which have GAP and satisfy the hypotheses of Theorem 3.6
as mentioned in Remark 3.7.

4 One-variable decoupling

In this section we study one-variable decoupling of m-homogeneous tetrahedral polynomi-
als. Instead of comparing P (ξ) = M(ξ, . . . , ξ) to its decoupled version M(ξ(1), . . . , ξ(m)),
we will only replace ξ with an iid copy ξ′ in one entry to obtain M(ξ′, ξ, . . . , ξ). Of course
this time we are aiming at comparing the p-norms of both objects up to a constant C not
depending on m. Note that if the constants were allowed to grow with m, most of the re-
sults of this section would be direct applications of our previous results. To achieve our goal
we have to use specific properties of the random variables at hand so we restrict ourselves to
gaussian, Steinhaus and Rademacher variables. We mention that some inequalities in this
section can be thought of as Markov type inequalities for homogeneous polynomials in the
sense of [15].
We are mostly interested here in Steinhaus variables, but we start by dealing with gaussian
variables to set a benchmark for the type of inequality we are looking for. We show a one-
variable version of (5) that follows the ideas from [20, Theorem 2].

Proposition 4.1. LetP : Cn → X be anm-homogeneous tetrahedral polynomial. For every
1 ≤ p <∞ we have

1√
e

(E‖P (γ)‖p)1/p ≤
√
m(E‖M(γ′, γ, . . . , γ)‖p)1/p ≤

√
e(E‖P (γ)‖p)1/p.
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Proof. For the first inequality consider the gaussian variable

γ′′ =
1√
m
γ′ +

√
m− 1

m
γ ∼ γ.

A straightforward calculation shows that for every 1 ≤ i ≤ n we have

E[γ′i|γ′′] =
1√
m
γ′′i and E[γi|γ′′] =

√
m− 1

m
γ′′i .

Therefore, since P is tetrahedral we get

E[M(γ′, γ, . . . , γ)|γ′′] =
1√
m

(√
m− 1

m

)m−1

P (γ′′).

By Jensen’s inequality we deduce

(E‖P (γ′′)‖p)1/p ≤
(

1 +
1

m− 1

)(m−1)/2√
m(E‖M(γ′, γ, . . . , γ)‖p)1/p

≤
√
em(E‖M(γ′, γ, . . . , γ)‖p)1/p.

Since γ′′ ∼ γ, this proves the first inequality.
For the second one, notice that for a Steinhaus variablew we have

Ew
[
P
( w√

m− 1
γ′ + γ

)
w
]

= mM
( 1√

m− 1
γ′, γ, . . . , γ

)
.

Again, by Jensen’s inequality we deduce

√
m(E‖M(γ′, γ, . . . , γ)‖p)1/p ≤

√
m− 1

m
Ew
(
Eγ,γ′

∥∥∥P( w√
m− 1

γ′ + γ
)∥∥∥p)1/p

.

Similarly as before, for a fixedw ∈ T we have that

w√
m− 1

γ′ + γ ∼
√

m

m− 1
γ.

Therefore we obtain

√
m(E‖M(γ′, γ, . . . , γ)‖p)1/p ≤

√
m− 1

m

(
Eγ
∥∥∥P(√ m

m− 1
γ
)∥∥∥p)1/p

=
(

1 +
1

m− 1

)(m−1)/2

(E‖P (γ)‖p)1/p

≤
√
e(E‖P (γ)‖p)1/p

which completes the argument.

Unlike in the previous section, translating the last result to other random variables is not
possible since our comparison estimates (such as Theorem 2.2) involve constants of the form
Cm (and we aim at constants independent of m). However, we can recover an analogous
decoupling inequality for Steinhaus polynomials assuming the Banach space is K-convex.
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A Banach space X is said to be K-convex if the 1-homogeneous projection is bounded on
L2({−1, 1}∞, X). More precisely, the mapping defined on Walsh polynomials by

R
(∑

A

xAεA

)
=
∑
|A|=1

xAεA,

extends to a bounded operatorR : L2({−1, 1}∞, X)→ L2({−1, 1}∞, X) (which is known
as the Rademacher projection). We use the fact thatK-convexity is equivalent to the bound-
edness of the Rademacher projection R on Lp({−1, 1}∞, X) for some (every) 1 < p <∞
(see [16, Lemma 7.4.3]). In this case, we denote the norm of R by Kp(X). We also mention
that a Banach space isK-convex if and only if it has non-trivial type, that is type p for some
1 < p ≤ 2 (see e.g. [13, Theorem 13.3]).

Theorem 4.2. Let P : Cn → X be an m-homogeneous tetrahedral polynomial. For every
1 ≤ p <∞ we have

(E‖P (w)‖p)1/p ≤ π

2

√
em(E‖M(w′, w, . . . , w)‖p)1/p. (34)

If the Banach spaceX isK-convex and p > 1 we also have

√
m(E‖M(w′, w, . . . , w)‖p)1/p ≤ π

2

√
eKp(X)(E‖P (w)‖p)1/p.

Remark 4.3. The key fact in the proof of Proposition 4.1 is that for gaussian variables aγ +

bγ′ ∼
√
|a|2 + |b|2γ′′ for every a, b ∈ C. This is no longer true for other random variables

such as Steinhaus variables. To obtain a similar behavior we take advantage of the geometry
in C and use the variables w and iεw which always stay orthogonal to each other. Notice
that in this case for a, b ∈ R we have that aw + biεw ∼

√
a2 + b2w. This explains the K-

convexity requirement which arises from estimating the norm of homogeneous projections
involving Rademacher variables we are forced to use in order to maintain the orthogonal-
ity between w and iεw. We do not know if the K-convextity assumption is necessary. It
is worth mentioning that one can retrieve the full-decoupling inequality (7) for Steinhaus
variables by starting with the previous result and proceeding inductively. Therefore, weak-
ening theK-convextity condition to assuming only finite cotype would provide a new proof
of Corollary 2.1 for Steinhaus variables and possibly lead to better estimates.

We begin by showing a slightly more general fact than (34) which will later lead to an inter-
esting application.

Lemma 4.4. Let P : Cn → X be an m-homogeneous tetrahedral polynomial and fix λ ∈
Cn. For every 1 ≤ p <∞ we have

(Ew‖M(λw,w, . . . , w)‖p)1/p ≤
√
em(Eε,w‖M(λεw,w, . . . , w)‖p)1/p.

Proof. Similarly as in Proposition 4.1, for 1 ≤ j ≤ n consider the random variables

w′j =

√
m− 1 + iεj√

m
wj.
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An easy calculation using rotation invariance shows thatw′ ∼ w. Notice that

E[wj|w′] = E
[ √

m√
m− 1 + i

w′jχ{εj=1} +

√
m√

m− 1− i
w′jχ{εj=−1}

∣∣∣w′]
=

√
m√

m− 1 + i
w′jP(εj = 1|w′) +

√
m√

m− 1− i
w′jP(εj = −1|w′)

=
1

2

( 1√
m− 1 + i

+
1√

m− 1− i

)√
mw′j =

√
m− 1

m
w′j.

Therefore we also get

E[iεjwj|w′] = E[
√
mw′j −

√
m− 1wj|w′] =

√
mw′j −

m− 1√
m

w′j =
1√
m
w′j.

Proceeding as in Proposition 4.1, since P is tetrahedral we get

E[M(λiεw,w, . . . , w)|w′] =
1√
m

√
m− 1

m

m−1

M(λw′, w′, . . . , w′).

By Jensen’s inequality we deduce

(Ew‖M(λw,w, . . . , w)‖p)1/p = (Ew′‖M(λw′, w′, . . . , w′)‖p)1/p

≤
(

1 +
1

m− 1

)(m−1)/2√
m(Eε,w‖M(λiεw,w, . . . , w)‖p)1/p.

Finally, since M is multilinear we can take i out from the first coordinate which completes
the proof.

Proof of Theorem 4.2. Applying the previous lemma for λ = (1, . . . , 1) ∈ Cn and (2) we
get

(Ew‖P (w)‖p)1/p ≤
√
em(Eε,w‖M(εw,w, . . . , w)‖p)1/p

=
√
em
(
Eε,w

∥∥∥ n∑
j=1

εjwjM(ej, w, . . . , w)
∥∥∥p)1/p

≤ π

2

√
em
(
Ew,w′

∥∥∥ n∑
j=1

w′jwjM(ej, w, . . . , w)
∥∥∥p)1/p

=
π

2

√
em(Ew,w′‖M(w′w,w, . . . , w)‖p)1/p.

By rotation invariance we can replacew′w withw′ which yields (34).
Now assume X is K-convex and p > 1. Using rotation invariance and (2) in the other
direction we get

(Ew,w′‖M(w′, w, . . . , w)‖p)1/p ≤ π

2
(Eε,w‖M(εw,w, . . . , w)‖p)1/p. (35)

As in the proof of the previous lemma, consider the Steinhaus variables

w′j =

√
m− 1 + iεj√

m
wj.
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For a fixed z ∈ T regard P (
√
m− 1z + iεz) as a Walsh polynomial on ε. Notice that its

1-homogeneous projection ismM(iεz,
√
m− 1z, . . . ,

√
m− 1z). SinceX isK-convex we

deduce

(Eε,w‖mM(iεw,
√
m− 1w, . . . ,

√
m− 1w)‖p)1/p ≤

≤ Kp(X)(E‖P (
√
m− 1w + iεw)‖p)1/p =

√
m
m
Kp(X)(Ew′‖P (w′)‖p)1/p.

So we get
√
m(Eε,w‖M(εw,w, . . . , w)‖p)1/p =

=
1

√
m
√
m− 1

m−1 (Eε,w‖mM(iεw,
√
m− 1w, . . . ,

√
m− 1w)‖p)1/p

≤
(

1 +
1

m− 1

)(m−1)/2

Kp(X)(Ew′‖P (w′)‖p)1/p

=
√
eKp(X)(Ew‖P (w)‖p)1/p. (36)

Joining (35) and (36) concludes the argument.

As an application of the previous results we have the following corollary (see [15, 10] for sim-
ilar inequalities and their applications).

Corollary 4.5. Let X be a K-convex space, P : Cn → X an m-homogeneous tetrahedral
polynomial. For every 1 ≤ p <∞ and every λ ∈ Cn we have

(E‖〈∇P (w), λw〉‖p)1/p ≤ πe

2
Kp(X)m‖λ‖∞(E‖P (w)‖p)1/p.

Proof. Notice that if P (z) =
∑

A xAzA we can rewrite

〈∇P (z), λz〉 =
n∑
j=1

λjzj
∑
A/j∈A

xAzA−{j} =
∑
A

∑
j∈A

λjxAzA = mM(λz, z, . . . , z).

Applying Lemma (4.4) and (2) we get

(E‖〈∇P (w), λw〉‖p)1/p ≤
√
em3/2(Eε,w‖M(λεw,w, . . . , w)‖p)1/p

≤ π

2

√
em3/2‖λ‖∞(Eε,w‖M(εw,w, . . . , w)‖p)1/p.

The result follows using (36) from the previous theorem.

To illustrate how we may use the last corollary, suppose we want to estimate Ew‖P (eiθw)−
P (w)‖p for a small perturbation eiθ = (eiθj)j ∈ Tn where every coordinate is close to 1.
For z ∈ Cn, consider the function fz(t) = P (eiθtz). Observe that

f ′z(t) = 〈∇P (eiθtz), iθeiθtz〉.

So under the assumptions of Corollary 4.5 we get

(Ew‖P (eiθw)− P (w)‖p)1/p = (Ew‖fw(1)− fw(0)‖p)1/p ≤ (Ew‖f ′w(t0)‖p)1/p

= (E‖〈∇P (w), iθw〉‖p)1/p ≤ πe

2
Kp(X)m‖θ‖∞(E‖P (w)‖p)1/p.
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Of course, this estimate is only useful when ‖θ‖∞ is smaller than 1/m. Otherwise the trian-
gle inequality together with rotation invariance already ensures that

(Ew‖P (eiθw)− P (w)‖p)1/p ≤ 2(E‖P (w)‖p)1/p.

Unfortunately, we do not know sharp one-variable decoupling estimates for other random
variables. We finish this note by discussing one-variable decoupling for Walsh polynomials
and provide some partial results.
A famous inequality of Pisier (see [30, Lemma 7.3]) states that for every f : {−1, 1}n → X
and 1 ≤ p <∞ we have

(Eε‖f(ε)− Ef‖p)1/p ≤ 2e log n(Eε,ε′‖〈∇f(ε), ε′〉‖p)1/p. (37)

This was used by Pisier to study a non-linear version of type for metric spaces known as
Enflo type. He proved that for Banach spaces both notions almost coincide. More precisely,
it is easy to check that Enflo type p implies type p for Banach spaces (see for example [27]).
Conversely, in [30, Theorem 7.5] it is shown that Banach spaces with type p > 1 enjoy Enflo
type r for every 1 ≤ r < p. The log n term in (37) was the reason why one could only deduce
Enflo type r instead of Enflo type p. So the question of whether the log n factor could be
removed for Banach spaces of non-trivial type (K-convex spaces) became a long-standing
open problem. Quite recently in [17] it was proven that this is true even for spaces with finite
cotype and the coincidence of type and Enflo type for Banach spaces was settled.
In the case of m-homogenous polynomials we show that for spacesX of cotype q <∞ and
for 1 ≤ p ≤ q we have

(E‖P (ε)‖p)1/p ≤ Cm−1/q(E‖〈∇P (ε), ε′〉‖p)1/p.

Notice that sinceP ism-homogenous we have EP = 0 so this inequality is a variant of (37)
form-homogeneous polynomials. Also a straightforward computation shows that

〈∇P (ε), ε′〉 = mM(ε′, ε, . . . , ε). (38)

So in our notation the previous inequality can be stated as follows.

Proposition 4.6. Let X be a Banach space of finite cotype q and fix 1 ≤ p ≤ q. There is a
constantC ≥ 1 such that for everym-homogenous polynomial P : {1, 1}n → X we have

(E‖P (ε)‖p)1/p ≤ Cm1−1/q(E‖M(ε′, ε, . . . , ε)‖p)1/p.

Regrettably, this inequality only provides an analogue to (34) for cotype 2 spaces where
m1−1/q becomes

√
m. It should be mentioned that for X = Lq(µ) and p = q it is easily

proven that the above result holds replacingm1−1/q with
√
m. This suggests that

√
m could

be the right bound regardless of the cotype of X .
In order to prove Proposition 4.6 one can replace the integral from 0 to∞ in [17, Theo-
rem 1.4] with an integral from 0 to 1/m and carefully follow the proof of this result as well
as [17, Proposition 4.2]. However, we take a more direct route using a combinatorial identity
from Rzeszut and Wojciechowski which can be retrieved from equations (3.12) through
(3.15) from [31]. This identity inspired our Lemma 2.6 and can be regarded as a one-variable
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decoupling version of it. Given a vector space V , a family {vA : A ⊆ [n], |A| = m} ⊆ V
(where n,m ∈ N) and k ∈ N we have∑

B⊆[n]
|B|=k

∑
A1⊆B
|A1|=1

∑
A2⊆Bc
|A2|=m−1

vA1∪A2 =
∑
B⊆[n]
|B|=k

∑
A⊆[n]
|A|=m
|A∩B|=1

vA =
∑
A⊆[n]
|A|=m

∑
B⊆[n]
|B|=k
|A∩B|=1

vA

=
∑
A⊆[n]
|A|=m

∣∣{B ⊆ [n] : |B| = k, |A ∩B| = 1}
∣∣vA = m

(
n−m
k − 1

) ∑
A⊆[n]
|A|=m

vA.

(39)

Notice that if n = km, then
(
n−m
k−1

)
=
(

(k−1)m
k−1

)
. Analogously, as in the decomposition from

Section 2, a straightforward (but tedious) application of Stirling’s formula yields(
n
k

)
m
(
n−m
k−1

) ≤ 4.

The main idea is that in this case we can compare∑
A⊆[n]
|A|=m

vA vs.
1(
n
k

) ∑
B⊆[n]
|B|=k

∑
A1⊆B
|A1|=1

∑
A2⊆Bc
|A2|=m−1

vA1∪A2 .

Whereas the left-hand side will be the object of study, the right-hand side is an average (over
all subsetsB) of an expression with a decoupled structure. This is because for a fixedB the
indices A have been split in A1 and A2 in such a way that A1 has always 1 element, A2 has
alwaysm− 1 elements and these elements do not mix sinceA1 ⊆ B andA2 ⊆ Bc.

Proof of Proposition 4.6. Let{xA : A ⊆ [n], |A| = m}be a family of vectors inX . Taking
n larger if necessary, we may assume n = km for some k ∈ N so we have

1

m
(
n−m
k−1

) ≤ 4(
n
k

) .
Using (39) for vA = xAεA we get(

Eε
∥∥∥ ∑
|A|=m

xAεA

∥∥∥p)1/p

=
1

m
(
n−m
k−1

)(Eε∥∥∥ ∑
B⊆[n]
|B|=k

∑
A1⊆B
|A1|=1

∑
A2⊆Bc
|A2|=m−1

xA1∪A2εA1∪A2

∥∥∥p)1/p

≤ 4(
n
k

) ∑
B⊆[n]
|B|=k

(
Eε
∥∥∥ ∑
A1⊆B
|A1|=1

εA1

∑
A2⊆Bc
|A2|=m−1

xA1∪A2εA2

∥∥∥p)1/p

. (40)

Now sinceA1 ⊆ B andA2 ⊆ Bc these indices never overlap. So for a fixedB we get

Eε
∥∥∥ ∑
A1⊆B
|A1|=1

εA1

∑
A2⊆Bc
|A2|=m−1

xA1∪A2εA2

∥∥∥p = Eε,ε′
∥∥∥ ∑
A1⊆B
|A1|=1

ε′A1

∑
A2⊆Bc
|A2|=m−1

xA1∪A2εA2

∥∥∥p. (41)

Denote ∂jP = ∂P
∂zj

and notice that

∂jP (ε) =
∑

A⊆[n]−{j}
|A|=m−1

x{j}∪AεA.
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We have

Eεi/i∈B
[∑
j∈B

ε′j∂jP (ε)
]

= Eεi/i∈B
[ ∑
A1⊆B
|A1|=1

ε′A1

∑
A2⊆Ac1
|A2|=m−1

xA1∪A2εA2

]

=
∑
A1⊆B
|A1|=1

ε′A1

∑
A2⊆Bc
|A2|=m−1

xA1∪A2εA2 . (42)

Joining (40), (41), (42) and using Jensen’s inequality we obtain(
Eε
∥∥∥ ∑
|A|=m

xAεA

∥∥∥p)1/p

≤ 4(
n
k

) ∑
B⊆[n]
|B|=k

(
Eε,ε′

∥∥∥∑
j∈B

ε′j∂jP (ε)
∥∥∥p)1/p

. (43)

Recall that n = km and the definition of Πk,m from (15) as the familiy of all ordered parti-
tions π = (B1, . . . , Bm) of [n] inm setsBl of k-elements. By a symmetry argument observe
that

1(
n
k

) ∑
B⊆[n]
|B|=k

(
Eε,ε′

∥∥∥∑
j∈B

ε′j∂jP (ε)
∥∥∥p)1/p

=
1

m|Πk,m|
∑

π∈Πk,m

m∑
l=1

(
Eε,ε′

∥∥∥∑
j∈Bl

ε′j∂jP (ε)
∥∥∥p)1/p

.

(44)

Using Hölder’s and Minkowski’s inequalities we get
m∑
l=1

(
Eε,ε′

∥∥∥∑
j∈Bl

ε′j∂jP (ε)
∥∥∥p)1/p

≤ m1/q′
( m∑
l=1

(
Eε,ε′

∥∥∥∑
j∈Bl

ε′j∂jP (ε)
∥∥∥p)q/p)1/q

≤ m1/q′
(
Eε,ε′

( m∑
l=1

∥∥∥∑
j∈Bl

ε′j∂jP (ε)
∥∥∥q)p/q)1/p

(45)

Applying the cotype q inequality and the Kahane-Khinchin inequality to change the expo-
nent q to p (see [13, 11.1]), we have( m∑

l=1

∥∥∥∑
j∈Bl

ε′j∂jP (ε)
∥∥∥q)1/q

≤ C
(
Eδ
∥∥∥ m∑
l=1

δl
∑
j∈Bl

ε′j∂jP (ε)
∥∥∥q)1/q

≤ C̃
(
Eδ
∥∥∥ m∑
l=1

δl
∑
j∈Bl

ε′j∂jP (ε)
∥∥∥p)1/p

.

Joining this with (45) we obtain
m∑
l=1

(
Eε,ε′

∥∥∥∑
j∈Bl

ε′j∂jP (ε)
∥∥∥p)1/p

≤ m1/q′C̃
(
Eε,ε′,δ

∥∥∥ m∑
l=1

δl
∑
j∈Bl

ε′j∂jP (ε)
∥∥∥p)1/p

= m1/q′C̃
(
Eε,ε′

∥∥∥〈∇P (ε), ε′〉
∥∥∥p)1/p

,

where in the last step we used that δlε′j ∼ ε′j . Combining this with (43) and (44) we have(
Eε
∥∥∥ ∑
|A|=m

xAεA

∥∥∥p)1/p

≤ 4C̃m−1/q
(
Eε,ε′

∥∥∥〈∇P (ε), ε′〉
∥∥∥p)1/p

.

The result follows from (38).
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